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Abstract

The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central

nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC)

family – Breast Cancer Resistance Protein (ABCG2 in humans, Abcg2 in rodents) and P-

glycoprotein (ABCB1 in humans, Abcb1 in rodents) – play a key role in mediating this process.

Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of

highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which

include the compound URB937 (cyclohexylcarbamic acid 3′-carbamoyl-6-hydroxybiphenyl-3-yl

ester). To define structure-activity relationships of the interaction of these molecules with Abcg2,

in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate

FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-
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Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the

majority of compounds tested – even those able to enter the CNS in vivo – were substrates for

Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that

only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also

peripherally restricted in vivo. The extent of such restriction seems to depend upon other

physicochemical features of the compounds, in particular the polar surface area. Consistent with

these in vitro results, we found that URB937 readily enters the brain in dual knockout mice

lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the

brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act

together to restrict the access of URB937 to the CNS.

Keywords

Fatty-acid amidohydrolase (FAAH); FAAH inhibitor; Blood-brain barrier; ATP-binding cassette
transporters; Abcb1/P-gp; Abcg2/Bcrp

1. Introduction

The blood-brain barrier (BBB) is the main entry route for molecules into the brain and spinal

cord. This unique barrier system is composed of endothelial cells and associated

perivascular elements, including astrocytic end-feet processes, perivascular neurons and

pericytes [1]. Endothelial cells of the BBB are distinctive in that, while forming complex

tight junctions that effectively seal the paracellular pathway, contain numerous membrane

transporters that regulate the transcellular traffic of essential molecules between brain and

blood, as well as the efflux of potentially harmful substances and waste products [1]. The

efflux systems of the BBB are localized to the apical membrane of endothelial cells, and are

primarily composed of ATP-binding cassette (ABC) transporters, such as P-glycoprotein

(ABCB1 in humans, Abcb1 in rodents) and Breast Cancer Resistance Protein (ABCG2 in

humans, Abcg2 in rodents) [2,3]. These two transporters, in particular, are highly expressed

in a variety of rodent and human tissues (e.g., small intestine, liver, kidney, brain

endothelium and placenta) and contribute in important ways to the absorption, elimination

and distribution of xenobiotics [4]. They also play a critical role in the induction of

multidrug resistance (MDR) in tumor cells [5]. Significant drug discovery efforts have been

aimed at developing inhibitors for ABC transporters [6,7], but little is still known about their

substrate preference. While recent structural advances have helped close knowledge gaps

about the substrate polyspecificity of ABCB1/Abcb1 [8], the lack of detailed structural

information about ABCG2/Abcg2 renders the pharmacophore characterization of its

substrates more problematic. Recent attempts to elucidate the substrate-binding properties of

ABCG2 have taken advantage of a combination of molecular docking with homology

models [9] and mutational analysis [10]. Human ABCG2 and its rodent orthologue Abcg2

recognize a wide range of molecules, including chemotherapeutic agents (e.g. mitoxantrone,

methotrexate) and non-chemotherapeutic agents (e.g. nitrofurantoin, cimetidine), as well as

non-pharmaceutical compounds such as dietary flavonoids, porphyrins and estrone 3-sulfate

[10,11]. Genetic and pharmacological evidence indicates that Abcg2 is also required for the

extrusion of the highly potent and selective fatty-acid amidohydrolase (FAAH) inhibitor,
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URB937 (Fig. 1A), from brain and spinal cord [12,13] URB937 produces profound

antinociceptive effects in mice and rats, which depend on the peripheral blockade of the

FAAH-mediated deactivation of anandamide, an endogenous agonist of type-1 cannabinoid

(CB1) receptors [12]. Two chemical moieties in the O-arylcarbamate scaffold of URB937 -

the hydroxy group in para on the proximal phenyl ring and the amide group in meta on the

distal phenyl ring (Fig. 1A) - are important for the exclusion of this compound from the

central nervous system (CNS) [12–15]; The role of these two moieties is consistent with the

results of ligand-based experiments showing that hydroxyl or amine groups on the outer ring

of camptothecin analogs, imidazoacridinones, mitoxantrone and urolithins are essential for

substrate recognition and efflux by ABCG2/Abcg2 [9,16–18].

Given the considerable overlap in substrate preference among different members of the

ABC family, the distribution of molecules across tissue barriers can be rarely attributed to a

single transporter [2,19,20]. Additionally, other factors such as polar surface area (PSA) or

membrane lipid composition also affect the passage of chemicals through the BBB [21,22].

Therefore, to gain a better understanding of the mechanism(s) through which URB937 is

excluded from the CNS, in the present study we investigated a select group of URB937

derivatives for their ability to serve as substrates for Abcg2 and ABCB1 in vitro, and

assessed the access of URB937 to the CNS of mutant mice lacking Abcg2, Abcb1 or both.

Our results provide novel structural insight on the substrate selectivity of Abcg2 and Abcb1

and suggest that the combined action of these two transporters restricts the entry of URB937

and its peripheral analogs to the CNS.

2. Material and methods

2.1 Chemicals

Ko143 was purchased from Tocris (Bristol, United Kingdom). PSC-833 (Valspodar) was

from Sequoia Research Products (Pangbourne, UK). URB937 and analogs 1–7,9 were

synthesized as previously described [12,15]. Compound 8 (cyclohexylcarbamic acid 3′-

carbamoyl-6-methylbiphenyl-3-yl ester) was prepared as reported [12]. 8: White crystals.

Mp: 165–166 °C (EtOH). MS (ESI): 353 (M+H+). 1H NMR (200 MHz, DMSO-d6): δ =

8.07 (s, 1H), 7.83–7.90 (m, 2H), 7.70–7.74 (m, 1H), 7.43–7.57 (m, 3H), 7.27–7.31 (m, 1H),

6.95–7.05 (m, 2H), 3.28–3.30 (m, 1H), 2.20 (s, 3H), 1.05–1.83 (m, 10H) ppm. IR (Nujol): ν

= 3484, 3293, 3133, 1706 cm−1. All the other chemicals were of analytical grade and were

available from commercial sources.

2.2 Animals

Adult (9-week) male wild-type FVB, Mdr1a/b−/−, Bcrp−/− and Mdr1a/b−/−-Bcrp−/− mice

were obtained from Taconic Farms Inc (Hudson, NY) and kept in a temperature-controlled

environment with a 12-h light/12-h dark cycle. Animals received standard chow and water

ad libitum. All procedures were approved by the Institutional Animal Care and Use

Committee of the University of California, Irvine.
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2.3 Cell cultures

Madin-Darby Canine Kidney-II (MDCKII) and their Abcg2- and ABCB1-transduced

subclones were a kind gift from Dr. A.H. Schinkel. Culture conditions were those previously

described [23,24]. Cells were cultured at 37°C in the presence of 5% CO2 in Dulbecco-

modified Eagles’s medium (DMEM) supplemented with Glutamax (Life Technologies, Inc.,

Carlsbad, CA, USA), penicillin (50 units/mL), streptomycin (50 μg/mL), and 10% (v/v) fetal

calf serum (MP Biomedicals, Solon, OH, USA). Cells were trypsinized every 3–4 days for

subculturing.

2.4 Transport studies

Transepithelial transport assays were carried out as previously described [25] with minor

modifications. Cells were seeded on microporous polycarbonate membrane filters (3.0 μm

pore size, 24 mm diameter; Transwell 3414; Costar, Corning, NY, USA) at a density of

1.0×106 cells per well. Cells were grown for 3 days, and the medium was replaced every

day. Before starting the experiment transepithelial resistance was measured in each well

using a Millicell ERS ohmmeter (Millipore, Bedford, MA); wells registering a resistance of

150 Ω or greater, after correcting for the resistance obtained in blank control wells, were

used in the experiments. The measurements were repeated at the end of each experiment to

assess the tightness of the monolayer. Experiments were performed using Optimem medium,

a reduced serum medium that is a modification of Eagle’s minimum essential medium,

buffered with HEPES and sodium bicarbonate. Two h before starting the experiment,

medium on both sides of the monolayer was replaced with 2 mL of Optimem medium (Life

Technologies, Inc., Carlsbad, CA, USA), without serum, either with or without Ko143

(1μM) or PSC-833 (5 μM). The experiment was then started (t = 0) by replacing the medium

in either the apical or basolateral compartment with fresh Optimem medium, either with or

without Ko143 (1 μM) or PSC-833 (5 μM), and containing 5 μM of each of the test

compounds, except for compound 8, where the concentration used was 1 μM due to limited

water solubility. Samples (0.1 mL) were removed from the acceptor compartment at t = 2h

and 4h, and stored at −20°C until analysis. The appearance of the compound in the acceptor

compartment is shown as fraction of total compound added to the donor compartment at the

beginning of the experiment. Active transport was expressed by the relative transport ratio

(r), defined as the percent of apically directed transport divided by the percent of

basolaterally directed transport, after 4 h [26].

Concentration of tested compounds was quantified by LC-MS/MS. A nine-point calibration

curve (1 nM to 10 μM) was prepared for each molecule by serial dilution in Optimem buffer

containing 20% acetonitrile to ensure full solubilization. Samples were allowed to reach

room temperature and vortexed for 30 s. Samples and calibrators were then transferred (0.1

ml) into 96-well plates and an equal volume of acetonitrile was added. After mixing and

centrifugation, supernatant solutions (3 μL) were loaded on a Xevo-TQ UPLC-MS/MS

system (Waters Inc., Milford, MA, USA) equipped with a 2.1X50 mm BEH reversed-phase

column. Analytes were eluted with a linear gradient of acetonitrile in water (both containing

formic acid 0.1%). Detection and quantification were performed in positive ion tandem-

mass mode, comparing the multiple reaction monitoring (MRM) peak areas of the samples

with those of the corresponding standard curve.
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2.5 Experimental design of in vivo study

URB937 was dissolved in saline/PEG400/Tween-80 (18:1:1, v/v/v) and injected

intraperitoneally at the volume of 10 mL/kg. Mice were sacrificed by decapitation under

slight anesthesia with isoflurane, and brain and spinal cord were removed and snap frozen in

liquid nitrogen. Blood was collected through a left cardioventricular puncture and

centrifuged at 2000 × g for 20 min to obtain plasma. Brain samples were weighed and

homogenized in ice-cold Tris–HCl buffer (50 mM, 5–9 vol., pH 7.5) containing 0.32 M

sucrose. Homogenates were centrifuged at 1000 × g for 10 min at 4°C. Supernatants were

collected (0.25 mL) and protein concentration determined using a bicinchoninic acid (BCA)

assay kit (Pierce, Rockford, IL, USA). Remaining supernatant and pellet were further

extracted with methanol/chloroform for URB937 analysis.

2.6 FAAH activity

FAAH activity was measured at 37°C for 30 min in 0.5mL of Tris-HCl buffer (50 mM, pH

7.5) containing fatty acid-free bovine serum albumin (BSA) (0.05%, w/v), tissue

homogenates (S1 fraction, 50 μg), 10 μM anandamide, and anandamide-[ethanolamine-3H]

(10,000 cpm, specific activity 60 Ci/mmol; American Radiolabeled Chemicals). The

reactions were stopped with chloroform/methanol (1:1, 1 mL) and radioactivity was

measured in the aqueous layers by liquid scintillation counting.

2.7 URB937 quantification by LC/MS

Tissue and plasma levels of URB937 were determined as previously described [12] with

minor modifications. In brief, tissue homogenates and plasma samples were extracted with

methanol/chloroform (1:2) containing N-cyclohexyl biphenyl-3-ylacetamide as internal

standard. Organic phases were evaporated under nitrogen and reconstituted in 0.1 mL of

methanol. Samples were analyzed using an 1100-LC system coupled to a 1946A-MS

detector (Agilent Technologies, Inc., Palo Alto, CA) equipped with an electrospray

ionization interface. URB937 and N-cyclohexyl biphenyl-3-ylacetamide (mass-to-charge

ratio, m/z = 377 and 294 respectively) were eluted on an XDB Eclipse C18 column

(50×4.6mm inner diameter, 1.8 μm, Zorbax) using a linear gradient of 60% to 100% of A in

B over 3 min at a flow rate of 1.0 mL/min. Mobile phase A consisted of methanol containing

0.25% acetic acid and 5 mM ammonium acetate; mobile phase B consisted of water

containing 0.25% acetic acid and 5 mM ammonium acetate.

2.8 Statistical analyses

Results are expressed as mean ± standard error of the mean (SEM) or standard deviation

(SD) and the significance of differences was determined using one-way or two-way analysis

of variance (ANOVA) followed by a Dunett’s test as post hoc. Differences were considered

significant if P<0.05. Statistical analyses were conducted using GraphPad Prism Version 4.0

(San Diego, CA, USA).
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3. Results

3.1 Transport of O-arylcarbamate FAAH inhibitors in wild-type MDCKII cells

We first measured the transepithelial transport of URB937 and a select group of O-

arylcarbamate FAAH inhibitors across polarized monolayers of wild-type MDCKII cells.

Results for the transport in the basolateral-to-apical and apical-to-basolateral directions, as

well as the relative transport ratios, are reported in Table 1. URB937 and its analogs 1, 5 and

6 showed a moderate apically directed transport, relative to basolaterally directed transport

(transport ratios ≥ 2) (Table 1). This asymmetric distribution was likely due to endogenous

expression of native canine Abcb1, because it was abolished by incubation with the selective

Abcb1 inhibitor, PSC833, but not by the Abcg2 inhibitor Ko143 (Supplementary Figure 1).

Such directed translocation was not observed for compounds 3, 7 and 8, which displayed

BA/AB ratios close to 1 (Table 1), thus suggesting that they are not substrates for

endogenously expressed Abcb1. By contrast, compounds 4 and 9, initially designed to

evaluate the H-bonding capacity of the distal amide residue, and the putative sulfate

conjugation of URB937 that might occur in vivo respectively, showed minimal translocation

in either the apical or basolateral direction. As this result was likely due to the presence in

their structure of chemical groups that were ionized at physiological pH, the compounds

were not further tested.

3.2 Transport of O-arylcarbamate FAAH inhibitors in MDCKII cells monolayers
overexpressing Abcg2

We next assessed transport of URB937 and its congeners in MDCKII cells engineered to

overexpress murine Abcg2. Previous studies have shown that human and murine ABCG2

have similar substrate preferences [27]. The majority of test compounds (URB937, 1, 2, 5, 6,

7 and 8) displayed a substantial basolateral-to-apical translocation, and a diminished apical-

to-basolateral translocation (Table 2). The observed relative transport ratios, which were in

all cases ≥10, identify the compounds as excellent substrates for Abcg2 in vitro. Compounds

bearing a primary or substituted amide in the R1 position and a hydroxy or a hydroxy-

containing group in R2 (URB937, 5 and 6)(Fig. 1), although having relative transport ratios

similar to those of other test compounds, displayed significantly smaller apical-to-

basolateral transport, which correlates with a higher PSA value (≥80Å) and the low brain

penetration previously reported for these inhibitors in vivo [15]. Surprisingly, compounds 7
and 8 were effectively transported by Abcg2 (Table 2), even though they were previously

shown to readily enter the brain when administered to mice [15]. In the small set of

molecules tested here, only compound 3 did not behave as a transport substrate for Abcg2.

The translocation of all compounds was blocked by addition of the Abcg2 inhibitor, Ko143

(Supplementary Figure 2A).

3.3 Transport of O-arylcarbamate FAAH inhibitors in MDCKII cells monolayers
overexpressing ABCB1

We also asked whether URB937 and other O-arylcarbamate FAAH inhibitors are

transported across monolayers of MDCKII cells transduced with human ABCB1 (Table 3).

In this case, no significant vectorial transport was observed for analogs 3, 7 and 8. This
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indicates that these compounds are not ABCB1 substrates in vitro and suggests that both the

m-amide group in the distal phenyl ring and the p-hydroxy group in the proximal phenyl ring

of URB937 are required for its substrate recognition by ABCB1. Other test molecules

displayed relative transport ratios >6, which shows that they were effectively translocated by

ABCB1. In contrast to what observed in Abcg2 overexpressing cells, no significant

difference was found among the apical-to-basolateral translocation, independently of the

PSA value (Table 3). Inclusion of the selective ABCB1 inhibitor, PSC883, prevented

transport, confirming that ABCB1 activity mediates this process (Supplementary Figure

2B).

3.4 Brain penetration of URB937 in mice lacking Abcg2, Abcb1 or both

Previous studies have shown that URB937 inhibits FAAH activity in the brain with a

median effective dose (ID50) of 40 mg/kg, which is 400 times greater than the dose needed

to inhibit FAAH activity in peripheral organs such as the liver (ID50=0.1 mg/kg) [12]. A

dose-exploration study of URB937 (3–15 mg/kg, intraperitoneal, i.p.) in mutant mice

lacking Abcg2 (Bcrp−/− mice) yielded an IC50 of brain FAAH activity of 10 mg/kg (Fig.

2A), which suggested that Abcg2 is only partly responsible for the restricted access of

URB937 to the brain. We selected the dose of 5 mg/kg, which inhibited brain FAAH by

only 26%, to study the effect of removing Abcg2, Abcb1 or both. As expected,

administration of URB937 (5 mg/kg, i.p.) did not affect FAAH activity in the brain of wild-

type mice (Fig. 2B), but completely blocked FAAH activity in the liver (Supplementary

Figure 3A). A similar result was obtained in Abcb1-deficient animals (Fig. 2B), where the

brain-to-plasma ratio of URB937 was not significantly different from controls (Fig. 2C).

These results indicate that URB937 is unable to enter the brain when Abcg2 is present, even

in the absence of Abcb1. On the other hand, brain FAAH activity was drastically inhibited,

and brain-to-plasma ratio of URB937 significantly increased, in mice lacking both Abcb1

and Abcg2 (Mdr1a/b−/−-Bcrp−/− mice) (Fig. 2B, C). Similar results were obtained in the

spinal cord (Supplementary Figure 3B).

4. Discussion

The discovery of URB937, the first peripherally restricted FAAH inhibitor, revealed an

unexpected role for the endocannabinoid anandamide, a FAAH substrate, in the control of

pain initiation outside the central nervous system [12]. Pharmacological and genetic

investigations in the mechanism underlying the peripheral distribution of URB937 have

shown that the ABC transporter, Abcg2, plays an essential role in limiting the access of this

compound to the CNS [12,13].

Recent efforts aimed at elucidating the structural determinants responsible for the peripheral

segregation of URB937 in vivo yielded a small set of brain-impermeant FAAH inhibitors,

which share certain common structural features. These include (i) a primary, secondary or

tertiary amide in the meta position of the distal phenyl ring; and (ii) a hydroxy or a hydroxy-

containing group in the meta or para position of the proximal phenyl ring (Fig. 1) [15]. To

determine whether similar or different features underlie the recognition of these compounds

by Abcg2, in the present study we tested a select group of O-arylcarbamate FAAH inhibitors

in MDCKII cells overexpressing this transporter. The same set of molecules was also tested
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in MDCKII cells overexpressing ABCB1, another member of the ABC family of

transporters. The results of this focused analysis suggest that the amide residue in the distal

ring is essential for recognition by both Abcg2 and ABCB1, because its substitution with a

ketone group (as in compound 3) completely prevented directional transport. This result is in

agreement with previous studies showing that compound 3 readily enters the brain following

systemic administration in mice [15]. In the same study, progressive alkylation of the m-

amide group in URB937 was found to increase the access of analogs 1 and 2 to the brain.

However, this finding does not match our present results indicating that both Abcg2 and

ABCB1 translocate compounds 1 and 2 in vitro. A plausible explanation for this discrepancy

is that replacing hydrogen atoms with methyl groups within the amide moiety of URB937

reduces the compounds’ polar surface area (PSA) and increases their tendency to diffuse

passively through the BBB. Indeed, polarity may play an important role in the substrate

specificity of Abcg2, as compounds with the greatest PSA (≥75Å2, URB937, 5 and 6) also

showed significantly lower apical-to-basolateral translocation in Abcg2-, but not ABCB1-,

overexpressing cells, and had the most restricted access to the CNS in vivo [15]. This is in

agreement with the guiding principle that establishes 75 Å2 as the threshold value for PSA

that, if exceeded, will dramatically increase the chances of transporter involvement, whereas

lipophilic compounds below 75 Å2 are likely to be cleared by metabolism [28].

Surprisingly, substituting the p-hydroxyl group in the proximal phenyl ring (R2) with a

methoxy (7) or methyl group (8), a modification that drastically increases brain penetration

of these molecules in vivo [15], did not prevent Abcg2-mediated transport in vitro. On the

other hand, neither 7 nor 8 were substrates for ABCB1, which suggests that the hydroxyl

substituent in R2 is crucial for substrate preference by this transporter. Because 7 and 8
readily enter the brain after systemic administration in mice (ID50 ≤ 1 mg/kg, i.p.), it is

reasonable to conclude that, among the set of molecules investigated in the present study,

only those that act as dual substrates for Abcg2 and Abcb1 have impaired access to the CNS

in vivo. Further, our results demonstrate that compounds such as 1 and 7, with identical

polarity (PSA=73), lipophilicity (cLogP=3.9) and molecular weigh (MW=368 Da), can

largely differ in their systemic distribution due to selective transport recognition.

Previous experiments with the non-selective inhibitor, verapamil, failed to reveal a

significant role for Abcb1 in the peripheral segregation of URB937 [12]. We reexamined

this issue using mutant mice that lack either Abcb1 (Mdr1a/b−/−), Abcg2 (Bcrp−/−), or both

(Mdr1a/b-Bcrp−/−). Our results concord with those obtained by others for drugs – such as

sorafenib [29] and dantrolene [30] – that have significantly higher affinity for Abcg2 than

Abcb1. In those cases too, a role for Abcb1 was unmasked in triple Mdr1a/b-Bcrp−/−

knockout mice. Strikingly, however, while the action of Abcg2 alone is sufficient to prevent

the entry of URB937 into the brain of Mdr1a/b−/− mice, structural analogs of this compound

lacking affinity for Abcb1 such as 7 and 8 can readily access the CNS. This observation,

together with the substantial effect of dual Mdr1a/b-Bcrp−/− removal on the brain

penetration of URB937, suggests the possibility of a functional cooperation between these

two transporters. However, based on theoretical pharmacokinetic models, it has been noted

that there is no need to postulate a direct synergistic interaction between Abcg2 and Abcb1

to account for the disproportionate brain accumulation observed for dual substrates in
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Mdr1a/b-Bcrp−/− compared to Mdr1a/b−/− and Bcrp−/− knockout mice [20,30]. Rather, such

accumulation could be explained by the fact that the intrinsic efflux transport mediated by

Abcg2 and Abcb1 is considerably larger than the remaining, most likely passive, efflux

transport at the BBB in the absence of both transporters [2]. Unfortunately, we were not able

to fit these kinetic equations to our observed data because our experiments were not carried

out under steady-state conditions [30]. In the case of 7 and 8, the substitution of the

hydroxyl moiety on the proximal ring by a methoxy or methyl group was accompanied by a

reduction in PSA, which, according to the present results, may be important for the substrate

recognition by Abcg2. Also, the substitution renders these compounds more capable of

passively diffusing through biological membranes, compared to URB937.

Another ABC transporter, Abcc4, has been shown to collaborate with Abcg2 and Abcb1 in

the extrusion of camptothecin analogs from the brain [31]. Although our present results

cannot exclude a role for Abcc4 or any other transporter in the extrusion of URB937 from

the brain, the extent of FAAH inhibition found in the CNS of Mdr1a/b-Bcrp−/− knockout

mice appears to be inconsistent with the participation of other transporters.

5. Conclusion

The present results indicate that the peripheral FAAH inhibitor, URB937, and a small

number of its congeners are substrates for both Abcg2 and Abcb1 in vitro, and identify two

different structural features within the O-arylcarbamate scaffold that are critical for such

recognition. This does not, however, exclude the possibility that other residues, outside of

the regions studied here, might also be involved in the drug-protein interaction. Our data

further suggest that, among this set of compounds, only those that are dual substrates for

both transporters display a restricted access to the brain and spinal cord in vivo, the extent of

which may vary depending upon other physicochemical properties (e.g. PSA). These

findings could be useful on the design and development of novel therapeutic agents, by

exploiting ABC transporter recognition to selectively control systemic distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Dr. A.H. Schinkel (The Netherlands Cancer Institute, Amsterdam, The Netherlands) who
provided MDCKII cells and their transduced cell lines. This study was supported by grants from the National
Institutes on Drug Abuse (RO1-DA-012413 to D.P.) and by research projects AGL2009-11730 and
AGL2012-31116 from the Spanish Ministry of Economy and Competitiveness and the European Regional
Development Fund (to G.M.) and by a predoctoral grant (FPU) from the Spanish Ministry of Education (to B.B.).
The contribution of the Agilent Technologies/ UCI Analytical Discovery Facility is gratefully acknowledged.

Abbreviations

ABC ATP-binding cassette

BBB Blood-brain barrier

Moreno-Sanz et al. Page 9

Pharmacol Res. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Abcg2/Bcrp Breast cancer resistance protein

CNS Central nervous system

DMEM Dulbecco-modified Eagles’s medium

ESI Electrospray Ionization

FAAH Fatty-acid amidohydrolase

LC-MS Liquid chromatography–mass spectrometry

MDCKII Madin-Darby Canine Kidney-II

ID50 Median effective dose

MDR Multidrug resistance

MRM Multiple reaction monitoring

Abcb1/P-gp P-glycoprotein

PSA Polar surface area

CB1 Type-1 cannabinoid receptor

UPLC Ultra performance liquid chromatography
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Figure 1.
Chemical structures of A) URB937 and B) congeners.
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Figure 2. Abcg2 and Abcb1 cooperate to restrict entry of URB937 into mouse brain in vivo
A) Dose-dependent inhibition of FAAH activity in the brain of mutant mice lacking Abcg2

(Bcrp−/− mice) by URB937 (3–15 mg/kg, i.p.). Mice were sacrificed 1 h after drug injection.

*** P<0.001 vs. Vehicle; 2-way ANOVA with Dunnett’s post hoc test. B) Effect of

URB937 (5 mg/kg, i.p) on brain FAAH activity in wild-type (WT) mice and in mice lacking

Abcb1 (Mdr1a/b−/−), Abcg2 (Bcrp−/−) or Abcb1 plus Abcg2 (Mdr1a/b-Bcrp−/−). C) Brain-

to-plasma ratio of URB937 1 h after administration of the drug (5 mg/kg, i.p.) to wild-type

(WT) mice or to mice lacking Abcb1 (Mdr1a/b−/−), Abcg2 (Bcrp−/−) or both (Mdr1a/b-

Bcrp−/−). * P<0.05, *** P<0.001 vs. wild-type (WT); ### P<0.001 vs. Mdr1a/b−/−

mice; &&&P <0.001 vs. Bcrp−/−; n = 3–4. Results are expressed as mean ± SEM.
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