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. * HIGHER ORDER VACUUM POLARIZATION FOR FINITE RADIUS NUCLEI 

Miklos Gyulassy· 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

September 17, 1974 

ABSTRACT 

The calculation of the higher order, a(Za)n, n ~ 3, 

vacuum polarization charge density induced by high Z nuclei of 

finite extent is discussed here. The Wichmann-Kroll formalism 

relating the vacuum polarization charge density to the Green's 

function of the Dirac equation is reviewed with attention drawn to 

modifications necessary for very large Z systems (Z > 137) e~ 

countered in heavy ion collisions. This paper is concerned with the 

construction of the radial Green's functions for the Dirac equation 

in the field of finite radius nuclei and on the numerical calculation 

of the higher order vacuum polarization density from those Green's 

functions. Specific calculations are made for muonic Pb and super-

heavy electronic atoms. The results from these calculations have been 

published elsewhere but are further elaborated upon here. , . 

* This work was supported by the U. S. Atomic Energy Commission. 
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1. Introduction and Summary 

The purpose of this paper is to supplement the discussion of 

two previous papers (112) on the calculation of the higher order 

vacuum polarization cha!ge density in the field of high Z nuclei of 

finite extent. The problem considered in Ref. (1) was the calculation 

of the nuclear size corrections to the vacuum polarization (VP) den

sity for orders a(ZcL)n, n ~ 3, in muonic Pb. In particular, the 

effect of those corrections on the 5g9/ 2-4f 7/ 2 transition was cal

culated. This is' of interest in view of the 42:20 eV discrepancy 

reported between theory and experiment (3-5). As reported in Ref. (1), 

these corrections do increase the discrepancy but by only 6 eV. In 

the work of Arafune (4) and Brown et ale '(5) approximations based on 

the smallness of the electron mass and of the nuclear radius were made. 

The accuracy of those approximations was studied in Ref. (1) and found 

to be quite adequate (.-1 eV) for this transition in muonic Pb. In 

Ref. (2), the effect of the higher order VP density on electronic bound 

states in the field of very large Z nuclei was discussed. The main 

conclusion reported there was that the higher order VP cannot prevent 

the lSl/2 state from reaching the lower continuum (E = -m ) 
lSl/2 e 

for some critical value of the nuclear charge Zcr - 170, (6). Then 

the calculation of the VP charge density for overcritical fields (7) 

was discussed, and finally, the stability and localization of the heliunr 

like charge density for Z in the neighborhood of Z were cr 

demonstrated through precise calculations of PRe for Z < Z and cr 

Z > Z • In this paper, we discuss the details and methods used in cr 

arriving at the results reported in Refs. (1,2). This paper, then, 

serves as the basis for both those papers. 

,/ 
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The discussion here is divided into the following sections. 

In section 2, the Wichmann-KrOll formalism (8) for the calculation of 

the VP density Pvp is reviewed. The modifications necessary for very 

large Z nuclei are discussed in detail, and formal relations between 

Pvp and the Green's function for the Dirac equation are established. 

A partial wave decomposition of Pyp is then made, and each partial 

wave contribution is further expanded in powers of the coupling con-

stantZa. Then, the regularization of the formal expressions involv

:tngthe Green's functions is discussed and' illustrated through a calcu

lation of Pvp in the field of a constant external potential. 

In section 3, expressions for the radial Green's functions, 

required in the calculation of the partial wave contributions to Pyp' 

are constructed valid to all orders in Za. The construction of the 

r~dial Green's functions to first and third order in ia is then 

carried out in section 4 . 

. Section 5 is designed to supplement the discussion of Ref. (1). 
While the emphasis in Ref. (1) was on the energy shifts due to nuclear 

size corrections to PvP' the emphasis in section 5 is on the effect 

of those corrections on Pvp itself. The results for high Z systems 

reported in Ref. (2) are further elaborated upon in section 6. The 

critical charge Zcr is calculated for the particular model of the 

nuclear charge density considered in Ref. (2). The ISl/2 wave

functions and the higher order Vp density for 137 < Z < Z are cr 

also calculated. Again, the emphasis is on the structure of Pyp 

rather than the resulting energy shifts. In both sections 5 and 6, 

Pvp is calculated only for the lowest partial wave (j = 1/2) 

contribution. The contribution from higher partial waves (j > 3/2) 
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may be estimated from the ~esults of a point nucleus as in Refs. 

Finally,in section 7, the numerical teclmiques applied to the 

evaluation of the special functions and integrations in the calculation 

of Pvp are discussed. 

2. Relation of Pvp to the Green's function of the Dirac equation 

A. Formal Expressions 

The Vp density Pvp is given by the vacuum expectation value 

of the 11 = 0 * component of the current operator, 

rn terms of the Feynman propagator SF(x,x l ), Pvp can be written 

(10) as 

(2.2) 

where SF satisfies 

(2.3) 

For time independent potentials ~,SF(x,x') depends on time only 

through t - t', and consequently, 

= 2!i [ 
C 

-i( t-t I )z dz e G( x, x I; z), (2.4) 
"'"' .. 

where the Green's function G then satisfies 

* The metric, gamma matrices, units (~= c = 1), and notation are 

chosen to agree with the conventions of Ref. (9). 

:./ 
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, 

and the contour C is determined from the Feynman boundary conditions 

(which depend on the definition of the vacuum). 

In terms of G, eq. (2.2) can be written as 

Pvp G(x,x'; z)1 
... ... x,~x ...... 

(2.6) 

This relation, then, is the basis of the Wichmann-Kroll formalism 

(8) for the calculation of Pvp to all orders in Za. Note that the 

Green's function in this relation must be properly regulated to insure 

that the limit x, ~ x exists and that the integral over z con-
'I'¥. fIIIf,' 

verges. This regularization is discussed in the next section. In 

this section, though, all expressions are to be understood to involve 

only regulated Green's functions. 

The well-known formal solution of eq. (2.5 L 

G(x,x'; z) = 
L 1/JEC«) 1/J~(lf' ) 
E E - z -

, (2.7) 

where $E are properly normalized eigenfunctions of the Dirac 

equation, exhibits the singularities of G in the complex z-plane. 

Thasesingularities are illustrated in Fig. 1. 

The path of the contour C in eq. (2.6) through these singu-

larities is chosen so that the contour lies above the singularities 'of 

G associated with positive energy states and below the singularities 

associated with negative energy states. With this choice of C, Sr 
in eq. (2.4) satisfies the Feynman boundary conditions. The definition 

of which states correspond to positive and negative energy s~ates is 
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equ~valent to the definition of the vacuum ~d is com~letely deter-

mined by the energy EC' where the contour crosses the real axis in 

Fig. 1. When there is no external potential, EC can obviously be 

chosen anywhere between E = ~me' As the strength of the potential 

increases, bound states are formed and G develops poles between the 

two branch points at . E = ~me' The energy EC must then be adjusted 

so that all bound state energies remain greater than EC for the case 

of attractive potentials or less than EC for the case of repulsive 

potentials. With this specification of EC' the conventional vacuum 

in the bound-interaction (Furry) picture is obtained (11). On the 

other hand, if EC is chosen so that there are bound states with 

energies both greater and less than EC' then the corresponding vacuum 

state will be charged. This is easily seen by calculating Pyp in 

eq. (2.6) with two different contours corresponding to different choices 

of EC' Figure 1 illustrates two such contours. 

The contour Co corresponds to the usual definition of the 

vacuum for the case of attractive potentials since all bound state 

energies are greater than EC' On the other hand, CHe corresponds 

to a charged vacuum (2) since, from eq. (2.7), the difference of the 

VP densities calculated in eq. (2.6) with contours Co and CHe is 

just 21 e II1JIls (x) 12. Thus, in fact, eq. (2.6 ) with C = CHe gives 
1/2 

a helium-like charge density PHe that contains a total charge of 

-21 el. 
In the choice of the contour Co for the calculation of Pvp ' 

it was assumed that all binding energies were less than 2m and, e 

thus, that no poles of G have crossed from one branch point to the 

other~ However, for overcritical fields (Z > Zcr) the pole of G 
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corresponding to the state (the ISI/2 pole) moves from the 

branch point at E = +m through the branch point at E = -m off of e . e 

the "physical" sheet of the Riemann surface for the Green's function. 

In that case, the vacuum is predicted to decay spontaneously into a 

helium-like state* plus two free positrons (7). Thus, the stable VP 

density for Z > Zcr corresponds to a helium-like density ~e 

obtained with contour CRe in eq. (2.6) rather than to the analytic 

continuatio~ of Pvp from Z < Z , cr (2) • Furthermore, if the 

potential becomes so strong that the 2PI/2 pole also moves off the 

physical sheet through the branch point at E = -m , then the heliume 

like state will spontaneously decay to a berylium-like state plus two 

more positrons, and consequentlY, the stable vacuum must again be 

redefined by shifting the contour CRe to the right of the 2PI / 2 

pole. Each time a bound state pole moves off the physical sheet, the 

contour in eq. (2.6) must be shifted so thatEc stays to the right 

of the branch point at -me and to the left of any remaining bound 

state poles on the physical sheet. A simple expression for the stable 

vacuum density for any strength of the potential can be written by 

deforming the contour C to the imaginary axis I. Thus, from eq. 

(2.7), 

Pvp = lei { -m~<o Il/JE<;:lI2 + ~Lm ely Tr G(::;,:'; :iY.lb,~} . 
( 2.8) 

* We neglect inter~ction between the two electrons. 
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This equation contains the fa.ct tha.t each time a. pole of G moves off 

the physical sheet through the branchpoint at -me'· the total charge 
. ~ 

of the vacuum around the nucleus changes by -2Iel. 

For spherically symmetric potentials, the Green's function 

G(~/~' j z) has a partial wave decomposition (12) in terms of radial 

Green's functions G
k 

satisfying 

me + VCr) - z 

!~r + k 
r dr r -m + V(r) - z e 

~(r/r'; z) = 0(1' - r') 
rrf , 

(2.9 ) 

where k = ±(j + 1/2) for a given total angular momentum j. From 

the following relation (8,12) 

Tr G( x, x'; z)1 ... .. ~'-+-~ 
= (2.10 ) 

the contribution to the VP density for a given k is then given by 

* +21el 

= 

= 

lellkl 
(2n )2i 

L 
-m <E<Q 

e 

1~'k(rlI2 + 2~J~ dy Tr,\(r,r' ;iYl1 r • ..,,}. 

(2.11 ) 

amount of charge escapes with two free positrons; -21el 

is localized with two bound electrons. 

I 
.1 - , 
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where ~E k are the normalized radial wave functions with e.i genva1ues 
1 

E and k for the potential V. 

For a given angular momentum j, there exists a simple symmetry 

for ~. Let ~(V; r,r'; z) be the solution of eq. (2.9). Then it 

is easily seen that 

G-,.k(V; r,r'iz) = , 

where 01 =~: ~~ Thus, 

Tr G_k(Vi r,r'; z) = - Tr Gk(-V; r,r'; -z) 

With this relation, the sum of the VP densities for k = ±Ikl, 

Plkl = Pk + P-k , can be written as 

= L 
-m <E<O e 

(2.12 ) 

(2.13 ) 

iyvf ,'t' }. r-+r 

(2.14 ) 

The integral along the imaginary axis is manifestly odd as a function 

of V. To see that the sign of the first term also changes as V + -V, 

note that for repulsive potentials the bound state poles emerge from 

the branch point at -m e and approach the branch point at +me from 

the left. The contour C gi ving the VP density in eq. (2.11) must 

then cross the real axis to the right of those poles on the physical 

sheet but to the left of the branch point at +m. Deforming C to e 

the imaginary axis I, the residues of Tr Gk, k = ±Ikl, in the 
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interva.l 0 < E < m must then be a.dded to the contour integral along 
e 

I with the opposite sign as· in eq. (2.14), Thusp!kl(r) is an odd 

function of V as required by Furry's theorem. 

In addition to a partial wave expansion of .. Pvp ' it is useful 

to consider the expansion of each Pk in powers of the external 

potential. Wri ting this potential as V = -Za V o( r ), where Za is 

an expansion parameter and Vo is a function of r, the power series 

expansion in Za for the Green's function is given by the Neumann 

series for the resolvent 

(2.15 ) 

where o Gk is the resolvent in the absence of an external potential. 

The trace of the nth order Green's function for a given k is then 

. given by 

(2.16 ) 

The nth order Vp charge density for k = ~Ikl is thus given by 

z »)1 . 
r'~ 

(2.17) 

From eqs. (2.13 and 2.16) , 

(2.18 ) 

i 
! . , 
i 

,..' : 
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Also for a given n and k, Tr Gk
n 

has no poles between !me " 

Therefore, deforming C to the imaginary axis, Plkl c~~ be written 

as, 

(n odd) 

o (n even) (2.19 ) 

This equation again contains the requirement of Furry's theorem that 

the VP density must be an odd function of Z. 

B. Regularization 

The formal manipulations that led to the equations of the 

previous section are of course justified only if the operations indicated 

in them, such as taking limits and performing integrations, are well 

defined and if there is no ambiguity associated with the interchange 

of those operations. However, as noted in the previous section, eq. 

(2.6) is not well defined since neither the limit x' ~ x . nor the 

integral over z exist. Therefore a regulator scheme is essential if 

meaningful results are to be obtained from any of the equations of the 

previous section. 

One well-known regulator scheme that is known to give unambig

uous, gauge invariant resUlts is due to Pauli and Villars (14). In 

that scheme the Green's function is regulated with auxiliary masses 

as follows: . let G( mi ) denote the solution of eq. (2. 5) for an electron 

of mass ro.; the regulated Green's function is then defined through 
~ 

= 
i 

a. G(m.) 
~ 1 1 ( 2.20) 
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where the coefficients ai a.re chosen such that 

L r 2 a ai = ai mi = 

and 

(2.21) '~ = 1 DJ. = m .. I e 

With G replaced by GReg in eq. (2.6), the limit !' ~! exists, 

the integral over z converges, and there is no ambiguity associated 

with the interchange of those operations. Furthermore, the steps 

leading to the subseq~ent equations of section lA, which include the 

changing of the original contour of integration C to the imaginary 

axis I and expanding Pvp in terms of Pk and Plkl' are permissible 

with GReg' After renormalization of the nuclear charge, the limits 

mi ~ co, i ~ 2, are taken and the unamqiguous, gauge invariant result 

for Pvp is thus obtained to all orders in Za and for each partial 

wave contribution. 

On the other hand, if we consider the Feynman graphs for Pvp 

in the field of finite radius nuclei, it will be clear that regulariza-

tion is needed only for the contributions from tpe first few orders in 

Za. The graph corresponding to the term linear in Za (Fig. 2a) is 

well known to be quadratically divergent. It is also well known that 

the electron loop integral for orders (Za)n, n'::' 5, is finite. The 

third order graph is a borderline case and will be considered in detail 

later. Of course, in addition to the electron loop integral, the 

graphs in Fig. 2 also involve lntegl;'als for ea.ch . external poten-

tial. For bounded potentials, such as those due to nuclei of finite 

extent, these integrals are finite and" hence, do not introduce new 

singularities, This is most easily seen by considering the integrations 

, 
- ! 

... 

.f> ! 
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in momentum space, where the rapid decrease of the nuclear charge form 

factor insures the convergence of the integrals, However 1 for the 

point nucleus' (constant form factor) considered by Wichmann and Kroll 
, 
I 

(8), additional singularities appear due to the singularity of the 

potential at x = O. Thus,whi1e regularization will always be needed .. 
for first order, for orders (Za)n, n~ 5, regularization will not 

be needed as long as nuclei of finite extent are considered. 

Considering the contribution from order (Za)~ the electron 

loop integral in Fig. 2b is'seen to diverge logarithrrdca11y. It is 

well known, however; that this divergence is eliminated if gauge 

invariance is imposed on the Feynman amplitude or, alternately, if the 

graph is regulated with one auxiliary mass (15). Therefore, an 

ambiguity is expected in the calculation of p3 with eq. (2.6) if 

some regularization is not performed. To see how this ambiguity 

arises in eq. (2.6), consider the calculation of p3 for the case of 

a constant external potential V. This calculation is carried out in 

Appendix 1. The results show that if the limit Xl -+ x is taken first 

and then the contour integral is performed in eq. (2.6), then a non

,gauge invariant result, p3 = V3/3rr2, is obtained.* On the other hand, 

if the contour integral is performed first and then the limit Xl -+ X .. ...... 

is taken, then the gauge invariant result, p3 = 0, is obtained. Thus, 

the ambiguity expected from the third order Feynman graph shows up in 

eq, (2.6) as an ambiguity associated with the interchange of a limit 

and integral. This ambiguity is of course eliminated if the regulator 

condition, eq. (2.21), with one auxiliary mass is applied to the 

* See also Ref. (3) for a discussion of this point, and note that gauge 

invariance requires that p3 -+ 0 as V -+ constant. 
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Green's function, Note, by the way, that the calculation of the 

contribution from higher than third order is found in Appendix I to 

be free from this ambiguity, as it must be since the corresponding 

Feynman graphs are finite and unambiguous. 

Although the calculation of pJ in eq. (2.6) suffers from the 

above-mentioned ambiguity, the calculation of the contribution from 

each partial wave with eq. (2.19) is free from ambiguity. This 

is because the radial Green's function is much less singular than the 

full Green's function G. In particular, the limit I~'I 4 I~I exists 

for Gk while the limit x' 4 x does not exist for G. The results 

for the example of a constant external field considered in Appendix I 

confirm that is indeed free from ambiguity and thus automatically 

satisfies gauge invariance. Note, on the other hand, that the calcula

tion of the first order density Plkl is ambiguous with eq. (2.19) 

since different results are obtained if the limit r' 4 r and the 

contour integral are interchanged. For third order, though, the cal

culation of pJ by summing PTkl gives the unambiguous, gauge invar

iant result, pJ = 0, for the case of a constant external potential. 

This study of pJ in a constant potential suggests that for 

bounded potentials, regularization of p3 is achieved by calculating 

p3 as a sum over the partial wave contributions Pfk!' In particular, 

each is expected to be well defined and gauge invariant! 

Therefore, the total charge contained in each partial wave density is 

. * expected to van~sh. Provided that the sum over k converges 

* For undercritical potentials (2 < 2 ). cr 
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fast enough, the sum Of,prkl should then give the regularized result 

for 
J' 

p • 

The convergence of the sum over k has been discussed in Ref. 

( ) f . (8) . * 1 based on the results 0 W1Chmann and Kroll It was fou.~d that 

the lowest partial wave, Ikl = I, contains already 9J% of the contri

bution to p~ from all partial waves. Thus the sum over k is 

expected to converge very rapidly. In fact, for the VP density 5+ 
P , 

for orders five and higher, the contribution from Ikl = 1 amounts to 

more than 99% of the contribution from all k. Therefore, one expects 

that a good approximation for pJ+ is obtained by calculating only the 

lowest partial wave contribution J+ 
Plkl' Ikl = 1, where 

J+ lellkl I L 2 
Plk.1 (r) = IlPE,k( r) I 2'IT 

k=:!:lkl -m <E<O e 

+ ~ L~ ely Tr [~(Za; r,r; iy) - Gk(-Z,,; r,r; ly) 

(2.22 ) 

This equation follows from removing the first order contribution, eq. 

(2.19), from Plkl in eq. (2.14). As it stands, eq. (2.22) is 

expected to require no further regularization for bounded potentials. 

Indeed, the explicit calculation of PT~I' Ikl, = 1, reported in Refs. 

(1,2) for finite radius nuclei confirms this expectation. 

* See also Ref. (16). 
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For the first order (Uehling) contribution, the regulated VP 

density in an arbitrary potential is known (17,18)~ The energy shifts 

due to the Uehling potential have been worked out in detail tor muonic 

atoms (3,19) and for superheavy electronic atoms (6,20) and, thus, need 

no further consideration here. 

We now turn to the construction of Tr Gk, 

necessary for the calculation of the energy shifts 

due to higher order VP. 

3. Constructionof Tr Gk 

1 . 3 
Tr Gk ' and Tr Gk ' 

quoted in Ref. (1,2) 

The power of the Wichmann-Kroll formalism is that the radial 

Green's functions needed in eq. (2.22) can be readily constructed in 

terms of two particular solutions of the radial Dirac equation. * Let 

$R be the solution regular at r = 0 and Wrbe the solution regular 

at r = QO (i. e. , $r -+ 0 as r -+ QO). Then for an eigenvalue k and 

energy . z, these two component wavefunctions satisfy 

1 + VCr) - z 1 d +! WI (r) ---r r dr r 

= 0 , (3.1 ) 
1 d k -1 + VCr) - z w2(r) --r + -r dr r 

where the radius and energy have been scaled by the electron mass. 

Then in terms of these solutions the radial Green's function is given 

by, 

* 

Gk(r,r'; z) = J(~) ~(r' - r) 1JJR(r) wI(r,)T + a(r - r' )l/Jr(r)I/JR(rl )T}, 

(3.2 ) 

See also Ref. (21). 
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with the Wronskian J(z) given by 

, (3.3) 

and where T stands for transpose and the subscripts 1 and 2 refer 

to the upper and lower components. It is easy to verify from eq. (3.1) 

that J(z) is independent of r and that ~ does satisfy eq. (2.9) 

for m = l. e 

From eq. (3.2), we get 

T 
llJr(r» llJR(r<) 

J( z) 

where r> (r<) is the greater (lesser) of r and rl. The potential 

due to a nucleus of finite extent is of the form 

{

f(r/R)/R , 

VCr) = -Za 
l/r 

r < R 

(3.5) 

r > R 

Two models of the nuclear charge distribution will be considered in 

2 this paper: MOdel I, a shell density, PNuc = oCr - R)/4~R , 

f(r/R) = 1; MOdel II, a uniform density, PNuc = e(R - r)/(4~R3/3), 

f(r/R) = ~ - (r/R)2)/2. 

The solutions of eq. (3.1) for the potential of eq. (3.5) are 

constructed by matching the interior solutions (r < R) to the exterior 

solutions (r > R) with a continuity condition at r = R. 

The exterior solutions satisfy eq. (3.1) for the case of a pure 

Coulomb potential (R = 0). These solutions are well known (8,12). 

Letting 1VtC denote the solution regular at r = 0 and ~ denote 

the solution regular at: r = 00, then 
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~l 
1 + z [CS - V) Mv. C2cr) - Ck - Y/c) M +, (2cr)] = 3/2 r _ - ,s V ,s 

~ = ;in [c B - v) ""_1, sC 2cr) + Ck - Y/c) Mv+l,s C 2cr) 1 
and 

'U{ 1+ z 1 (k + Y/c) Wv_1,sC2cr) + WW1 ,sC2cr)] = 3/2 r 

~ = rJ/2 [(k + Y/c) Wv_i ,s(2cr) - WV+i,s(2cr)] (3.6 ) 

where 

Y = Za. , s = -Yk2 _ y2 , 

-VI 2 v y~ (3.7) c = z = c 

- The branch of the square root for c is taken such that Re[ c l-;:. O. 

The functions Ma,e and Wa,e in eq. (3.6) are the Whittaker 

(confluent hypergeometric) functions as defined in Ref. ,_ (22) • 

To obtain the interior solutions, the nuclear charge density 

must be specified. The simplest case for which the interior solutions 

are known is the shell distribution of model I. In that case, the 

interior potential is a constant Vo = -YIR. The solutions of eq. (3.1) 

for a constant potential Vo are obtained from the solutions of eq. 

( 3.1) with V = 0 simply by shifting the energy from z to z - V O. 

Denoting the solution regular at r = 0 by u and the solution regular 

at r = 00 by v for the case V = 0, we find (12) 
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and 

= h(l) (.) 
vl -c Ik+il-i ~cr 

(3.8) 

where J and h(l) are the spherical Bessel and Hankel functions as 
\.I \I 

defined in Ref. (23). The solutions of eq. (3.1) with V = -y /R are 

then given by 

u = u(z + y/R) 

and 

v = v(z + y/R) (3.9) 

Thus,the solutions of eq. (3.1) for a model I nucleus are 

given by (! 

£XR - r)u + {(r - R)[ a'?Y1 + b'VJ) 

lVI= e(R - r)[au + oil] + e(r - R)W (3.10 ) 

where the coefficients a, b, a, and 0 are determined by the con-

tinui ty condition at r = R. As in eq. (3.3), we define the bracket-

expression for two arbitrary wavefunctions as 
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The coefficients in eq. (3.9) can then be expressed as 

a = [u,~1R/[~~k· 

b = [em,u JR;[#P1'~]R 

... [W, v JR/[ U,V JR a :; 

D = [u,ew]R/[UIV]R (3.11 ) 

This form for the coefficients is partiuclarly useful because the 

different brackets are related to the Wronskians for different poten-

tials. In particular, the Wronskian J ul for a pure Coulomb potenco 

tial is given by (see Appendix II) 

(
'N'i 0.,1 2 r(2s + 1) 

J coul ( z ) = nl, -W Ja = 4( 1 + z)c r( s _ \.I ) 

The Wronskian JV for a constant potential is given by 
o 

Jv (z) = (u'V]R = 1 
o 

, 

as may be verified with eq. (10.1.31) of Ref. (23). 

(3.12 ) 

(3.13) 

Finally, the wronskian for the potential of eq. (3.5) as com-

puted via inserting eq. (3.10) into eq. (3.3) is given by 

(3.14 ) 

~ I 
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The zeroes of J(z) deterndne the location of the poles of Tr ~ 

corresponding to bound states of the radial Hamiltonian with the 

potential of eq. (3.5). Note that the condition J ule, z) = ° gives 
I co ' 
I i 

the usual Sommerfeld's fine structure formula for a point nucleus. 

The radial Green's function for several potentials of interest 

can now be constructed via eq. (3.2). The free radial Green's 

function ~o ref~rred to in eq. (2.15) is given by 

GkO(r,r'i z) = e(r' - r) u(r) v(r,)T + e(r - r') vCr) u(r,)T , 

(3.15) 

in terms of the solutions in eq. (3.8). The pure Coulomb Green's 

function G~Ou1 is given by (8,12) 

c{°u1(r,r t j z) = {e(r' - r) ~(r) ~r' )T 

+ e(r - r') '2.t.Rr)~(rt )T} /Jcou1(z) (3.16 ) 

in terms of eqs. (3.6) and (3.12). Finally, for the case of a finite 

radius nucleus, Gk isi given by substituting eq. (3.10) into eq. 

(3.2). The trace of Gk for r' = r, appearing in eq. (2.22), can 

be written conveniently for the case of a model I nucleus as 

< 
z + y /R) + Tr ll~ , 

T Gcoul( . ) + T AG > r k r, r, z r uk' 

r < R 

r > R , 

(3.17) 
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where the finite size corrections are given by 

and 

(3.18 ) 

In this form, the expected properties of Tr Gk that 

as R -+ 00 

and that for y < 1, i.e., Z < 137, 

R -+ 0 (3.19) 

are easily derived from the asymptotic behavior of a as R -+ 00 and 

of b as R -+ 0 (see Appendix II). Note, however, that fory > 1, 

the limit R -+ 0 does not exist, confirming the result that for 

superheavy nuclei (Z > 137), nuclear size effects must be taken into 

account (6). 

Furthermore, the nuclear size correction to the VP density is 

> computed directly from Tr ~Gk ineq. (3.18). This calculation is 

discussed in section 5. 

The bound state wave functions appearing in eq. (2.22) are 

computed from the residues of Tr Gk for poles in the energy range 

-me < E < O. As noted before,the location of these poles is deter

mined by the condition J(z) = 0 for the Wronskian in eq. (3.14). The 

residues at those poles are seen from eqs. (3.17, 3.18) to come only 

from the finite size corrections, Tr AG~«). These residues are 

I' 
I 

I 
.1. 
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proportional to lu(r)1 2 for r < R and to Itv(r)1 2 for r > R, 

This is expected since the bound state wavefunctions must be~egular 

both at r = 0 and r = roo Furthermore 1 the continuity of the wave

functions at r = R is insured by the choice of a and b and may 

easily be verified with eqs. (3.11, 3.14, 3.18). Note that the 

construction of ~ in eq. (3.2) also guarantees that these wave

functions are normalized to unity. See section 6 for further discus~ 

sion on the calculation of the lSl/2 and 2Pl/2 wavefunctions. 

4. Construction ofTr Gk
l and Tr Gk

3 

In this section the trace of the radial Green's function to 

first and third order in y = Za are constructed from eq. (2.16). 

The Tr ~l is of course necessary for the calculation of PT~I in 

eq. -(2.22). The trace Tr Gk
3, for k = -1, is calculated (1) to 

provide a check on the numerical calculation of P13+ to third order~ 

(2) to estimate the dependence of P1
3+ on different models of the 

nuclear charge density, and (3) to determine the size of the contri

bution of P1
3 to p3. The ratio of the Ikl = 1 contribution to 

the Ikl ~ 2 contribution for the third order term is considered in 

order to estimate the accuracy of the approximation used in Refs. 

(1,2) 

lkl = 1 

for calculating the nuclear size effect by including only the 

contribution to 3+ 
P • 

The construction of Tr Gk
l and Tr Gk

3 will be carried out 

first generally for all k and then specifically for Ikl = 1. To 

simplify the notation, define 
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(uu)r = u(r)T uCr) 

. (uv)r = uer)T v(r) = v( r)T u(r) 

(vv)r 
T (4.1 ) = v(r) v( r) 

From eq. (2.16), Tr Gk
1 is seen to involve the trace of a 

product of two free radial Green's functions This trace is 

easily calculated from eq. (3.15) to be 

where r< (r» is the lesser (greater) of rand r l • Thus, 

To third order, Tr Gk
3 involves the trace of a product of 

four free Green's functions. Let T4(r,rl ,r2,r
3

) denote this trace. 

The explicit analytic expression for T4 depends on the relative 

ordering of the four radii. Consider, for example, the ordering in 

eq. (2.16) with r > r l > r 2 > r
3

• From eq. (3.15), 

= ( vv ) ( uv ) ( uv ) ( uu ) 
r r 1 r 2 r3 
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Similar expressions may be written for the other 2J orderings~ The 

contribution from the particular ordering in eq, (4.4) to Tr Gk
J will 

then be 

The contributions from other orderings will have analogous forms. 

However 1 three other orderings, (r > r l > r
J 

> r 2 ), 

(r > r
J 

> r l > r 2 ), (r > r
J 

> r 2 > r l ), give rise to the same 

contribution as eq. (4.5). In fact, there are only eight different 

contributions to Tr Gk
J out of the possible 24. 

From the following simple property, 

b x f b )2 i dx rex) i dy r(y) = }/a dx rex) , (4.6) 

all the occurring three dimensional integrals can be reduced to two 

dimensional ones and some two dimensional integrals reduce to one 

dimensional ones. Defining three fundamental integrals by 

J2(a,b) = 

JJ(a,b) = 

f 2 dr r v( r) (uu) 
r 

~ab dr r2 VCr) (UV)r 

~b dr r2 VCr) (VV)r , (4.7) 



-26-

the e.ight different contributions to Tr Gk
J can be expressed in 

terms of the above int.egrals and the following six integrals 

11 = lr dr1 r 1
2 V(r1 1 (uul KJ2(rl ,r ))2 

o rl 

12 i r 

dr1 r/ V(r1l (vvlr1 ~l(o,rllY = 
o . 

f 2 . 
1J = o drl rl V(rl ) (uv)r

l 
Jl(O,rl ) 

14 = [~ dr
1 

r 1
2 V(r1l (uvl

r1 
J

3
(r1""l 

15 ::: [~ dr1 r 1
2 V(r1l (vvl

r1 
~2(r,rll)2 

16 ::: fr~ dr1 r 1
2 

V(r1 1 (uulr1 ¥!3(r1 "" lY (4.8 ) 

Then Tr ~J is given by 

- I 
, 
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Note that in this notation eq. (4.3) can be written as 

(4.10) 

The reason that this notation is convenient is that analytic expressions 

may be obtained for the J i , and thus, the calculation of Tr ~3 

involves only one dimensional numerical integrations. Also, Tr Gk
l 

can then be evaluate~ without any numerical integrations. 

To proceed further, only the k = -1 radial Green's functions 

will be considered. Note that Tr G
k
n for k = +1 is related to:.the 

trace for k = -1 by eq. (2.18). From eq. (3.8), we get the 

following products for k = -1: 

(1 + z)2 sinh
2 

cr 1 [Sinh cr J 2. = 2 + -'2 - cosh cr 
(cr) r cr 

, 

o e -or fc 1 + z) sinh or 
(cr )2 r 

+ (1 - z )(1 + 2:..)[Sinh cr - cosh cr1} cr cr ... 
, 

= e-
2cr [1 + (1 - z)2 (1 + 2:..)2} 
2 2 cr r c 

The fundamental integrals J. may noW be calculated for the two 
1 

(4.11) 

different mOdels of the nuclear charge distribution considered in 

connection with eq. (3.5). Since the potential in eq. (3.5) has 

different forms for r < R and r > R, it is natural to define the 

indefinite integrals J.< and J.> 
1 1 

such that 
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'd < 
r2 f(r/R) (uv)r/R Cir" J 2 (r) = 

- : 

'd < r2 f(r/R) (vv)r/R rrJJ (r) = 

and 

d > r (uu)r dr J1 (r) = 

d > r (uv)r <iF J2 (r) = 

(4.12 ) 

where f(r/R) = 1 for a model I nucleus and f(r/R) = () - (r/R)2)/2 

for a model II nucleus. Thus, for example, 

(4.1) ) 

From eqs. (4.11, 41.2), the integrals for the case k = -1 and 

for a model I nucleus are easily verified to be 

< 1 { 1 1. zsinl,2 cr } J 1 (r) = cR ( 1 ... z) '2 S1nh 2cr -( 1 _ z) cr - cr 

1 {: .-2cr -cr . ! 

< 1 - z e _2Z-1} J 2 (r) = - zr + - sinh cr cR 2c c cr 2c , 

-2cr 0 } < -1 e 1 - z ' 
J) (r) = cR ( 1 + z) II + cr , 

Equation (4.14) continued next page 
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Equation (4.14) continued 

+ 1 {Sinh 2cr _ stnh2 cr _ l} 
2 cr . (cr )2 

, 

= ~ {E1(2Cr) + tn(2cr) + YE } 

+ _l_-_z {e -2cr 
c 2cr o + 2!r) - (2~d + ; } 

, 

2z 1 - Z e +' 1 -2cr ~ ) 
(1 + z) El ( 2cr) - 1.'" z cr 1 201' , 

where YE is' Eulerts constant, ~ is the exponential integral and 

Chi is the hyperbolic cosine integral defined in Ref. (23). In this 

form the integrals J i «» can be easily evaluated numerically 

(see section 7). 

For model 

different form. 

II nuclei, the interior integrals J~< have a 

These are related to J. < in eq. (4.14) by 
1 ' 

< _ 1 . r 2 < 1 2z (cr) 
JIU(r) - 2(3 - (R) )Jl (r) - 3 cr 3{1 _ )-1 { ( 2) 

~ 2(cR) z 

+ 1 
8{1 '"" C 2cr( ) -2cr( )" 1. } z ) e 1 -2cr - e 1 + 2cr ') + '2 S1nh 2cr 

Equation (4.15) continued next page 



Equation (4,15) continued 

1 (, ° o( ro)2'\ « ° ) 1 '(1-
= '2\? - R jJ 2 r - 2( cR)3 \ c 

z (1 '2z(cr )2) 
cr - 3{1 - z) 

-2cr f.. ) 1 3 
+ e 2c \(r - z + ~ + -fc!. z - "2) + , 

(4.15 ) 

The integrals I j may then be computed numerically for either 

nuclear model. 

In order to estimate the ratio of the Ikl = 1 contribution 

to the higher partial wave contribution for the third order VP density, 

the total VP charge accumulated at the origin for a point nucleus has 

,to be calculated for Ikl = 1, This charge is calculated through eq. 

(2) of Ref. (1). For that calculation, for Ikl = 1 is needed 

in the,limit me + O. To get the me = 0 limit for Tr ~3, recall 

that in eqs. (4.11, 4.14, 4.15) the energy and radius have been scaled 

by the electron mass. In those equations the IDe = 0 limit is 

obtained by replacing z: 1 by z and c by -iz in the upper half 

z plane and c by +iz in the lower half z plane. With these 

substitutions, Tr ~3 is computed as for the me t 0 case with 

eq. (4.9). 

5. Finite Size Effects in Muonic Atoms 

Having constructed all the relevant Green's functions for the 

calculation of the higher order VP density p3+, we turn to a more 

detailed discussion of the effect of finite nuclear size on 3+ p • 
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rn p~Tticular, this section elaborates upon the calculations reported 

in Ref, (1) for muonicPb. 

FOT the region r > Rl the correction to the trace of the 

Coulomb Green's function is given by Tr ~Gk> in eq. (3.18). In this 

region, the difference, ~Pk' between the VP charge density for a 

finite radius nucleus and the density for a point nucleus is then 

> . given by eq. (2.11) with Gk replaced by l\Gk . In the discussion of 

section 2B, it was noted that the first order contribution has to be 

subtracted from Gk, as in eq. (2.22), to eliminate an ambiguity 

present in the calculation of the first order contribution to Pk • 

However, the calculation of the first order contribution to the 

difference ~Pk for r > R is free from ambiguity. To see this, 

consider the difference, 
1 . 1 

Tr ~~ (r,r'), between Tr ~ (r,r·) for 

a finite radius and point nucleus. From eqs. (2.16, 3.15,4.12), 

we get for r,r' >R 

, (5.1 ) 

where it was noted that Jl«O) = Jl>(O) = O. It is easy to verify 

from eq. (3.8) that as a function of z, Tr ~Gkl(r,r') decreases 

exponentially as exp(-Iyl(r + r' - 2R») for z = iy, Iyl + 00. 

For r,r' > R, then, this exponential decrease insures the uniform 

convergence of the contour integral in eq. (2.19) for r' in the 

neighborhood of r and thus eliminates the ambiguity associated with 

the r' + r limit. For r,r' < R, thoug~ the ambiguity in the cal

culation of ~Pkl is still present because Tr~Gkl decreases 

exponentially only as exp(-Iy(r - r' )1) for that region and the 
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contour integral does not converge uniformly for rt in the neighbor-

hood of r. Thus regularization is required for the calculation of 

~Pkl in the region r < R. 

Because we are interested in transitions in muonic atoms 

between states of high angular momentum, the calculation of~Pk for 

r < R may be avoided and we can restrict our attention to the calcula-

tion of ~~ for r· > R, where no regularization is required. This 

is due to the observation by Arafune (4) and Brown et al. .(5) that the 

mean radii of the muonic states involved in high angular momentum 

transitions are much larger than R. Thus, the energy shifts due to 

6Pk should be quite insensitive to the actual distribution of the 

VP density inside the nucleus, r < R. Since after regularization the 

t h AQ< otal c arge u contained in the region r < R must cancel the 

> charge, 6Q, in the region r > R, the approximation of setting 

>. 2 6Pk(r) = -6Q o(r)/r for r < R, will generate only small errors in 

the calculation of energy shifts for high angular momentum muonic 

states, Therefore, the energy shifts due to the nuclear size correc-

tions to the VP density are calculated from the density ~Plkl given 

* by 

* 

6Plkl = 
oCr) 
~ 

r 
, r < R (5.2) 

Note that this procedure is applicable only for y < 1, so that 

Pvp for a pure Coulomb field is still defined. 

.. ! 
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. > 
where 6.Gk is evaluated with either k =1 k 1 or k = -I k 1 , The 

contribution 6.Plkll linear in YI is calculated from eq. (5.2) by 

replacing Tr l1Gk> with the first order correction Tr l1G
k

l (r l r) in 

eq. (5.1). 

The primary purpose of calculating l1P1kl 
in Ref. (1) was to 

check the accuracy of the approximations in Refs. (4,5) of setting 

me = 0 and expand:i.ng l1Plkl in powers of the radius R. These 

approximations are implemented by setting m = 0 in eq.(3.1B) and 
I e 

expanding b in powers of R. Note that the function f(R,z,m) e 

defined in Ref. (1) is related to b in eq. (3.1B)by 

* f(R,z,m ) = b/J(z) . 
. e . 

The m = 0 approximation requires the· m ~ 0 lim! t of e e 

eqs. (3.6, 3.B). The m. and W functions for m = 0 are obtained e 

from eq. (3.6) by making the following substitutions: z + 1 ~ z, 
\ I 

c ~ ~iz (-1 for 1m z > OJ +1 for 1m z < 0), and k !y/c ~ k. 

The u and v functions for me = 0 are obtained from eq. (3.B) 

by making the first two of the above substitutions. With these new 

functions, > Tr 11~ (me = 0) is calculated as in eq.(3.1B). 

The further approximation of retaining only'the lowest power 

of R in an expansion of f(R,z,m = 0) is obtained by calculating e 

the small R limit of b/J(z) in eq. (3.1B). For the case of a model 

I nucleus with radius R, the leading term in an expansion of 

f(R,z,m = 0) in powers of R is given by (see Appendix II) e 

* Note a misprint in Ref. (1), p. 1395, line 30: 

should read f(R,z,m = 0). e 

f(R,z,m ) = 0 e 
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f(R,iy,m = 0) ~ e [ 
iA - Y I( s - k) ] R2s (2Y )2s-3 
1- iA yICs - k) 

'x ~ - iY) (r(s _ iy»)2 "S '; f(2s) 
, (5.3) 

where iA = -u2;-~' evaluated in the limit me + 0 and R + 0 from 

eqs. (3.8 andJ.9). With this formula, the integrals in eq. (5.2) 

may be evaluated analytically (4,5). 

The nuclear size corrections ~Plkl to the VP density for 

Ikl = 1 are listed in Table I for Pb (Z = 82, model If R = 5.5 fm) 

as a function of the radial coordinate r. The range of r covered 

in the first column is R < r < 500R. The next three columns list 

~P1 for the following cases: (1) me 'lOin eq. (5.2), (2) me = 0, 

and (3) both m = 0 and lowest power in R/r. e The first order 

density ~P11 is then listed in the last column. The energy level 

shifts due to these corrections have been discussed in Ref. (1). Here 

we want to discuss the differences in ~P1 as calculated within the 

different approximations. For r/Xe « 1, ~P1 ~ ~p1(me = 0) to a 

high degree of accuracy. In fact, the assertion in Ref. (4) that 

corrections to 6Pl(me = 0) appear to order (mer)2 is supported by 

our numerical results. On the other hand, the approximation of 

retaining only the lowest power of R as in eq. (5.3) is not 

particularly accurate for r ~ R. In fact, ~Pl(me =O,O(R/rf) is 



00 u u I 2 a 

-.35-

smaller than ~Pl(rne 1 0) by roughly a factor of 2 in that region. 

For 0.1 < r /-K < 0 t 5, 
'" ' e '" , 

all three approximations are seen'to give the 

same value of ~Pl to within 10%. For r/7; > I, the relative accuracy . e 

of the rn =0 approximation decreases, although the relative e 

accuracy of the O(R/r) approximation increases, i.e., 

~Pl(me = 0) ~ ~Pl(me= O,O(R/r») but ~Pl(me 1 0) 1 ~Pl(me = 0). 

The inadequacy of the O(R/r) approximation in the region 

r ~ R for computing the charge density does not affect the accuracy 

of the energy shifts computed from ~Pl (me = 0,.., O( R/r ») in Ref. I, (1) 

very much, becaus~as noted before, the overlap of the muonic wave-

functions with the region r < R is very small for the high angular 

approximation for computing ~Pl 

The inadequacy of the m = 0 e 

in the region r > .-x does not , e 

affect the computed energy shifts very much because ~Pl is very 

small in that region and only a small fraction of the charge contained 

in ~Pl in the region r > R is contained in the region r > (~"'e; 

this can also be seen by comparing ~Ql,2 in Table III of Ref. (1). 

The region that determines the accuracy of the computed energy shifts 

is thus the intermediate region, where all three approximations give 

the same ~Pl to vrlthin 10%. 

Note that a test on the numerical integrations required for 

the construction of Table I is given by a comparison of the values for 

~PlCme = O,O(R/r») in Table I to the values determined from the 

analytic formula (eq. (3~of Ref. (5). These values were found to 

agree to better than four places throughout the range R < r < 500R. 



* Xn connection with Tables I and II of Ref, (1), the VP 

densities and Ikl = 1 from eqs. (Z.19, 2.22) 

are needed. These are listed in Table II here. As disucssed in Ref. 

and are expected to agree to within 10% for Ph. 

It is indeed reassuring that the values of and are in 

such close agreement, then, considering that they were obtained with 

totally different computational techniques. A more demanding test of 

the numerical accuracy of each VP density in Table II is given by the 

degree of cancellation between the charges Q- contained in the 

region where that density is negative (r ~ 60 fm) and the charge 

Q+ contained in the region where the density is positive (r ~ 60 fm). 

As reported in Ref. (1), these charges were found to cancel to better 

than five decimal places for both pl
J and See section 7 for 

further discussion of the numerical techniques employed in calculating 

these densities. 

6, Vacuum Polarization in Heavy Ion Collisions 

In this section some of the results reported in Ref. \, (2) for 

the case of Za > 1 are elaborated upon. Consider a nucleus of type 

I with a radius R ~ 10 fm. The evaluation of in eq. ( 2 • 22 ) 

requires, for large Z, the determination of bound state wavefunctions 

with energies E between. -m < E < O. e The energy eigenvalues 

determined from eq. (3.14) for this type of nucleus are plotted in 

Fig. 3 as a function of Z for the lSl/2 and 2Pl / 2 electronic 

states. The curves for R = 0 and 0.1 fm are also shown for 

* Note that in the last line of Table I in Ref. (1), the second 

column should read Ikl ~ 1 rather than Ikl = 1. 
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comparison, Figure 3 is included here to exhibit the range of ~a 

for which the 131/ 2 and 2Pl / 2 state are present in eq. (2.22) for 

the particular model of the nucleus chosen here. Also the slopes of 

the curves in Fig. 3 provide a measure of the accuracy of the computed, 

131/ 2 and' 2P 1/2 wavefunctions (2). We note that the energy- eigen

values in Fig. 3 are in general agreement with the results of calcula

tions using more realistic models of the nucleus (6,20), and that the 

values of Z and of the slope cr dE/dZ at Z cr compare favorably 

with those obtained in other calculations (2). It can be seen that 

the lSl/2 state is present in eq. (2.22) for range 

1.275 ~Za ~ 1.086, and that the 2Pl / 2 state is present for the 

range 1.383 ~ Za ~ 1.254. 

The critical value of the nuclear charge Z , where cr 

has been determined in two different ways. First E1S1/
2 

.. -me' 

the zeroes of J(z) in eq. (3.14) have been determined as a function 

of Za for z = -me + E with E/me = 0.05, 0.01, 0.001, 0.0001. 

Then (Za) is determined from the extrapolation to £ = O. This cr 

method gave the value (Za) = 1.274587. The second method of caler 

culating (Za)cr is based on deriving the asymptotic form of J(z) 

for z -+- -m e (c -+- 0, V -+- _(0) and determining the zeroes of J( z ) in 

that limit (24). From the relation between the upper and lower 

components of the radial wavefunctions obtained from eq. (3.1), it 

is easy to see that the condition J(z) = 0 is equivalent to 

w' ... , 
1 

u
l (6.1) = 

~ 
, ... 

r=R 
u

l r=R 
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where only the upper components of the inner and outer wavefunctions 

enter, and the prime denotes the derivative. This equations is con-

venient because the asymptotic limit (z ~ -m) of the left-hand 
e 

side i·s calculable ·from the relation (24) 

lim rea + 1) W B(.!) = 2 ~ K2Q(2Vx) -a., a I-J a-+«> 

valid for 2S I integer and for real x > O. Thus 

W' 
1 

'tAl 1 
3> 

z~-m e 

r fr{~ K2SC-VS;;) 
I 

K2S(-V8yr ) 

, 

where the modified Bessel function K2S and its derivative are 

calculable from the relations (22) 

and 

(6.2 ) 

(6.3 ) 

(6.4 ) 

The solution of eq. (6.1) in the limit z = -m with eqs. (6.3 and e 

6.4) gives the value (Za) = 1.274588 in very good agreement with cr 

the value determined from extrapolation. In addition to providing a 

check on the calculation of (Za)cr' this agreement shows that the 

nontrivial relations eqs. (6.2, 6.4) are satisfied by the computed 

Whittaker functions to a high degree of accuracy. The comparison of 

(za) from the two methods therefore provides one important test on cr 

.. 

#', i 
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the accuracy of the numerical techniques for computing the W a,B 
functions (see section 7). 

The calculation of the lSl/2 bound state wavefunction in the 

range 1,27' ~Za ~ 1.086 is necessary not only for the calculation 

of P13+ in eq. (2,22) but also for the calculation of the lSI/2 

energy shift due to the VP potential. * Figure 4 has 41TT211PlS 12 
. 1/2 

plotted for several. values of Za in that range for the case of the 

model I nucleus with R ~ 10 fm under consideration here. As noted 

in Ref. (2), one test of the accuracy of the computed wave functions 

(computed from the residues of the radial Green's function as discussed 

in Section 3) is given by the value of their norm. As reported there, 

all lSl/2 and 2P1/2 wave functions so computed were found to be 

normalized to better than one part per 10'. Another, more qualitative 

test of the accuracy of these wavefunctions is given by the comparison 

of the slope dE/dZ obtained from Fig. 3 to the approximation 

dE/dZ :::: -ame (l/r) , where the expectation value (l/r) is 

evaluated from the computed wavefunctions. Table III lists the values 

of the slope dE/dZ obtained in the two ways. The good agreement in 

Table III gives further assurance that the lSl/2 and 2Pl / 2 wave

functions were correctly calculated. Finally, we note that the lSl/2 

wavefunctions in Fig. 4 are in good qualitative agreement with those 

calculated using more realistic models of the nucleus (20). 

For the study of the stability and localization of the he1ium-

like density PRe as a function of Z in the neighborhood of Zcr~ 

* See Table 1 of Ref. (2). 
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we note that for Z < Z cr 

p = -21 e 111/l1S (r)1 2 + Pvp He 1/2 

-21 e ""'lS (r )1 2 + P 3+ -= + P 
1/2 1 (6.5) 

where Pvp has been divided into two parts: P1
3+, which includes the 

contribution from higher orders for Ikl = 1, and P, which includes 

the first order (Uehling) and the higher order, Ikl > 2 densities . 
... 

* It is clear that P is a continuous function of Z for around Z . cr 

Furthermore, the Uehling contribution is known (17), and the ratio of 

]+ for Ik.1 > 2 to P ]+ is small (2). Thus, for the study of PI kl 1 

the continuity of PHe around Z cr we may neglect P in eq. (6.5). 

The curves for PRe given in Fig. 2a of Ref. (2) for Z < Z are cr 

thus obtained by adding to -21 ell1jJ1S (r )1 2 in Fig. 4 theVP 

P 3+ 
1/2 

density as computed from eq. (2.22). These VP densities are 
1 

plotted in Fig. 5 for several values of za approaching 

(za) = 1.27459. Note that these densities were also used in connec-cr 

tion with Table I of Ref. (2). For Z > Zcr' the lSl/2 wavefunction 

in eq. (6.5) is no longer present and PRe is computed directly from 

eq. (2.22) by setting PRe = P1
3+. The continuity of PRe as a 

function of Z around Z may be seen from Table IV, where P cr He 

for several values of the radial coordinate are listed as a function 

of Z. This table is intended to supplement Figs. 2a and 2b in Ref. 

(2). The continuity of PRe has been expected on the basis of 

* The first discontinuity of P occurs for Z = Zcr(2P3/2)' where the 

2P3/2 state reaches the lower continuum. This value of Z is 
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general arguments presented by Muller et al.(7). ~~at we have 

presented here are precise calculations demonstrating this fact. 

7. Numerical Techniques 

This section describes the numerical techniques that were used 

to evaluate the Green's functions constructed in sections J and 4. 

The calculation of Tr Gk in eq. (3.17) requires the calcula-

tion of the Whittaker functions M 
a., f3 and W 0 in eq. (3.6). The a., j..} 

techniques employed to calculate these functions are those discussed 

extensively in Ref. (13). With those techniques an accuracy of better 

than 10 decimal places is achieved for the range of the arguments 

needed in the present study. Tests on the accuracy of the subroutines 

for calculating these functions include verification that those 

functions satisfy particular recursion relations* and that they also 

satisfyeq. (3.12) to more than 10 decimal places for a large range 

of the arguments. Another test is described in section 6. 

For the calculation of Tr Gk 
1 and 3 Tr Gk ' the integrals 

J > 
i in eq. (4.14) require the evaluation of exponential integrals 

El(x) and ChiC x). These functions are computed from the power 

series representations eq. (5.1.11) and eq. (5.2.18) of Ref. (23) 

for x < 1 and from the techniques described in Ref. (25) for x> 1. 

The subroutines for these functions were tested against tabulated 

values in Ref. (26). Again, better than 10 place accuracy was achieved. 

The calculation of the integrals I
j 

in eq. (4.8) requires a 

numerical integration. All numerical integrations were done with a 

Gauss-Legendre quadrature method (27). This method is 

* See p. 303 and 304 of Ref. (22). 
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particularly suited for the integration of functions that are well 

approximated by polynomials of relatively low degree on a given 

interval. This is because an n point quadrature formula is designed 

to give the correct value of the integral for a polynomial of degree 

2n - 1. The accuracy of the numerical integration with an n point 

formula for an arbitrary function is customarily estimated from the 

variation of the value of that integral as n is varied. This pro-

cedure was followed in the present work. Thus, if the value of an 

integral changes only in the eleventh decimal place as n is increased 

to n + 10 or n + 20, then the numerical integration is considered 

to be accurate to ten places with the n point formula. 

For the integrals required in eq. (4.8), modification of the 

integrands is required in order to achieve ten place accuracy with low 

n. This is because many of the integrands contain terms such as 

inverse powers or logarithms that are not directly suited for integra-

tion by Gauss-Legendre quadrature. However, thse terms are easy to 

isolate in each integrand, and the integral over those terms may be 

done analytically. The remainder of the integrand will contain only 

terms such as m m r or r log r for m ~ 1, for which Gauss~Legendre 

quadrature converges fast. To illustrate this procedure, consider the 

integral 

= , (7.1 ) 

which is needed in the evaluation of I5 in eq. (4.8). As y ~ 0, 

the integrand is of the form 
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(7.2 ) 

as is easily seen from eqs. (4.11, 4.14). While Gauss-Legendre 

quadrature is not suitable for the terms exhibited in eq. (7.2), their 

integral is trivial to do analytically. Thus, I5 is computed for 

b < l/c by 

_ 2z + 1 -2- + 1 -

(1 + z)2 3y2 c 
z .l.} 2y 

+ 2z + 1 2 (.!. _ 1] _ 1 - z .!. J1.n(b/a) 
(1 + z )2 Jab c 2 

(7.3) 

With eq. (7.3), the number of quadrature points n found necessary to 

> achieve ten place accuracy for I5 in the range 0 < a <b < l/c 

was n = 20. For large values of the argument Ccy > 1), the integrand 

in eq. (7.1) behaves as 

-2cy e 
y R.n( 2cy) (7.4) 

However, because the exponential dominates this term, the presence of 

the logarithm and inverse power do not effect the convergence of the 

numerical integration very much. In fact, ten place accuracy is 

> achieved for 15 (a,OQ) when a > l/c with a 30 point quadrature 

> formula applied to 15 (a,a + 20/c). > Therefore, 15 (a,oo) for any 

a > 0 may be computed to ten place accuracy with a maximum of 50 

evaluations of the integrand. This numerical integration is then very 

rapidly performed. There are altogether 19 integrals of this type that 
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are required for the calculation of the I. 
J 

in eq ,. (4. a ) • All integ-

ra1s are handled in the manner of the above example. 

A critical test of the accuracy of the so computed Tr Gk, 

Tr Gk
l , and Tr Gk

3 with the techniques described above is given by 

the comparison of the right- and left-hand sides of the equation 

TrC~(Y; r,r; z) - Gk(-y; r,rj z») 

(7.5) 

For a model I nucleus with R = 10 fm, the right- and left-hand sides 

were computed for Y = za = 0.001 and r = aR with '{a = 0.01, 0.1, 

0.3, 0.7, 1.0, 1.05, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, lOCO.O} and 

z = iy with {y = 0.0, 0.5, 1.0, 2.0, 4.0, 10.0, 20.0, 40.0, 100.0, 

500.0, 1000.0}. Better than ten place agreement was found between 

the two sides for the range of variables considered. 

The contour integral along the imaginary axis, which is 

required for the calcualtion of in eqs. (2.19/ 

2.22), is performed by dividing the interval (O,ioo ) into two or 

three segments and applying a 30 point quadrature formula on each 

interval. The integrands falloff roughly as l/z5 rather than 

exponentially, and consequently, the·30 point formulas were found to 

give five place accuracy. Of course, such accuracy is still quite 

adequate for the applications described in Sections 5 and 6. The 

charge densities were calCUlated for 60 values of 

the radial coordinate in each of the intervals 0 ~ r ~ 30 Rand 

30R ~ t ~ 500 R. The 60 values in each interval were chosen to 

, 
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coincide with Gauss-Legendre quadrature points so that in~egrations 

involving the charge densities (in the calculation of energy shifts 
I 

due to vP) could be done immediately. 

Finally, we note that all numerical calculations were done 

with the CDC 7600 at the La\vrence Berkeley Laboratory. 
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Appendix I 

The calculation of the VP density for the case of a constant 

external potential V is discussed here in detail. The purpose of 

this calCUlation is to supplement section 2B by illustrating the 

properties of the Green's function G that makes regularization of 

eq. (2.6) necessary. 

The Green's function GV for a constant potential V is 

obtained from the free Green's function GO simply by shifting the 

energy z to z - V, where GO is given by 

o G (x,x'; z) = ....... 
-:.c6 . 

( -ia'V + a + z) e
41T6 

, 

where 6 = I~ - ~'I and c = (1 - z2)i, Re(c) ~ O. Then 

(Ll) 

(1.2) 
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From eq. (1.1), it is clear that the limit IJ. + 0 does not exist. 

However, consider the Taylor series expansion of Tr GV in powers of 

V: 

= z e-cIJ. _ V(.!. +z2 ) e -cIJ. 
. IJ. 6. c 

-cIJ. e 

2 z4) -cIJ. + IJ. c3 e. + •••. ( I.3) 

From this expansion, the singularity of Tr GV as IJ. + 0 is seen to 

be confined to the terms of order zero and one in V. Note also that 

the contour integral along the imaginary axis does not converge 

absolutely until third order for IJ. = O. 

Consider now the calculation of the third order density p3 

as in eq. (2.8) • Then in units of -I e I , p3 is given by 

V 3 
= :--2 (-i) 

67f 

From eq. (1.4), it is clear that depending on which order the limits 

are taken, p3 = V3jJrr2 or O. For higher orders, though, a similar 

calculation shows that for n > 4 independently of the order -
of the limits. 
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To calculate the contribution Plkl to Pyp consider eq. 

(2.14). The trace Tr ~kV is obtained from Tr Gk
O . in eq. (3.15) 

again by shifting z to z - V. With reference to eqs. (3.4, 3,8~ 

3.13), we define 

where ! stand for 

power series in V may be obtained by taking successive derivatives 

o of D/kl with respect to z. Note that the 6 + 0 singularity is 

absent for each Ikl to any order in V. However, "the calculation of 

1 the first order density Plkl in eq. (2.17) gives 

lim DOlkl(r,rt; z) 
r'-+r 

(1.6) 

If the limit r' + r is taken first, then from the high z limit of 

eq.(I.5) for r< = r>, we get Plkl = IkIV/( 7Tr)2. On the other hand, 

if r' t r, then since the product Jv(icr<) and ~l)(icr» 
decreases exponentially for z + i ro , we get Plkl = 0. Thus there is 

an ambiguity associated with the calculation of Plkl' and hence, 

regular.ization is required for first order. For higher orders, though, 

it is easy to verify that terms of even orders vanish because even 

derivatives of Dlkl are odd functions of z and that terms of odd 
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~.:rders va,nish because the.even derivatives va,nish a.t . z = :t. i oo , Also 

there is no a,mbiguity associated with the interchange of limits for 

the terms of higher orders. 

Appendix II 

The properties of Tr Gk given in eq. (3.19) as well as the 

asymptotic form of b/J(z) in eq. (5.3) are derived here. 

First, from eqs, (3.11, 3.13), a = [~'V]R. Since both 

W a(z) and h(l)(iz) in eqs. (3.6, 3.9) decrease exponentially for 
a,i-> v 

Re (z) -+00 (~3), it follows at once that a-+ 0 as R-+oo. 

The calculation of b in eq. (3.11) in the small R limit 

is obtained from relations (22,23) 

= 

(II.l) 

+ for x -+ 0 • Note that eq. (3.12) follows from the calculation of 

~ '~)R with these relations. Restricting now to the case y < Ikl 
(s is real), the ratio b/J(z) in the small R limit may be written 

from eqs. (3.11, 3.12, 3.14, and II.l) as 
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~ .. {( s - v - k·+ X/c)A - .( s - v + k - "(Ie) } 
R~ (-s + v + k + X/c) - (s - v. + k + X/e)A 

r( s - v + 1) 
x (2eR)2s r(2s) 

1 (II.2) 

where A = (u2IU1)(1 + z)/c. Note that corrections to the small .R 

form in eq, (II. 2) appear in orders R4s and R2s+l • For a model I 

nucleus, the small R limit of A is found from eqs. (3.8, 3.9) to 

be 

A~ 
R-+O 

1 +z 
c 

k .JJy) 
1kT j)X) 

where J± stand for Jlk±il-i' 

, (II.3 ) 

From eq. (II.2)~ the second property of Tr Gk in eq. (3.19) 

follows, since Tr AGk> ~ 0(R2s ) ~ 0 as R -+- O. Note, however, that 

for y > 1, (Z > 137), s is purely imaginary for Ikl = 1, and, 

thus, the limit R ~ 0 does not exist. 

Finally, eq. (5.3) is obtained by taking the me ~ 0 limit in 

eq. (11.2). As described in section 5, this limit is taken by making 

the following substitutions: for z = iy, y ~ 0, z ± 1 ~ iy, 

c ~ y, v ~ iy, k ± y/c ~ k. 
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Table I. The finite size correction to the /k/ ~ 1 vacuum po1ariza-

-2 A tion density for Pb, R = 5,5 fm = 1.42 x 10 ~e' "uP is given 

for three approximations: (1 ) me I 0, ( 2) me;::S 0 and 

(3) me = 0, OeR!r). The first order correction 1 
flp is also 

listed for m I O. The radius is measured in -X and the quan-e ·e 

tities r 2
flp are given in units of -4rr/e/IX. . . e 

2 
r flp r 

1.51 X10-2! 8.15 x 100 8.15 x 100 

• 4.56 x 10-2 1 3.16 x 10-1 3.16 x 10-1 , 
1.14 x 10-1 1 2.56 x 10-2 2.55 x 10-2 ! 

i i 
2.99 x 10-1 \1.92 x 10-3 

I 1.92 x 10-3 I 
. 4.27 x 10-1 ! 7.39 x 10-4 1 7•51 x 10-4 ! 

-1 i -4 I -4 I 
6.95 x 10 11.91 x 10 12.09 x I0 I 

I : 

1.03 x 100 I 5.71 x 10-5 ! 7.43 x 10-5 

'2.50 x 100 

I 4.55 x 10
0 

I 1 
11.34 x 10-6 i 7.33 x 10-6 

I 

1.63 x 10-8 \1.55 x 10-6 

7.02 x 100 9.80 x 10-11 4.99 x 10-7 

4.35 x 100 

2.45 x 10-1 

2.28 x 10-2 

1.83 x 10-3 

7.26 x 10-4 

2.05 x 10-4 

7.33 x 10-5 

7.29 x 10-6 

1.54 x 10-6 

4.98 x 10-7 

8.05 x 100 

2.74 x 10-1 

1.76 x 10-2 
I 

9.55 x 10-4 1 

3.23 x 10-4 

6.99 x 10-5 

1.82 x 10-5 

3.15 x 10-7 

3.13 x 10-9 1 

1.64 x 10-11 
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Table II. The Ikl = 1 vacuum polarization density times r2 for Pb 

(model I, R = 5.5 fro) in the range 0 < r < 500 R. The contributions 

from third order and orders rt ~ 3 are listed separately in units 

of ·41Tlel·fX as functions of r (in units of ~.). , ':', ·e . . . ...: ··e .' 

r 

1.6875 x 10-:-4 

2.1817 x 10-3 

6.4730 x 10-3 
, 

I 10-2 1.2997 x 

I 10-2 I 
1. 7075 x I 

I I 

I -2 I 2.6808 x 10 
I I -2 • 3.8554 x 10 i -2 6.7561 x 10 j 

i l 
1.0285 x 10-1 ~ • 

! I 

1.4290 x 10-1 I 
\ 
i 

-1 l 1.6417 x 10 ~ 

I 
2.0810 x 10-1 i , 

x 10-1 1 
2.8439 ~ 

j 
3.6762 x 10-1 I 

i 

i 
" 

-1 4.2081 x 10 i 
I • 

x 10-1 
1 
I 

6.9479 1 

1.0313 x 100 I 

2.0386 x 100 

4.0348 x 100 

5.5101 x 100 

7,0200 x 100 

r2p 3 
1 

.;,.1.8351 x ,10-5 I 
I 

-3.0541 x 10-3 I 
-2.5196 x 10-2 I 

I 

-7.7206 x 10-2 I , 
I 

-9.2082 x 10-2 i 
i 

i -7.4151 x 10-2 . 
! 
! 

-4.6475 x 10-2 ~ 
i 

-1. 5718 x 10-2 i 
t 
I , 

-4.4931 x 10-3 I 
.\ 

-7.5815 x 10-5 
i , 
,~ 

j 
1.0772 x 10-3 I 

i 
i 

2.3900 x 10-3 I . 
, 

3.2348 x 10-3 ~ 
1 

3.4147 x 10-3 j 
r 

x 10-3 \ 
3.3712 ! 

~ 
x 10-3 2.6325 

i 

1. 7118 x 10-3 ~ 

3.8784 x 10-4 

1.6036 x 10-5 

1.6088 x 10-6 

1.9882 x 10-7 

2 3+ 
r P1 

-1.9439 x 10-5 

-3.2450 x 10-3 

~2.6746 x 10-2 

-8.1857 x 10-2 

-9.7962 x 10-2 

... 8.0434 x 10-2 

-.5.1769 x 10-2 
.. 

-1.8589 x 10-2 

-5.7939 x 10-3 

-5.2797 x 10-4 

8.8277 x 10-4 

2.5152 x 10-3 

3.5907 x 10-3 

3.8399 x 10-3 

3.8013 x 10-3 

2.9663 x 10-3 

1.9183 x 10-3 

4.2928 x 10-4 

1.7329 x 10-5 

1.6946 x 10-6 

2.0379 x 10-7 

t 

J 

I , 
f 
i 

I 
I 
I 
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Table III, Slope dE/dz of curves in ~ig. 3 

for 1Sl/2 and 2P1/2 states for 

R = 10 fm compared to approximation 

-ame (l/r) in units of keY. 

Za -dE/dz I arne (l/r) ! state 
! 

0.95 8 8 I 1Sl/2 
I 

15 16 
! 

1.12 I 
I 

1,205 21 22 I 
I 

1.27445 27 28 I 
1.27445 I 25 26 2P1/2 

I 
1.28 I 25 26 

I 
1.295 I 27 28 

1.38 35 
I 

37 
I 
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Table IV\ Computed va,lues of 41Tr2pH~(r) ,in units 

-of -lel/X as a function of Z~ for different . e . . 

values of r (in units of K'). These values . e 

show the continuity of PRe around 

(Zo.)cr = 1.2745? 

'( 

~o. 1.2732 1.27445 1.27545 1.28 

0.0036 0,1082 0.1091 -·0.1097 0.1124 

0.0261 3.8384 3.8671 3.8901 3.9959 , 

0.0681 6.4124 6.4495 6.4791 6.6144 

0.1505 5.0467 5.0600 5.0705 ' 5.1160 

0.4035 1.6789 1.6726 1.6676 1.6448 

1.0330 0.1852 0.1831 0.1815 0.1742 
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FIGURE CAPTIONS 

Fig. 1-. Singularities of the Green's function in the complex energy 

plane and contours CO' CRe , and I giving the VP and 

helium-like charge densities in units of . lei. 

Fig. 2. Feynman graphs corresponding to Pvp to lowest order (al 

and higher orders (b) in Za, where X denotes the nuclear 

charge form factor. 

Fig. 3. Energy eigenvalues for the 1Sl/2 and' 2P 1/2 states as a 

function of Za for a model I nucleus with R = 0.0, 0.1, 

and 10.0 fm. 

Fig. 4. The 1Sl/2 wavefunctions for several values of,'Y = Za 

approaching (Za)cr = 1.27459 for a model I, 10 fm nucleus. 

Fig. 5. The Ikl = 1 VP density for orders (Za)n, n ~ 3, for 

several values of y = Za corresponding to Fig. 4. 
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Fig. 2 

( a ) 

( b ) 
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~-----------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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