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A Class of Bases in £2 for the 
Sparse Representation of Integral Operators 

Bradley K. Alpert 

Abstract 

A class of multi-wavelet bases for £2 is constructed with the property 
that a variety of integral operators are represented in these bases as sparse 
matrices, to high precision. In particular, an integral operator K whose 
kernel is smooth except along a finite number of singular bands has a sparse 
representation. In addition, the inverse operator (I - K)-l appearing in 
the solution of a second-kind integral equation involving K is also sparse in 
the new bases. The result is an order O(nlog2 n) algorithm for numerical 
solution of a large class of second-kind integral equations. 
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Families of functions ha,b, 

a, bE R, a =I 0, 

derived from a single function h by dilation and translation, which form a basis 
for £}(R), are known as wavelets (Grossman and Morlet [7]). In recent years, 
these families have received study by many authors, resulting in constructions 
with a variety of properties. Meyer [9] constructed orthonormal wavelets for 

which h E COO(R). Daubechies [5] constructed compactly supported wavelets 
with h E Ck(R) for arbitrary k, and [5] gives an overview and synthesis of the 
field. The dissertation [2] of the present author gives an earlier report of the 
present work. 

In this paper we construct a somewhat different type of basis for £2(R) that 
can .be readily revised to a basis for £2[0,1]. Each basis, which we call a multi­
wavelet basis, is comprised of dilates and translates of a finite set of functions 
hll · " ,hk . In particular, our bases consist of orthonormal systems 

j = 1, .. . ,k; m,n E Z, (1) 
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where the functions hI, ... ,hk are piecewise polynomial, vanish outside the inter­
val [0,1], and are orthogonal to low-order polynomials (have vanishing moments), 

i = 0,1, ... , k - 1. (2) 

The properties of compact support and vanishing moments lead to bases in which 
a variety of integral operators are represented as sparse matrices. In particular, 
an integral operator whose kernel is non-oscillatory and analytic except along a 
finite set of curves, when expanded in one of these bases, is sparse. 

In §1, we construct multi-wavelet bases in one and several dimensions and 
in §2, we prove their rate of convergence for suitably differentiable functions. 
Second-kind integral equations are introduced in §3 and a generic method for 
their numerical solution is presented. In §4 we prove that the representations in 
the multi-wavelet bases of certain integral operators and their inverses are sparse, 
to high precision. In §5 we give several numerical examples of the bases and the 
solution of second-kind integral equations and conclude in §6 with a discussion. 

1 Multi-Wavelet Bases 

1.1 The One-Dimensional Construction 

We first restrict our attention to the finite interval [0,1] C n and we construct a 
basis for £2[0,1]. We employ the multi-resolution analysis framework developed 
by Mallat [8] and Meyer [10], and discussed at length by Daubechies [5]. We 
suppose that k is a positive integer and for m = 0,1,2, ... we define a space S~l 
of piecewise polynomial functions, 

S~ = {f: the restriction of f to the interval (2- m n, 2-m (n + 1)) is (3) 
a polynomial of degree less than k, for n = 0, ... ,2m 

- 1, 
and f vanishes elsewhere}. 

It is apparent that the space S~ has dimension 2m k and 

S~ c S: c ... C S~ c .... 

For 1'n = 0,1,2, ... we define the 2m k-dimensional space R~ to be the orthogonal 

complement of S~ in S~+l' 

so we inductively obtain the decomposition 

Sk Sk Rk Rk Rk 
m = 0 EB 0 EB lEB'" EB m-l' (4) 
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Suppose that functions hI, ... ,hk : n --+ n form an orthogonal basis for R~. 
Since ~ is orthogonal to S~, the first k moments of hI, ... ,hk vanish, 

i = 0, 1, ... , k - 1. 

The 2k-dimensional space R~ is spanned by the 2k orthogonal functions h1(2x), 
... , hk(2x), 'h l (2x - 1), ... , hk(2x - 1), of which k are supported on the inter­
val [0, t] and k on [t,l]. In general, the space R~ is spanned by 2m k functions 
obtained from hI, ... , hk by translation and dilation. There is some freedom in 
choosing the functions hI' ... ' hk within the constraint that they be orthogo­
nal; by requiring normality and additional vanishing moments, we specify them 
uniquely, up to sign. The remainder of this subsection is devoted to the explicit 
construction of hI, ... ,hk ; in the following sections we exploit only the property 
that hI, .. . , hk form an orthonormal basis for ~. 

In preparation for the definition of hll . .. , hk' we construct the k functions 
III ... ,Ik: n --+ R, supported on the interval [-1, 1], with the following prop­
erties: 

1. The restriction of Ii to the interval (0,1) is a polynomial of degree k - 1. 

2. The function Ii is extended to the interval ( -1, 0) as an even or odd function 
according to the parity of i + k - 1. 

3. The functions 11' ... ' h satisfy the following orthogonality and normality 
conditions: 

i,j=l, ... ,k. 

4. The function Ii has vanishing moments, 

Jl Ii(x) xi dx = 0, 
-1 

i = O,l, ... ,j + k - 2. 

Properties 1 and 2 imply that there are P polynomial coefficients that deter­
mine the functions it, ... , Ik, while properties 3 and 4 provide k2 (non-trivial) 
constraints. It turns out that the equations uncouple to give k nonsingular lin­
ear systems that may be solved to obtain the coefficients, yielding the functions 
uniquely (up to sign). Rather than prove that these systems are nonsingular, 
however, we now determine it, ... ,Ik constructively. 

We start with 2k functions which span the space of functions that are poly­
nomials of degree less than k on the interval (0, 1) and on (-1,0), then 01'­

thogonalize k of them, first to the functions 1, x, ... , X k
- 1 , then to the functions 
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Xk, Xk+ I , .•• , X
2k

-
I 

, and finally among themselves. We define Jf, Ii, ... ,!l by the 
formula 

{ 

x j - I , x E (0, 1), 
I}(x) = -xj-I, x E (-1,0), 

0, otherwise, 

and note that the 2k functions 1, x, ... , X k
-

1
, Jf, Ii, ... ,!l are linearly indepen­

dent, hence span the space of functions that are polynomials of degree less than 
k on (0,1) and on (-1,0). 

1. By the Gram-Schmidt process we orthogonalize II with respect to 1, x, ... , 
xk-I, to obtain J}, for j = 1, ... , k. This orthogonality is preserved by the 
remaining orthogonalizations, which only produce linear combinations of 

the IJ. 
2. The next sequence of steps yields k - 1 functions orthogonal to xk, of 

which k - 2 functions are orthogonal to xk+I, and so forth, down to 1 
function which is orthogonal to x 2k- 2 • First, if at least one of Jl is not 
orthogonal to xk, we reorder the functions so that it appears first, Uf, Xk) i-
0. We then define Jl = Jl - aj . I~ where aj is chosen so (fl, xk) = 0 
for j = 2, ... , k, achieving the desired orthogonality to xk. Similarly, we 

th 1· t k+I 2k-2 h· t t bt· 12 j3 f4 fk+l or ogona Ize 0 x , ... , x , eac In urn, 0 0 aIn l' 2' 3'···' k 

such that u1+\ xi) = ° for i ::; j + k - 2. 

3. Finally, we do Gram-Schmidt orthogonalization on 1;+1, ILl'· .. , If, III 

that order, and normalize to obtain Ik, Ik-I, ... , ft. 

It is readily seen that the Ij satisfy properties 1-4 of the previous paragraph. 
Defining hI, ... , hk : R ---1 R by the formula 

i = 1, ... , k, 

we obtain the equality 

R~ = linear span {hi: i = 1, ... , k} , 

and, more generally, 

R':n = linear span {hj,m: hj,m(x) = 2m/2 hj(2mx - n), 
j=l, ... ,k; n=O, ... ,2m-1}. 

(5) 

We will show next that dilates and translates of the piecewise polynomial func­
tions hI' ... ' hk form an orthonormal basis for £2(R). Furthermore, a subset 
of these dilates and translates, combined with a basis for S~, forms a basis for 
£2[0,1]. 
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1.2 Completeness of One-Dimensional Construction 

We define the space Sk to be the union of the S~, given by the formula 

(6) 

and observe that Sk = £2[0,1]. In particular, Sk contains the Haar basis for 
£2[0,1], consisting of functions piecewise constant oli each of the subintervals 
(2- m n, 2-m (n + 1)). Here the closure Sk is defined with respect to the £2- norm, 

IIfll = (j,f)1/2, 

where the inner product (j, g) is defined by the formula 

(j,g) = fa1 f(x) g(x) dx. 

We let {Ul,' .. , Uk} denote an orthonormal basis for S~; in view of Eqs. (4), (5), 
and (6), the orthonormal system 

Bk = {Uj: j = 1, ... ,k} 
U {hj,m: j = 1, ... , kj m = 0,1,2, ... j n = 0, ... , 2m 

- I} 

spans £2[0,1]; we refer to Ek as the multi-wavelet basis of order k for £2[0, IJ. 
Now we construct a basis for £2(R) by defining, for m E Z, the space S~ by 

the formula 

s~ = {f: the restriction of f to the interval (2- m n,2-m (n + 1)) is 
a polynomial of degree less than k, for n E Z} 

and observing that the space S~+1 \S~ is spanned by the orthonormal set 

Thus £2(R), which is contained in Urn Sf;, has orthonormal basis 

{hJ.m: j=I, ... ,k;m,nEZ}. 

1.3 Construction in Multiple Dimensions 

The construction of our bases for £2[0,1] and £2(R) can be extended to certain 
other function spaces, including £2[a, bJd and £2(Rd), for any positive integer d. 
We now outline this extension by giving the basis for £2[0, 1]2, which is illustrative 

5 



of the construction for any finite-dimensional space. We define the space S~2 by 
the formula 

m = 0,1,2, ... , 

where S!, is defined by Eq. (3). We further define R~2 to be the orthogonal 
I t f S k,2· Sk,2 comp emen 0 m III m+l, 

Then R~,2 is the space spanned by the orthonormal basis 

Among these 3k2 basis elements each element v( x, y) has no projection on low­
order polynomials, 

i, j = 0,1, ... , k - 1. 

The space R~2 is spanned by dilations and translations of the v( x, y) and the basis 
of .e2[0, 1]2 consists ofthesefunctions and the low-order polynomials {Ui(X)Uj(Y) : 
i,j=l, ... ,k}. 

2 Convergence of the Multi-Wavelet Bases 

For a function f E .e2 [0, 1], a positive integer k, and m = 0,1,2 ... , we define the 
orthogonal projection Q':nf of f onto S!, by the formula 

),n 

where {uj,m} is an orthonormal basis for S!,. The projections Q':nf converge (in 
the mean) to f as m ~ 00. If the function f is several times differentiable, we 
can bound the error, as established by the following lemma. 

Lemma 2.1 Suppose that the function f: [0, 1] ~ R is k times continuously 
differentiable, f E Ck[O, 1]. Then Q':nf approximates f with mean error bounded 
as follows: 

IIQ~f - fli ::; 2-mk 4:k
l 

sup If(k)(x)1 
. xE[O,l] 

(7) 

Proof. We divide the interval [0,1] into subintervals on which Q':nf is a poly­
nomial; the restriction of Q':nf to one such subinterval Im,n is the polynomial of 
degree less than k that approximates f with minimum mean error. We then use 
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the maximum error estimate for the polynomial which interpolates f at Cheby­
shev nodes of order k on 1m •n • 

We define 1m.n = [2-m-n, 2-m(n + 1)] for n = 0,1, ... , 2m 
- 1, and obtain 

IIQ~f - fll2 fal [(Q~f)(x) - f(x)r dx 

~ lm,n [(Q~f)(x) - f(x)r dx 

< ~ lm,n [(C~.nf)(x)- f(x)r dx 

< L r (21~~k sup If(k)(X)I)2 dx 
n lIm,n 4 k. xEIm,n 

(
21

-
mk 

) 2 • (k) < 4k k' sup If (x)1 , 
• xE[O.I] 

and by taking square roots we have bound (7). Here C!.nf denotes the poly­
nomial of degree k which agrees with f at the Chebyshev nodes of order k on 
1m •n , and we have used the well-known maximum error bound for Chebyshev 
interpolation (see, e.g., [4]). 0 

The error of the approximation Q':nf of f therefore decays like 2-mk and, 
since S! has a basis of 2m k elements, we have convergence of order k. For 
the generalization to d dimensions, a similar argument shows that the rate of 
convergence is of order k / d. 

3 Second-Kind Integral Equations 

A linear Fredholm integral equation of the second kind is an expression of the 
form 

f(x) -lb I«x, t) f(t) dt = g(x), (8) 

where we assume that the kernel I< is in £2[a, b]2 and the unknown f and right~ 
hand-side g are in £2[a, b]. For notational simplicity, we restrict our attention to 
the interval [a, b] = [0, 1]. \Ve use the symbol K to denote the. integral operator 
of Eq. (8), given by the formula 

(Kf)(x) = 10
1 

I«x, t) f(t) dt, 

for all f E £2[0,1] and x E [0,1]. Suppose that {bbb2 , ... } is an orthonormal 
basis for £2[0,1]; the expansion of I< in this basis is given by the formula 

00 00 

I«x,t) = LLI<ij bi(x) bj(t), (9) 
i=1 j=1 
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where the coefficient ]{ij is given by the expression 

i,j = 1,2, .... (10) 

Similarly, the functions I and 9 have expansions 

00 00 

I ( x) = L Ii bi ( X ), g(x) = L9j bi(x), 
i=1 i=1 

where the coefficients Ii and gi are given by the formulae 

i = 1,2, .... 

The integral equation (8) then corresponds to the infinite system of equations 

Ii - L ]{ij Ij = gi, i = 1,2, .... 
j=1 

The expansion for ]{ may be truncated at a finite number of terms, yielding the 
integral operator R defined by the formula 

f1 n n 

(RJ)(x) = in L L (I<ij bi(x) bj(t)) I(t) dt, 
o i=O j=O 

IE .e2 [0, 1], x E [0,1]' 

which approximates K. Integral equation (8) is thereby approximated by the 
system 

n 

Ii - L ]{ij fJ = gi, i = 1, ... , n, (11 ) 
j=1 

which is a system of n equations in n unknowns. Eqs. (11) may be solved nu­
merically to yield an approximate solution to Eq. (8), given by the expression 

n 

IR(X) = L Ii bi(x). 
i=1 

How large is the error eR = I - IR of the approximate solution? We follow 
the derivation by Delves and Mohamed in [6]. Rewriting Eqs. (8) and (11) in 
terms of operators K and R, we have 

(I - K)I 

(I - R)IR 

and combining the latter equations yields 

9 

g, 

(I - K)eR = (K - R)IR. 
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.... 

Provided that (1 - Ktl exists, we obtain the error bound 

(12) 

The error depends, therefore,on the conditioning of the original integral equation, 
as is apparent from the term 11(1 - Kt11l, and on the fidelity of the finite­
dimensional operator R to the integral operator K. 

4 Sparse Representation of Integral Operators 
and Their Inverses 

4.1 Representation in Multi-Wavelet Bases 

We consider integral operators K with kernels that are analytic, except at x = 

t, where they are singular. In particular, we analyze singularities of the form 
log Ix - tl or the form Ix - tlO', with 0 < lal < 1. An operator with such a kernel 
J{, expanded in one of the multi-wavelet bases defined above, is represented as 
a sparse matrix. This sparseness is due to the smoothness of J{ on rectangles 
separated from the "diagonal". 

Definition 4.1 We say that a rectangular region oriented parallel to the coor­
dinate axes x, t is separated from the diagonal if its distance in the horizontal or 
vertical direction from the line x = t is at least the length of its longer side. In 

t 
x=t 

D 

~----------------------------x 

Figure 1: Rectangular regions (just) separated from the diagonal. 
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symbols, a region [x, x + a] x [t, t + b] C R2 is separated from the diagonal if 
a+max{a,b} ~t-x or b+max{a,b} ~x-t. 

This definition is illustrated in Fig. l. 
Suppose that k is a positive integer and that Bk = {bI , b2 , ••• } is the multi­

wavelet basis for £2[0,1] of order k, defined in §l. We let Ij denote the interval 
of support of bj , and we assume that the sequence of basis functions bI , b2 , .•. is 
ordered so that II, 12 , ••• have non-increasing lengths. For large n, the matrix 
{Kij hj=I, ... ,n is sparse, to high precision, as is proved in the following proposi­
tions. 

Lemma 4.2 Suppose that the function K: [0,1] x [0,1] --+ R is given by the 
formula K(x, t) = log Ix - tl. The expansion (Eq. 9) of K in the multi-wavelet 
basis Bk of order k has coefficients Kij which satisfy the bound 

1 
IKij I ~ 8k. 3k - I 

whenever the rectangular region Ii X I j is separated from the diagonal. 

(13) 

Proof; Suppose that the intervals Ii and Ij are given by the expressions 
Ii = [xo, Xo + a] and I j = [to, to + b]; without loss of generality we assume (as one 
of two equivalent cases) that b + max{a, b} ::; Xo - to. It is immediate from this 
inequality that 

I 
Xo + a/2 - x I < ~ 
Xo + a/2 - t - 3 

(14 ) 

for (x, t) E Ii X I j . 
We use the Taylor expansion for the natural logarithm about c > 0, 

log(c + y) = log(c) + (y/c) - (yjc)2/2 + (y/c)3/3 - (y/c)4/4 + "', 

for Iyl < c. We now let c = Xo + a/2 - t and y = x - Xo - a/2 and for 
( x, t) E Ii X I j we obtain the formula 

~ 1 (xo + a/2 - x) m 10glx- t l=log(xo+a/2-t)- ~ - / 
m=I m Xo + a 2 - t 

(15) 

We now apply Eqs. (10), (15), (2), and (14), each in turn, to obtain 

lJ<ijl 11:0

+b l:o
+

a 

J«x, t) bi(x) bj(t) dx dtl 

< 1:0

+b 11:o

+
a 

log Ix - tl bi(x) dXI1bj(t)1 dt 
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roH 11xo
+

a 
[log(xo + ~ - t) 

lto Xo 2 

_ f: ~ (Xo + a/2 - X)m] bi(x) dXllbj(t)1 dt 
m=l m Xo + a/2 - t 

< roH 11xo
+

a f: ~ (Xo + a//2 - X)m bi(x) dXllbj(t)1 dt 
lto Xo m=k m Xo + a 2 - t 

< roH l xo
+

a 

-k
1 f: (~)m Ibi(x)1 dx Ibj(t)1 dt 

lto Xo m=k 3 

l
toH lxo+a 1 

< k 3k-1 Ibi(x)1 dx Ibj(t)1 dt 
to xo 2· 

< 1 l to
+

b 

2k . 3k - 1 to 

,----------------------(l:o
+

a 

b/(x) dX) (l:o
+

a 

1 dX) Ibj(t)ldt 

Jc;b 
< < 

2k· 3k - 1 Sk . 3k - 1 ' 

1 

as was to be proved. 0 

Lemma 4.3 Suppose that the function L: D x D -t C is given by the formula 
L(z,w) = f(z,w)loglz - wI, where D is the closed disk of radius ~ centered at 
z = t and f is analytic in a domain containing D x D C C2

• Suppose fU1,ther 
that the function f{ is the restriction of L to [0,1] x [0,1]. The expansion of I( 
in the basis Bk has coefficients f{ij which satisfy the bound 

whenever the rectangular region Ii x I j is separated from the diagonal . 
.. 

(16) 

Proof We combine the method of proof used in Lemma 4.2 with the formula 
for the derivative of a product, 

(17) 

By the Cauchy integral formula we obtain 

I
EFf(X t)1 

f) r' ::=;r! sup If(z,w)1 
x z,wE8D 

(IS) . 

for (x, t) E [0,1] x [0,1]. For the logarithm, differentiation yields the formula 

f)m-r log Ix - tl (_I)m-r-l(m - l' - I)! 
f)x m- r (x - t)m-r (19 ) 
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for r < m. Combining (17), (18), and (19), we obtain 

< f (m) 18r 
f(x, t) 1.18m-r log Ix - til 

r 8x r 8xm - r 
r=O 

< sup lJ(z, w)1 (1=1 (m) r! (T --,- r
l
=_l

r
)! + m! Ilog Ix - til) 

z,wE8D r=O r x - t 

< S . (m! 2 + 10gm) (20) 
f Ix - tim 

for Ix - tl :::; 1 and m 2: 1, where Sf = sUPz,wE8D If(z,w)l. 
Suppose that the intervals Ii and Ij are given by the expressions Ii = [xo, Xo + 

a] and I j = [to, to + b]; we assume without loss of generality that b + max{ a, b} :::; 
Xo - to. It follows directly from this inequality that 

I xo+a/2-xl<~ Xo + a/2 - t - 3 
(21 ) 

for (x, t) E Ii X I j . We now apply Eqs. (10), (2), (20), and (21), to obtain 

IKij I 

< 

< 

< 

< 

< (
k 3) 1 l to+

b 

Sf 2" + 4" 3k - 1 to 

< ) (~ ~) v;;b 
'f 2 + 4 3k - 1 

< (
k 3) 1 

Sf 8" + 16 3k - 1 ' 

which was to be proved. 0 

The proofs of the following two lemmas closely resemble those of Lemma 4.2 
and Lemma 4.3, and are omitted. 
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Lemma 4.4 Suppose that the function [{: [0,1] x [0, 1] ~ R is given by the 

formula [{(x, t) = Ix - tlO< with ° < lal < 1. Then the expansion coefficient ]{ij 

of the function I< in the basis Bk satisfies the bound 

(22) 

whenever the rectangular region Ii x I j is separated from the diagonal. 

Lemma 4.5 Suppose that the function L: D x D ~ C is given by the fOTmula 

L(z,w) = f(z,w)lz-wlo<, with ° < lal < 1, where D is the closed disk of radius ~ 
centered at z = ! and f is analytic in a domain containing D x D C C2

• Suppose 
further that the function [{ is the restriction of L to [0,1] x [0,1]. The expansion 

of I< in the basis Bk has coefficients I<ij which satisfy the bound 

(
k 3) 1 I[{ijl::; -2 + -4 3k - 1 sup If(z,w)1, 

z,wE8D 
(23) 

whenever the rectangular region Ii X I j is separated from the diagonal. 

The four preceding lemmas show that for a smooth kernel ]{ with logarithm 
or power singularity at x = t, the order k of the multi-wavelet basis Bk in which 
[{ is expanded may be chosen large enough that the expansion coefficient [{ij is 
negligible, provided Ii x I j is separated from the diagonal. A similar statement 
can be proven for any kernel of the form I«x, t) = </>(x, t)s(lx-tl)+~(x, t), where 
</>, ~ are entire analytic functions of two variables and s is an analytic function 
except at the origin (where it has a singularity), provided that s is integrable. 
We do not prove this statement here. 

The next lemma establishes the fact that, asymptotically, most regions Ii x I j 

are separated from the diagonal. 

Lemma 4.6 Suppose that II, . .. ,In are the (non-increasing) intervals of support 
of the first n functions of the basis B k • Of the n 2 rectangular regions Ii X I j , we 
denote the number sepamted from the diagonal by S(n) and the number "neal''' 
the diagonal by N(n) = n 2 -S(n). Then N(n) grows as O(nlogn); in particular, 

for n = 21 k with I > 0, we have the formula 

N(n) = 6nlk - 15nk - 6lk2 + 16k2
. (24) 

Proof The restriction that n = 21 k ensures that the first n basis functions 
consist of those functions whose intervals of support have length at least 21-1. 
We define S=(p) to be the number of pairs (i,j) such that the rectangular region 
Ii x I j is separated from the diagonal and IIi I = IIj I = 2-P , and we observe that 
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S=(p) = (2P - 1 )(2P - 2) k2 for p = 0,1,2, .... We further define Sf.(p, q) to be 
the number of pairs (i, j) such that Ii x I j is separated from the diagonal and 
IIil = 2-P , IIjl = 2-Q, and we observe that S#(p,q) = S=(min{p,q}) 2lp- ql for 
p, q = 0,1,2, .... Finally, we combine these formulae to obtain 

S(n) ~ (S=(P) + q~l (S¢(p,q) + s¢(q,P))) 

1-1 

L S=(p) (1 + 2(21
-

p 
- 2)) 

P=o 

1-1 

L(2P - 1)(2P - 2) k2 (21
- P+l - 3) 

P=O 

(41 
- 6· il + 15 .21 + 61- 16) k2 

n 2 - 6nlk + 15nk + 61k2 - 16k2, 

from which Eq. (24) follows directly. The assertion that the general growth of 
N(n) is O(nlogn) follows from Eq. (24) and that fact that N is a monotonic 
function of n. 0 

4.2 Products of Integral Operators 

The previous subsection established the fact that a wide class of integral op­
erators, when expanded in multi-wavelet coordinates, are represented to high 
accuracy as sparse matrices. It readily follows that a product of such integral 
operators can be similarly represented. For if we define integral operators JC 1 , JC 2 

by the formulae 

(JCd)(x) 

(JCd)(x) 

11 

J{ 1 (x, t) f (t) dt 

11 J{2(X, t) f(t) dt, 

then the product operator JC3 = JC2JC1 is given by the formula 

(JC2JCd)(x) = 11 11 J{2(X, y) J{l(Y, t) f(t) dt dy 

11 (11 
J{2(X,y) J{l(y,t) dy) f(t) dt 

11 J{3(X, t) f(t) dt, 

where the kernel J{3 of the product has the form 

J{3(X, t) = 11 J{2(X, y) J{l(y, t) dy. 

14 
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If kernels f{1 and f{2 are analytic except along the diagonal x = t, where they 
have integrable singularities, then the same is true of the product kernel f{3. As 
a result, the product K3 also has a sparse representation in a multi-wavelet basis. 

4.3 Schulz Method of Matrix Inversion 

Schulz's method [11] is an iterative, quadratically convergent algorithm for com­
puting the inverse of a matrix. Its performance is characterized as follows. 

Lemma 4.7 Suppose that A is an invertible matrix, Xo is the matrix given by 
Xo = AH /IIAH All, and for m = 0,1,2, ... the matrix Xm+1 is defined by the 
recurszon 

Xm+l = 2Xm - XmAXm· 

Then X m +1 satisfies the formula 

I - Xm+lA = (I - Xm A )2. 

Furthermore, Xm ~ A-I as m -t 00 and for any t > 0 we have 

(25) 

III - XmAl1 < t provided m ~ 2log2 K(A) + 10g2log(1/ t), (26) 

where K(A) = IIAII . IIA -111 is the condition number of A and the norm is given 
by IIAII = (largest eigenvalue of AH A)1/2. 

P1'00j Eq. (25) is obtained directly from the definition of X m +1 . Bound (26) 
is equally straightforward. Noting that AHA is symmetric positive-definite and 
letting '\0 denote the smallest and '\1 the largest eigenvalue of AH A we have 

III - XoAl1 III - 111:1 11 11 

1 - '\0/ '\1 (27) 

1 - K(A)-2. 

From Eq. (25) we obtain I - XmA = (I - XoA)2m, which in combination with 
Eq. (27) and simple manipulation yields bound (26). 0 

The Schulz method is a notably simple scheme for matrix inversion and its 
convergence is extremely rapid. It is rarely used, however, because it involves 
matrix-matrix multiplications on each iteration; for most problem formulations, 
this process requires order O(n3 ) operations for an n x n matrix. In [3], on the 
other hand, it is observed that a sparse matrix, possessing a sparse inverse, whose 
iterates Xn are also sparse, may be rapidly inverted using the Schulz method. We 
have seen above that a discretized integral operator A represented in the basis 
Bk has only order O(nlogn) elements (to finite precision). In addition, AHA 
and (AH A)m are similarly sparse. This property enables us to employ the Schulz 
algorithm to compute A-I in order O(nlog2 n) operations. 
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5 Numerical Examples 

5.1 Basis Functions 

In this section we give numerical expressions for the multi-wavelet functions 
fo, ft, ... ,fk-l and show their graphs for several values of k. These functions 
were obtained using the procedure of §1, implemented in a simple Maple pro­
gram (available from the author). Table 1 contains, for small k, the polynomials 
which represent the fi on the interval (0,1), together with the reflection formula 

Table 1: Expressions for the orthonormal, vanishing-moment functions fll ... , ik, 
for various k, for argument x in the interval (0, 1). The function fi is extended 

to the interval (-1,1) as an odd or even function, according to the formula 
fi(X) = (-l)iH- t fi(-x) for x E (-1,0), and is zero outside (-1,1). 

k=l 

ft(x) = A 
k=2 

ft(x) = II (-1 + 2x) 

h(x) = A (-2 + 3x) 

k=3 

ft(x) = 11£ (1 - 24x + 30x2) 3 2 

h(x) = 1~ (3 - 16x + 15x2) 2 2 

h(x) = ~A (4 - 15x + 12x2) 

k=4 

ft(x) = [!J (1 + 4x - 30x2 + 28x3) 34 

h(x) = f[; (-4 + 105x - 300x2 + 210x3) 

f3(X) = 1~ (-5 + 48x - 105x2 + 64x3) 2 34 

f4(X) = IJ{; (-16 + 105x- 192x2 + 105x3) 
2 --1l. 

k=5 

h(x)= (1 + 30x + 210x2 - 840x3 + 630x4) 

h(x) = (-5 - 144x + 1155x2 - 2240x3 + 1260x4) 

h(x) = (22 - 735x + 3504x2 - 5460x3 + 2700x4
) 

f4(X) = (35 - 512x + 1890x2 - 2560x3 + 1155x4) 

fs(x) = (32 - 315x + 960x2 - 1155x3 + 480x4) 
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Figure 2: Functions f1,' .. ,fk are graphed for k 4 (top graph) and k = 5 
(bottom). Each function (given in Table 2.1) is a polynomial on the interval 
(0,1), is an odd or even function on (-1,1)' and is zero elsewhere. 

to extend the functions to (-1,1), which is their interval of support. Fig. 2 shows 
the graphs of the functions for k = 4 and k = 5. 
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5.2 Integral Operators and Their Inverses 

We compute the expansion in multi-wavelet bases of the integral operator K 
defined by the formula 

(Kf)(x) = fo1

10g Ix - tl f(t) dt, (28) 

which yields the matrix 
T - {J< .. } .. - tJ t,J=l, ... ,n, (29) 

where 

J<ij = fa1 fa1 J«x, t) bi(x) bj(t) dx dt 

and {b1 , b2 , •.• } is a multi-wavelet basis of £2[0, 1J. This computation is done for 
the multi-wavelet basis of order k = 4, for various sizes n. 

In addition the inverse matrix (I - Ttl is obtained by the Schulz method. 
Table 2 displays, for various precisions E, the average number of elements per row 
in the matrices J - T and (I - Ttl. Fig. 3 displays the matrices for n = 128 
and E = 10-3 • 

Table 2: The average number of elements per row of the matrices J - T and 
(I - T)-l, where T is defined in Eq. (29), is tabulated for various precisions E 

and various sizes n. Here k = 4. 

E = 10-2 E = 10-3 E = 10-4 

n J -T (I - T)-l J-T (I - Ttl J-T (I - T)-l 

32 8.8 9.7 19.3 19.6 22.8 23.6 
64 9.3 10.0 25.8 26.0 31.9 32.6 

128 9.9 10.1 29.2 29.4 38.2 38.8 
256 11.8 11.8 30.1 30.3 41.9 42.7 

6 Discussion 

The results of the previous subsection demonstrate, for a particular integral oper­
ator, that the multi-wavelet representations are sparse. The matrix has a peculiar 
structure in which the non-negligible elements are contained in blocks lying along 
rays emanating from one corner of the matrix. Furthermore, the inverse matrix 
shares that structure. This property is a general characteristic of integral opera­
tors with non-oscillatory kernels that possess diagonal singularities. 
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Figure 3: Matrices representing the operators I -JC (top) and (I -JCtl (bottom), 
with JC defined by Eq. (28), expanded in the multi-wavelet basis of order k = 4, 
for n = 128. The dots represent elements above a threshold, which is determined 
so as to bound the relative truncation error at E = 10-3

• 

The kernel J«x, t) = log Ix-tl of the previous subsection was chosen, however, 
because the projections J<ij could be computed analytically, thereby avoiding 
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use of quadratures. The difficulty here with quadratures is that they would be 
required for each element /{ij, and would have to cope with the singularity of the 
logarithm. It was felt that the analytical computation would be more efficient. In 
fact, the analytical computation, which requires integrating monomials x j (0 ::; 
j < k) against the logarithm and combining the results with large coefficients, is a 
very poorly-conditioned procedure. The computations described above required 
quadruple-precision arithmetic to obtain single-precision accuracy for n as small 
as 64. This procedure is not recommended. 

The fault lies, of course, not with the idea of projection to the multi-wavelet 
basis, but with the method of projection. The integration should be performed 
numerically, with quadratures. As mentioned above, such a procedure would 
require use of quadratures for each matrix element /{ij, or potentially order 
O(n log n) times. A more efficient procedure is to use the Nystrom method, in 
which only n quadrature applications are required. Numerical quadratures and 
a vector-space analogue of the multi-wavelet bases are developed in [1],[3]; these 
tools enable efficient solution of second-kind integral equations using Nystrom's 
method. We believe that the present paper, rather than directly providing nu­
merical tools, offers a particularly simple framework in which to understand the 
ideas for sparse representation of integral operators. 
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