
Lawrence Berkeley National Laboratory
LBL Publications

Title
ExTreeM: Scalable Augmented Merge Tree Computation via Extremum Graphs

Permalink
https://escholarship.org/uc/item/99r7n89d

Journal
IEEE Transactions on Visualization and Computer Graphics, 30(1)

ISSN
1077-2626

Authors
Lukasczyk, Jonas
Will, Michael
Wetzels, Florian
et al.

Publication Date
2024

DOI
10.1109/tvcg.2023.3326526

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99r7n89d
https://escholarship.org/uc/item/99r7n89d#author
https://escholarship.org
http://www.cdlib.org/

ExTreeM: Scalable Augmented Merge Tree Computation via
Extremum Graphs

Jonas Lukasczyk , Michael Will , Florian Wetzels , Gunther H. Weber , and Christoph Garth

f
m0

m1

m2

m3

m4

s0

s1

s2

s3

s4
s5

s6

R

m0

m1

m2

m3

m4

s0

s1

s2

s3

s4
s5

s6

R

Fig. 1: The input of ExTreeM is a piecewise-linear scalar field f : K→ R defined on a connected simplicial complex K (left). First,
ExTreeM derives the descending manifold d : V(K)→M(K) that assigns to each vertex of K the maximum that would be reached by
following the gradient of f along the steepest ascent on K (middle; background color) via path compression. Then the algorithm uses d
to efficiently identify split saddles of f (middle; gray nodes). Next, ExTreeM derives the extremum graph G of f by connecting saddles
and maxima according to the descending manifold of the local saddle neighborhood (middle; black lines) and the global minimum
and maximum (middle; dashed line). Then ExTreeM derives the unaugmented merge tree T of f on G instead of K (right; black
edges). The key aspect of the proposed approach is that the merge trees of f on K and G are equivalent, but the computation on G is
much faster than on K since G contains, in general, several orders of magnitude fewer simplices than K. Moreover, we describe a
specialized merge tree algorithm for extremum graphs that further accelerates computation. Finally, in a post-processing procedure,
ExTreeM derives a merge tree augmentation that assigns each vertex of K to an edge of T (right; background).

Abstract—Over the last decade merge trees have been proven to support a plethora of visualization and analysis tasks since they
effectively abstract complex datasets. This paper describes the ExTreeM-Algorithm: a scalable algorithm for the computation of merge
trees via extremum graphs. The core idea of ExTreeM is to first derive the extremum graph G of an input scalar field f defined on a
cell complex K, and subsequently compute the unaugmented merge tree of f on G instead of K; which are equivalent. Any merge
tree algorithm can be carried out significantly faster on G, since K in general contains substantially more cells than G. To further
speed up computation, ExTreeM includes a tailored procedure to derive merge trees of extremum graphs. The computation of the fully
augmented merge tree, i.e., a merge tree domain segmentation of K, can then be performed in an optional post-processing step. All
steps of ExTreeM consist of procedures with high parallel efficiency, and we provide a formal proof of its correctness. Our experiments,
performed on publicly available datasets, report a speedup of up to one order of magnitude over the state-of-the-art algorithms included
in the TTK and VTK-m software libraries, while also requiring significantly less memory and exhibiting excellent scaling behavior.

Index Terms—Scalar field topology, merge trees, persistence pairs, high performance computing.

1 INTRODUCTION

Merge trees are fundamental data abstractions of scalar field topology
that record at which scalar values superlevel set components appear
and merge (Fig. 1; right). Due to their ability to capture the inher-
ent structure of scalar fields, and to effectively characterize features,
they are the basis for many advanced data analysis and visualization
approaches [21] (Fig. 2). Several efficient algorithms have been de-
veloped for their computation (Sec. 3), yet for large datasets these
approaches still require a significant amount of time. To enable interac-
tive visualization and analysis for ever-growing data sizes, the merge
tree computation needs to be further and further accelerated.

• Jonas Lukasczyk, Michael Will, Florian Wetzels, and Christoph Garth are
with RPTU Kaiserslautern-Landau.
E-mail: {lukasczyk,mswill,wetzels,garth}@rptu.de

• Gunther H. Weber is with the Lawrence Berkeley National Lab.
E-mail: ghweber@lbl.gov

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

In this paper, we describe ExTreeM: a scalable merge tree algo-
rithm with high parallel efficiency and low memory footprint (Sec. 4).
The core idea of ExTreeM is to first derive the extremum graph G of
the input scalar field f defined on an input complex K, and then to
compute the merge tree of f on G instead of K. The key aspect of
this concept is that the merge tree of f on G is equivalent to the one
of f on K; which we prove formally (Sec. 5). Since G can be up to
multiple orders of magnitude smaller than K, the merge tree compu-
tation can be performed much faster on G than on K. In this generic
approach of ExTreeM, any algorithm can be used to compute the merge
tree of f on G. To further boost performance, we also describe a spe-
cialized algorithm to compute merge trees on extremum graphs. The
last step of ExTreeM then uses the derived merge tree to compute the
corresponding segmentation of K.

We compare ExTreeM to two state-of-the-art merge tree algorithms
available in the Topology ToolKit (TTK) [19, 28, 40] and the Visualiza-
tion Toolkit (VTK-m) [7, 29, 37]. In all our experiments ExTreeM out-
performed the competitors; in the best case even by up to an order of
magnitude (Sec. 6).

https://orcid.org/0000-0001-6650-770X
https://orcid.org/0009-0007-1344-3694
https://orcid.org/0000-0002-5526-7138
https://orcid.org/0000-0002-1794-1398
https://orcid.org/0000-0003-1669-8549

Fig. 2: Merge tree leaf segmentations for the ctBones [41], Richtmyer-Meshkov instability [10], and the magnetic reconnection [20] datasets, which
characterize bones of the foot, hills of higher entropy, and high-density boundaries, respectively. Generating such visualizations requires the
computation of the merge trees, which with respect to each dataset takes 1.74s, 196.00s, and 159.71s with Parallel Peak Pruning (VTK-m), whereas
ExTreeM only requires 0.50s, 39.15s, and 14.26s (which is 3.5, 5.0, and 11.2 times faster while also requiring only half as much memory). Thus,
ExTreeM is one step towards performing interactive topological data analysis and visualization of large datasets on common workstations.

The main aspects of this paper are:
1. an overview of common merge tree algorithms (Sec. 3);
2. our main contribution: a novel merge tree algorithm with high

parallel efficiency (Sec. 4);
3. a lookup-table-based approach for critical point classification on

regular grids that can be utilized by existing algorithms (Sec. 4.2);
4. a formal proof of correctness of the proposed approach (Sec. 5),
5. a comparison between three merge tree algorithms (Sec. 6); and
6. an implementation of the proposed algorithm in TTK.

2 BACKGROUND

This section provides the theoretical background of the proposed ap-
proach and introduces the notations used throughout the manuscript.
For a comprehensive introduction to computational topology, we refer
the reader to the textbook of Edelsbrunner and Harer [13].

2.1 Scalar Fields
The input of our approach is a piecewise-linear (PL) scalar field
f : K→ R, where real-valued data is given at the vertices of a con-
nected simplicial complex K, and values on edges are linearly interpo-
lated. We denote the vertices (0-simplices) and edges (1-simplices) of
the complex K with V(K) and E(K), respectively. Neighbor vertices
of a vertex v are denoted by N (v,K) = {u ∈ V(K) : ⟨v,u⟩ ∈ E(K)}.
K does not need to be simply connected, but we require that f is injec-
tive on the vertices of K, which can always be enforced by applying a
variant of Simulation of Simplicity [15].

2.2 Critical Points
The superlevel set f−1

+∞(ℓ,K) for a level ℓ ∈ R consists of all points of
the underlying space of K whose scalar values are greater or equal to ℓ,
i.e., f−1

+∞(ℓ,K) = {p ∈ |K| : f (p)≥ ℓ}. As ℓ continuously decreases,
the topology of f−1

+∞(ℓ,K) changes at certain vertices of K, called the
critical points of K for f . Specifically, new components appear at max-
ima and merge at saddles. The same can be observed symmetrically for
sublevel sets f−1

−∞(ℓ,K) = {p ∈ |K| : f (p)≤ ℓ} while continuously
increasing the level ℓ.

Banchoff [3] introduced a PL characterization of critical points
based on their local neighborhood, which is represented by the up-
per and lower link of a vertex. The upper link Lk+(v) of a ver-
tex v ∈ V(K) is defined as all simplices of its link which exceed
the scalar value of v: Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ |σ | : f (u)> f (v)}
(blue vertices and edges in Fig. 3). Symmetrically, the lower link is de-
fined as Lk−(v) = {σ ∈ Lk(v) | ∀u ∈ |σ | : f (u)< f (v)} (red vertices
and edges in Fig. 3). If both the lower and upper link of a vertex v
are simply connected, then v is called a regular point, i.e., not criti-
cal (Fig. 3a). Otherwise, if the lower or upper link is empty, then v is
called a minimum or maximum, respectively (Fig. 3b-c). If the lower or
upper link consists of more than one connected component, then v is
called a join saddle or split saddle, respectively (Fig. 3d). In the context
of merge trees, we further need to distinguish between saddles that

actually merge distinct superlevel or sublevel set components, called
merge saddles (Fig. 3e), and saddles that only change the genus of
the components, further referred to as genus saddles (Fig. 3f). It is
important to note that only merge saddles appear in the merge tree, but
just based on the local neighborhood of a saddle it is not possible to
distinguish between merge and genus saddles.

2.3 Ascending and Descending Manifolds
Let M(K) ⊂ V(K) be the set of maxima of K for f . Then the de-
scending manifold is a map d : V(K)→M(K) that assigns to each
vertex v ∈ V(K) the maximum m ∈M(K) that would be reached
by following the path starting at v along the steepest ascent on K.
This path is a sequence of n vertices (v = v1,v2, ...,vn = m) where
vi+1 = argmaxu∈N (vi,K) f (u). The ascending manifold is defined sym-
metrically for minima reached by following the path starting at v along
the steepest descent. These paths are unambiguous since f is injective.

2.4 Extremum Graphs
We define the extremum graph as a one-dimensional simplicial com-
plex G, whose vertices correspond to the union of the maxima and
split saddles of f on K. If and only if the descending manifold maps
a larger neighbor of a saddle s to a maximum m, then there exists an
edge between them in the extremum graph, i.e.,

⟨s,m⟩ ∈ G ⇐⇒ ∃u ∈N (s,K) : f (u)> f (s) ∧ d(u) = m.

Symmetrically, we can define an extremum graph for minima, join sad-
dles, and the ascending manifold, but the remainder of the manuscript
focuses on extremum graphs induced by maxima and split saddles.

v

+ +

+

a) Regular Point

v

+ +

+

++

+

b) Minimum

v

c) Maximum

v

+

+

+

+

d) Saddle

v

+ +

e) Merge Saddle
v

+

+

+

f) Genus Saddle
Fig. 3: Critical point classification in cell complexes based on the con-
nectivity of upper (blue) and lower link (red) of a vertex v. v is regular if
both are simply connected (a). If either is empty, then v is a minimum or
maximum, respectively (b-c). If lower or upper link consist of more than
one component, then v is a join or split saddle (d). A merge saddle (e) v
merges distinct components; otherwise, a component changes its genus
and v is a genus saddle (f). As shown in (e-f), it is not possible to distin-
guish between merge and genus saddles solely based on neighborhood.

Since the vertices V(G) are a subset of the vertices V(K), we extend
the definition of the scalar field f to also cover G, i.e., f assigns the
same scalar value to the vertices of G and K, and values of edges of G
are again linearly interpolated. The key aspect of ExTreeM is that the
merge tree of f on G is equivalent to the merge tree of f on K.

2.5 Merge Trees
The merge tree T is a one-dimensional simplicial complex that either
records the connectivity changes of superlevel or sublevel set compo-
nents. In the first case, the merge tree is also called a split tree, and in
the latter case a join tree. The join and split tree can be combined to
form the contour tree that encodes the evolution of level set compo-
nents (contours) [6]. The remainder of this paper focuses on split trees,
but all arguments apply symmetrically for join trees.

The construction of the merge tree based on Kruskal’s serial algo-
rithm [6, 25] for 1D and 2D scalar fields can be illustrated through
the metaphor of flooding a landscape whose elevation corresponds to
the scalar field. Imagine that this landscape is initially completely
submerged. As the water level now continuously decreases, islands
(superlevel set components) appear at maxima and grow until they
merge at merge saddles. When a component appears, the correspond-
ing maximum is added to T and becomes the representative of that
component. Then, when two or more distinct components merge at
a saddle, then this merge saddle is added to T , as well as an edge
between each component’s representative and the saddle; after which
the saddle becomes the representative of the merged components. By
convention, when the water level is below the global minimum, then
that minimum is added to T and connected to the smallest vertex of T .

ExTreeM derives a persistence-based branch decomposition B of
T [34], where each branch B ∈ B is a monotone path m = v1,v2, . . . ,vn
starting at a maximum m ∈M(K) towards the root until the path
reaches a vertex at which the branch merges with another branch that
originated at a larger maximum. The termination of the branch orig-
inating at the smaller (younger) maximum and the continuation of
the larger (older) maximum is referred to as the elder rule [13]. We
denote the first and last vertex of a branch B by α(B) and ω(B), respec-
tively. Then, the persistence p (significance) of each branch B ∈ B is
measured by the function value difference of its first and last vertex:
p(B) = f (α(B))− f (ω(B)). Thus, the first and last vertex of each
branch form a maximum-saddle persistence pair.

Every branch is uniquely identified through its starting point, i.e.,
the maximum at which the branch originates. We refer to a branch orig-
inating at maximum m by B[m]. Furthermore, the last vertex of every
branch B ∈ B is contained in at least one other branch B′ ∈ B. From
those branches, the one originating at the largest maximum is called
the parent branch of B, i.e., P(B) = argmax{B′∈B | ω(B)∈B′} f (α(B′)).
Note, this implies that the branch originating at the global maximum is
its own parent branch. We also define leaf branches as those branches
that are not a parent of any other branch.

3 RELATED WORK

Since merge trees are fundamental abstractions for topological data
analysis, several approaches have been developed for their computation.
In this section, we briefly describe five of these algorithms and discuss
similarities and differences to ExTreeM. There also exists a different
family of merge tree algorithms based on localized data structures [23,
30, 31], which first create a forest of merge trees for individual parts
of an input domain, and then derive the global merge tree in a post
processing step. Such algorithms naturally leverage themselves for
distributed computation. However, we focus on directly computing the
global merge tree on single shared memory machines.

3.1 Serial Merge Tree Computation via Union-Find
The most common merge tree algorithm is based on Kruskal’s algorithm
for the computation of the minimum spanning tree [25]. We already
described this algorithm when introducing merge trees in Sec. 2.5. This
algorithm can be used to serially compute the merge tree on an input
complex with n vertices and m edges via a union-find data structure in
O(m logn) time [6, 39].

3.2 FTM-Tree (TTK)
Gueunet et al. [19] proposed a task-parallel version of Kruskal’s al-
gorithm, called FTM-Tree, which currently is the fastest merge tree
algorithm available in the Topology ToolKit [28, 40]. In short, FTM-
Tree starts to grow superlevel set components at all maxima, where
each growth operation (called propagation) is a task than can be exe-
cuted in parallel. Propagations terminate as soon as they reach a merge
saddle, except for the last propagation that reaches the saddle, which
then merges all propagations that reached that saddle and continues the
propagation. Therefore, this procedure requires some light synchro-
nization at the saddles. The major drawback of this approach is that
the entire sweep front of the propagations—i.e., all vertices that are
adjacent to the corresponding superlevel set components—need to be
maintained in a Fibonacci heap. Despite their theoretical advantages,
these heaps require a lot of memory—especially for huge sweep fronts
that are common in large datasets—and are therefore slow in practice
when they contain many elements (as shown in Table 1).

3.3 Parallel Peak Pruning (VTK-m)
In contrast to the task-parallel approach of FTM-Tree, Carr et al. [8]
described a fundamentally data-parallel merge (contour) tree algorithm,
called Parallel Peak Pruning (PPP), which is implemented in the VTK-
m library [29]. Instead of performing a sweep, PPP makes heavy use of
data-parallel primitives, such as sorting. PPP and ExTreeM follow the
same global strategy: identify leaf branches of the current input, remove
(prune) them from the current input, and then repeat this procedure until
all branches of the original input have been identified. Furthermore,
similar to the extremum graph used in ExTreeM, PPP also first reduces
the size of the input complex to accelerate computation [5].

Although PPP and ExTreeM share many concepts (such as using
path compression to determine the descending manifold) there are
significant differences. For one, PPP does not explicitly compute
saddles, just saddle candidates. Those are vertices whose upper link
is part of at least two different regions in the descending manifold.
However, this is true for many vertices, hence PPP has to process
significantly more vertices than ExTreeM, which in turn can efficiently
compute the actual saddles (Sec. 4.2). Conversely, this means PPP
can probably be improved in the future to only process the critical
points identified by ExTreeM. To identify the leaf branches, these
candidates also have to be sorted in each iteration of PPP according
to multiple criteria, whereas ExTreeM utilizes the special structure
of extremum graphs to replace the sorting with a simpler and more
efficient maximum polling procedure (Sec. 4.4). Another difference
is that ExTreeM only derives merge tree augmentations, whereas PPP
immediately derives contour tree augmentations, by merging both trees
and then deriving a hyperstructure [4], which is queried for each vertex
of the domain.

3.4 Merge Tree Computation via Integral Lines
The concept of accelerating the merge tree computation by utilizing an
extremum-graph-like structure has also been employed in the approach
of Maadasamy et al. [27], which is in turn a multi-threaded version of
the approach of Chiang et al. [9]. Their approach first determines all
critical points of the domain, then explicitly computes integral lines
from saddles towards maxima, and incrementally constructs the merge
tree from the leaves towards the root based on these integral lines.

The major difference to ExTreeM is the design of the iterations that
yield the merge tree. In their approach, each iteration adds critical
points toward the root, whereas iterations in our approach add multiple
leaf branches. This has an important implication in practice since most
datasets exhibit significantly more genus saddles than merge saddles.
Currently (also in our approach) there is no way to predetermine if a
saddle is a merge or genus saddle (that is the whole point of the merge
tree computation). Thus, according to their iteration scheme, these
saddles are added sequentially to the merge tree; effectively serializing
the algorithm and therefore reducing parallel performance. In contrast,
the number of iterations in our approach does not dependent on the
number of critical points, but instead depends on the nesting depth of
branches; which is several orders of magnitude smaller.

Ande et al. [2] improved the preliminary steps of computing critical
points and integral lines for shared-memory machines. A significant dif-
ference to ExTreeM is that their approach explicitly computes integral
lines seeded at the saddles, whereas we first apply path compression
on the entire domain to determine the reachable maxima from the sad-
dles. Although path compression has been shown to have excellent
parallel scaling [8, 26], a comparative study between path compres-
sion and explicit integral line traversal is needed, but not within the
scope of this paper.

3.5 Triplet Merge Trees
Smirnov and Morozov [38] proposed an alternative approach to merge
tree computation, called triplet merge trees (TMT), which is also data-
parallel and only requires the compare-and-swap parallel primitive.
The core idea of TMT is not to directly compute merge tree edges, but
instead derive its branches by representing them as vertex triplets. The
first two entries of a triplet correspond to the endpoints of branches, and
the third entry corresponds to the starting point of its parent branch. The
concept behind the main procedure of TMT is to initialize its output
as if the complex would not contain any edges—i.e., every vertex
forms its own triplet—and then add edges of the input complex one
by one and “merge” the triplets of the edge vertices. Thus, at every
iteration, the triplets correspond to the branch decomposition for the
current connectivity, and all branches have been found as soon as all
edges have been processed. Moreover, the iteration over all input edges
can be parallelized by protecting the merge operation with a compare-
and-swap lock. Recently, it was shown that a shared-memory parallel
implementation of TMT can outperform Parallel Peak Pruning [32].

Although ExTreeM also derives a branch decomposition, it uses
a fundamentally different strategy to do so. Since TMT scales with
the number of input edges and for many datasets the extremum graph
can have multiple orders of magnitude fewer edges than the original
complex (Table 1), it seems promising to first apply ExTreeM to derive
the extremum graph, and then to use TMT to derive its merge tree.

4 THE EXTREEM-ALGORITHM

The ExTreeM-algorithm outlined in Alg. 1 consists of five high-level
procedures: the computation of the descending manifold, critical points,
extremum graph, merge tree, and optionally the merge tree augmenta-
tion. This section details every procedure in its own subsection.

Algorithm 1: ExTreeM
Inputs: • simplicial complex K

• scalar field f : K→ R
Outputs: ◦ merge tree branch decomposition B

◦ merge tree augmentation a : V(K)→ V(B)

1 d ← ComputeDescendingManifold(K, f)
2 M,S← ComputeMaximaAndSaddles(K, f , d)
3 G ← ComputeExtremumGraph(K, f , d, M, S)
4 B ← ComputeMergeTree(G, f)
5 a ← ComputeMergeTreeAugmentation(K, f , d, B)

4.1 Descending Manifold Computation
We compute the descending manifold d : V(K)→M(K) via path
compression, also known as pointer doubling. This procedure scales
well [26] and is also used in other merge tree algorithms such as parallel
peak pruning [7]. Path compression is an improvement over the naïve
approach of explicitly computing the integral path from each vertex to-
wards a maximum along the steepest ascent. Instead, path compression
operates in global iterations, wherein in the first iteration every vertex
points to its largest neighbor, and then in subsequent iterations, each
vertex points to the vertex its current pointer points to. This procedure
is repeated until all pointers converged to the maxima M of f on K.

Alg. 2 outlines this procedure, where line 1 initializes the output.
Note, all vertices can be uniquely identified by their index, so the output
is a simple integer array that will record at position i the index of the
assigned maximum of vertex i. At first, each vertex is assigned to

its largest neighbor (line 2-3). Since this can be done for each vertex
independently, this task is trivial to parallelize. To perform the actual
path compression in parallel, we distribute all vertices to the available
threads (line 4-5). Thus, each thread has to only process its own list
of active vertices A, where a vertex is called active as long as it is
not pointing to a maximum. For each active vertex v, the thread first
retrieves the current pointer u of v (line 8), and then retrieves the vertex
w pointed to by u (line 9-10). Note, only the current thread will update
the pointer of v, but some other thread might update the pointer of
u while the current thread resolves the pointer. This is why the first
lookup does not need to be synchronized, but the second lookup needs
an atomic read lock (line 9). Only if both pointers u and w are equal,
i.e., v now points to a maximum, then v can be removed from the list of
active vertices (line 12). Otherwise, the pointer of v is updated to point
to w (line 14). Since only the current thread updates the pointer of v,
this write operation does not require synchronization.

It is possible to perform path compression without any synchroniza-
tion by maintaining two arrays, and only reading from one array and
writing into the other during block synchronous iterations. However,
in our experiments the described approach using light synchronization
outperformed the lock free alternative; probably due to memory over-
head and cache locality. Alg. 2 requires O(2n) memory, where n is the
number of vertices of the input complex, where half of the memory is
required for the output, and the other half to maintain the lists of active
vertices. In the worst case, Alg. 2 requires as many iterations in line
6 as the number of vertices in the longest monotone path. However,
these paths are relatively short compared to the extent of the input
domain, and the parallization effectively doubles in each iteration the
lengths of the computed monotone paths; hence Alg. 2 only required
few iterations for all our experiments.

Algorithm 2: ComputeDescendingManifold
Inputs: • simplicial complex K

• scalar field f : K→ R
Outputs: ◦ descending manifold d : V(K)→M where

M are the maxima of f on K

1 d ← array(|V(K)|) // create integer array with |V(K)| entries

2 parallel foreach vertex v ∈ V(K) do
3 d[v] ← argmaxu∈N (v,K) f (u) // assign v to largest neighbor

4 parallel foreach thread t do
5 A ← AssignVerticesToThread(t, V(K))
6 while |A|> 0 do
7 foreach vertex v ∈ A do
8 u ← d[v] // current pointer of v

9 # atomic read
10 w ← d[u] // current pointer of u

11 if u = w then
12 A← A\{v} // delete v from active vertices
13 else
14 d[v]← w // assign w to v

4.2 Critical Point Computation
As described in Sec. 2.2, critical points are characterized by the connec-
tivity of their upper and lower link. For the computation of the split tree
we only need to determine maxima and split saddles, i.e., examine the
upper link of a vertex. Alg. 3 outlines this procedure that iterates over
each vertex in parallel (line 2-11). For each vertex v, the procedure first
retrieves the vertices U of the upper link of v (line 3). If that set is empty,
then v must be a maximum (line 5-6). Otherwise, we additionally need
to retrieve the edges between the vertices of U (line 8), and only add
v to the saddles if these edges are all connected (line 9-11). However,
fetching these edges and checking their connectivity via union-find is
relatively expensive. We can accelerate the overall procedure by only
performing this check if it is actually necessary. To this end, we can
exploit the fact that a vertex v can only be a split saddle if its upper link

Algorithm 3: ComputeMaximaAndSaddles
Inputs: • simplicial complex K

• scalar field f : K→ R
• descending manifold d : V(K)→M

Outputs: ◦ maxima M of f on K
◦ saddles S of f on K

1 M, S← /0 // initialize output

2 parallel foreach vertex v ∈ V(K) do
3 U ←{ u ∈N (v,K) | f (u)> f (v) } // upper link vertices of v
4 R ←{ d(u) | u ∈U } // reachable maxima of v

5 if |U |< 1 then
6 M←M∪{v} // add v to maxima
7 else if |R|> 1 then
8 U ′←{ ⟨u,v⟩ ∈ E(K) | u,v ∈U } // upper link edges
9 n ← ComputeNumberOfConnectedComponents(U ′)

10 // if U ′ has more than one component add v to saddles
11 if n > 1 then S ← S ∪{v}

vertices U lead to at least two distinct maxima through an ascending
monotone path. Since this necessary condition will not be true for
a majority of the regular vertices, this additional check significantly
accelerates the overall procedure. Moreover, this information is al-
ready recorded in the descending manifold, so the number of reachable
maxima can be efficiently retrieved (line 4 and 7).

ExTreeM also includes an optimization of Alg. 3 for regular grids.
As stated before, fetching the edges of the upper link and checking
their connectivity is relatively expensive, but for regular grids this
subprocedure (line 8-9) can be completely replaced with a lookup
table. Note, for regular grids the number of neighbors of interior
vertices is always constant: 6 for 2D and 14 for 3D grids according to a
Freudenthal triangulation [14, 17] (the default triangulation scheme of
TTK and PPP). We can also consistently enumerate these neighbors and
build a binary number based on their presence in the upper link (Fig. 4).
This binary number is then interpreted as an address index in a lookup
table that records if for this setting the upper link is connected or not.
To generate this lookup table one has to iterate over every possible
setting and explicitly perform a connectivity check via union-find. This
includes 26 = 64 different settings for 2D, and 214 = 16384 for 3D.
Since the lookup table only needs to store one byte per setting, the
lookup table for 3D grids only requires 16kb of memory, and the table
can even be computed at compile time. This lookup table approach
further significantly accelerates the critical point computation, since
only boundary vertices need to perform runtime connectivity checks.
Obviously, this optimization only supports regular grids, but such grids
are frequent use cases in scientific computing.

4.3 Extremum Graph Computation
After the computation of the descending manifold and the critical
points, it is straightforward to derive the extremum graph. As outlined
in Alg. 4, first the maxima and saddles are added to the output (line 1).
Then the algorithm iterates over the saddles in parallel (line 2) and adds
an edge between the saddle and every reachable maximum of its upper
link (line 3-6). This entire procedure can be performed lock-free by
only storing the outgoing edges at each saddle.

4.4 Merge Tree Computation
Once the extremum graph G is computed, one could apply any merge
tree algorithm to derive T of f on G. However, we propose an approach
that utilizes the special structure of extremum graphs, called Extremum
Graph Pairing (EGP). The execution of EGP for the running example
is shown in Fig. 5. The algorithm is based on the core observation that
some edges of G correspond to persistence pairs of f on G, and therefore
to branch endpoints of T . Specifically, those edges ⟨m,s⟩ ∈ E(G) where
(i) s is the largest saddle directly connected to m, and (ii) m is the
smallest maximum directly connected to s. Fig. 5 highlights these
edges in red for the running example.

Algorithm 4: ComputeExtremumGraph
Inputs: • simplicial complex K

• scalar field f : K→ R
• descending manifold d : V(K)→M
• maxima M of f on K
• saddles S of f on K

Outputs: ◦ extremum graph G of f on K

1 G ←M∪S // initialize output

2 parallel foreach saddle s ∈ S do
3 U ←{ u ∈N (s,K) | f (u)> f (s) } // upper link vertices of s
4 R ←{ d(u) | u ∈U } // reachable maxima of s

5 for maximum m ∈ R do
6 G ← G∪{⟨m,s⟩} // add edge between s and each m

The strategy of EGP is to first identify these edges and add
the corresponding persistence pairs/branch endpoints to the output.
Afterwards, EGP performs a specialized topological simplification
of the extremum graph such that it no longer exhibits these pairs.
Then, the core observation holds again for the simplified extremum
graph G′ (Fig. 5 right; red edges), so the procedure is repeated on G′
until it only contains the global maximum. The remainder of this sec-
tion describes the technical details of our EGP implementation, and the
appendix contains a formal proof that the outlined procedure actually
derives the merge tree of f on G. EGP can be efficiently parallelized
using four arrays:
B: the output array that records at index i the branch of the merge

tree that originates at the i-th maximum;
R: the replacement map that records the maximum that replaced

another maximum during the simplification;
L: the array that records for each iteration the largest (saddle) neigh-

bor of each maximum; and
N: the array that records for each iteration the current neighbors of

the saddles.
Our implementation, outlined in Alg. 5, first initializes these ar-
rays (line 1-8) such that each maximum points to itself in the replace-
ment map R, and the neighbors recorded in N correspond to the saddle
neighbors of the input extremum graph. Then the root branch between
the global maximum and minimum is already added to the output
branches (line 9-11). To perform the iterations, EGP maintains a list
of unpaired maxima M′ and saddles S ′, i.e., the vertices of the simpli-
fied extremum graph G′, which initially correspond to the maxima and
saddles of the input extremum graph G (line 13).

v

0 1

2

34

5

000001 = 1

v

0 1

2

34

5

000101 = 5

v

0 1

2

34

5

000111 = 7

v

0 1

2

34

5

110110 = 54

0 0
1 1
2 1
3 1
4 1
5 0
6 1
7 1...

...
54 0
...

...
63 1
LUT

i C

Fig. 4: Lookup-table-based critical point computation on regular grids:
Neighbors of interior vertices of such grids can be consistently enu-
merated (vertex numbers), where the i-th bit encodes whether the i-th
neighbor is part of the upper link (blue vertices). For 2D grids with a
Freudenthal triangulation [14,17], 6 bits are needed, and 14 bits for 3D
grids. Interpreted as an integer, this number is an address into a lookup
table (LUT) that records whether the upper link is connected or not.

As long as there is more than one unpaired maximum, EGP performs
the following iteration. First, EGP determines the largest saddle cur-
rently connected to each maximum (line 15-21). This is done by first
initializing L for each maximum with the global minimum (line 16-17),
and then iterating in parallel over every unpaired saddle. Here, EGP it-
erates over each saddle neighbor (i.e., connected maximum) and checks
if the current saddle is larger than the saddle currently recorded in L for
that neighbor (line 19-21). If yes, then EGP needs to replace that entry
in L with the current saddle. This operation needs to be synchronized
with an atomic compare and swap lock (line 20).

Next, EGP iterates in parallel over every unpaired maximum to
identify all pairable maxima M′′ of the current iteration (line 22-31).
First, EGP retrieves for each maximum the largest connected saddle
via L (line 25). If the current maximum is also the smallest neighbor of
that saddle, then EGP found an edge that corresponds to a persistence
pair (line 27). In this case, the current maximum is removed from
M′ (line 28) and added to M′′ (line 29), and R records that the current
maximum is replaced by the largest saddle neighbor (line 30). Finally,
EGP adds an output branch between the current maximum and the
saddle (line 31).

Since one iteration can pair multiple maxima, it is possible that
paired maxima point to also paired maxima in R (see the dashed blue
arrow in Fig. 5. To resolve this issue, EGP needs to essentially perform
a path compression on R (line 32-37). Thus, as long as the current
pointer of a maximum is not pointing to itself—i.e., as long as it is
pointing to a paired maximum—EGP needs to recursively update the
pointer until it does. Note, similarly to the path compression described
in Alg. 2, this step requires an atomic read lock (line 35).

In the last step of each iteration, EGP iterates in parallel over all
unpaired saddles and replaces their neighbors according to R (line 38-
40). After this replacement, some saddles will now have only one
neighbor and can therefore never be a merge saddle in the simplified
extremum graph. Thus, these saddles can safely be removed from the
list of unpaired saddles (line 42).

After the extremum graph has been simplified until it only contains
the global maximum, all necessary branches have been added to the
branch decomposition B. However, each branch currently consists only
of its start and end point, i.e., the maximum-saddle persistence pair.
For the merge tree, the branches also need to be connected, i.e., EGP
needs to determine the parent branch of each branch (line 43-49). Note,
this information is already available in R (for a formal argument see the
proof in the appendix). To shorten the following description, we say
that a branch X was replaced by the branch Y if α(Y) = R[α(X)]. So
to retrieve the parent branch of B, EGP first has to retrieve the branch
B′ that replaced B, i.e., find the branch that originates at the maximum
that replaced α(B) (line 45). Then, EGP recursively searches for the
branch that replaced B′ until the endpoint of B′ is smaller than the
endpoint of the original branch B (line 47). The last B′ of this search
operation is the parent branch of B, so EGP adds the endpoint of B to
B′ (line 49). Since multiple threads might want to simultaneously add
vertices to a branch, this write operation needs to be synchronized with
a lock (line 48).

If more than two branches merge at a saddle, then each child branch
will add that saddle to the parent branch; hence the saddle duplication
on the parent branch and the need for their removal (line 50-52). After-
wards, B corresponds to the branch decomposition of the merge tree of
f on G as defined in Sec. 2.5.

4.5 Augmented Merge Tree Computation
The last step of ExTreeM is to compute the merge tree augmentation
a : V(K)→ V(B) that assigns each domain vertex to a vertex of the
branch decomposition B. This assignment trivially parallelizes over
vertices, as outlined in Alg. 6 (line 2). For each vertex v, we first have
to find the correct merge tree branch that would contain v. For this,
consider the superlevel set component C ⊆ f−1

+∞(f (v),K) that contains
v, i.e., v ∈C. Every maximum of C is the starting point of a branch, and
by the definition of the merge tree, all these branches are connected by
vertices that are larger than v (otherwise they would not be part of the
same component). Since the endpoints of these branches are persistence

Algorithm 5: ComputeMergeTree / ExtremumGraphPairing
Inputs: • extremum graph G

• scalar field f : G→ R
• descending manifold d : V(G)→M
• maxima M of f on G
• saddles S of f on G

Outputs: ◦ merge tree branch decomposition B of f on G

1 B ← array(|M|) // branch array with |M| entries
2 R ← array(|M|) // replacement map
3 L ← array(|M|) // records only largest neighbor of each max
4 N ← array(| S |) // records current neighbors of saddles
5 parallel foreach maximum m ∈M do
6 R[m]← m // initially all maxima point to themselves
7 parallel foreach saddle s ∈ S do
8 N[s]←{m | ⟨m,s⟩ ∈ E(G)}

9 // add root branch between global max and min
10 (m̂, m̌)← (argmaxv∈V(G) f (v), argminv∈V(G) f (v))
11 B[m̂] ←(m̂, m̌)

12 // compute remaining branches
13 M′,S ′← M,S // initialize unpaired maxima and saddles
14 while |M′|> 1 do
15 // find largest saddle for each maximum (update L)
16 parallel foreach maximum m ∈M′ do
17 L[m] ← m̌ // reset to global minimum
18 parallel foreach saddle s ∈ S ′ do
19 foreach maximum m ∈ N[s] do
20 # atomic compare and swap
21 if f (L[m])< f (s) then L[m]← s

22 // find all pairable maxima
23 M′′← /0 // set of maxima paired in the current iteration
24 parallel foreach maximum m ∈M′ do
25 s ← L[m] // retrieve largest saddle connected to m
26 // if m is also the smallest neighbor of s then pair
27 if m = argminv∈N[s] f (v) then
28 M′ ←M′ \{m} // remove from unpaired maxima
29 M′′←M′′∪{m} // add to paired maxima
30 R[m]←argmaxv∈N[s] f (v) // update replacement map
31 B[m] ←(m,s) // add branch endpoints / persistence pair

32 // path compress replacement map
33 parallel foreach maximum m ∈M′′ do
34 m′ ← m
35 # atomic read
36 while m′ ̸= R[m′] do m′ ← R[m′]
37 R[m] ← m′

38 // update saddle neighbors (i.e., replace edges)
39 parallel foreach saddle s ∈ S ′ do
40 N[s] ← { R[m] | m ∈ N[s] }
41 // if s has only one neighbor remove from unpaired saddles
42 if |N[s]|= 1 then S ′← S ′ \{ s }

43 // add intermediate saddles to each branch
44 parallel foreach branch B ∈ B do
45 B′ ← B[R[α(B)]] // retrieve branch originating at R[α(B)]

46 // while ω(B′) is larger than ω(B) get next branch
47 while B ̸= B′ ∧ f (ω(B′))≥ f (ω(B)) do B′ ← B[R[α(B′)]]

48 # lock and then unlock B at α(B′)
49 B[α(B′)] ← B′∪{ω(B)} // add saddle ω(B) to parent

50 // finally format branches
51 parallel foreach branch B ∈ B do
52 B ← sortAndRemoveDuplicateVertices(B)

Algorithm 6: ComputeMergeTreeAugmentation
Inputs: • simplicial complex K

• scalar field f : K→ R
• descending manifold d : V(K)→M
• merge tree branch decomposition B

Outputs: ◦ merge tree augmentation a : V(K)→ V(B)

1 a ← array(|V(K)|) // create integer array with |V(K)| entries

2 parallel foreach v ∈ V(K) do
3 // get some maximum of the superlevel set
4 // component C ⊆ f−1

+∞(f (v),K) that contains v
5 m← d[v]

6 // find the branch originating in C that contains v
7 B ← B[m] // start with the branch originating at m

8 // while last vertex of B is larger than v get parent branch
9 while f (ω(B))> f (v) do B ← P(B)

10 // perform binary search on branch for upper bound of v
11 a[v] ← UpperBound(B, v, f)

pairs, there can only be one branch whose last vertex is smaller than v.
This branch belongs to the largest maximum of C, and therefore also
has the highest persistence. The strategy of Alg. 6 is to first find some
maximum of C, by using the the descending manifold (line 5). Then
retrieve the corresponding branch (line 7), and follow the chain of
parent branches until finding the target branch whose last vertex is
smaller than v (line 9). Once the target branch has been identified, find
the smallest vertex of that branch that is not smaller than v, the upper
bound of v on B (line 11). Since the vertices of B are sorted, the upper
bound can be found using binary search and then assigned to v in the
augmentation. An example of the augmentation is illustrated in Fig. 6.

5 PROOF OF CORRECTNESS

Let f be a scalar field defined on a simplicial complex K, and let G
be the extremum graph of f . To prove the correctness of the generic
concept of ExTreeM (Alg. 1), we show that the merge tree of f on K is
equivalent to the merge tree of f on G. The proof that EGP computes
the correct merge tree can be found in the appendix.

We show the equivalence of the two merge trees of G, f and K, f
in two directions. First, we show that the superlevel set components
of the extremum graph are covered by superlevel set components of
the domain. Then we show that the superlevel set components of the
domain are covered by superlevel set components of the extremum
graph. This means that at each level the partition of maxima induced by
connected components of the superlevel set are identical and thereby
also the nesting of merge tree nodes. Hence, we can conclude that the
two merge trees are isomorphic.

Lemma. For each connected component Ĉ of a superlevel set f−1
+∞(ℓ,G)

exists a connected component C of f−1
+∞(ℓ,K) with M(Ĉ)⊆M(C).

Proof. Let u,w ∈M(Ĉ). Then, f (u)≥ ℓ and f (w)≥ ℓ. Also, there
is a path (u = v1,v2, . . . ,vn = w) with vi ∈ V(Ĉ) ⊆ V(G), ⟨vi,vi+1⟩ ∈
E(G), and f (vi)≥ ℓ for all i ∈ [1,n]. Since ⟨vi,vi+1⟩ ∈ E(G), there is
a monotone path p from vi to vi+1 in K with f (x)≥ ℓ for each x ∈ p.
Appending these paths, we get a path p′ from u to w in K with f (x)≥ ℓ
for each x ∈ p′. Thus, u and w are in the same connected component C
of f−1

+∞(ℓ,K). In total, we can conclude that M(Ĉ)⊆M(C). □

Lemma. For each connected component C of a superlevel set f−1
+∞(ℓ,K)

exists a connected component Ĉ of f−1
+∞(ℓ,G) with M(C)⊆M(Ĉ).

Proof. We show this through an induction over the size of C. If
|C|= 1, then C contains exactly one maximum. This maximum has to
appear in some component of f−1

+∞(ℓ,G). Now assume that the claim
holds for any C with |C| ≤ i and all ℓ ∈ R.

Consider a component C of f−1
+∞(ℓ,K) with |C| = i + 1. Let

v = argminu∈V(C) f (v) be the vertex in C with minimal scalar value.
Then v is either a regular vertex or a saddle.

m0

m1

m2

m3

m4

s0

s1

s2

s3

s4
s5

s6

R

m0

m4

s1

m1

m2

m3

s0

s2

s3

s4
s5

s6

R

S N0 N1 N2

s0 {m0,m1} {m0}
s1 {m0,m1,m2} {m0,m4} {m4}
s2 {m2,m3} {m4}
s3 {m3,m4} {m4}
s4 {m0,m1} {m0}
s5 {m3,m4} {m4}
s6 {m2,m3,m4} {m4}

M R0 R1 R2 B
m0 m4 (m0,s1)

m1 m0 (m1,s0)

m2 m4 (m2,s2)

m3 m4 (m3,s3)

m4 (m4,R)

Fig. 5: Extremum Graph Pairing (EGP) procedure (Alg. 5). EGP main-
tains connectivity of the current extremum graph G′ through the neigh-
borhood array N, which records the saddle neighbors for each itera-
tion (left table). Per iteration, EGP first detects all edges ⟨m,s⟩ ∈ G′ where
the maximum m is the smallest neighbor of the saddle s, and s is also the
largest neighbor of m (red edges). These edges correspond to persis-
tence pairs and are added to the output (right table; column B). Then,
EGP performs a topological simplification of G′ using the replacement
map R. At the beginning of each iteration, R records if an unpaired maxi-
mum replaced an already paired maximum (right table; blue entries). So
if a pair ⟨m,s⟩ is found, then R[m] at first points to the largest neighbor of
s (blue edges). Since one iteration can identify multiple pairs, R needs to
be path compressed to guarantee that ultimately every paired maximum
points to an unpaired maximum. In the example above, m2 is initially
replaced by m3 (dotted blue line), but will point to m4 after the path com-
pression. Next, EGP replaces all saddle neighbors according to R, and
then all saddles with one neighbor (left table; red entries) are removed
from G′. This procedure is repeated until all pairs are found, except
between the global maximum and minimum which is added explicitly.

m0

m1

m2

m3

m4

s0

s1

s2

s3
v

u

R

m0

m1

m2

m3

m4

s0

s1

s2

s3
v

u

R

Fig. 6: Illustration of the merge tree augmentation procedure outlined
in Alg. 6. Consider the example vertex v of K. Alg. 6 first retrieves
the maximum that is assigned to v by the descending manifold (left;
background), here m0. Next, Alg. 6 retrieves the corresponding branch
B = (m0,s0,s1) ∈ B of the branch decomposition (black edges). Since
f (ω(B)) = f (s1) < f (v), v belongs to B. Now Alg. 6 determines the
smallest vertex of B that is still larger than v, in this case m0, and assigns
this vertex to the augmentation (right; background). For the example
vertex u, Alg. 6 first retrieves the branch B′ = (m2,s2) ∈ B, but since
f (ω(B′)) = f (s2)> f (u), Alg. 6 must follow the chain of parent branches
until the last vertex is no longer larger than u. For u, this is the parent
branch P(B′) = (m4,s3,s2,s1,R), and the smallest vertex of P(B′) that is
still larger than u is s1.

If v is regular, then C′ := C \ {v} is a connected component of
f−1
+∞(f (v) + ε,K) and M(C′) = M(C). By induction hypothesis

there is a connected component Ĉ′ of f−1
+∞(f (v)+ ε,G) with M(C′)⊆

M(Ĉ′). Furthermore, Ĉ′ is included in some component Ĉ of f−1
+∞(ℓ,G).

Thus, M(C) =M(C′)⊆M(Ĉ′)⊆M(Ĉ).
If v is a saddle, then C′ :=C\{v}=C1∪C2∪·· ·∪Cn where each Ci

with i∈ [1,n] is a connected component of f−1
+∞(f (v)+ε,K). Since v is

not a maximum, we again have M(C) =M(C′) =
⋃

i∈[1,n]M(Ci). If
n = 1 (i.e., if v is a genus saddle) then this case is analogous to the case
where v is regular. If n > 1 (i.e., if v merges n connected components)
then for each component Ci exists by induction hypothesis a component
Ĉi of f−1

+∞(f (v)+ ε,G) with M(Ci)⊆M(Ĉi). Note that the following
fact always holds: the upper link Lk+(v) of v has m ≥ n connected
components U1,U2, . . . ,Um, and for each component Ci exists at least
one U j such that U j ⊆ Ci. Since each Ci contains at least one U j,
we know that by construction of G that v is connected to at least one
maximum in each Ĉi in G. Thus, with f (v)≥ ℓ we can conclude that
Ĉ := Ĉ1 ∪ ·· · ∪ Ĉn ∪{v} is a connected component in f−1

+∞(ℓ,G). We
then get M(C) =

⋃
i∈[1,n]M(Ci)⊆

⋃
i∈[1,n]M(Ĉi) =M(Ĉ). □

6 EXPERIMENTS

This section describes our experiments in which we compare
ExTreeM with two state-of-the-art merge tree algorithms. ExTreeM is
implemented in the Topology ToolKit (TTK) [28, 40] and utilizes its
general data structures. We also added the optimization for lookup-
table-based critical point classification on regular grids.

6.1 Setup
We compare ExTreeM with the FTM-Tree algorithm [19] of TTK, and
the Parallel Peak Pruning (PPP) algorithm [4, 8] of VTK-m [29, 37].
We described these algorithms operate Sec. 3. All implementations
have been parallelized via OpenMP [12, 33], and they were configured
to compute the same output: the join tree, the split tree, and the aug-
mentation of both trees. However, PPP does not compute the merge
tree augmentations separately, it instead immediately derives a contour
tree augmentation. To this end, PPP combines the split and join tree
into the contour tree, and then derives a hyperstructure to perform the
contour tree augmentation. So one has to be aware that this can lead to
imprecise timing comparisons with the other algorithms regarding the
augmentation output. However, as discussed later in detail, our experi-
ments still show significant speedups of ExTreeM over PPP without
the augmentation step.

All experiments were run on a workstation containing 500GB of
RAM and two AMD EPYC 7453 28-Core processors, leading to 56
physical cores. We ran the experiments with at most 56 threads, to
exclude effects from hyperthreading, However, since the mainboard
has two processors with their own caches, performance gains might
deteriorate as we scale to more than 28 threads; depending on the data
locality of the algorithms.

Our experiments were performed on regular grid datasets down-
loaded from the Open Scivis (OSV) Data [22] repository. In addi-
tion, we derived an interval volume—i.e., an unstructured grid—of
the Richtmyer-Meskov instability [10] dataset. As PPP currently only
supports regular grids, we only compare ExTreeM to FTM-Tree for this
unstructured grid, where we derived the largest grid that could still be
processed by FTM-Tree on our machine.

Additionally, we generated synthetic datasets of various resolutions
consisting of one layer of Perlin Noise [35] with a frequency of one in
every dimension, and an amplitude of one. These datasets are in the
class of worst-case inputs for ExTreeM, as almost every second vertex
is critical, and therefore part of a huge extremum graph.

6.2 Results
Table 1 provides an overview of the timing results of our experiments,
where rows are first grouped by dataset, and then by algorithm. We
report the total runtime speedup of ExTreeM over the other algorithms
for 56 threads in the third column. As the table shows, PPP always

1 2 4 8 16 32
1

2

4

8

16

32

#Threads
1 2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

#Threads

Speedup Parallel Efficiency

Fig. 7: Comparison of parallel speedup and efficiency between
ExTreeM (red) and PPP (blue) on the tested datasets. The bold lines
correspond, from top to bottom, to the Jet in Crossflow [18], Rayleigh-
Taylor instability [11], and Perlin Noise (2563) datasets, respectively. The
left plot shows the parallel speedup (y-axis) defined as the runtime of
1 thread divided by the runtime of n threads (x-axis). The right plot shows
the parallel efficiency (y-axis) as the speedup divided by the number of
threads (x-axis). The plots show that ExTreeM scales similarly to PPP,
where for small and large extremum graphs ExTreeM’s scaling is slightly
better or worse, respectively. Even for the worst-case inputs, i.e., the
Perlin noise datasets, ExTreeM does not perform much worse than PPP.

outperforms FTM-Tree, and ExTreeM always outperforms PPP. It
becomes evident that the performance of ExTreeM depends on the
ratio between the number of simplices of the extremum graph and
the original complex, i.e., |V(G)|+|E(G)|

|V(K)|+|E(K)| , which we report next to the
datasets as percentages. Hence, ExTreeM achieves its best result for
the Jet in Crossflow dataset with a speedup of around one order of
magnitude over PPP, since the extremum graph corresponds to only
0.03% of the input complex. Conversely, ExTreeM exhibits its weakest
speedups for the Perlin noise datasets due to the huge sizes of the
extremum graphs. Our results also highlight the performance issues
of FTM-Tree for large datasets and scaling issues for unstructured
grids. The core procedure of FTM-Tree relies on Fibonacci heaps,
which require a lot of memory and become slow if they contain a lot of
elements. For some datasets, it was not possible to report timings for
FTM-Tree as the machine ran out of memory. In contrast, ExTreeM only
required roughly half as much memory than PPP for all experiments.

We compare the timings of PPP and ExTreeM in Table 2 in more
detail. Subroutines of both algorithms can roughly be attributed to
solving the same task: (i) the computation of the path compression;
(ii) the extremum graph (the topology graph [5] for PPP); (iii) both
merge trees; and (iv) both merge tree augmentations (the contour tree
computation and augmentation for PPP). We concede that the compu-
tation of the contour tree itself requires a significant amount of time,
but as shown in Table 2, even excluding the time for the augmentations,
ExTreeM can still report strong speedups over PPP. It is important to
note that if PPP would use the path compression and extremum graph
subroutines of ExTreeM, then the total speedup of ExTreeM would
still outperform PPP due to the significant speedup of the merge tree
subroutine. Specifically, the merge tree subroutine of ExTreeM exhibits
the largest speedup, while also having the weakest scaling behaviour as
its total time is already relatively low compared to the other tasks. The
other tasks have excellent scaling behaviour, with the augmentation step
almost scaling perfectly as it can process each vertex independently.

To further evaluate the scaling of ExTreeM, we show in Fig. 7
plots of the total parallel speedup and efficiency of PPP and ExTreeM.
Overall, the plots show that ExTreeM and PPP scale similarly, and
that ExTreeM scales with the relative size of the extremum graphs.
However, as already shown in Table 2, ExTreeM’s merge tree subrou-
tine (EGP) is short in terms of absolute time, but that time is almost con-
stant for all thread counts; which weakens the overall scaling behaviour
of ExTreeM. In future work, we may investigate if ExTreeM would
benefit from another merge tree subroutine which might take longer
than EGP at first, but scales better for large thread counts.

Table 1: Timing results of our experiments first grouped by dataset, and then by algorithm. The third column reports the total runtime speedup
(SU) of ExTreeM over the current algorithm for 56 threads. The remaining columns show, per thread count, the total runtime of the two merge tree
computations and augmentations in seconds. Datasets were downloaded from the OSV Data [22] repository, and the last two datasets correspond to
generated Perlin noise. For each dataset we provide the original size, as well as the relative size of the extremum graph (percentages). The results
show that PPP is always faster than FTM-Tree (at scale), and that ExTreeM is always faster than PPP. In the best case, ExTreeM is up to an order of
magnitude faster than PPP (blue). Even for the Perlin noise dataset, which corresponds to the class of worst-case inputs, ExTreeM still outperforms
PPP, but not by much (red). For some datasets the FTM-Tree computations ran out of memory and are therefore missing from the table.

Dataset Algorithm SU 56T 32T 16T 8T 4T 2T 1T

ctBones [41]
1283 (3.26%)

ExTreeM - 0.50 0.56 0.80 1.17 2.11 3.27 5.98
PPP 3.48 1.74 1.90 2.50 3.96 5.74 10.86 20.36

FTM-Tree 14.34 7.17 5.13 4.37 5.08 5.74 6.47 9.66

Backpack [24]
512×512×373 (4.79%)

ExTreeM - 4.42 4.67 6.81 10.58 14.01 25.25 45.23
PPP 3.03 13.41 15.59 21.89 34.97 64.44 91.50 172.45

FTM-Tree 14.32 63.33 45.28 40.27 44.69 41.73 51.31 79.02

Magnetic Reconnection [20]
5123 (8.84%)

ExTreeM - 21.58 23.92 33.15 48.13 60.79 105.52 195.81
PPP 2.95 63.72 73.39 103.75 164.92 210.57 395.35 726.40

FTM-Tree 42.35 914.22 787.64 865.48 830.96 820.62 924.67 931.89

Rayleigh-Taylor instability [11]
10243 (0.30%)

ExTreeM - 14.21 21.50 39.16 72.56 137.31 268.47 503.67
PPP 8.01 113.76 157.82 262.92 482.16 738.87 1513.28 3009.64

FTM-Tree 10.41 147.88 147.78 167.88 207.60 376.77 725.51 1284.83
Neurons in Marmoset [16]

1024×1024×314 (15.21%)
ExTreeM - 32.34 37.39 48.04 67.86 95.01 149.20 262.18

PPP 2.05 66.18 76.14 105.82 157.29 280.86 445.43 887.27
Kingsnake [36]

1024×1024×795 (4.71%)
ExTreeM - 36.34 43.99 59.17 93.39 128.17 235.03 434.40

PPP 2.79 97.97 118.47 170.53 272.38 445.99 823.12 1641.87
Jet in Crossflow [18]

1408×1080×1100 (0.03%)
ExTreeM - 14.26 21.39 37.51 71.55 134.80 270.67 521.87

PPP 11.20 159.71 226.46 386.06 718.04 1223.16 2386.21 4609.00
Richtmyer-Meshkov instability [10]

1536×1536×1408 (0.31%)
ExTreeM - 39.15 56.85 98.95 182.57 287.42 502.10 844.03

PPP 5.01 196.00 258.66 422.94 756.77 1316.27 2110.14 4163.87
Unstructured Richtmyer-Meshkov [10]
∼7×106 vertices, ∼42×106 edges (12.82%)

ExTreeM - 1.48 1.76 2.57 4.12 6.97 11.60 21.68
FTM-Tree 67.85 100.42 93.76 87.38 92.12 94.69 94.48 100.61

Perlin Noise
2563 (23.28%)

ExTreeM - 2.24 2.60 3.41 4.58 5.58 9.67 16.60
PPP 1.83 4.10 4.43 5.92 9.17 18.48 22.65 39.29

FTM-Tree 139.85 313.26 281.10 273.31 207.78 272.25 204.69 273.59
Perlin Noise

10243 (23.20%)
ExTreeM - 148.81 181.72 243.14 379.63 490.85 897.46 1811.55

PPP 1.41 209.42 251.81 373.76 604.46 892.84 1766.66 3285.86

Table 2: Detailed timing comparison between ExTreeM and PPP based
on their subroutines for the Jet in Crossflow dataset [18] (top group), and
the Richtmyer-Meshkov instability dataset [10] (bottom group). Subrou-
tines of both algorithms do not match perfectly, but rough comparisons
are possible. In the Path Compression subroutine both algorithms derive
the ascending and descending manifold (for ExTreeM this requires exe-
cuting 2×Alg. 2). Then, in the Extremum Graph step, ExTreeM derives
the extremum graph (2×Alg. 3+2×Alg. 4), and PPP derives a similar
(yet much larger) data structure called the topology graph [5]. Then,
ExTreeM performs the actual merge tree computations (2×Alg. 5), and
PPP performs its main procedure. In the final step ExTreeM derives
both merge tree augmentations (2×Alg. 6), while PPP computes the
contour tree, the hyperstructure, and the contour tree augmentation. The
table shows that even if we exclude the augmentation step, ExTreeM still
exhibits strong speedups over PPP; in particular for the merge tree com-
putation (blue). However, the merge tree computation also exhibits the
worst scaling behavior of all subroutines (red).

Subroutine Algorithm 56T 32T 16T 8T 4T 2T 1T
Path

Compression
ExTreeM 7.6 10.5 17.3 32.1 59.9 119.8 231.1

PPP 27.0 38.4 61.1 113.0 176.9 328.2 669.6
Extremum

Graph
ExTreeM 1.4 2.5 4.4 8.7 15.6 30.6 56.9

PPP 66.6 107.4 204.3 394.7 660.0 1315.0 2537.8

Merge Tree
ExTreeM 0.2 0.2 0.3 0.3 0.2 0.3 0.3

PPP 34.0 44.9 67.8 120.4 224.2 432.9 819.6

Augmentation
ExTreeM 4.8 8.0 15.3 30.2 58.9 119.8 233.3

PPP 25.0 28.6 45.5 80.8 153.9 300.5 572.2

Path
Compression

ExTreeM 18.2 24.9 41.3 74.2 128.6 243.8 410.5
PPP 24.7 32.7 55.2 96.8 156.0 200.2 427.6

Extremum
Graph

ExTreeM 6.9 11.8 22.3 42.3 67.5 112.7 194.1
PPP 61.5 95.6 170.3 327.8 569.3 979.9 1958.9

Merge Tree
ExTreeM 4.2 3.8 3.7 4.2 3.7 5.5 7.6

PPP 56.7 65.5 104.9 175.9 289.0 534.3 1037.8

Augmentation
ExTreeM 9.0 15.3 30.9 60.9 86.8 138.8 231.1

PPP 42.4 53.8 79.9 140.1 284.5 367.8 701.9

7 CONCLUSION

We described a generic merge tree computation scheme, called
ExTreeM, that first derives the extremum graph G of a scalar field f
defined on a complex K, and then uses any merge tree algorithm to de-
rive the merge tree of f on G instead of K. We proved that this generic
scheme is correct by formally showing that the merge tree of f on G is
equivalent to the merge tree of f on K. Additionally, we described a
merge tree algorithm specialized for extremum graphs, called extremum
graph pairing (EGP). Our experiments showed that ExTreeM with the
EGP subroutine outperforms two state-of-the-art merge tree algorithms:
FTM-Tree [19] of the Topology ToolKit (TTK) [28, 40], and Parallel
Peak Pruning (PPP) [4,8] of the Visualization Toolkit (VTK-m). In the
best case, ExTreeM achieves a speedup of up to one order of magnitude
over PPP, and two orders of magnitude over FTM-Tree.

Furthermore, we provide an implementation of ExTreeM in TTK,
which is open source and integrated in the widely-used ParaView [1]
frontend. However, as confirmed in our experiments, with the recent
advances in merge tree algorithms, FTM-Tree is no longer competitive
at scale. The integration of ExTreeM in TTK therefore makes TTK’s
merge tree algorithm again suitable for benchmarks, as well as benefits
a huge number of practitioners.

We consider the generic concept of ExTreeM to be its strongest
contribution. Specifically, in future work, we intent to investigate the
impact of different merge tree subroutines on the overall performance
of ExTreeM. In particular, the Triplet Merge Tree algorithm (TMT) [32,
38] is of special interest here as it scales with the number of input edges,
and the extremum graph can be up to multiple orders of magnitude
smaller than the original complex. We also see potential improvements
of PPP by further reducing the size of processed saddle candidates via
ExTreeM’s lookup-table-based critical point classification. PPP and
TMT can be executed on the GPU, but TTK—and therefore ExTreeM—
currently lacks a GPU backend. Since in this work we focused on CPU
architectures, the port of ExTreeM to the GPU is left for future work. It
also seems promising to adapt ExTreeM for distributed computing, as
the computation of the extremum graph, via descending manifolds and
critical points, can easily be distributed and is expected to scale well.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration
under Contract No. DE-AC02-05CH11231 to the Lawrence Berkeley
National Laboratory.

REFERENCES

[1] J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for
Large-Data Visualization. The Visualization Handbook, pp. 717–731,
2005. 9

[2] A. Ande, V. Subhash, and V. Natarajan. TACHYON: Efficient Shared
Memory Parallel Computation of Extremum Graphs. In Computer Graph-
ics Forum. Wiley Online Library, 2023. 4

[3] T. F. Banchoff. Critical Points and Curvature for Embedded Polyhedral
Surfaces. The American Mathematical Monthly, 77(5):475–485, 1970. 2

[4] H. A. Carr, O. Rübel, G. H. Weber, and J. P. Ahrens. Optimization and
Augmentation for Data Parallel Contour Trees. IEEE Transactions on
Visualization and Computer Graphics, 28(10):3471–3485, 2021. 3, 8, 9

[5] H. A. Carr and J. Snoeyink. Representing Interpolant Topology for Contour
Tree Computation. Topology-Based Methods in Visualization II, pp. 59–73,
2009. 3, 8, 9

[6] H. A. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in all
Dimensions. Computational Geometry, 24(2):75 – 94, 2003. 3

[7] H. A. Carr, G. Weber, C. Sewell, and J. Ahrens. Parallel Peak Pruning for
Scalable SMP Contour Tree Computation. In IEEE 6th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 75–84, 2016. 1, 4

[8] H. A. Carr, G. H. Weber, C. M. Sewell, O. Rübel, P. Fasel, and J. P. Ahrens.
Scalable Contour Tree Computation by Data Parallel Peak Pruning. IEEE
Transactions on Visualization and Computer Graphics, 27(4):2437–2454,
2019. 3, 4, 8, 9

[9] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Optimal Output-
Sensitive Construction of Contour Trees using Monotone Paths. Computa-
tional Geometry, 30(2):165–195, 2005. 3

[10] R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin,
Y. Zhou, D. H. Porter, and P. R. Woodward. Three-Dimensional Simulation
of a Richtmyer–Meshkov Instability with a Two-Scale Initial Perturbation.
Physics of Fluids, 14(10):3692–3709, 2002. 2, 8, 9

[11] A. W. Cook, W. Cabot, and P. L. Miller. The mixing transition in Rayleigh-
Taylor instability. Journal of Fluid Mechanics, 511:333–362, 2004. doi:
10.1017/S0022112004009681 8, 9

[12] L. Dagum and R. Menon. OpenMP: An Industry Standard API for Shared-
Memory Programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998. 8

[13] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
American Mathematical Society, 2009. 2, 3

[14] H. Edelsbrunner and M. Kerber. Dual Complexes of Cubical Subdivisions
of Rn. Discrete & Computational Geometry, 47:393–414, 05 2012. doi:
10.1007/s00454-011-9382-4 5

[15] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A Tech-
nique to Cope with Degenerate Cases in Geometric Algorithms. ACM
Transactions on Graphics (tog), 9(1):66–104, 1990. 2

[16] F. Federer. Pyramidal neurons in the marmoset primary visual cortex.
https://klacansky.com/open-scivis-datasets/. [Accessed 29-
Mar-2023]. 9

[17] H. Freudenthal. Simplizialzerlegungen von Beschrankter Flachheit. An-
nals of Mathematics, 43:580, 1942. 5

[18] R. W. Grout, A. Gruber, H. Kolla, P.-T. Bremer, J. C. Bennett, A. Gyulassy,
and J. H. Chen. A direct numerical simulation study of turbulence and
flame structure in transverse jets analysed in jet-trajectory based coordi-
nates. Journal of Fluid Mechanics, 706:351–383, 2012. doi: 10.1017/jfm.
2012.257 8, 9

[19] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented
Merge Trees with Fibonacci Heaps. In IEEE Symposium on Large Data
Analysis and Visualization, 2017. 1, 3, 8, 9

[20] F. Guo, H. Li, W. Daughton, and Y.-H. Liu. Formation of hard power
laws in the energetic particle spectra resulting from relativistic magnetic
reconnection. Phys. Rev. Lett., 113:155005, Oct. 2014. doi: 10.1103/
PhysRevLett.113.155005 2, 9

[21] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A Survey of Topology-Based

Methods in Visualization. In Computer Graphics Forum, vol. 35, pp.
643–667. Wiley Online Library, 2016. 1

[22] P. Klacansky. Open Scientific Visualization Datasets, 2023.
https://klacansky.com/open-scivis-datasets. 8, 9

[23] P. Klacansky, A. Gyulassy, P.-T. Bremer, and V. Pascucci. Toward Lo-
calized Topological Data Structures: Querying the Forest for the Tree.
IEEE Transactions on Visualization and Computer Graphics, 2019. doi:
10.1109/TVCG.2019.2934257 3

[24] K. Kreeger. Ct scan of a backpack filled with items. https://klacansky.
com/open-scivis-datasets/. [Accessed 29-Mar-2023]. 9

[25] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. Proceedings of the American Mathematical
society, 7(1):48–50, 1956. 3

[26] R. G. Maack, J. Lukasczyk, J. Tierny, H. Hagen, R. Maciejewski, and
C. Garth. Parallel Computation of Piecewise Linear Morse-Smale Seg-
mentations. IEEE Transactions on Visualization and Computer Graphics,
2023. 4

[27] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A Hybrid Parallel
Algorithm for Computing and Tracking Level Set Topology. In 2012
19th International Conference on High Performance Computing, pp. 1–10.
IEEE, 2012. 3

[28] T. B. Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet, P. Guil-
lou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe, P. Klacansky,
P. Laurin, J. A. Levine, J. Lukasczyk, D. Sakurai, M. Soler, P. Steneteg,
J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An Overview of the Topol-
ogy ToolKit. In TopoInVis 2019-Topological Methods in Data Analysis
and Visualization, 2019. 1, 3, 8, 9

[29] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, et al. VTK-m: Accelerating
the Visualization Toolkit for Massively Threaded Architectures. IEEE
computer graphics and applications, 36(3):48–58, 2016. 1, 3, 8

[30] D. Morozov and G. Weber. Distributed Merge Trees. In Proceedings of
the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pp. 93–102, 2013. 3

[31] A. Nigmetov and D. Morozov. Local-Global Merge Tree Computation
with Local Exchanges. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp.
1–13, 2019. 3

[32] A. Nigmetov and D. Morozov. Fast Merge Tree Computation via SYCL.
In 2022 Topological Data Analysis and Visualization (TopoInVis), pp. 1–8.
IEEE, 2022. 4, 9

[33] OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 3.0, May 2008. 8

[34] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-Resolution
Computation and Presentation of Contour Trees. In Proc. IASTED Con-
ference on Visualization, Imaging, and Image Processing, pp. 452–290,
2004. 3

[35] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics,
19(3):287–296, 1985. 8

[36] T. Rowe. Digimorph - Lampropeltis getula (common kingsnake)
— digimorph.org. http://www.digimorph.org/specimens/
Lampropeltis_getula/egg/whole/. [Accessed 29-Mar-2023]. 9

[37] W. J. Schroeder, K. Martin, and W. E. Lorensen. The Visualization Toolkit:
An Object Oriented Approach to 3D Graphics. Kitware, Inc., 2004. 1, 8

[38] D. Smirnov and D. Morozov. Triplet Merge Trees. In Topological Methods
in Data Analysis and Visualization V: Theory, Algorithms, and Applica-
tions 7, pp. 19–36. Springer, 2020. 4, 9

[39] S. P. Tarasov and M. N. Vyalyi. Construction of Contour Trees in 3D in
O(n log n) Steps. In Proceedings of the fourteenth annual symposium on
Computational geometry, pp. 68–75, 1998. 3

[40] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE Transactions on Visualization and Computer
Graphics, 2017. https://topology-tool-kit.github.io/. 1, 3, 8,
9

[41] TTK Contributers. TTK data examples. https://github.com/
topology-tool-kit/ttk-data. [Accessed 29-Mar-2023]. 2, 9

https://doi.org/10.1017/S0022112004009681
https://doi.org/10.1017/S0022112004009681
https://doi.org/10.1007/s00454-011-9382-4
https://doi.org/10.1007/s00454-011-9382-4
https://klacansky.com/open-scivis-datasets/
https://doi.org/10.1017/jfm.2012.257
https://doi.org/10.1017/jfm.2012.257
https://doi.org/10.1103/PhysRevLett.113.155005
https://doi.org/10.1103/PhysRevLett.113.155005
https://doi.org/10.1109/TVCG.2019.2934257
https://doi.org/10.1109/TVCG.2019.2934257
https://klacansky.com/open-scivis-datasets/
https://klacansky.com/open-scivis-datasets/
http://www.digimorph.org/specimens/Lampropeltis_getula/egg/whole/
http://www.digimorph.org/specimens/Lampropeltis_getula/egg/whole/
https://topology-tool-kit.github.io/
https://github.com/topology-tool-kit/ttk-data
https://github.com/topology-tool-kit/ttk-data

APPENDIX

EGP derives the merge tree of f on G
In the following, we argue the correctness of Alg. 5. We start by
introducing some notation. Let Mi,S i be the sets M′,S ′ before the
i-th iteration of the while-loop in line 14. Let Ni be the neighbor array
N at iteration i. Let Gi be the graph defined by the neighborhood Ni on
the vertex set Mi∪S i.

The overall idea of our arguments is as follows. In each iteration
of the while-loop, we simplify the graph Gi (starting with G = G0)
by simplifying leaf branches (i.e. those branches that are not a parent
of any other branch). In essence, we perform an iterated topological
simplification and remember the simplified branches, until the whole
set of persistence pairs is found.

Formally, we first show that the while-loop in lines 14-42 correctly
computes the persistence pairs P of f on G. Towards this, we show the
core invariants and termination of the loop, which implies correctness.
Afterwards, we show that lines 44-49 compute the correct nesting of
the persistence pairs and thereby the correct merge tree.

Lemma. In the while-loop in lines 14-42, the following invariants
hold at each iteration i:

(i) At line 32, for all paired maxima m ∈ M′′ with B[m] =
(m,s), it holds that R[m] and m are in the same component of
f−1
+∞(f (s),Gi).

(ii) At line 32, for all paired maxima m ∈M′′ with B[m] = (m,s) it
holds that (m,s) ∈ P(Gi).

(iii) The persistence pairs of the current graph P(Gi) are the persis-
tence pairs of the original graph P(G) restricted to the unpaired
vertices Mi∪S i, i.e. P(Gi) = P(G)∩ (Mi×S i).

(iv) For any saddle s ∈ Si and any component C of f−1
+∞(f (s),Gi),

there is a component C′ of f−1
+∞(f (s),G) with C ⊆C′.

Proof. The invariants obviously hold initially with Mi =M, S i =S
and B= /0. Now consider a later iteration i+1. We first assume (for the
sake of simplicity) that iteration i+1 only pairs (line 31) and removes
(lines 28 and 42) one maximum-saddle pair (m,s). Then, the loop in
lines 33 to 37 does not have any effect and we can ignore it for now.

Invariant (i). We now argue that invariant (i) is preserved. Let
m ∈M′′ in line 32. This means that m = argminv∈N[s] f (v) (line 27)
and R[m] = argmaxv∈N[s] f (v) (line 30). Thus, m and R[m] are both
neighbors of s in Gi and therefore in the same connected component of
f−1
+∞(f (s),Gi). Hence, invariant (i) is preserved.

Invariant (ii). We now argue that if (m,s) is added to B (i.e. s = L[m]
and m = argminv∈N[s] f (v) in line 27), then (m,s) is a pair in P(Gi).
Since s = L[m], we know that ⟨m,s⟩ ∈ Gi and f (s) > f (s′) for each
⟨m,s′⟩ ∈ Gi. Thus, for any path (m = v1,v2, . . . ,vk) from m to some
other vertex, we know that f (v2) ≤ f (s). This implies that there is
a connected component C with M(C) = {m} in f−1

+∞(ℓ,G
i) for any

f (s)< ℓ≤ f (m).
Let C1,C2, . . . ,Ck be the components of f−1

+∞(f (s)+ ε,Gi) that are
merged by s. W.l.o.g. we can assume that M(C1) = {m}. Since every
other neighbor of s is larger than m (as m = argminv∈N[s] f (v)), we
can conclude that each C j with j > 1 contains at least one maximum
larger than m and therefore has greater persistence than C1. Thus, (m,s)
is a persistent pair. Since (m,s) is added to B, it follows that (ii) is
preserved.

Invariant (iii). By induction hypothesis, we know that invariant (iii)
holds for Gi. We now show that simplifying (m,s) in Gi to obtain Gi+1

preserves this property.
We have Mi+1 =Mi−{m}, and either S i+1 = S i−{s} or S i+1 =

S i (either s appears in exactly one persistence pair and is therefore
also removed in line 42 or s appears in multiple persistence pairs that
have not been found yet). We now argue that P(Gi+1) = P(Gi)−
{(m,s)}. Consider any other persistence pair (s′,m′) ∈ P(Gi). Then

there is a path p = (s′ = v1,v2, . . . ,vk = m′) in Gi connecting s′ to m′
with f (v)≥ f (s′) for all v ∈ p. We now argue that there is a path p′ in
Gi+1 connecting s′ to m′ with f (v)≥ f (s′) for all v ∈ p′. This implies
that (m′,s′) ∈ P(Gi+1) as well, since persistence (or scalar values at
all) of other branches are not changed by simplifying (m,s).

If m /∈ p and s /∈ p, then p is still a path in Gi+1 and (m′,s′) ∈
P(Gi+1). Otherwise, if there is a j with v j = s, we do the following case
distinction: either s∈S i+1 or s /∈S i+1. If s∈S i+1, then s can remain in
the path. Otherwise, s has been simplified, and thus m and R[m] are the
only neighbors of s in Gi: for v j = s we get {v j−1,v j+1}= {m,R[m]}.
We can replace (v j−1,s,v j+1) by R[m] to obtain a path between s′ and
m′. We now have to consider the only remaining case that m ∈ p but
s /∈ p. Let v j = m, then v j+1 and v j−1 are connected to R[m] in Gi+1,
thus we can remove m from p by replacing v j through R[m]. We obtain
a valid path between s′ and m′ in Gi+1.

Next, we argue that removing any other saddle (i.e. those that have
not been paired in this iteration) in line 42 does not change the per-
sistence diagram P(Gi+1). Since s only has one neighbor in Ni+1, it
is not a merge saddle in Gi+1 and thus not in the persistence diagram.
The connectivity of superlevel sets is also not changed, since s can not
be part of any connecting path, as it only has one neighbor.

Invariant (iv). To show invariant (iv) for Gi+1, let s′ be some saddle
with a component C of f−1

+∞(f (s),Gi). Let m′ ̸= m,m′′ ̸= m be two
maxima in C, i.e. there is a path p between them with f (v) ≥ f (s′)
for all v ∈ p. With the same arguments as for invariant (iii), we can
conclude that there is such a path in Gi if and only if there is one in
Gi+1. Thus, if m′,m′′ are connected via a path above f (s′) in Gi+1,
they are so in Gi and by induction hypothesis in G.

It remains to show that the invariants are also preserved if, instead of
one pair (m,s), multiple pairs are simplified. Note that the arguments
for invariants (i) and (ii) are not changed in this case. For invariant (iii)
and (iv), we still need to argue that paths for all non-simplified pairs
exist. First, note that R[m] points to an unpaired maximum for each
m ∈M′′ after line 37. This follows directly from R not containing
any loops even after recursive replacement (f (R[m])> f (m) prohibits
the existence of loops). Then, all arguments about the paths between
m′ and s′ can be applied analogously, as we simply have to replace
multiple simplified maxima recursively. The connectivity arguments
still hold, as for each m ∈M′′ the maximum R[m] is a vertex in Gi+1.
□

Next, we want to show that the loop terminates, which directly
implies the computation of the full set of persistence pairs.
Lemma. Each iteration of the while-loop in lines 14-42 simplifies
at least one pair. Thus, after line 42, the set B contains exactly the
persistence pairs of G, i.e. B = P(G).

Proof. To see that each iteration finds a pair, note that the following
holds:
Fact. For every non-trivial extremum graph G, f , there is at least one
merge saddle s such that f−1

+∞(f (s),G) has at least two components
C1, . . .Ck with Ci = {mi} for all 1≤ i≤ k and mi ∈M(G).
For such a saddle s, ⟨s,mi⟩ ∈G for each 1≤ i≤ k by definition. Let m be
the minimum within all mi. Then, s = L[m] and m = argminv∈N[s] f (v).
Thus, (m,s) is found and pruned.

Since clearly for each iteration i, Gi is an extremum graph, we
know that always one pair is pruned. If no such saddle exists, then the
extremum graph is trivial and the global maximum is paired.

Then, since a maximum m is removed from M′ if and only if a pair
(m,s) is added to B, lines 14 to 42 compute the persistence diagram of
G, in particular, B = P(G) after line 42. □

As a last step, we now show that lines 44-49 compute the correct
nesting of branches.
Lemma. For each branch (m,s) = B ∈ B, the branch B′ determined
by lines 45-47 is the parent branch of B.

Proof. Let B̂=(m̂, ŝ)=P(B) be the parent branch of B. Consider the
superlevel set component C = f−1

+∞(f (s)) containing m. By definition,

m̂ is the largest maximum in C. Also, there is exactly one maximum
in C that is paired with a vertex that is smaller than s, in particular ŝ
(to simplify our argument we assume that the global minimum is not a
saddle). Otherwise B would not be a valid persistence-based branch
decomposition.

Now consider the first branch B′ = (m′,s′) retrieved for the input
branch B= (m,s) in line 45. Initially, we have m′ = R[m]. By invariants
(i) and (iv) from the lemma above, we know that m′ ∈C. Furthermore,
we know that f (m′)> f (m).

If f (s′) < f (s), then m′ is exactly the unique maximum in C as
discussed above and therefore has to be the origin of the parent branch B̂.
Otherwise, we continue the while-loop. So m′ is set to R[m′] and R
maintains that m′ ∈C and f (m′)> f (m). Thus, the two properties are
invariant for the whole loop. The first property ensures that m′ always
gets strictly larger, thus prohibiting repeating m′. Since there are only
finitely many maxima in C, we can conclude that eventually m′ = m̂
holds.

For completeness, consider the case where the saddle s is also the
global minimum. In this case, there is no other pair m′,s′ with m ∈C
and f (s′)< f (s). In particular f (ŝ) = f (s). Nonetheless, the loop in
line 47 continues for any s′ ̸= ŝ, but if s′ = ŝ, we also have B′ = B̂ and
the loop stops. Therefore, the behavior is still identical and correct. □

	Introduction
	Background
	Scalar Fields
	Critical Points
	Ascending and Descending Manifolds
	Extremum Graphs
	Merge Trees

	Related Work
	Serial Merge Tree Computation via Union-Find
	FTM-Tree (TTK)
	Parallel Peak Pruning (VTK-m)
	Merge Tree Computation via Integral Lines
	Triplet Merge Trees

	The ExTreeM-Algorithm
	Descending Manifold Computation
	Critical Point Computation
	Extremum Graph Computation
	Merge Tree Computation
	Augmented Merge Tree Computation

	Proof of Correctness
	Experiments
	Setup
	Results

	Conclusion

