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HCN channels in developing neuronal networks
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92697-4475, USA, Phone: +1-949-824-3307, Fax: +1-949-824-1106, E-mail: tallie@uci.edu

Abstract
Developing neuronal networks evolve continuously, requiring that neurons modulate both their
intrinsic properties and their responses to incoming synaptic signals. Emerging evidence supports
roles for the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in this neuronal
plasticity. HCN channels seem particularly suited for fine-tuning neuronal properties and responses
because of their remarkably large and variable repertoire of functions, enabling integration of a wide
range of cellular signals. Here, we discuss the involvement of HCN channels in cortical and
hippocampal network maturation, and consider potential roles of developmental HCN channel
dysregulation in brain disorders such as epilepsy.

1. Molecular and functional characteristics of HCN channels
1.1. Ih and its functions in neurons and neuronal networks

The hyperpolarization-activated current, Ih, originally observed in motoneurons (Araki et al.,
1961) and later characterized in heart (Noma and Irisawa, 1976) and retinal photoreceptors
(Fain et al., 1978), has long puzzled scientists, because of its unorthodox physiological behavior
which led to its nicknaming as f- (funny) or q- (queer) current (Brown and DiFrancesco,
1980; Halliwell and Adams, 1982; Pape, 1996).

Ih is a slow, non-inactivating conductance that is activated by hyperpolarization to potentials
negative to- or close to typical neuronal resting membrane potential (Figure 1). This permits
Na+ and K+ entry, providing the basis of the fundamental biophysical function of this
conductance. First, tonic activation of Ih helps set the resting membrane potential at a somewhat
depolarized level (Maccaferri et al., 1993;Lupica et al., 2001;Nolan et al., 2003;Meuth et al.,
2006). Second, Ih reduces input resistance, so that the influence of any current on membrane
potential is reduced (as per V = I × R; Magee, 1998,1999;Nolan et al., 2004;Surges et al.,
2004). Together with the selective subcellular localization of Ih-conducting HCN channels,
these basic properties lead to opposing effects of Ih on neuronal excitability, that are governed
also by type of HCN channel isoform, and the type of input reaching the cell (Santoro and
Baram, 2003;Dyhrfjeld-Johnsen et al., 2008). Thus, elegant studies (Magee, 1998,
1999;Williams and Stuart, 2000,2003;Berger et al., 2001,2003;Poolos et al., 2002,2006;Wang
et al., 2003;Fan et al., 2005;van Welie et al., 2006;Brager and Johnston, 2007) have
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demonstrated that dendritic Ih reduces neuronal excitability by reducing membrane resistance
and dendritic summation in response to dendritic depolarizing input. In contrast, increased
neuronal excitability with increase of Ih has been reported, because this current depolarizes
resting membrane potential (Chen K. et al., 2001), driving the neuron closer to firing threshold
of action potentials (Chen K. et al., 2001;Dyhrfjeld- Johnsen et al., 2008). Therefore, an
emerging consensus view suggests that Ih is crucial for intrinsic neuronal excitability (Zhang
and Linden, 2003,Beck and Yaari, 2008). In addition, the final influence of Ih on neuronal
excitability is governed by a balance of opposing actions on resting membrane potential and
resistance properties. In a non-firing cell, these actions of the h-current exert a stabilizing effect
on the membrane potential (Maccaferri et al., 1993;Lupica et al., 2001;Nolan et al., 2003;Meuth
et al., 2006;Figure 1C). They also influence rhythmicity of firing (Pape, 1996;Lüthi and
McCormick, 1998;Fisahn et al., 2002;Cobb et al., 2003;Figure 1B) and resonance behavior
(Magee, 1999;Ulrich, 2002;Nolan et al., 2004;Bernard et al. 2007;Narayanan and Johnston,
2007).

1.2. The molecular basis of Ih: a key to the diverse functions of this conductance
The characterization of four genes that encode Ih -generating channel molecules has shed light
on the unique properties of this current (Santoro et al., 1997, Gauss et al., 1998; Ludwig et al.,
1998, Santoro et al., 1998; Ishii et al., 1999). These molecular studies revealed that Ih is
generated by a nonselective cation channel named HCN (Hyperpolarization-activated Cyclic
Nucleotide-gated channel; Clapham, 1999). The four known isoforms (HCN1-4) can assemble
into homo- or heteromeric channels with different activation kinetics, voltage dependence and
cAMP-sensitivity (Kaupp and Seifert, 2001; Much et al., 2003; Robinson and Siegelbaum,
2003, Santoro and Baram, 2003; Brewster et al., 2005; Figure 1A), thus generating a broad
repertoire of sensitivity to the neuronal environment, as well as a large spectrum of biophysical
channel properties.

In mammalian brain, the expression patterns of HCN channel isoforms are distinct but partially
overlapping (Moosmang et al., 1999; Monteggia et al., 2000; Santoro et al., 2000; Bender et
al., 2001; Notomi and Shigemoto, 2004). Thus, individual neurons can express more than one
HCN channel isoform (Franz et al., 2000; Santoro et al., 2000; Brewster et al., 2002; Brewster
et al., 2007a), and the Ih current of such neurons reflects the properties of the contributing
isoforms (Franz et al., 2000; Santoro et al., 2000; Vasilyev and Barish, 2002; Santoro and
Baram, 2003; Surges et al., 2006). These properties may reflect the mathematical sum of
primarily homomeric channels, may result from the formation of heteromeric channels deriving
from interaction among the different isoforms expressed in an individual neuron, or result from
the combination of both homomeric and heteromeric channels in the neuron (Santoro et al.,
2000; Ulens and Tytgat, 2001; Chen S. et al., 2001; Simeone et al., 2005a; Simeone et al.,
2005b; Dekker and Yellen, 2006; Kole et al., 2006; Budde et al., 2008). In heterologous
systems, promiscuous heteromerization of almost all HCN channel isoforms has been
described (Chen S. et al., 2001; Proenza et al., 2002; Altomare et al., 2003; Much et al.,
2003, Whitaker et al., 2007), and evidence is increasing that heteromeric channels, with
properties differing from the properties of pure homomeric channels (Chen. S et al., 2001;
Ulens and Tytgat, 2001), also play a role in brain in vivo (Brewster et al., 2005; Kuisle et al.,
2006; Budde et al., 2008). However, in rodent hippocampus, heteromerization seems to be
restricted, and is governed by network activity (Much et al., 2003; Brewster et al., 2005;
Brewster et al., 2007b; Zha et al., 2008).

Interestingly, for channels that function primarily at subthreshold membrane potential levels,
HCN channels are endowed with remarkable plasticity of function. This plasticity involves
short-term regulation of channel activity through cellular metabolites (DiFrancesco and
Tortora, 1991; Wang et al., 2002; van Welie et al., 2004; Simeone et al., 2005b; Pian et al.,
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2006; Zolles et al., 2006; Fogle et al., 2007; Pian et al., 2007) or phosphorylation (Zong et al.,
2005; Poolos et al., 2006) as well as longer-lasting modulation via regulation of expression
(Bräuer et al., 2001; Brewster et al., 2002, 2005), heteromerization (Proenza et al., 2002;
Altomare et al., 2003; Much et al., 2003; Brewster et al., 2005; Whitaker et al., 2007; Zha et
al., 2008) or subcellular transport of channel isoforms (Bender et al., 2007; Brewster et al.,
2007a; Shin and Chetkovich, 2007). A potential association of HCN channel isoforms with β-
subunits or scaffolding proteins may add further variety to the channels’ functions (Gravante
et al., 2004; Kimura et al., 2004; Qu et al., 2004; Santoro et al, 2004). Thus, rather than
functioning solely as ‘membrane stabilizers’, HCN channels are in an excellent position to
fine-tune a neuron’s responses to external stimuli by integrating a wide range of cellular signals.
In fact, essential brain functions such as theta resonance underlying learning and memory
(Nolan et al., 2004, Wang et al., 2007), thalamic rhythm generation (Ludwig et al., 2003; Budde
et al., 2005, Kuisle et al., 2006) or the subcortical control of motor behavior (Nolan et al.,
2003; Chan et al., 2004) may depend on this property of the HCN channels.

Recent work suggests that the properties of the HCN channels highlighted above are
particularly important during neuron and network development. Maturation requires
developing neurons to modulate both their intrinsic properties as well as their firing behaviors
to a constantly changing neuronal milieu. Ion channels such as the HCN channels, that are
endowed with high plasticity of function may be particularly suited for this process (Zhang
and Linden, 2003; Beck and Yaari, 2008). Consistent with this notion, an age-dependence of
the properties of Ih, suggesting age-specific roles of this current, has been described in several
brain regions (Bayliss et al., 1994; Vasilyev and Barish, 2002, 2004; Tanaka et al., 2003;
Bajorat et al., 2005; Surges et al., 2006).

Thus, a significant body of work has focused on this current and its building blocks, the HCN
channels, over the past few years, contributing to an increasing understanding of the role of
HCN channels in normal and pathological neuronal and network activities (Robinson and
Siegelbaum, 2003; Santoro and Baram, 2003; Frere et al., 2004; Herrmann et al., 2007;
Dyhrfjeld-Johnsen et al., 2008; Richichi et al., 2008). This information, and specifically the
new perspectives on the role of Ih in developing hippocampal and cortical networks, is the
focus of the following paragraphs.

2. Developmental aspects of HCN channels
2.1. The transition from immature to mature network activity involves changes in HCN
isoform expression levels

In hippocampus, patterns of network activity depend, at least in part, on the expression levels
and specific combinations of HCN isoforms that are present in certain neuronal populations at
a given developmental period. For instance, in hippocampal area CA3, Ih may contribute
critically to age-specific hippocampal network activity. The principal network activity in
neonatal CA3 is low-frequency (0.1–0.3 Hz), synchronized population discharges
(intracellularly seen as “giant depolarizing potentials”, GDPs) that are believed to contribute
to network differentiation (Ben-Ari, 2002). Importantly, CA3 pyramidal cells govern the
generation of GDPs, which are driven by spontaneous burst activity originating from these
cells (Sipilä et al., 2005). The capacity of these neurons to generate these spontaneous bursts
is reduced when HCN channels are blocked, resulting in disruption of GDP generation (Bender
et al., 2005). This indicates that HCN channel activity may be crucial for network
synchronization in neonatal CA3 (Bender et al., 2005; but see Sipilä et al., 2006). At the
molecular level, HCN isoforms 1, 2 and 4 (and low levels of HCN3) are expressed in area CA3,
in both principal cells and interneurons (Moosmang et al, 1999; Santoro et al., 2000; Bender
et al., 2001; Notomi & Shigemoto, 2004). Expression commences as early as postnatal day 2
(Bender et al., 2001; Vasilyev and Barish, 2002; Bender et al., 2005; Brewster et al., 2007a),
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and the number of cells expressing HCN channels is highest during the neonatal period (Bender
et al., 2005). Remarkably, h-current density also peaks during the first postnatal week in CA3
pyramidal cells and declines thereafter (Vasilyev and Barish, 2002), suggesting that HCN
expression may underlie the age-specific function of the current and is regulated to enable the
synchronizing function of Ih. Related findings, demonstrating a modulating effect of Ih on the
regularity of burst firing in neonatal CA3 (Agmon and Wells, 2003), further support this notion.

Developmental changes of HCN channel expression also occur in CA1. In CA1 pyramidal
cells, quantitative changes in HCN1, HCN2 and HCN4 isoform expression constitute a
“molecular switch” from an early-postnatal preponderance of slow-activating, cAMP-sensitive
isoforms (HCN2 and 4) to a mature stage in which the major contribution to Ih-properties comes
from the fast-activating, cAMP-insensitive HCN1 isoform (Surges et al., 2006; Brewster et al.,
2007a). Interestingly, the time course of these changes correlates with the developmental
transition from the slow network oscillations that prevail in immature CA1 towards mature
network activity, including theta frequency (LeBlanc and Bland, 1979; Garaschuk et al.,
1998). The HCN expression changes may contribute to this transition via modulation of
neuronal resonance behavior (Magee, 1998; Hutcheon and Yarom, 2000; Ulrich, 2002;
Narayanan and Johnston, 2007). Thus, with Ih-activation accelerating during development
(Surges et al., 2006), pyramidal cells may get closer to their preferred (mature) firing frequency
(Pike et al., 2000; Ulrich, 2002; Bernard et al., 2007).

2.2. Subcellular distribution of HCN channels: Developmental patterns and implications
The functions of the HCN channels depend not only on their expression levels, but also on
their sub-cellular localization (Magee, 1998; Poolos et al., 2002; Santoro and Baram 2003;
Williams and Stuart, 2003; Berger et al., 2003; Aponte et al., 2006; Bender et al., 2007; Ying
et al., 2007). This localization can vary significantly among neuronal types and may include
somatic and dendritic, as well as axonal compartments (Figure 2). For instance, in cortical and
hippocampal pyramidal cells, HCN channels localize preferentially to dendrites, where they
control the integration and summation of synaptic input (Magee, 1998, 1999; Stuart and
Spruston, 1998; Williams and Stuart, 2000, 2003; Berger et al., 2001, 2003; Poolos et al.,
2002; Lörincz et al., 2002; Wang et al., 2003; Notomi and Shigemoto, 2004; Brewster et al.,
2007a). In cortical and hippocampal interneurons, these channels are often found in the somatic
compartment, where they regulate cell properties such as the resting membrane potential
(Maccaferri and McBain, 1996; Lupica et al., 2001). Axonal HCN channels have been
identified in a subgroup of interneuron populations (Notomi and Shigemoto, 2004; Lujan et
al., 2005; Aponte et al., 2006; Brewster et al., 2007a), as well as in certain excitatory neurons
(Cuttle et al., 2001; Soleng et al., 2003; Bender et al., 2007). In these neurons, the channels
localize predominantly to axon terminals, where they seem to modulate neurotransmitter
release (Southan et al., 2000; Klar et al., 2003; Aponte et al., 2006; Bender et al., 2007).

2.2.1. Developmental regulation and age-specific functions of axonal HCN
channels—Recent data suggest that the sub-cellular localization of HCN channels is also
subject to developmental regulation. For example, in rodent perforant path, the major afferent
pathway to the hippocampus, HCN1 channel isoforms are expressed in axon terminals that
abut on dendrites of the dentate gyrus granule cells (Figure 3). Interestingly, this expression is
specific to both an age window and the type of axons involved: in the perforant path, which
can be subdivided into a medial and a lateral portion, only axons of the medial portion (medial
perforant path, mPP) express HCN1 channels, whereas the axons of the lateral perforant path,
that originate in a separate neuronal population in the entorhinal cortex (Amaral and Witter,
1995), are devoid of this channel. In addition, HCN1 channel expression is robust in immature
mPP, and gradually decreases with maturation (Figure 3A–D). As described above for area
CA3, the age-specific subcellular localization of the HCN1 channels to mPP axons is associated
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with a specific developmental function of Ih: the current prevents a variant of short-term
depression (STD), promoting synaptic strengthening. Thus, in a stimulation paradigm that
determines STD of mPP firing, a form of synaptic plasticity that is attributable to presynaptic
mechanisms (Harris and Cotman, 1985;Dietrich et al., 1997), blocking Ih caused an increase
of STD in immature but not in mature mPP, suggesting that synaptic properties in mPP are
modulated by HCN channel activity in an age-dependent manner (Figure 3E). These findings
raise the possibility that pre-synaptic Ih might enhance the probability and reliability of
neurotransmitter release at immature mPP synapses, an effect that might involve a tonic
depolarization of the presynaptic membrane potential (Beaumont and Zucker, 2000;Southan
et al., 2000;Mellor et al., 2002;Agmon and Wells, 2003;Aponte et al., 2006). Because reliability
of neuronal firing is a prerequisite for stabilization of synaptic contacts at perforant path/
granule cell synapses (Frotscher et al., 2000), the expression of HCN1 specifically in axon
terminals of immature mPP can be seen as a contribution of the channels to the maturation of
network connectivity.

2.2.2. Developmental regulation and age-selective function of dendritic HCN
channels—Developmental regulation of the sub-cellular distribution of the HCN channels
has been described also for the dendritic compartment. In mature rat hippocampus, dendrites
of CA1 pyramidal cells express channels of both the HCN1- and HCN2-type (Lörincz et al.,
2002; Notomi and Shigemoto, 2004; Brewster et al., 2007a), whereas HCN4 type channels are
barely detectable in these dendritic domains. In contrast, during the first two postnatal weeks,
only HCN1 channels localize to these dendrites, whereas HCN2 channels, although expressed
in the soma neonatally, are only detectable in the dendrites starting in the third postnatal week
(Brewster et al., 2007a). These findings predict that dendritic Ih in the immature hippocampus
would be comprised of homomeric HCN1 channels, and would possess biophysical properties
that differ from those of adult-type dendritic Ih. The developmental trigger for this delayed
dendritic transport of HCN2 channels is not yet known. Developmental transitions in
hippocampal network activity that occur during this developmental period might be involved
(see above). Alternatively, isoform-specific interaction between HCN channel isoforms and
chaperone/transport-related proteins may be responsible (e.g., Gravante et al., 2004; Kimura
et al., 2004; Santoro et al., 2004; Shin et al., 2008). Developmental expression profiles of
individual interacting proteins would then govern the trafficking of individual HCN channels
to dendrites and an onset of this trafficking. Finally, in heterologous systems, heteromerization
might contribute to transport of HCN channels to the membrane (Proenza et al., 2002; Altomare
et al., 2003; Much et al., 2003; Whitaker et al., 2007). Stable heteromerization of HCN1/HCN2
involves mature glycosylation of the HCN1 isoform, and may be age-dependent (Brewster et
al., 2007b; Zha et al., 2008), potentially influencing the transport of HCN2 to the dendritic
compartment early in life. Because the function of dendritic HCN channels in dendritic
summation and neuronal excitability is crucial for network stability (Magee, 1998, 1999;
Berger et al., 2001; Williams and Stuart, 2003; Wang et al., 2003; van Welie et al., 2004; Fan
et al., 2005; Brager & Johnston, 2007; Tsay et al., 2007), further examination of the unique
developmental mechanisms determining HCN1 and HCN2 channel trafficking to the dendrites,
and their contribution to dendritic Ih, is important. It is tempting to speculate that dendritic Ih
conducted by homomeric HCN1 channels would have properties (e.g., rapid kinetics, minimal
response to fluctuating cAMP levels) that promote selective stabilization of neuronal
connectivity by influencing dendritic summation to the developing neuronal somata (Magee,
1999).
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3. The role of neuronal activity in developmental HCN regulation
3.1. Neuronal activity is a driving force for developmental HCN expression changes

The findings summarized above demonstrate a remarkable evolution of the expression and
subcellular localization of the HCN channels during the early-postnatal period in hippocampus.
This raises the question of the regulation of these changes. Generally, the developmental
organization of neuronal networks is governed by genetic as well as environmental elements.
Among the latter, neuronal activity has long been recognized to be a key determinant (Goodman
and Shatz, 1993; Constantine-Paton and Cline, 1998), suggesting that evolving network
activity may influence the developmental expression of the HCN channels as well.

The effects of neuronal activity on the expression of the HCN channels in developing
hippocampus were discovered in studies employing network activity bursts (experimental
seizures) induced by the glutamate agonist kainic acid and by hyperthermia (Brewster et al.,
2002). These bursts provoked alteration of the expression patterns of the HCN channels that
co-varied with seizure duration, as well as persistent changes in the biophysical properties of
Ih. Thus, the abnormal activity bursts shifted the voltage dependence of Ih in the depolarizing
direction and caused a slowing of its activation and deactivation kinetics – changes that resulted
in a generally larger h-current in hippocampal CA1 pyramidal cells (Chen K. et al., 2001;
Kamal et al., 2006). These changes persisted for months and, together with the observed
increase of perisomatic IPSCs (Chen et al., 1999), led to increased rebound firing and
hyperexcitability in the hippocampal network (Dube et al., 2000, 2006; Chen K. et al., 2001).
The molecular basis for these physiological changes consisted of reduced expression of the
fast-activating and -deactivating HCN1 isoform, decreasing its proportional contribution to the
HCN channel pool and accounting for the slowing of Ih kinetics. Decreased HCN1 protein
levels also increased the stochastic probability of formation of HCN1/HCN2 heteromers
(Figure 4A), and a doubling of heteromeric HCN1/HCN2 channels (Brewster et al., 2005; Zha
et al., 2008). The biophysical properties of these heteromers are not fully known, and available
data suggest that they may not intermediate to those of HCN1 or HCN2 homomers (Chen S.
et al., 2001). It is tempting to speculate that the unusual properties of the Ih recorded after
seizures (slowed kinetics, depolarized activation curve and modest cAMP response) are a result
of increased contribution of heteromeric channels to the total cellular Ih. Importantly, both the
molecular and physiological changes in the channels endured for months, suggesting that the
pathological (seizure) activity bursts interfered with (‘corrupted’) the normal developmental
program of HCN channel expression in hippocampus (Figure 4B).

3.2. How does network activity regulate HCN channel expression and function?
The intracellular signaling mechanisms that mediate activity-dependent changes of HCN
channel expression have been partially elucidated. Using organotypic hippocampal cultures as
an in vitro seizure model, Richichi and colleagues (2008) found that the seizure-induced
reduction of HCN1 mRNA and protein expression required Ca2+-influx into the bursting
neurons via Ca2+-permeable AMPA-receptors, followed by activation of CaM Kinase II.
Analysis of the HCN1 gene promoter further revealed a highly conserved binding site for the
transcription factor Neuronal Restrictive Silencing Factor (NRSF/REST), and the expression
of this factor was enhanced by the network activity bursts (Richichi et al., 2007) suggesting
that, further downstream of CaM Kinase II, NRSF might be involved in the pathway by which
activity-bursts regulate HCN1 channel expression (Richichi et al., 2007). Interestingly, no part
of this pathway was involved in the upregulation of HCN2 mRNA by seizure-like network
bursts (Richichi et al., 2008), suggesting that multiple, isoform-specific signaling mechanisms
contribute to activity-dependent regulation of hippocampal HCN transcription.
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Network activity may also regulate the function of HCN channels via post-translational
mechanisms. In the in vitro model described above, seizure-like network activity increased the
stable heteromerization of HCN1/HCN2 (as found also in vivo, Brewster et al., 2005).
Interestingly, the increased association of HCN1/HCN2 was not attributable solely to a
stochastic phenomenon resulting from reduced HCN1 channel expression and increased
probability of each HCN1 molecule’s interaction with an HCN2 subunit (Figure 4A). Rather,
an additional mechanism for this activity-induced heteromerization of HCN1 and HCN2
isoforms involved enhanced HCN1 channel glycosylation by network activity bursts (Zha et
al., 2008), and preferential stable co-assembly of glycosylated HCN1 with the HCN2 isoforms.
Thus, in vivo and in vitro, both transcriptional and post-translational regulatory mechanisms
are triggered by hippocampal network activity to influence HCN expression, co-assembly and
trafficking. These, in turn, govern persistent changes in the properties of Ih.

3.3. Activity governs trafficking of HCN channels to subcellular compartments
The age-specific localization of HCN channels to subcellular compartments, discussed above,
has recently been found to be largely governed by age-dependent neuronal activity. For
dendritic transport, Shin and Chetkovich (2007) used organotypic hippocampal slice cultures
to study the developmental evolution of dendritic HCN1 expression and the mechanisms that
govern it. They found that enrichment of HCN1 channels in the distal segment of CA1
pyramidal cell dendrites did not occur when neuronal activity was blocked, or when they
transected the temporoammonic pathway, suggesting that neuronal activity deriving from
afferent innervation is a major driving force for the transport of HCN1 channels to their proper
distal dendritic location. Similar mechanisms may function in the mature hippocampus: In
hippocampal slices from young adult rats that were theta-burst-stimulated to induce LTP, Fan
et al. (2005) observed an activity-dependent, dynamic modulation of dendritic Ih in CA1
neurons that correlated with altered expression levels of the HCN1 subunit. However, because
acute slices were used in this study, a dynamic regulation of the dendritic transport of HCN1
channels could not be demonstrated. Interestingly, both studies reported a role for CaM Kinase
II-activity in regulating dendritic HCN1, concordant with the findings of Richichi et al.
(2008) on the activity-dependent regulation of HCN1 transcription (see above).

Axonal distribution of HCN1 during development was also activity-dependent (Bender et al.,
2007): When organotypic entorhino-hippocampal cultures were incubated for a week with
tetrodotoxin (TTX), suppressing >90% of action potentials (Denac et al., 2000), this led to
increased presynaptic presence of HCN1 channels. This finding is consistent with a suppressive
effect of network activity on the expression of these channels in perforant path axon terminals.
TTX did not affect the transcription and translation levels of HCN1 channels in the cells of
axonal origin, i.e., the entorhinal cortex layer II stellate cells, indicating that the activity-
dependent regulation was at the post-translational, trafficking level (Bender et al., 2007).

4. Interactions of HCN channels with other conductances
The findings described above indicate that the balance of HCN isoform expression is critical
for network maturation in hippocampus, and presumably other regions of the brain. However,
HCN channels are unlikely to be the only determinants of this process. In fact, the intricate
interplay of Ih and other conductances in processes such as dendritic information processing
in cortical neurons (Williams and Stuart, 2003; Day et al., 2005) or rhythm generation in
entorhinal cortex (Dickson et al., 2000; Fransen et al., 2004) and thalamus (Lüthi and
McCormick, 1998; Budde et al., 2005) suggests that establishment of network functions
requires a coordinated expression program of several conductances, which may
homeostatically influence one another (MacLean et al., 2003; Santoro and Baram, 2003;
Misonou and Trimmer, 2004; Moody and Bosma, 2005; Meuth et al., 2006; Schulz et al.,
2007; Budde et al., 2008).
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Likely candidates for this process include potassium channels, for which a developmental
regulation of hippocampal expression has been shown (Maletic-Savatic et al., 1995; Tinel et
al., 1998; Grosse et al., 2000; Antonucci et al., 2001; Smith et al., 2001; Tansey et al. 2002;
Falk et al., 2003; Kanaumi et al., 2008). Some of these channels show interesting parallels to
the HCN channels. Thus, in CA1 pyramidal cells, Kv 4.2 (A-type) channels localize
preferentially to the distal dendrites (Maletic-Savatic et al., 1995; Hoffman et al., 1997; Cai et
al., 2004), where they control both backprogation of action potentials into the dendritic tree
(Hoffman et al., 1997; Bernard et al., 2004) and forward propagation of depolarization out of
dendritic branches in which activated synapses are located (Cai et al., 2004; Chen et al.,
2006). Like the HCN channels, the dendritic expression of Kv 4.2 channels commences early
postnatally and then gradually increases with maturation (Maletic-Savatic et al., 1995; compare
to Brewster et al., 2007a). Expression and subcellular trafficking of Kv 4.2 channels are
regulated by neuronal activity (Tsaur et al., 1992; Bernard et al., 2004; Kim et al., 2007), and
this regulation involves CaM kinase II (Varga et al., 2004), although it is not yet clear whether
CaM kinase II also contributes to the transcriptional regulation of Kv 4.2, as it does for HCN1
(Richichi et al., 2008). In view of these parallels and the important integrative functions of both
channel types in dendrites, one may suspect that they are homeostatically regulated: Indeed,
data from invertebrate systems suggest that HCN- and A-type-channels are co-regulated on
the transcriptional level (MacLean et al., 2003; Schulz et al., 2007). However, whether such
co-regulation also occurs in mammalian neurons, and whether it includes developmental
regulation, remains to be determined.

Homeostatic interaction may exist also between the HCN channels and others that contribute
to the regulation of the resting membrane potential (e.g. Kir-, Kleak-, Naleak- channels; Day et
al., 2005; Meuth et al., 2006; Budde et al., 2008). However, information on the developmental
regulation of these channels is sparse. In addition, mice deficient in the HCN1-isoform show
no compensatory changes of the corresponding conductances, arguing against an extensive
homeostatic linkage of these and HCN channels (Nolan et al., 2004, 2007). Further co-
regulation of HCN- and other channels is apparent from the phenotype of mouse mutants such
as stargazer, which is deficient in Ca2+ channel function (Letts et al., 1998), yet endowed with
increased Ih in cortical neurons (DiPasquale et al., 1997 and see below).

5. Developmental dysregulation of HCN channels and brain pathology
Taken together, these findings support the framework of a coordinated expression of HCN
channels in the developing hippocampus as an integral part of a developmental program that
is regulated by neuronal activity. In this scenario, age-specific complements of HCN channel
isoforms contribute to patterns of network activity. Network activity, in turn, promotes changes
of HCN channel expression and distribution that support the integration of previously
incoherent neuronal assemblies into a progressively maturing hippocampal network. This
process requires a fine-tuned interplay between activity (i.e., the neuronal environment) and
the HCN channels (i.e., determinants of intrinsic neuronal excitability) that is naturally
sensitive to disturbances. Factors that interfere with this process, e.g., abnormal neuronal
activity such as seizures, may have a long-lasting impact, because resulting errors (e.g.
abnormal wiring) may be integrated into the developing network. In the worst case, these errors
could promote pathological network function. Indeed, evidence for a critical role of a
developmental dysregulation of HCN channels in the genesis of brain pathologies is emerging:

1) After experimental prolonged febrile seizures, hippocampal HCN channel expression and
co-assembly were altered persistently. The coordinated expression changes were associated
with a depolarization shift of h-channel activation and a slowing of the activation and
deactivation kinetics of somatic and dendritic channels (Chen K. et al., 2001; Dyhrfjeld-
Johnsen et al., 2008), thus modifying Ih and causing enduring hippocampal hyperexcitability
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(Chen K. et al., 2001; Brewster et al., 2002, 2005; Santoro and Baram, 2003; Kamal et al.,
2006; Dyhrfjeld-Johnsen et al., 2008), that, in a subset of animals, may lead to frank epilepsy
(Dube et al., 2006). In this context, it is worthwhile noting that abnormal expression levels of
HCN1 channels have also been detected in the hippocampus of patients with temporal lobe
epilepsy (associated with a history of early-life seizures; Bender et al., 2003). The full
mechanistic relationship of the persistently altered HCN channel levels and the transformation
of a ‘normal’ neuronal network to one generating spontaneous synchronized activity bursts
(epileptic seizures) remains to be determined (Dube et al., 2007).

Recently, HCN expression and localization changes were also observed in adult models of
temporal lobe epilepsy. Thus, down-regulation of HCN1 expression was reported after status
epilepticus induced by kainic acid (Shah et al., 2004; Powell et al., 2008), pilocarpine (Jung et
al., 2007) and after kindling (Powell et al., 2008). This down-regulation became specifically
evident during the chronic period when epilepsy was established (Jung et al., 2007). These
changes, although in some respects differing from the changes in the developing brain,
generally support the notion of a potentially epileptogenic effect of seizure-induced HCN
alterations. Importantly, several of these studies suggest that expression changes within the
dendritic compartment could be particularly critical for epileptogenesis (Jung et al. 2007). In
addition, reduced dendritic transport of HCN1 channels or reduced association of HCN1 with
the adaptor protein TRIP8b in the chronic period (resulting in diminished transport of HCN1
channels to CA1 pyramidal cell dendrites) may also contribute to epileptogenesis (Shin et al.,
2008). This new evidence supports a role for post-translational regulation of HCN subunit
association in defining the distribution and function of these channels (Zha et al., 2008). In
summary, HCN channels are altered by abnormal neuronal activity such as seizures in both
mature and developing hippocampus, and these alterations accompany, and perhaps promote,
the epileptogenic process. The precise role of these channels in governing neuronal excitability
is still not fully understood, as discussed above, and may be age- and even model-specific (e.g.,
see Zhang et al., 2006).

2) Developmental dysregulation of cortical and/or thalamic HCN channel expression may
contribute to epileptogenesis in genetic models of absence epilepsy: In two models, the Wistar
Albino Glaxo/Rijswijk (WAG/Rij) and the Genetic Absence Epileptic Rats of Strasbourg
(GAERS), the relative contribution of HCN1 channels to the channel pool and thalamic Ih was
increased in thalamocortical relay (TC) neurons, resulting in reduced cAMP responsiveness
of Ih (Budde et al., 2005; Kuisle et al., 2006). These changes were observed before the onset
of absence seizures, suggesting that they might be a cause rather than a consequence of the
seizure activity (Budde et al., 2005; Kuisle et al., 2006; Pape et al., 2007). Weakened cAMP
actions could contribute to the generation of absences by facilitating burst discharges in TC
neurons, promoting synchronization in the thalamocortical network (Budde et al., 2005; Kuisle
et al., 2006). Similar mechanisms may underlie the spontaneous absence seizures in mice
deficient in the HCN2 subunit (Ludwig et al., 2003). The basis of thalamic HCN1 upregulation
in GAERS and WAG/Rij rats is unclear: Genomic analyses have not revealed mutations of the
HCN1 gene (Gauguier et al., 2004; Rudolf et al., 2004) so that a developmental dysregulation
due to abnormalities in the thalamic network (Dutuit et al., 2000, 2002) is plausible.

Dysfunction of cortical Ih might also contribute to corticothalamic network abnormalities, and
the nature of the changes may be model-specific. Thus, in the stargazer mutant (see Section
4), enhanced Ih was observed in layer V pyramidal neurons of temporoparietal cortex, resulting
in a lower threshold for aberrant thalamocortical spike-wave oscillations in vivo (DiPasquale
et al., 1997). In contrast, in WAG/Rij rats with absence seizures, reduced Ih and lower
expression levels of the HCN1 isoform compared to non-epileptic Wistar rats were found in
pyramidal cells of somatosensory cortex (Strauss et al., 2004), and these changes were also
associated with an increase in seizure activity (Schridde et al., 2006; Kole et al., 2007).
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Interestingly, early suppression of seizure activity in WAG/Rij rats by chronic treatment with
ethosuximide prevented the neocortical downregulation of HCN1 expression as well as the
establishment of absence seizures, suggesting that in neocortex altered expression of HCN
isoforms may be a consequence and not the cause of seizure activity (Blumenfeld et al.,
2008). These findings further imply that seizures regulate HCN1 channel expression in cortex,
as described above for hippocampus and thalamus.

It should be noted that the HCN channels are only one family of ion channels where
developmental dysregulation may contribute to human disease and specifically to epilepsy:
For example, the KCNQ2/3 channels generate a slowly-activating outward (potassium) current
(IM,) upon membrane depolarization (Cooper and Yan, 2003). These channels are partially
active at rest, and function to stabilize resting membrane potential and control repetitive
neuronal firing. Mutations of these channels result in neonatal seizures (benign neonatal
familial seizures, BNFC), and these seizures usually remit within the first months of life
(Jentsch, 2000). Similarly, in rodents, controlled mutation of the channels during the 2–3
neonatal weeks, but not later in life, results in an epileptic phenotype (Peters et al., 2005). The
basis of this age-sepcific pathology may derive from the fact that during the first weeks of life
GABAergic inhibition is not yet fully established (Ben-Ari, 2002) so that KCNQ channels
provide essential repolarizing, inhibitory function to the neuron (Okada et al., 2003). These
functions may be supported by an age-specific expression of KCNQ isoforms or splice variants
(Tinel et al., 1998; Smith et al., 2001; Weber et al., 2006; Geiger et al., 2006; Kanaumi et al.,
2008). Later, when GABA assumes the role of the major inhibitor of neuronal firing,
dysfunction of KCNQ2/3 channels no longer suffices to elicit abnormal hyperexcitability and
seizures.

6. Conclusions and future perspectives
The roles of ion channels in neuronal networks are generally considered in the 3-dimensional
mature network. This review introduces a fourth, developmental dimension, that consists of a
dynamic and continuously changing vector. Using the HCN channels as examples, we find that
the expression and the functions of the channels evolve with network development, and this
evolution contributes to--and is in turn affected by--the developmental process. Disturbances
of normal HCN channel function at a given developmental age will therefore lead to network
derangements that differ from those caused by HCN channel dysfunction at a later age.
Understanding the developmental aspects of ion channel expression, transport, assembly and
function may thus provide us with valuable insights into the maturation of neuronal networks,
as well as into the pathogenesis of certain developmental disorders.
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Figure 1. Molecular and functional characteristics of HCN channels and Ih
A) HCN channels are composed of four isoforms that can assemble as homomeric or
heteromeric tetramers. Each of these isoforms, coded by the HCN1, 2, 3 and 4 genes, contains
six transmembrane segments, with a positively charged S4 voltage sensor, similar to the voltage
sensors of depolarization-activated potassium channels. HCN channels are non-selective cation
channels that conduct primarily Na+ ions at the negative membrane potentials at which they
activate (Robinson and Siegelbaum, 2003). A characteristic feature of the HCN channels is the
presence of a 120-amino-acid cyclic nucleotide binding domain in the cytoplasmic carboxy
terminus (CNBD) which mediates their responses to cyclic AMP. B) Note: Ih activation
following an action potential produces a slow depolarization that may activate other cation
channels (Ca2+, Na+) and thus trigger a new action potential. Ih then deactivates (modified
from Pape, 1996). C) Current clamp recordings illustrate the stabilizing actions of Ih on the
resting membrane potential (dashed line): A hyperpolarizing input elicits a slow, depolarizing
“sag” in membrane potential, reflecting Ih activation (red trace). Similarly, a depolarizing input
yields a hyperpolarizing “sag” in membrane potential, reflecting Ih deactivation (blue trace).
Note the rebound de- and hyperpolarization at the end of the hyperpolarizing resp. depolarizing
input (arrows; modified from Poolos et al., 2002).
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Figure 2. The subcellular localization of HCN channels in cortical and hippocampal neurons is
neuron-type- and isoform-specific
HCN channels can localize to somatic, dendritic and axonal compartments of neurons, and
these locations differ among neuronal populations. In CA1 pyramidal cells (A), HCN channels
preferentially occupy dendritic locations (Lörincz et al., 2002; Notomi & Shigemoto, 2004;
Brewster et al., 2007a), whereas in GABAergic interneurons, somatic HCN expression is more
pronounced (B; Notomi & Shigemoto, 2004; Brewster et al., 2007a). Axonal localization is
found in certain interneurons (e.g. basket cells, B; Notomi & Shigemoto, 2004; Aponte et al.,
2006; Brewster et al., 2007a) and in layer II stellate cells of entorhinal cortex (C; Bender et al.,
2007). The subcellular distribution is isoform-specific. Thus, HCN1- and HCN2-, but not
HCN4-containing channels were detected in axon terminals of interneurons that express all
three isoforms (B; Aponte et al., 2006; Brewster et al., 2007a).
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Figure 3. Presynaptic localization of functional HCN1 channels in perforant path axon terminals
is age-specific
A) Robust expression in the termination zone of the medial perforant path in dentate gyrus
molecular layer of immature (A, C), but not adult rats (B, D), suggests an age-specific
presynaptic location of HCN1 channels in this pathway (inset in C: electron microscopy/
immunogold-detection of HCN1 in an axon terminal; Bender et al., 2007). Blockade of these
channels with the selective Ih-inhibitor ZD7288 resulted in increased short-term-depression
(STD) of neurotransmission in medial perforant path of P10-14 rats after stimulation with 20
Hz (E, top panel), suggesting that the channels are active and influence transmitter release at
the immature age. In slices from adult rats with little HCN1 in perforant path (B, D), no effect
of ZD7288 on STD (expressed as ratio of fEPSP8–10/fEPSP1) was detected (E, bottom panel;
with permission of Journal of Neuroscience).
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Figure 4. Activity-dependent changes in HCN channel expression and molecular rearrangements
Expression levels of HCN isoforms in developing hippocampus are differentially influenced
by neuronal activity. Activity burst or seizures (red arrow in A) provoked reduction of the
HCN1 isoform (fuchsia-colored spheres in A) and increased mRNA but not protein expression
of the HCN2 isoform (yellow spheres in A). Decreased HCN1 protein levels further increased
the stochastic probability of formation of HCN1/HCN2 heteromeric channels (A, green
arrows), which may generate an h-current with distinctive biophysical properties (Chen S. et
al., 2001). B) Seizure-induced expression changes of the HCN1 isoform (fuchsia-colored line)
endured for months, suggesting that the normal developmental expression program of these
channels (blue line) has been corrupted by the early-life seizures (red arrow).
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