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Scalable Microbial Strain Inference in
Metagenomic Data Using StrainFacts
Byron J. Smith1,2†, Xiangpeng Li3, Zhou Jason Shi1,4, Adam Abate3,4† and
Katherine S. Pollard1,2,4*†

1The Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, United States, 2Department of Epidemiology
and Biostatistics, University of California, San Francisco, San Francisco, CA, United States, 3Department of Bioengineering and
Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States, 4Chan-Zuckerberg Biohub, San
Francisco, CA, United States

While genome databases are nearing a complete catalog of species commonly inhabiting
the human gut, their representation of intraspecific diversity is lacking for all but the most
abundant and frequently studied taxa. Statistical deconvolution of allele frequencies from
shotgun metagenomic data into strain genotypes and relative abundances is a promising
approach, but existingmethods are limited by computational scalability. Here we introduce
StrainFacts, a method for strain deconvolution that enables inference across tens of
thousands of metagenomes. We harness a “fuzzy” genotype approximation that makes
the underlying graphical model fully differentiable, unlike existing methods. This allows
parameter estimates to be optimized with gradient-based methods, speeding up model
fitting by two orders of magnitude. A GPU implementation provides additional scalability.
Extensive simulations show that StrainFacts can perform strain inference on thousands of
metagenomes and has comparable accuracy to more computationally intensive tools. We
further validate our strain inferences using single-cell genomic sequencing from a human
stool sample. Applying StrainFacts to a collection of more than 10,000 publicly available
human stool metagenomes, we quantify patterns of strain diversity, biogeography, and
linkage-disequilibrium that agree with and expand on what is known based on existing
reference genomes. StrainFacts paves the way for large-scale biogeography and
population genetic studies of microbiomes using metagenomic data.

Keywords: metagenomics, strains, microbiome, biogeography, population genetics, model-based inference

INTRODUCTION

Intra-specific variation in microbial traits are widespread and are biologically important in
human associated microbiomes. Strains of a species may differ in their pathogenicity (Loman
et al., 2013), antibiotic resistance (Shoemaker et al., 2001), impacts on drug metabolism (Haiser
et al., 2014), and ability to utilize dietary components (Patrick et al., 2010; Ostrowski et al., 2022).
Standard methods for analysis of complex microbial communities are limited to coarser
taxonomic resolution due to their reliance on slowly evolving marker genes (Case et al.,
2007-January) or on genome reference databases lacking diverse strain representation
(Nayfach et al., 2020). Approaches that quantify microbiomes at the level of strains may
better capture variation in microbial function (Albanese and Donati, 2017), provide insight into
ecological and evolutionary processes (Garud and Pollard, 2019), and discover previously
unknown microbial etiologies for disease (Yan et al., 2020).
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Shotgun metagenomic data can in principle be used to track
strains by looking for distinct patterns of alleles observed across
single nucleotide polymorphisms (SNPs) within the species.
Several tools have recently been developed that count the
number of metagenomic reads containing alleles across SNP
sites (Nayfach et al., 2016; Costea P. I. et al., 2017; Truong
et al., 2017; Beghini et al., 2021; Olm et al., 2021; Shi et al.,
2021). Comparisons of the resulting “metagenotypes” across
samples has been used to track shared strains (Li et al., 2016;
Olm et al., 2021), or to interrogate the biogeography (Costea PI.
et al., 2017; Truong et al., 2017) and population genetics of species
(Garud et al., 2019). The application of this approach is limited,
however, by low sequencing coverage, which results in missing
values at some SNP sites, and co-existing mixtures of strains,
which introduce ambiguity about the taxonomic source of each
metagenomic read.

One promising solution to these challenges is statistical
strain deconvolution, which harnesses multiple
metagenotypes (e.g., a collection of related samples) to
simultaneously estimate the genotypes and relative
abundances of strains across samples. Several tools have been
developed that take this approach, including Lineage (O’Brien
et al., 2014), Strain Finder (Smillie et al., 2018), DESMAN
(Quince et al., 2017), and ConStrains (Luo et al., 2015).
These methods have been used to track the transmission of
inferred strains from donors’ to recipients’ microbiomes after
fecal microbiota transplantation (FMT) (Smillie et al., 2018;
Chu et al., 2021; Watson et al., 2021; Smith et al., 2022). The
application of strain deconvolution has been limited, however,
by the computational demands of existing methods, where
runtimes scale poorly with increasing numbers of samples,
latent strains, and SNPs considered. One reason for this poor
scaling is the discreteness of alleles at each SNP, which has led
existing methods to use expectation maximization algorithms to
optimize model parameters (Smillie et al., 2018), or Markov
chain Monte Carlo to sample from a posterior distribution
(O’Brien et al., 2014; Luo et al., 2015; Quince et al., 2017).

Here we take a different approach, extending the strain
deconvolution framework by relaxing the discreteness
constraint and allowing genotypes to vary continuously
between alleles. The use of this “fuzzy” genotype
approximation makes our underlying model fully
differentiable, and allows us to apply modern, gradient-
based optimization algorithms to estimate strain genotypes
and abundances. Here we show that the resulting tool,
StrainFacts, can scale to tens of thousands of samples,
hundreds of strains, and thousands of SNPs, opening the
door to strain inference in large metagenome collections.

MATERIALS AND METHODS

A Fully Differentiable Probabilistic Model of
Metagenotype Data
Metagenotypes
A metagenotype is represented as a count matrix of the
number of reads with each allele at a set of SNP sites for a

single species in each sample. This can be gathered directly
from metagenomic data, for instance by aligning reads to a
reference genome and counting the number of reads with each
allele at SNP sites. In this study we use GT-Pro (Shi et al.,
2021), which instead counts exact k-mers associated with
known single nucleotide variants. Although the set of
variants at a SNP may include any of the four bases, here
we constrain metagenotypes to be biallelic: reference or
alternative. For a large majority of SNPs, only two alleles
are observed across reference genomes (Shi et al., 2021).
Metagenotypes from multiple samples are subsequently
combined into a 3-dimensional array.

Deconvolution of Metagenotype Data
StrainFacts is based on a generative, graphical model of
biallelic metagenotype data (summarized in Supplementary
Figure S1) which describes the allele frequencies at each SNP
site in each sample (pig for sample i and SNP g) as the product
of the relative abundance of strains ( �πi) and their genotypes,
γsg, where 0 indicates the reference and one indicates the
alternative allele for strain s. This functional relationship is
therefore pig � ∑

s
γsg × πis, In matrix form, equivalently, we

notate this as P � ΓΠ (Table 1).
The crux of strain deconvolution is taking noisy

observations of P—based on the observed alternative allele
counts Y and total counts M obtained from metagenotypes
across multiple samples—and determining suitable matrices Γ
and Π. This notation highlights parallels to non-negative
matrix factorization (NMF). Like NMF, given a choice of
loss function, L, this inference task can be transformed into
a constrained optimization problem, where argmin

Π,Γ
L(Π, Γ|Y)

is a scientifically useful estimate of these two unobserved
matrices. We take the approach of explicitly modeling the
stochasticity of observed metagenotypes, placing priors on Π
and Γ, and taking the resulting posterior probability as the loss
function. This “maximum a posteriori” (MAP) approach has
also been applied to NMF (Schmidt et al., 2009). However,
unlike NMF, where the key constraint is that all matrices are
non-negative, the metagenotype deconvolution model also
constrains the elements of P and Γ to lie in the closed

TABLE 1 | Symbols used to describe the StrainFacts model.

Symbols Description

i � 1, ...,N Index and number of samples
s � 1, ...,S Index and number of strains
g � 1, ...,G Index and number of SNP sites
yig, mig Counts of reads with the alternative allele; the total count of both

reference and alternative alleles at SNP g in sample i
pig Alternative allele frequency at SNP g in sample i
γsg, �γg Allele at SNP g in strain s; vector of alleles for all strains

πis, �πi Relative abundance of strain s in sample i; vector of relative
abundances for all strains

εi Sequencing error rate in sample i
α Concentration parameter of the BetaBinomial distribution
�ρ Metacommunity strain composition
Y , M, P, Γ, Π Matrices composed of the above elements
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interval [0, 1], and the rows of Π are are “on the
(s − 1)-simplex”, i.e. they sum to one.

Fuzzy Genotypes and the Shifted-Scaled Dirichlet
Distribution
StrainFacts does not constrain the elements of Γ to be
discrete—i.e. in the set {0, 1} for biallelic sites—in contrast
to prior tools: DESMAN (Quince et al., 2017), Lineage
(O’Brien et al., 2014), and Strain Finder’s (Smillie et al.,
2018) exhaustive search. Instead, we allow genotypes to
vary continuously in the open interval between fully
reference (0) and fully alternative (1). The use of fuzzy-
genotypes serves a key purpose: by replacing the only
discrete parameter with a continuous approximation, our
posterior function becomes fully differentiable, and
therefore amenable to efficient, gradient-based
optimization. When not using the exhaustive search
strategy, Strain Finder also treats genotypes as continuous
to accelerate inference, but these are discretized after each
iteration. We show below that inference with StrainFacts is
faster than with Strain Finder.

Since true genotypes are in fact discrete, we place a prior on
the elements of Γ that pushes estimates towards zero or one
and away from intermediate—ambiguous—values. Similarly,
we put a hierarchical prior on Π that regularizes estimates
towards lower strain heterogeneity within samples, as well as
less strain diversity across samples. This makes strain
inferences more parsimonious and interpretable. We
harness the same family of probability distributions, the
shifted-scaled Dirichlet distribution (SSD) (Monti et al.,
2011), for all three goals. We briefly describe our rationale
and parameterization of the SSD distribution in the
Supplementary Methods.

For each element of Γ we set the prior as
(γ, 1 − γ) ~ SSD(1, 1, 1

γp). (Note that we trivially transform
the 1-simplex valued (γ, 1 − γ) to the unit interval by
dropping the second element.) Smaller values of the
hyperparameter γ* correspond to more sparsity in Γ. We
put a hierarchical prior on Π, with the rows subject to the
prior �πi ~ SSD(1, �ρ, 1

πp) given a “metacommunity” hyperprior
�ρ ~ SSD(1, 1, 1

ρp), reflecting the abundance of strains across all
samples. Decreasing the values of γp, ρp, and πp increases the
strength of regularization imposed by the respective priors.

Model Specification
The underlying allele frequencies P are not directly observed
due to sequencing error, and we include a measurement
process in our model. We assume that the true allele is
replaced with a random allele at a rate εi for all SNP sites g
in sample i: ~pig � pig(1 − εi/2) + (1 − pig)(εi/2). Given the total
counts, M, we then model the observed alternative allele
counts, Y, with the Beta-Binomial likelihood, parameterized
with ~P and one additional parameter—αp—controlling count
overdispersion relative to the Binomial model.

To summarize, our model is as follows (in random variable
notation; see Supplementary Figure S1 for a plate diagram):

yig ~ BetaBinom(~pig, α
p
∣∣∣∣∣mig)

~pig � pig(1 − εi/2) + (1 − pig)(εi/2)
pig � ∑

s

πisγsg

(γsg, 1 − γsg) ~ SSD(1, 1, 1
γp
)

�πi ~ SSD(1, �ρ, 1
πp)

�ρ ~ SSD(1, 1, 1
ρp
)

ε ~ Beta(εpa, ε
p
a

εpb
)

Model Fitting
StrainFacts takes a MAP-based approach to inference on this
model, using gradient-based methods to find parameter values
that maximize the posterior probability of our model conditioned
on the observed counts. We rely heavily on the probabilistic
programming framework Pyro (Bingham et al., 2019), which is
built on the PyTorch library (Paszke et al., 2019) for numerical
methods.

Initial values for Γ andΠ are selected using NMF, and all other
parameters are initialized randomly (Supplementary Methods).
In order to promote global convergence, we take a prior annealing
approach (Supplementary Methods). While it is impossible to
know in practice if we converge to a global optimum, we find that
this procedure often leads to accurate estimates without the need
for replicate fits from independent initializations.

Simulation and Evaluation
Metagenotype data was simulated in order to enable direct
performance benchmarking against ground-truth genotypes
and strain compositions. For each independent simulation,
discrete genotypes of length G for S strains were sampled as
S × G independent draws from a symmetric Bernoulli
distribution. The composition of strains in each of N samples
were generated as independent draws from a Dirichlet
distribution over S components having a symmetric
concentration parameter of 0.4. Per-sample allele frequencies
were generated as the product of the genotypes and the strain-
composition matrices. Sequence error was set to ε � 0.01 for all
samples. Finally metagenotypes at each SNP site were drawn from
a Binomial(m, ~pig) distribution, with a sequencing depth of m �
10 across all sites.

Estimates were evaluated against the simulated ground truth
using five different measures of error (see Results).

Metagenotypes and Reference Genomes
We applied StrainFacts to data from two previously compiled
human microbiome metagenomic datasets: stool samples from a
fecal microbiota transplantation (FMT) study described in (Smith
et al., 2022, BioProject PRJNA737472) and 20,550 metagenomes
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from a meta-analysis of publicly available data in (Shi et al., 2021,
various accessions). As described in that publication,
metagenotypes for gut prokaryotic species were tallied using
GT-Pro version 1.0.1 with the default database, which includes
up to 1,000 of the highest quality genomes for each species from
the Unified Human Gastrointestinal Genome (UHGG) V1.0
(Almeida et al., 2021). This includes both cultured isolates and
high-quality metagenomic assemblies. This same database was
used as a reference set to which we compared our inferred
genotypes. Estimated genomic distances between SNPs were
based on the UHGG representative genome.

We describe detailed results for Escherichia coli (id: 102506,
MGYG-HGUT-02506), Agathobacter rectalis (id: 102492,
MGYG-HGUT-02492), Methanobrevibacter smithii (id:
102163, MGYG-HGUT-02163), and CAG-279 sp1 (id: 102556,
MGYG-HGUT-02556). These were selected to demonstrate
application of StrainFacts to prevalent gram-positive and
gram-negative bacteria in the human gut, the most prevalent
archaeon, as well as an unnamed, uncultured, and largely
unstudied species. We also describe detailed results for
Streptococcus thermophilus (GT-Pro species id: 104345,
representative UHGG genome: MGYG-HGUT-04345), selected
for its high diversity in one sample of our single-cell sequencing
validation.

Single-Cell Genome Sequencing
Of the 159 samples withmetagenomes described in the FMT study,
we selected two samples for single-cell genomics (which we refer to
as the “focal samples”). These samples were obtained from two
different study subjects; one is a baseline sample and the other was
collected after several weeks of FMT doses as described in (Smith
et al., 2022). A full description of the single-cell genomics pipeline
is included in the Supplementary Methods, and will be briefly
summarized here. For each of the focal samples, microbial cells
were isolated from whole feces by homogenization in phosphate
buffered saline, 50 μM filter-based removal of large fecal particles,
and density gradient separation. After isolating and thoroughly
washing the density layer corresponding to the microbiota, this cell
suspension wasmixedwith polyacrylamide precursor solution, and
emulsified with a hydrofluoric oil. Aqueous droplets in oil were
allowed to gellate before separating the resulting beads from the oil
phase and washing. Beads were size selected to between 5 and
25 μM, with the goal of enriching for those encapsulated a single
microbial cell. Cell lysis was carried out inside the hydrogel beads
by incubating with zymolyase, lysostaphin, mutanolysin, and
lysozyme. After lysis, proteins were digested with proteinase K,
before thoroughly washing the beads. Tn5 tagmentation and
barcode PCR were carried out using the MissionBio Tapestri
microfluidics DNA workflow with minor modifications. After
amplification, the emulsion was broken and the aqueous phase
containing the barcoded amplicons was used for sequencing library
preparation with Nextera primers including P5 and P7 sequences
followed by Ampure XP bead purification. Libraries were
sequenced by Novogene on an Illumina NovaSeq 6000,
BioProject PRJNA737472.

Demultiplexed sequence data for each droplet barcode were
independently processed with GT-Pro identically to

metagenomic sequences. For each barcode, GT-Pro allele
counts for a given species were assumed to be
representative of a single strain of that species. Horizontal
coverage was calculated as the fraction of GT-Pro positions
with ≥2 reads, unlike metagenotypes where ≥1 read was used
to calculate horizontal coverage. These single-cell genotypes
(SCGs) were filtered to those with > 1% horizontal coverage
over SNP sites, leaving 87 species with at least one SCG from
either of the two focal samples. During analysis, a number of
SCGs were found to have nearly identical patterns of
horizontal coverage. These may have been formed by
merging of droplets during barcoding PCR, which could
have resulted in multiple barcodes in the same
amplification. To reduce the impact of this artifact, allele
counts from multiple SCGs were summed by complete-
linkage, agglomerative clustering based on their depth
profiles across SNP sites, at a 0.3 cosine dissimilarity threshold.

Computational Analysis
Metagenotype Filtering
FromGT-Prometagenotypes, we extracted allele counts for select
species and removed SNPs that had < 5% occurance of the minor
allele across samples. Species with more than 5,000 SNPs after
filtering, were randomly down-sampled without replacement to
this number of sites. Samples with less than 5% horizontal
coverage were also filtered out.

Strain Inference
For all analyses, StrainFacts was run with the following
hyperparameters ρp � 0.5, πp � 0.3, γp � 10−10, αp � 10,
εpa � 1.5, εpb � 0.01. The learning rate was initially set to 0.05.
Prior annealing was applied to both Γ and �ρ by setting γp and ρp to
1.0 and 5, respectively, for the first 2,000 steps of gradient descent,
before exponentially relaxing these hyperparameters to their final
values over the next 8,000 steps. After this annealing period, when
parameters had not improved for 100 steps, the learning rate was
halved until it had fallen below 10−6, at which point we considered
parameters to have converged. These hyperparameters were
selected through manual optimization and we found that they
gave reasonable performance across the diverse datasets in
this study.

The number of strains parameterized by our model was
chosen as follows. For comparisons to SCGs, the number of
strains was set at 30% of the number of samples—e.g. 33 strains
were parameterized for S. thermophilus because metagenotypes
from 109 samples remained after coverage filtering. For the
analysis of thousands of samples described in (Shi et al.,
2021), we parameterized our model with 200 strains and
increased the numerical precision from 32 to 64 bits. After
strain inference using the 5,000 subsampled SNPs, full-length
genotypes were estimated post-hoc by conditioning on our
estimate of Π and iteratively refitting subsets of all SNPs
(Supplementary Methods).

For computational reproducibility we set fixed seeds for
random number generators: 0 for all analyses where we only
report one estimate, and 0, 1, 2, 3, and 4 for the five replicate
estimates described for simulated datasets. Strain Finder was run
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with flags --dtol 1 --ntol 2 --max_reps 1. We did not use
--exhaustive, Strain Finder’s exhaustive genotype search
strategy, as it is much more computationally intensive.

Genotype Comparisons
Inferred fuzzy genotypes were discretized to zero or one for
downstream analyses. SNP sites without coverage were treated as
unobserved. Distances between genotypes were calculated as the
masked, normalized Hamming distance, the fraction of alleles
that do not agree, ignoring unobserved SNPs. Similarly, SCG
genotypes and the metagenotype consensus were discretized to
the majority allele. In comparing the distance between SCGs and
these inferred genotypes sites missing from either the SCG or the
metagenotype were treated as unobserved. Metagenotype
entropy, a proxy for strain heterogeneity, was calculated for
each sample as the depth weighted mean allele frequency entropy:

1
∑gmig

∑
g

−mig[p̂ig log2(p̂ig) + (1 − p̂ig)log2(1 − p̂ig)]
where p̂ig is the observed alternative allele frequency.

Where indicated, we dereplicated highly similar strains by
applying average-neighbor agglomerative clustering at a 0.05
genotype distance threshold. Groups of these highly similar
strains were replaced with a single composite strain with a
genotype derived from the majority allele at each SNP site and
assigned the sum of strain relative abundances in each sample.
Subsequent co-clustering of these dereplicated inferred and
reference strains was done in the same way, but at a 0.15
genotype distance threshold. After co-clustering, to test for
enrichment of strains in “shared” clusters, we permuted cluster
labels and re-tallied the total number of strains found in clusters
with both inferred and reference strains. Likewise, to test for
enrichment of “inferred-only” clusters we tallied the total number
of strains found in clusters without reference strains after this
shuffling. By repeating the permutation 9,999 times, we arrived at
an empirical null distribution to which we compared our true,
observed values to calculate a p-value.

Pairwise linkage disequilibrium (LD) was calculated as the
squared Pearson correlation coefficient across genotypes of
dereplicated strains. Genome-wide 90th percentile LD, was
calculated from a random sample of 20,000 or, if fewer, all
available SNP positions. To calculate the 90th percentile LD
profile, SNP pairs were binned at either an exact genomic
distance or within a window of distances, as indicated. In
order to encourage a smooth distance-LD relationship,
windows at larger pairwise-distance spanned a larger range.
Specifically the ith window covers the span �10(i−1)/c�, �10i/c�
where c � 30 so that 120 windows span the full range [1, 104).

Software and Code Availability
StrainFacts is implemented in Python3 and is available at https://
github.com/bsmith89/StrainFacts and v0.1 was used for all results
reported here. Strain Finder was not originally designed to take a
random seed argument, necessitating minor modifications to the
code. Similarly, we made several modifications to the MixtureS
(Li et al., 2021) code allowing us to run it directly on simulated

metagenotypes and compare the results to StrainFacts and Strain
Finder outputs. Patch files describing each set of changes, as well
as all other code and metadata needed to re-run our analyses are
available at https://doi.org/10.5281/zenodo.5942586. For
reproducibility, analyses were performed using Snakemake
(Mölder et al., 2021) and with a Singularity container (Kurtzer
et al., 2017) that can be obtained at https://hub.docker.com/
repository/docker/bsmith89/compbio.

Runtime and Memory Benchmarking
Runtimes were determined using the Snakemake benchmark:
directive, and memory requirements using the GNU time
utility, version 1.8 with all benchmarks run on the Wynton
compute cluster at the University of California, San Francisco.
Across strain numbers and replicates, maximum memory usage
for models with 10,000 samples and 1,000 SNPs was,
counterintuitively, less than for smaller models, likely because
portions of runtime data were “swapped” to disk instead of
staying in RAM. We therefore excluded data for these largest
models from our statistical analysis of memory requirements.

RESULTS

Scaling Strain Inference to Hundreds of
Genotypes in Thousands of Samples
Inferring the genotypes and relative abundance of strains in large
metagenome databases requires a deconvolution tool that can
scale to metagenotypes with thousands of SNPs in tens-of-
thousands of samples, while simultaneously tracking hundreds
of microbial strains. To accomplish this we developed StrainFacts,
harnessing fuzzy genotypes to accelerate inference on large
datasets. We evaluated the practical scalability of the
StrainFacts algorithm by applying it to simulated datasets of
increasing size, and comparing its time and memory
requirements to Strain Finder, a previously described method
for strain inference. While several tools have been developed to
perform strain deconvolution (e.g. Lineage O’Brien et al., 2014;
and DESMAN Quince et al., 2017), Strain Finder’s model and
approach to inference are the most similar to StrainFacts. We
therefore selected it for comparison in order to directly assess the
value of fuzzy genotypes.

We simulated five replicate metagenotypes for 120 underlying
strains in 400 samples, and 250 SNPs, and then applied both
StrainFacts and Strain Finder to these data parameterizing them
with 120 strains. Both tools use random initializations, which can
result in convergence to different optima. We therefore
benchmarked runtimes for five independent initializations on
each dataset, resulting in 25 total runs for each tool. In this setting,
the median runtime for StrainFacts was just 17.2 min, while
Strain Finder required a median of 6.4 h. When run on a GPU
instead of CPU, StrainFacts was able to fit these data in a median
of just 5.1 min.

Since the correct strain number is not known a priori in real-
world applications, existing strain inference tools need to be
parameterized across a range of plausible strain counts, a step
that significantly impacts runtime. To assess performance in this
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setting, we also fit versions of each model with 50% more strains
than the ground-truth, here referred to as the “1.5x
parameterization” in contrast to the 1x parameterization
already described. In this setting, StrainFacts’ performance
advantage was even more pronounced, running in a median of
17.1 min and just 5.3 min on GPU, while Strain Finder required
30.8 h. Given the speed of StrainFacts, we were able to fit an even
larger simulation with 2,500 samples and 500 strains. On a GPU,
this took a median of 12.6 min with the 1x parameterization and,
surprisingly, just 8.9 min with the 1.5x parameterization. We did
not attempt to run Strain Finder on this dataset.

We next examined runtime scaling across a range of sample
counts between 50 and 2,500. We applied Strain Finder and
StrainFacts (both CPU and GPU) to simulated metagenotypes
with 250 SNPs, and a fixed 1:5 ratio of strains to samples. Median
runtimes for each tool at both the 1x and 1.5x parameterization
demonstrate a substantially slower increase for StrainFacts as
model size increases (Figure 1A). Strain Finder was faster than
StrainFacts on the 1x parameterization of a small simulation with
50 samples and 10 strains: 1.3 min median runtime versus 4 min
for StrainFacts on a CPU and 2.8 min on a GPU. However,
StrainFacts had faster median runtimes on all other datasets.

Given the good runtime scaling properties of StrainFacts, we
next asked if computer memory constraints would limit its
applicability to the largest datasets (Figure 1A). A model
fitting 10,000 samples, 400 strains, and 500 SNPs had a
maximum memory allocation of 7.7 GB, indicating that
StrainFacts’ memory requirements are satisfied on most
contemporary CPU or GPU hardware and opening the door
to even larger models. Using ordinary least squares, we fit the
observed memory requirements to the theoretical, asymptomatic
expectations, O(NS +NG + SG), resulting in a regression R2 of
0.997. We then used this empirical relationship to extrapolate for
even larger models (Figure 1B), estimating that for a model of

400 strains and 1,000 SNPs, 32 GB of memory would be able to
simultaneously perform strain inference for more than 22,000
samples. This means StrainFacts can realistically analyse tens of
thousands of samples on commercial GPUs.

StrainFacts Accurately Reconstructs
Genotypes and Population Structure
We next set out to evaluate the accuracy of StrainFacts and to
compare it to Strain Finder. We simulated 250 SNPs for 40 strains,
generating metagenotypes across 200 samples. For both tools, we
specified a model with the true number of strains, fit the model to
this data, and compared inferences to the simulated ground-truth.
For each of five replicate simulations we performed inference with
five independent initializations, thereby gathering 25 inferences for
each tool. As in (Smillie et al., 2018), we use the weighted UniFrac
distance (Lozupone et al., 2007) as an integrated summary of both
genotype and relative abundance error. By this index, StrainFacts
and Strain Finder performed similarly well when applied to the
simulated data (Figure 2A).We repeated this analysis with the 1.5x
parameterization to assess the robustness of inferences to model
misspecification, finding that both tools maintained similar
performance to the 1x parameterization. By comparison,
considering too few strains (the 0.8x parameterization, fitting 32
strains) degraded performance dramatically for both tools, with
StrainFacts performing slightly better. Thus, we conclude based on
UniFrac distance that StrainFacts is as accurate as Strain Finder
and that both models are robust to specifying too many strains.

To further probe accuracy, we quantified the performance of
StrainFacts and Strain Finder with several other measures. First,
we evaluated pairwise comparisons of strain composition by
calculating the mean absolute error of pairwise Bray-Curtis
dissimilarities (Figure 2B). While, with the 1x
parameterization, Strain Finder slightly outperformed

FIGURE 1 |Computational scalability of strain inference on simulated data. (A) Runtime (in seconds, log scale) is plotted at a range of sample counts for both Strain
Finder and StrainFacts, as well for the latter with GPU acceleration. Throughout, 250 SNPs are considered, and simulated strains are fixed at a 1:5 ratio with samples.
Models are specified with this same number of strains (“1x strains”, solid lines) or 50% more (“1.5x strains”, dashed lines). Median of 25 simulation runs is shown. (B)
Maximum memory allocation in a model with 100 strains is plotted for StrainFacts models across a range of sample counts (N) and SNP counts (G, line shade).
Median of nine replicate runs is shown. Maximummemory requirements are extrapolated to higher numbers of samples for a model with 1,000 SNPs (red line). A version
of this panel that includes a range of strain counts is included as Supplementary Figure S2.
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StrainFacts on this index, the magnitude of the difference was
small. This suggests that StrainFacts can be used for applications
in microbial ecology that rely on measurements of beta-diversity.

Ideally, inferences should conform to Occam’s razor,
estimating “as few strains as possible, but no fewer”.
Unfortunately, Bray-Curtis error is not sensitive to the
splitting or merging of co-abundant strains and UniFrac error
is not sensitive to the splitting or merging of strains with very
similar genotypes. To overcome this limitation, we calculated the
mean absolute error of the Shannon entropy of the inferred strain
composition for each sample (Figure 2C). This score quantifies
how accurately inferences reflect within-sample strain
heterogeneity. StrainFacts performed substantially better on
this score than Strain Finder for all three parameterizations,
indicating more accurate estimation of strain heterogeneity.

Finally, we assessed the quality of genotypes reconstructed by
StrainFacts compared to Strain Finder using the abundance
weighted mean Hamming distance. For each ground-truth
genotype, normalized Hamming distance is computed based
on the best matching inferred genotype (Figure 2D), then
summarized as the mean weighted by the true strain
abundance across all samples. We assessed the reverse as well:
the abundance weighted mean, best-match Hamming distance
for each inferred genotype among the ground-truth genotypes
(Figure 2E). These two scores can be interpreted as answers to the
distinct questions “how well were the true genotypes recovered?”
and “how well do the inferred genotypes reflect the truth?”,
respectively. While StrainFacts and Strain Finder performed
similarly on these indexes—which tool had higher accuracy
varied by score and parameterization—StrainFacts’ accuracy

FIGURE 2 | Accuracy of strain inference on simulated data. Performance of StrainFacts and Strain Finder are compared across five distinct accuracy indices, with
lower scores reflecting better performance on each index. Simulated data had 200 samples, 40 underlying strains, and 250 SNPs. For each tool, 32, 40, and 60 strain
models were parameterized (“0.8x”, “1x”, and “1.5x” respectively), and every model was fit with five independent initializations to each simulation. All 25 estimates for
each tool-parameterization combination are shown. Scores reflect (A) mean Unifrac distance between simulated and inferred strain compositions, (B) mean
absolute difference between all-by-all pairwise Bray-Curtis dissimilarities calculated on simulated versus inferred strain compositions, (C) mean absolute difference in
Shannon entropy calculated on simulated versus inferred strain compositions, (D) abundance weighted mean Hamming distance from each ground-truth strain to its
best-match inferred genotype, and (E) the reverse: abundance weighted mean Hamming distance from each inferred strain to its best-match true genotype. Markers at
the top of each panel indicate a statistical difference between tools at a p < 0.05 (*) or p < 0.001 (**) significance threshold by Wilcoxon signed-rank test. A version of this
figure that includes accuracy comparisons to MixtureS is included as Supplementary Figure S3.
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was more stable across the 1x and 1.5x parameterizations. It
should be noted that since strain genotypes are only inferred for
SNP sites, the genome-wide genotype reconstruction error
(which includes invariant sites) will likely be much lower than
this Hamming distance. We examine the relationship between
genotype distances and average nucleotide identity (ANI) in
Supplementary Figure S4 in order to contextualize our
simulation results for those more familiar with ANI comparisons.

To expand our performance comparison to a second tool
designed for strain inference, we also ran MixtureS on a subset of
the simulations. MixtureS estimates strain genotype and relative
abundance on each metagenotype individually and therefore does
not leverage variation in strain abundance across samples. We
found that it performed worse than Strain Finder and Strain Facts
on the benchmarks (see Supplementary Figure S3).

Overall, these results suggest that StrainFacts is capable of
state-of-the-art performance with respect to several different
scientific objectives in a realistic set of simulations.
Performance was surprisingly robust to model misspecification
with more strains than the simulation. Eliminating the
computational demands of a separate model selection step
further improves the scaling properties of StrainFacts.

Single-Cell Sequencing Validates Inferred
Strain Genotypes
Beyond simulations, we sought to confirm the accuracy of strain
inferences in a real biological dataset subject to forms of noise and

bias not reflected in the generative model we used for simulations.
To accomplish this, we applied a recently developed, single-cell,
genomic sequencing workflow to obtain ground-truth, strain
genotypes from two fecal samples collected in a previously
described, clinical FMT experiment (Smith et al., 2022) from
two independent subjects. We ran StrainFacts on metagenotypes
derived from these two focal samples as well as the other 157
samples in the same study.

Genotypes that StrainFacts inferred to be present in each of
these metagenomes matched the observed SCGs, with a mean,
best-match normalized Hamming distance of 0.039.
Furthermore, the median distance was just 0.013, reflecting the
outsized influence of a small number of SCGs with more extreme
deviations. For many species, SCGs also match a consensus
genotype—the majority allele at each SNP site in each
metagenotype (see Figure 3A). We found a mean distance to
the consensus of 0.037 and a median of 0.009. Because this
distance excludes sites without observed counts in the
metagenotype, we masked these same sites in our inferred
genotypes to uniformly contrast the consensus approach to
StrainFacts genotypes. Overall, inferred genotypes were similar
to the consensus, with a mean, masked distance of 0.031 (median
of 0.009). However, the consensus approach fails for species with
a mixture of multiple, co-existing strains. When we select only
species with a metagenotype entropy of greater than 0.05, an
indication of strain heterogeneity, we see that StrainFacts
inferences have a distinct advantage, with a mean distance of
0.055 versus 0.069 for the consensus approach (median of 0.018

FIGURE 3 | Inferred strains reflect genotypes from a single-cell sequencing experiment. (A) Distance between observed SCGs and StrainFacts inferences (X-axis)
versus consensus genotypes (Y-axis). Points below and to the right of the red dotted line reflecting an improvement of our method over the consensus, based on the
normalized, best-match Hamming distance. Each dot represents an individual SCG reflecting a putative genotype found in the analysed samples. SCGs from all species
found in either of the focal samples are represented, and marker colors reflect the metagenotype entropy of that species in the relevant focal sample, a proxy for the
potential strain diversity represented. Axes are on a “symmetric” log scale, with linear placement of values below 10–2. (B) A non-metric multidimensional scaling ordination of
68 SCGs and inferred genotypes for one species, S. thermophilus, with notably high strain diversity in one of the two focal samples. Circles represent SCGs, are colored by
their assignment to one of four identified clusters, and larger markers indicate greater horizontal coverage. Triangles represent StrainFacts genotypes inferred to be at greater
than 1% relative abundance, and larger markers reflect a higher inferred relative abundance. The red cross represents the consensus metagenotype of the focal sample.
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versus 0.022, p < 0.001). These results validate inferred genotypes
in a stool microbiome using single-cell genomics and
demonstrate that StrainFacts accounts for strain-mixtures
better than consensus genotypes do.

Of the 75 species represented in our SCG dataset, one stood
out for having numerous SCGs while reflecting a remarkably high
degree of strain heterogeneity. Among 68 high-quality SCGs for
S. thermophilus, cluster analysis identified four distinct types
(here referred to as Clusters A—D), accounting for 48, 7, 6,
and one SCGs, respectively (Figure 3B). Independently,
StrainFacts inferred four strains in the metagenomic data from
the same stool sample, (Strain 1—4) with 57, 32, and 7, and 3%
relative abundance, respectively. We explored the concordance
between clusters and StrainFacts inferences by assigning a best-
match Hamming distance genotype among the inferred strains to
each SCG (Table 2). For SCGs in three of the four clusters there
was a low median distance to StrainFacts genotypes as well as a
perfect 1-to-1 correspondence between strains and clusters.
While this genotype concordance was broken for SCGs in
cluster B, strain 4 was also inferred to be at the lowest relative
abundance, suggesting that there may have been too little
information encoded in the metagenotype data to accurately
reconstruct that strain’s genotype. While SCG counts and
inferred strain fractions do not match perfectly in this sample,
this may be due to large differences between SCG and
metagenomic sequencing technologies that could result in
differentially biased sampling of strains. The SCG cluster with
the largest membership was, however, matched with the strain
inferred to be at the highest relative abundance. Our findings for
S. thermophilus show that StrainFacts’ estimates of genotypes and
relative abundances are remarkably accurate for samples with
high strain heterogeneity, despite the challenges presented by real
biological samples and low abundance strains.

Analysis of Genomic Diversity Using de
novo Strain Inferences on Thousands of
Samples
Having established the accuracy and scalability of StrainFacts, we
applied it to a corpus of metagenotype data derived from 20,550
metagenomes across 44 studies, covering a large fraction of all
publicly available human-associated microbial metagenomes (Shi
et al., 2021). We performed strain inference on GT-Pro
metagenotypes for four species: Escherichia coli, Agathobacter
rectalis, Methanobrevibacter smithii, and CAG-279 sp1. E. coli
and A. rectalis are two highly prevalent and well studied bacterial

inhabitants of the human gut microbiome, and M. smithii is the
most prevalent and abundant archaeon detected in the human
gut (Scanlan et al., 2008). CAG-279, on the other hand, is an
unnamed and little-studied genus and a member of the family
Muribaculaceae. This family is common in mice (Lagkouvardos
et al., 2019), but to our knowledge does not have representatives
cultured from human samples.

For each species, we compared strains inferred by StrainFacts
to those represented in the GT-Pro reference database, which is
derived from the UHGG (Almeida et al., 2021). In order to
standardize comparisons, we dereplicated inferred and reference
strains at a 0.05 genotype distance threshold. Interestingly,
dereplication had a negligible effect on StrainFacts results,
reducing the number of E. coli strains by just 4 (to 119) with
no reduction for the three other species. This suggests that the
diversity regularization built into the StrainFacts model is
sufficient to collapse closely related strains as part of inference.

As GT-Pro only tallies alleles at a fixed subset of SNPs, the
relationship between genotype distances and ANI is not fixed. In
order to anchor our results to this widely-used measure of
genome similarity, we compared the genotype distance to
genome-wide ANI for all pairs of genomes in the GT-Pro
reference database for all four species. We find that the
fraction of positions differing genome wide (calculated as
1—ANI) was nearly proportional to the fraction of genotyped
positions differing, but with a different constant of
proportionality for each species: E. coli (0.0776, uncentered R2

= 0.994), A. rectalis (0.1069, R2 = 0.990),M. smithii (0.0393, R2 =
0.967), and CAG-279 (0.0595, R2 = 0.991). Additional details of
this analysis can be found in Supplementary Figure S4.

StrainFacts Recapitulates Known Diversity
in Well Studied Species
E. coli, A. rectalis, andM. smithii all have many genome sequences
in GT-Pro reference database, presenting an opportunity to
contrast inferred against reference strains. In order to evaluate
the concordance between the two (Table 3 and Figure 4), we co-
clustered all dereplicated strains (both reference and inferred) at a
0.15 normalized Hamming distance threshold—note, crucially,
that this distance reflects a much smaller full-genome
dissimilarity, as it is based only on genome positions with
polymorphism across metagenomes, ignoring conserved
positions.

For E. coli, we identified 40 strain clusters with 93% of inferred
strains and 94% of references falling into clusters containing strains

TABLE 2 |Concordance among SCGs of cluster assignments and the closest-match StrainFacts inferred genotype, among the four strains inferred to be at greater than 1%
relative abundance in the analysed sample. The total number of SCGs in each cluster and the relative abundance of each inferred strain are indicated in parentheses in the
column and row labels, respectively. Numbers in each cell indicate the number of SCGs at that intersection and values in parentheses indicate the median normalized
Hamming distance of those SCGs to the inferred strain genotype.

Cluster A (48) Cluster B (7) Cluster C (6) Cluster D (1)

Strain 1 (57%) 48 (0.006) 1 (0.18)
Strain 2 (32%) 3 (0.19) 6 (0.008)
Strain 3 (7%) 1 (0.02)
Strain 4 (3%) 3 (0.19)
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from both sources (“shared” clusters), which is significantly more
overlap than expected after random shuffling of cluster labels (p =
0.002 by permutation test). While most metagenome-inferred
genotypes are similar to those found in genome reference
databases, we observed some clusters composed only of
StrainFacts strains, representing novel lineages. However, these
strains are no more common than after random permutation (p =
0.81), matching our expectations for this well-studied species.

We next asked if these trends hold for the other species. While A.
rectalis had amuch greater number of clusters (456), 69% of inferred
strains and 45% of reference strains are nonetheless found to be in
shared clusters, significantly more than would be expected with
random shuffling of cluster labels (p = 0.002 by permutation test).
Correspondingly, we do not find evidence for enrichment of inferred
strains in novel clusters (p = 0.71). We find similar results for M.
smithii and CAG-279—the fraction of strains in shared clusters is
significantly greater than after random reassignment (p < 0.001 for
both), and there is no evidence for enrichment of inferred strains in
novel clusters (p = 1.0 for both). Overall, the concordance between
reference and inferred strains supports not only the credibility of
StrainFacts’ estimates, but also suggests that our de novo inferences
capture a substantial fraction of previously documented strain
diversity, even in well studied species.

Going beyond the extensive overlap of strains with reference
genomes and StrainFacts inferences, we examined clusters in
which references are absent or relatively rare. Visualizing a
dendrogram of consensus genotypes from co-clustered strains
(Figure 4) we observe some sections of theA. rectalis dendrogram
with many novel strains. Similarly, for CAG-279, the sheer
number of inferred strains relative to genomes in reference
databases means that fully half of all genotype clusters are
entirely novel, emphasizing the power of StrainFacts inferences
in understudied species. Future work will be needed to determine
if these represent new subspecies currently missing from
reference databases.

Species Inhabiting the Human Gut Exhibit
Distinct Biogeography Observed Across
Independent Metagenomic Studies
Large metagenomic collections allow us to examine intraspecific
microbial diversity at a global scale and among dozens of studies.
Towards this end, we identified the most abundant StrainFacts
strain of E. coli, A. rectalis, M. smithii, and CAG-279 in stool
samples across 34 independent studies. Across all four species, we
observe some strains that are distributed globally as well as others

that appear specific to one country of origin (Figure 5,
Supplementary Figure S5). For example, among the 198
dereplicated, inferred strains of A. rectalis, 75 were found as
the dominant strain (i.e. highest relative abundance) in samples
collected on three or more continents. While this makes it
challenging to consistently discern where a sample was
collected based on its dominant strain of a given species, we
nonetheless find that studies with samples collected in the
United States of America form a distinct cluster, as do those
from China, and the two are easily distinguished from one
another and from most other studies conducted across Europe
and North America (Figure 5). Our observation of a distinct
group of A. rectalis strains enriched in samples from China is
consistent with previous results (Scholz et al., 2016; Costea PI.
et al., 2017; Truong et al., 2017).

These general trends hold across the other three species. In M.
smithii, independent studies in the same country often share very
similar strain dominance patterns (e.g. see clustering of studies
performed in each of China, Mongolia, Denmark, and Spain in
Figure 5). In E. coli, while many strains appear to be distributed
globally, independent studies from China still cluster together based
on patterns in strain dominance (see Supplementary Figure S5).
Notably, in CAG-279, studies with individuals in westernized
societies do not cluster separately from the five other studies,
suggesting that host lifestyle is not highly correlated with specific
strains of this species. The variety of dominance patterns across the
four species described here suggest that different mechanisms may
drive intraspecific biogeography depending on the biology and
natural history of the species. As the coverage of diverse
microbiomes grows, StrainFacts will enable future studies
disentangling the contributions of lifestyle, dispersal limitation
and other factors in the global distribution of strains.

Linkage Disequilibrium Decay Suggests
Variation in Recombination Rates Across
Microbial Species
Studying the population genetics of host-associated microbes has
the potential to elucidate processes of transmission,
diversification, and selection with implications for human
health and perhaps even our understanding of human origins
(Linz et al., 2007; Garud and Pollard, 2019). To demonstrate the
application of StrainFacts to the study of microbial evolution, we
examined patterns in pairwise LD, here calculated as the squared
Pearson correlation coefficient (r2). This statistic can inform
understanding of recombination rates in microbial populations

TABLE 3 | Dereplication and co-clustering of strains inferred from metagenomes or from a reference database.

Species Metagenome samples
fit

Reference strainsa Inferred strainsa Total clustersb Novel clustersb

(%)
Shared clustersb

(%)

E. coli 9,232 176 119 40 20 60
A. rectalis 11,860 752 198 456 13 25
M. smithii 3,528 384 178 205 7 38
CAG-279 3,579 135 200 228 50 25

aDereplicated at 0.05 distance threshold.
bCo-clustered at a 0.15 distance threshold.

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 86738610

Smith et al. Metagenomic Strain Inference with StrainFacts

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


(Vos, 2009; Garud et al., 2019). Genome-wide, LD, summarized
as the 90th percentile r2 (LD90, Vos et al., 2017), was substantially
higher for E. coli (0.24) thanA. rectalis (0.04),M. smithii (0.11), or
CAG-279 (0.04), perhaps suggesting greater population structure
in the species and less panmictic recombination.

We estimated LD distance-decay curves for SNPs, using a
single, high-quality reference genome for each species to obtain
estimates of pairwise distance between SNP sites. For all four
species, adjacent SNPs were much more tightly linked, with an
LD90 of > 0.999. LD was still dramatically above background at 50

FIGURE 4 | Concordance between reference and StrainFacts inferred strain genotypes for four prevalent species in the human gut microbiome. Heatmap rows
represent consensus genotypes from co-clustering of reference and inferred strains and columns are 3,500 randomly sampled SNP sites (grey: reference and black:
alternative allele). Colors to the left of the heatmap indicate clusters with only reference strains (dark purple), only inferred strains (yellow), or both (teal). Rows are ordered
by hierarchical clustering built on distances between consensus genotypes and columns are ordered arbitrarily to highlight correlations between SNPs.
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FIGURE 5 | Patterns in strain dominance according to geography and lifestyle across thousands of publicly available metagenomes in dozens of independent
studies for two common members of the human gut microbiome. Columns represent collections of samples from individual studies and are further segmented by
country and lifestyle (westernized or not). Rows represent strains inferred by StrainFacts. Cell colors reflect the fraction of samples in that study segment with that strain
as the most abundant member. Study segments are omitted if they include fewer than 10 samples. Row ordering and the associated dendrogram reflect strain
genotype distances, while the dendrogram for columns is based on their cosine similarity. Studies with samples collected in several countries with notable clustering for
one or more species are highlighted with colors above the heatmap. Additionally, studies from westernized populations are indicated. Both a study identifier and the ISO
3166-ISO country-code are included in the column labels.
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bases of separation, and fell rapidly with increasing distance
(Figure 6). The speed of this decay was different between
species, which we characterized with the LD½,90: the distance
at which the LD90 was less than 50% of the value for adjacent
SNPs (Vos et al., 2017). M. smithii exhibited by far the slowest
decay, with a LD½,90 of 520 bases, followed by E. coli at 93 bases,
CAG-279 at 66, and A. rectalis at just 28 bases. This variation in
decay profiles may reflect major differences in recombination
rates across populations.

To validate our findings, we ran identical analyses with
dereplicated genotypes from genomes in the GT-Pro reference
database. Estimates of both LD and the distance-decay
relationship are very similar between inferred and reference
strains, reinforcing the value of genotypes inferred from
metagenomes for microbial population genetics.
Interestingly, for three of the four species (E. coli, A.

rectalis, and M. smithii), LD estimates from StrainFacts
strains were significantly higher than from references (p <
1e-10 for all three by Wilcoxon test), while CAG-279 exhibited
a trend towards the reverse (p = 0.85). It is not clear what might
cause these quantitative discrepancies, but they could reflect
differences in the set of strains in each dataset. Future studies
expanding this analysis to additional species will identify
patterns in recombination rates across broader microbial
diversity.

DISCUSSION

Here we have described StrainFacts, a novel tool for strain
inference in metagenomic data. StrainFacts models
metagenotype data using a fuzzy-genotype approximation,

FIGURE 6 | Pairwise LD across genomic distance estimated from inferred genotypes for four species. LD was calculated as r2 and genomic distance between
polymorphic loci is based on distances in a single, representative genome. The distribution of SNP pairs in each distance window is shown as a histogram with darker
colors reflecting a larger fraction of the pairs in that LD bin, and the LD90 for pairs at each distance is shown for inferred strains (red), along with an identical analysis on
strains in the reference database (blue). Genome-wide LD90 (dashed lines) is also indicated.
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allowing us to estimate both the relative abundance of strains
across samples as well as their genotypes. To accelerate analysis
compared to the current state-of-the-art, we harness the
differentiability of our model to apply modern, gradient-
based optimization and GPU-parallelization. Consequently,
StrainFacts can scale to tens-of-thousands of samples while
inferring genotypes for hundreds of strains. On simulated
benchmarks, we show that StrainFacts has comparable
accuracy to Strain Finder, and we validate strain inferences
in vivo against genotypes observed by single-cell genomics.
Finally, we apply StrainFacts to a database of tens of
thousands of metagenomes from the human microbiome to
estimate strains de novo, allowing us to characterize strain
diversity, biogeography, and population genetics, without the
need for cultured isolates.

Beyond Strain Finder, other alternatives exist for strain
inference in metagenomic data. While we do not directly
compare to DESMAN, runtimes of several hours have been
reported for that tool on substantially smaller simulated
datasets (Quince et al., 2017), and hence we believe that
StrainFacts is likely the most scalable implementation of the
metagenotype deconvolution approach. Still other methods
apply regularized regression (e.g. Lasso Albanese and Donati,
2017) to decompose metagenotypes—essentially solving the
abundance half of the deconvolution problem but not the
genotypes half—or look for previously determined strain
signatures (e.g. k-mers Panyukov et al., 2020) based on known
strain genotypes. However, both of these require an a priori
database of the genotypes that might be present in a sample. An
expanding database of strain references can make these
approaches increasingly useful, and StrainFacts can help to
build this reference.

Several studies avoid deconvolution by directly examining
allele frequencies inferred from metagenotypes. While
consensus (Truong et al., 2017; Zolfo et al., 2017) or
phasing (Garud et al., 2019) approaches can accurately
recover genotypes in some cases, their use is limited to low
complexity datasets, with sufficient sequencing depth and low
strain heterogeneity. Likewise, measuring the dissimilarity of
metagenotypes among pairwise samples indicates shared
strains (Podlesny and Fricke, 2020), but this approach risks
confounding strain mixing with genotype similarity. Finally,
assembly (Li et al., 2019) and read-based methods (Cleary
et al., 2015) for disentangling strains are most applicable when
multiple SNPs can be found in each sequencing read. With
ongoing advancements in long-read (Vicedomini et al., 2021)
and read-cloud sequencing (Kuleshov et al., 2016; Kang et al.,
2018), these approaches will become increasingly feasible.
Thus, StrainFacts occupies the same analysis niche as
Strain Finder and DESMAN, and it expands upon these
reliable approaches by providing a scalable model fitting
procedure.

Fuzzy genotypes enable more computationally efficient
inference by eliminating the need for discrete optimization.
Specifically, we used well-tested and optimized gradient
descent algorithms implemented in PyTorch for parameter
estimation. In addition, fuzzy genotypes may be more robust

to deviations from model assumptions. For instance, an
intermediate genotype could be a satisfactory
approximation when gene duplications or deletions are
present in some strains. While we do not explore the
possibility here, fuzzy genotypes may provide a heuristic
for capturing uncertainty in strain genotypes. Future work
could consider propagating intermediate genotype values
instead of discretizing them.

StrainFacts builds on recent advances in metagenotyping, in
particular our analyses harnessed GT-Pro (Shi et al., 2021) to
greatly accelerate SNP counting in metagenomic reads. While
we leave a comparison of StrainFacts performance on the
outputs of other metagenotypers to future work, StrainFacts
itself is agnostic to the source of input data. It would be
straightforward to extend StrainFacts to operate on loci with
more than two alleles or to use metagenotypes from a tool other
than GT-Pro. It would also be interesting to extend StrainFacts
to use SNPs outside the core genome that vary in their presence
across strains.

Combined with the explosive growth in publicly available
metagenomic data and the development of rapid
metagenotyping tools, StrainFacts enables the de novo
exploration of intraspecific microbial diversity at a global scale
and on well-powered cohorts with thousands of samples. Future
applications could examine intraspecific associations with
disease, track the history of recombination between microbial
subpopulations, and measure the global transmission of host-
associated microbes across human populations.
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