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Glaucoma
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PURPOSE. We evaluated three new pixelwise rates of retinal height changes (PixR) strategies to
reduce false-positive errors while detecting glaucomatous progression.

METHODS. Diagnostic accuracy of nonparametric PixR-NP cluster test (CT), PixR-NP single
threshold test (STT), and parametric PixR-P STT were compared to statistic image mapping
(SIM) using the Heidelberg Retina Tomograph. We included 36 progressing eyes, 210
nonprogressing patient eyes, and 21 longitudinal normal eyes from the University of
California, San Diego (UCSD) Diagnostic Innovations in Glaucoma Study. Multiple comparison
problem due to simultaneous testing of retinal locations was addressed in PixR-NP CT by
controlling family-wise error rate (FWER) and in STT methods by Lehmann-Romano’s k-FWER.
For STT methods, progression was defined as an observed progression rate (ratio of number
of pixels with significant rate of decrease; i.e., red-pixels, to disk size) > 2.5%. Progression
criterion for CT and SIM methods was presence of one or more significant (P < 1%) red-pixel
clusters within disk.

RESULTS. Specificity in normals: CT ¼ 81% (90%), PixR-NP STT ¼ 90%, PixR-P STT ¼ 90%, SIM
¼ 90%. Sensitivity in progressing eyes: CT ¼ 86% (86%), PixR-NP STT ¼ 75%, PixR-P STT ¼
81%, SIM ¼ 39%. Specificity in nonprogressing patient eyes: CT ¼ 49% (55%), PixR-NP STT ¼
56%, PixR-P STT ¼ 50%, SIM ¼ 79%. Progression detected by PixR in nonprogressing patient
eyes was associated with early signs of visual field change that did not yet meet our definition
of glaucomatous progression.

CONCLUSIONS. The PixR provided higher sensitivity in progressing eyes and similar specificity in
normals than SIM, suggesting that PixR strategies can improve our ability to detect
glaucomatous progression. Longer follow-up is necessary to determine whether non-
progressing eyes identified as progressing by these methods will develop glaucomatous
progression. (ClinicalTrials.gov number, NCT00221897.)

Keywords: glaucoma progression, rate of progression, family-wise type I error, Lehmann-
Romano, Bonferroni correction

Glaucoma is a progressive optic neuropathy that results in
progressive loss of retinal nerve fibers and death of retinal

ganglion cells.1,2 The loss of retinal nerve fibers causes
characteristic changes in the appearance of the retinal nerve
fiber layer as localized or diffuse defects and changes in the
configuration of the optic disk.3 Detecting structural glaucoma-
tous change over time, therefore, is a central aspect of
detecting glaucomatous progression and management of
glaucoma.1 Progressive retinal changes are observable in vivo
using various optical imaging modalities. In this work, we focus
on detecting glaucomatous progression from localized rates of
structural changes using the Heidelberg Retina Tomograph
(HRT; Heidelberg Engineering, GmbH, Germany).

Techniques, such as the HRT topographic change analysis
(TCA),4 statistic image mapping of the retina (SIM),5 and proper
orthogonal decomposition framework (POD),6,7 can detect
retinal locations with glaucomatous change over time from
serial HRT exams. The TCA and POD methods detect changes
in retinal locations in each HRT follow-up exam with respect to
a baseline and SIM detects retinal locations with significant rate
of change during follow-up. Simultaneous assessment of
thousands of retinal locations for progression increases the
family-wise or overall false-positive detection errors. This
tendency of multiple simultaneous tests to increase the overall
false-positive errors or type I statistical errors is known as the
multiple comparison problem.8–13 Patterson et al.5 pointed out
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the multiple comparison problem in retinal imaging when
retinal locations are evaluated collectively to detect glaucoma-
tous progression as in HRT TCA, and developed the SIM
method based on a nonparametric statistical technique. The
SIM evaluates the statistical significance of rate of change at
each retinal location as well as controls the overall type I error
due to simultaneous assessment of spatial extents of changes
(cluster size) using a statistical procedure known as resam-
pling. During resampling, the observed retinal measurements
of an eye are treated as its sampling population and new
unique samples are drawn from this population. In general, the
following procedures are available for resampling: bootstrap
(sampling with replacement),14 jackknife (leaving one obser-
vation out at a time),15 permutation (sampling without
replacement),16,17 and subsampling (resampling fewer sam-
ples).18

In glaucoma research, the resampling approach has been
used for assessing the effect of number scans acquired per
exam on the estimates of optic disk stereometric parameters,19

parameter selection for glaucoma detection using a linear
discriminant function,20 detecting glaucomatous changes over
time using time-domain optical coherence tomography
(O’Leary D, et al. IOVS 2007;48:ARVO E-Abstract 3335),
evaluating HRT stereometric parameters and topographic
change analysis probability maps (Artes PH, et al. IOVS

2008;49:ARVO E-Abstract 5430), data simulations to evaluate
longitudinal glaucomatous changes in visual fields21 and optic
nerve head,22 detecting glaucomatous progression of visual
fields23,24 (O’Leary D, et al. NAPS Abstract, 2011), and is
increasingly utilized for nonparametric statistical analysis in
glaucoma research.25–27

The SIM controls the overall false-positive detection only
among the spatial extents (or clusters) of progression in
neighboring retinal locations (i.e., only during cluster-level
testing) and does not control among individual retinal locations
(i.e., not during pixel-level testing). Lack of control for overall
false-positive detection among retinal locations may reduce the
confidence on the assessment of progression in retinal
locations reported in the glaucoma progression maps for
visual inspection, and may decrease the sensitivity of detecting
progression using the clusters of changes due to possible
increase in the number of false-positive locations in individual
clusters.

In this study, we introduced the following three new
parametric and nonparametric statistical strategies called
pixelwise rates of retinal changes (PixR) to control overall
false-positive detection of progression among individual retinal
locations and compare their diagnostic accuracy for detection
of glaucoma progression to SIM: (1) PixR nonparametric
cluster test (PixR-NP CT) is a nonparametric test that directly
extends SIM by controlling overall false-positive errors at pixel-
and cluster-level using Bonferroni correction or family-wise
error rate (FWER), (2) PixR nonparametric single threshold test
(PixR-NP STT) is a nonparametric test that controls overall
false-positive errors at the pixel-level using a k–FWER
procedure by Lehmann and Romano,28 which is less conser-
vative than Bonferroni correction, and (3) PixR parametric
single threshold test (PixR-P STT) controls overall false-positive
errors at the pixel-level in a parametric framework using the k-
FWER procedure.

METHODS

Subjects

We included 267 eyes from 187 eligible participants with good
quality HRT images from the University of California, San Diego

(UCSD) Diagnostic Innovations in Glaucoma Study (DIGS). For
eligibility, the study eyes were required to have at least four
good quality HRT-II exams, at least five good quality Standard
Automated Perimetry visual field exams (SAP; Humphrey HFA-
II; Carl Zeiss Meditec, Dublin, CA) and at least two good quality
stereophotographs of the optic disk (TRC-SS; Topcon Instru-
ments Corp. of America, Paramus, NJ). Visual fields included
for assessing progression were acquired using either full
threshold or SITA standard threshold test strategy and using
either 30-2 or 24-2 testing algorithm. For data quality, HRT-II
exams with mean pixel height standard deviation (MPHSD) <
50 lm, even image exposure and with good centering were
considered to be of acceptable quality after quality review by
the UCSD Imaging Data Evaluation and Assessment Center
according to standard protocols29; SAP visual field exams with
fewer than 25% false-positives, false-negatives, and fixation
losses, and no observable testing artifacts were considered to
be reliable; and stereophotographs assessed as fair to excellent
quality by trained graders were considered to be of acceptable
quality. Median (interquartile range) MPHSD for the HRT exams
was 15 (12–21) lm.

The study eyes comprised of three categories, namely,
progressing eyes for assessing sensitivity of detecting progres-
sion, nonprogressing patient eyes, and longitudinal normal
eyes for assessing specificity of detecting progression.

Glaucomatous progression was defined based on either
progressive visual field loss or optic disk changes from
stereophotograph assessment. Progressive visual field loss
was defined based on likely progression by SAP Guided
Progression Analysis (GPA; Humphrey Field Analyzer, software
ver. 4.2; Carl Zeiss Meditec). Progressive changes in stereo-
photographic appearance of the optic disk between the
baseline and the last stereophotograph of each eye (patient
name, diagnosis, and temporal order of stereophotographs
were masked) were assessed by two observers based on a
decrease in the neuroretinal rim width, appearance of a new
retinal nerve fiber layer (RNFL) defect, or increase in the size of
a preexisting RNFL defect. Any differences in assessment
between these two observers were adjudicated by a third
observer. For each eye, the baseline visual field exams for SAP
GPA and the baseline stereophotograph for grading optic disk
progression were chosen to be within six months from the
HRT-II baseline exam date. Similarly, the last SAP exam and the
last stereophotograph were chosen to be within six months of
the last HRT-II exam.

A total of 36 eyes from 33 participants progressed by
stereophotographs and/or showed likely progression by SAP
GPA, while 210 patient eyes from 148 participants were
nonprogressing eyes that did not progress by stereophoto
assessment or by the SAP GPA likely progression criterion, and
21 eyes from 20 participants were longitudinal normal eyes
with no history of IOP > 22 mm Hg and with all HRT exams
acquired within a short duration (median of 0.5 years). A
detailed demographic summary of the study eyes is presented
in Table 1.

The UCSD Institutional Review Board approved the study
methodologies, and all methods adhered to the Declaration of
Helsinki guidelines for research in human subjects and the
Health Insurance Portability and Accountability Act (HIPAA).

New Strategies

Section 1: PixR Nonparametric Cluster Test (PixR-NP
CT).

Part A: Regression Model. Progressive structural changes
due to loss of retinal nerve fibers are observable as progressive
reduction of retinal height in HRT topographies. Therefore, to
characterize the rate of retinal changes, a simple linear
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regression hf(‘) ¼ b0(‘) þ b1(‘) 3 Tf þ ef(‘) was fit at each
retinal location with pixel coordinate ‘ in the HRT topographic
series. Point estimates b0 and b1, respectively, of the regression
coefficients b0 and b1 were estimated using the method of least
squares30; hf is the retinal height (in lm) at follow-up time Tf

(in months) and ef is the regression error (distributional
characteristics given in Part B).

Part B: Assessing the Significance of Rate of Change Using

Permutation Tests. The rate of retinal height change at each
location ‘ is given by its respective regression coefficient b1(‘)
corresponding to time factor Tf. Therefore, the significance of
the observed rate of retinal height decrease at each location
was assessed using a null hypothesis of H0(‘): b1(‘)¼ 0 against
a directional or one-sided alternative hypothesis Ha(‘): b1(‘) >
0. The hypotheses were tested using a studentized test statistic
t(‘) ¼ b1(‘)/se(b1[‘]) at each HRT pixel, where se(b1) is the
standard error of the regression coefficient b1 estimated
assuming a normal distribution of b1

30. A studentized or
pivotal test statistic guarantees good performance under
resampling.13,31,32

To evaluate the null hypothesis at each pixel, the sampling
distribution of the test statistic t(‘) under the null hypothesis,
known as a null-distribution (i.e., distribution of t[‘] when
b1[‘]¼ 0), is required. The null-distribution of the test statistic
t(‘) was built at each retinal location ‘ from several unique
pseudo-topographic series of the eye. The pseudo-topographic
series were generated under the null hypothesis using the
permutation resampling technique as follows.14,16,33–35

To simulate topographic sequences under the null hypoth-
esis, first, regression residuals under the null condition (i.e.,
when b1[‘]¼ 0) were estimated at each retinal location in the
observed topographic series as ef,H0(‘) ¼ hf(‘) � b0(‘), with
point estimates of regression coefficients b0(‘) and b1(‘)

estimated using the method of least squares. At each pixel,
error terms under the null condition {ef,H0(‘): f¼1, . . ., F} were
assumed to be independent and identically distributed (i.e.,
errors were not autocorrelated and were with constant
variance) over time Tf with no other distributional assump-
tions. Under the assumption of independent and identical
distribution of model errors, the error terms ef,H0(‘) over time
Tf satisfy the exchangeability criterion for resampling36–39 and,
therefore, are exchangeable under the null hypothesis. Error
terms ef,H0(‘) were randomly permuted and 999 unique
pseudo-topographic series were constructed under the null
hypothesis as h*

f (‘)¼ b0(‘)þ e*
f ; H0(‘)32,35; where, {e*

f; H0(‘): f¼
1, . . ., F} is a unique random permutation of the residuals
{ef; H0(‘): f ¼ 1, . . ., F} at location ‘ and F is the number of
follow-up exams. Resampling under the null hypothesis or a
restricted model also is known as wild bootstrap.40

For each retinal location, a null-distribution of the rate-of-
change based test statistic t(‘) was built using a collection of
1000 test statistics. Each null-distribution comprised of one test
statistic estimated from the observed retinal topographic series
and 999 test statistics estimated from 999 unique pseudo-
topographic series of the respective eye when there is no
significant rate of change. Figures 1 and 2, respectively, show
examples of a normal eye and a progressing eye. Figure 3
shows a procedural example of building a null-distribution of
the test statistic t(‘) in one retinal location (labeled k) in the
progressing eye shown in Figure 2. Figure 4a shows
permutation null-distributions of the test statistic at five
selected retinal locations in the example progressing eye.

Part C: Family-Wise Type I Error Control. In this study,
significance of the rate of change at each retinal location within
the optic disk margin was used to detect glaucomatous
progression (Figs. 1b, 2b). More formally, glaucomatous

TABLE 1. Demographics of the Progressing Eyes, Longitudinal Normal Eyes, and Nonprogressing Patient Eyes From the UCSD Diagnostic
Innovations in Glaucoma Study

Progressing Eyes

Longitudinal

Normal Eyes

Nonprogressing

Patient Eyes

No. of eyes (No. of subjects) 36 (33) 21 (20) 210 (148)

Age, y

Mean (95% CI) 64.7 (61.6, 67.7) 57.4 (49.7, 65.1) 61.4 (59.4, 63.4)

Median (range) 65.0 (48.3, 83.3) 57.0 (24.6, 86.5) 64.4 (18.1, 85.5)

Interquartile range (57.0, 71.8) (47.9, 67.9) (53.2, 69.7)

No. of HRT exams

Median (range) 5 (4–8) 4 (4–8) 4 (4–8)

Interquartile range (4.5–6) (4–4) (4–5)

HRT follow-up, y

Median (range) 4.1 (2.4, 7.0) 0.5 (0.2, 8.0) 3.6 (1.7–7.4)

Interquartile range (3.7, 5.8) (0.4, 0.7) (2.9–4.5)

SAP mean deviation at baseline, dB

Mean (95% CI) �3.65 (�5.45, �1.84) �0.34 (�0.80, 0.13) �1.72 (�2.16, �1.28)

Median (range) �2.15 (�21.74, 1.72) �0.25 (�2.81, 1.31) �0.95 (�30.13, 2.20)

Interquartile range (�4.16, �0.41) (�0.88, 0.23) (�2.35, �0.07)

SAP PSD at baseline, dB

Mean (95% CI) 4.19 (2.87, 5.51) 1.63 (1.45, 1.81) 2.47 (2.18, 2.76)

Median (range) 2.30 (0.99, 13.18) 1.53 (1.09, 2.84) 1.73 (0.85, 13.32)

Interquartile range (1.73, 4.45) (1.42, 1.77) (1.45, 2.50)

% abnormal disk from photo evaluation at baseline 77.1%, 27 of 35 eyes* 4.8%, 1 of 21 eyes 45.2%, 95 of 210 eyes

% abnormal visual field at baseline 52.8%, 19 of 36 eyes 4.8%, 1 of 21 eyes 32.9%, 69 of 210 eyes

% of abnormal disk from photo evaluation and abnormal

visual field at baseline

42.9%, 15 of 35 eyes* 0.0%, 0 of 21 eyes 19.5%, 41 of 210 eyes

* One of the eyes that progressed by SAP GPA of the 36 progressors did not have a baseline stereophotograph within 6 months from the HRT-II
baseline date.
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progression was inferred from a collection or a family of all
hypothesis tests within the optic disk F¼ {H0(‘): ‘¼ 1, . . ., N},
where H0(‘) is the null hypothesis at location ‘ and N is the
total number of retinal locations within the disk. Because of the
multiplicity of retinal locations simultaneously tested to assess
glaucomatous progression, it is essential to control the overall
type I error or false-positive detections (a multiple comparison
problem8–13,41). In PixR-NP CT, family-wise type I error was
controlled at pixel-level and cluster-level by controlling a
family-wise error rate using Bonferroni correction.10,41

Part C1: Pixel-Level Type I Error Control. Let, HC
0 ¼

˙N
‘¼1H0(‘) represent the complete null hypothesis for the

family F (i.e., a hypothesis that all retinal locations are true
negatives with no significant rate of change). To control type I
error at the pixel-level for the family of tests F, an FWER or the
probability of committing at least one type I error12 was
controlled at a level of significance ap. Therefore, probability
P(at least one false-positive retinal locationjHC

0 ) � ap.

In terms of the test statistic: P(¨N
‘¼1[t(‘) ‡ tcutoffjHC

0 ] � ap),

or

Pðtmax‡tcutoff jHC
0 Þ � ap;

where

tmax ¼ maxð t ‘½ � : ‘ ¼ 1; . . . ;Nf gÞ ð1Þ

Therefore, the critical value tcutoff of the maximal rate-of-

change test statistic tmax controls FWER at the chosen level of

significance ap. By using the critical value tcutoff to determine

the significance of rate of change at each retinal location, the

overall false-positive detections (FWER) can be controlled at

level ap. The null-distribution of the maximal test statistic tmax

is required to estimate the critical value tcutoff. The critical

value tcutoff was estimated as the (1� ap)th percentile value in

the null-distribution of the maximal test statistic.

FIGURE 1. Glaucoma progression maps of the PixR strategies (bi–iii) and SIM (biv) generated from the HRT topographic series of an example
normal eye (for visual clarity, reflectance images are shown in [a]). The glaucoma progression maps represent locations with significant rate of
retinal height decrease (red-pixels) and increase (green-pixels) with normalized slope statistics in the background. CSIZE, size of the largest red-pixel
cluster within the optic disk (in number of pixels); OPR, observed progression rate within the optic disk margin (in %); NP, nonparametric; P,
parametric.

FIGURE 2. Glaucomatous progression maps of the PixR strategies (bi–iii) and SIM (biv) of an example progressing eye (a). The glaucoma
progression maps represent locations with significant rate of retinal height decrease (red-pixels) and increase (green-pixels) with normalized slope
statistics in the background.
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FIGURE 3. Procedural example for building a null distribution of the rate-of-change based b1 test statistic at a retinal location labeled k (e, f) in the
progressing eye in Figure 2. The null distribution comprised of one test statistic estimated from the observed topographic series (a) and 999 test
statistics estimated from 999 pseudo-topographic series (c, d) at location k. The pseudo-topographic series were constructed by resampling residual
errors under the null-condition (b–d) at location k.
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The null-distribution of the maximal test statistic tmax was

built for each study eye using a collection of the maximum

value of the test statistic (estimated as in Equation 1) in each of

the 1000 unique pseudo-topographic series simulated in Part B.

We preserved the observed dependence structure of retinal

measurements and, thereby, preserved the statistical depen-

dence structure among retinal measurements in each pseudo-

topographic series by using the same temporal resampling

order for all retinal locations in a given pseudo-topographic

series. Figure 4b shows the null-distribution of the maximal

rate-of-change test statistic tmax and P values for the rate of

change at selected retinal locations in the example progressing

eye.

Using the null-distribution of the maximal test statistic, P

values P(t[‘]) adjusted for family-wise type I error at level ap

were estimated for each retinal location ‘. Therefore, locations

with P(t[‘]) < ap were considered to have significant rate of

retinal height decrease. In this work, at pixel-level, we

controlled family-wise type I error at a standard level of

significance for one-tailed tests ap ¼ 2.5%. Glaucoma progres-

sion maps indicating locations with significant rate of retinal

height decrease (called red-pixels with negative rate of change)

and increase (called green-pixels with positive rate of change)

were generated. Red-pixels corresponded to glaucomatous

progression or noise and green-pixels corresponded to

treatment effects or noise. Figures 1bi and 2bi show examples

FIGURE 4. Null distribution of the maximal rate-of-change test statistic tmax (b) and maximal cluster-size test statistic CSmax (c) constructed to
control FWER at pixel-level and cluster-level, respectively, for the example progressing eye in Figure 2. Permutation null-distributions of the
studentized b1 statistic at selected retinal locations (HRT pixels) within the optic disk are shown in (a).
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of glaucoma progression maps generated by the PixR-NP CT
method.

Part C2: Cluster-Level Type I Error Control. To assess
glaucomatous progression in an eye, all spatial extents or
clusters of red-pixels (with 8-connectivity) were identified after
overall type I error control at pixel-level. Let {CSk: k¼ 1, . . ., M}
equal the cluster sizes (size in number of pixels) of all the red-
pixel clusters observed within the optic disk in a pseudo-
topographic series. The probability of incorrectly inferring at
least one red-pixel cluster as significant (i.e., FWER at cluster-
level) was controlled at a level ac.

Probability P(at least one false-positive red-pixel clusterjHC
0 )

� ac, or

PðCSmax ‡ CScutoff jH C
0 Þ � ac ð2Þ

Thus, similar to the pixel-level type I error control, the
significance of an observed red-pixel cluster P(CSk) was
determined using a null-distribution of the maximal cluster-
size test statistic. The null-distribution of the maximal cluster-
size test statistic for each study eye comprised of the size of the
largest cluster of red-pixels within the optic disk in each of the
pseudo-topographic series, given by {CS

j
max: j¼ 1, . . ., 1000}¼

maxCSj ({CS
j
k: k¼1, . . ., Mj; and j¼1, . . ., 1000}), where CS

j
max is

the size of the largest red-pixel cluster in the jth pseudo-
topographic series and Mj is the number of red-pixel clusters
observed in the jth pseudo-topographic series. Figure 4c shows
the null-distribution of the maximal cluster-size test statistic
CSmax for the example progressing eye.

Part D: Criterion of Glaucoma Progression. Because we
controlled the probability of making at least one false detection
at cluster-level, glaucomatous progression was defined as a
presence of at least one red-pixel cluster within the optic disk
in the observed topographic series with probability P(cluster
size CSk) < ac. A stricter cluster-level significance ac¼ 1% was
chosen similar to SIM.

Section 2: PixR Nonparametric Single Threshold Test
(PixR-NP STT). The linear regression model, test statistic t(‘),
and permutation testing steps in PixR-NP STT are same as those
of PixR-NP CT described in Section 1, Parts A and B.

PixR-NP CT uses Bonferroni correction, which provides
conservative control of family-wise type I errors and, therefore,
may increase type II errors and reduce the power to detect
true changes (e.g., see Fig. 2bi versus Fig. 2bii). Therefore, in
PixR-NP STT, we allowed up to k type I errors (instead of at
most one type I error allowed by Bonferroni correction) by
controlling a generalized FWER or k-FWER28 at the pixel-level.

Probability P(at most k false-positive retinal locations jHC
0 )

� ap.

In terms of the test statistics;Pðtkþ1max ‡ tcutoff jHC
0 Þ � ap; ð3Þ

where, tkþ1max is the (k þ 1)th largest test statistic among all
retinal locations in a topographic series. Therefore, signifi-
cance of retinal height changes P(t(‘)) were estimated using a
null-distribution of the (k þ 1)th largest test statistic given by
{t

j
kþ1 max: j¼ 1, . . ., 1000}, where t

j
kþ1 max is the (kþ 1)th largest

test statistic in the jth pseudo-topographic series of the eye.
The critical value tcutoff estimated from the null-distribution of
the (k þ 1)th largest test statistic controls the probability of
making at most k false-positive errors at a level of significance
ap. Figure 5 shows the null-distribution of the (kþ 1)th largest
test statistic tkþ1max and P values for the rate of change at
selected retinal locations in the example progressing eye.

In PixR-NP STT, we set k to be 2.5% of total number of
retinal locations within the optic disk (i.e., k¼2.5% of N) and a
level of significance of ap ¼ 1%. Thus, retinal locations with
P(t[‘]) < ap were considered to have significant rates of retinal

height changes. Red- and green-pixels were identified as in
PixR-NP CT. A measure of observed progression rate was
estimated as a ratio of number of red-pixels to the total number
of pixels within the optic disk margin. Because we allowed up
to k false-positive errors (k¼ 2.5% of N), the upper bound for
the anticipated false-positive rate was k/N 3 100 ¼ 2.5%.
Therefore, glaucomatous progression was detected by PixR-NP
STT when the observed progression rate is greater than the
anticipated false-positive rate of 2.5%.

Section 3: PixR Parametric Single Threshold Test
(PixR-P STT). The PixR-P STT test is a parametric version of
the PixR-NP STT method. As in PixR-NP CT, the linear least-
squares regression model hf(‘) and the test statistic t(‘)
described in Section 1, PartA were used to assess the rate of
change at each retinal location. The regression error terms
were assumed to be independent (i.e., no autocorrelation) and
normally distributed ef ~ N(0, r2) with a constant variance r2

over time (i.e., homoscedastic).
Significance of the rate of change at each retinal location

P(t[‘]) was estimated using a directional t-test (MATLAB
function ‘‘glmfit’’ in Statistics Toolbox, ver. 2010b; Mathworks,
Inc., Natick, MA). Pixel-level type I error was controlled using
the less conservative k-FWER procedure as in PixR-NP STT, but
in a parametric framework.28 For k-FWER control, we allowed
up to k type I errors at a level of significance ap with k as 2.5%
of number of retinal locations (pixels) within the optic disk
margin. The level of significance ap was determined empiri-
cally, such that the diagnostic performance of the PixR-P STT is
similar to that of the PixR-NP STT method. To control k-FWER
at level ap, a common P value threshold was estimated as (kþ
1) 3 ap/N using the single-step k-FWER method by Lehmann
and Romano.28 Retinal locations with P value P(t[‘]) less than
the k-FWER-based P value threshold were considered to have
significant rates of retinal height changes. Red- and green-
pixels were identified as in PixR-NP CT based on the
significance of the rate of retinal height decrease and increase,
respectively. A measure of observed progression rate was
estimated as a ratio of number of red-pixels to the total number
of pixels within the optic disk margin. Because, k-FWER
control provides an upper bound for the number of false-

FIGURE 5. Null-distribution of the maximal rate-of-change test statistic
tkþ1 max constructed to control the Lehmann-Romano generalized k-
FWER at pixel-level for the example progressing eye in Figure 2. The
maximal null-distribution was estimated using null-distributions of the
test statistic at all retinal locations within the optic disk. Examples of
null-distribution at selected retinal locations, labeled k, l, m, q and r, are
shown in Figure 4a. X-axis coordinates of the labels (k, l, m, q, r)
represent the magnitudes of the observed test statistic at their
respective retinal locations relative to the maximal null-distribution
of the test statistic. Significance of the rate of change at each retinal
location (P values) was estimated using the maximal null-distribution
that controlled for type I error at the pixel-level using the generalized
family-wise error rate. P values estimated using the k-FWER method are
lower than those of the FWER approach (P values in Fig. 5 versus Fig.
4b) indicating that the k-FWER approach is less conservative than the
FWER Bonferroni approach.
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positives as k (2.5% of number of locations within disk),
glaucomatous progression was detected by PixR-P STT when
the observed progression rate was greater than 2.5%.

Statistic Image Mapping (SIM)

The SIM method has been described in detail previously.5 In
brief, a standardized slope test statistic was estimated as S(‘)¼
jb1(‘)/ŝ(b1[‘])j, where j.j operator gives the absolute value and
ŝ(b1[‘]) is a smoothed standard error estimate of the regression
coefficient b1(‘). The spatially smoothed standard error
estimate ŝ(b1[‘]) was computed by spatially filtering standard
error estimates of the regression coefficient b1 using a Gaussian
kernel of size 17 3 17 pixels and standard deviation of 2.354
pixels. Pseudo-topographic series were generated from the raw
topographic retinal measurements using the permutation
resampling procedure (not under the null hypothesis). Pixel-
level changes were estimated using a probability suprathresh-
old or a global threshold of ap¼5% and family-wise type I error
was controlled only at the cluster-level at a level of significance
ac ¼ 1%. Glaucomatous progression was detected when there
was at least one red-pixel cluster within the disk with P < ac.

All computational analyses were conducted using a
MATLAB distributed computing server (Mathworks, Inc.) in
the Triton Compute Cluster at the San Diego Supercomputer
Center (SDSC), San Diego, California.

RESULTS

Table 2 presents the diagnostic accuracy of the PixR and SIM
techniques. The PixR strategies (PixR-NP CT, PixR-NP STT, and
PixR-P STT) provided high sensitivity (86%, 75%, and 81%,
respectively) and high specificity in the longitudinal normal
eyes (81%, 90%, and 90%, respectively). With an empirically
determined level of significance ap¼25%, the parametric PixR-
P STT was able to provide a similar diagnostic accuracy as the
nonparametric PixR-NP STT, but with reduced computational
demands. The SIM method provided similar specificity (90%)
and lower sensitivity (39%) than the PixR strategies. The SIM
had the highest specificity in the nonprogressing eyes (79%)
followed by PixR-NP STT (56%), PixR-P STT (50%), and PixR-
NP CT (49%). When the specificity of PixR-NP CT in the
longitudinal normal eyes was set to 90% (by changing ac from
1% to 0.8%) similar to all other methods, sensitivity was 86%,
and specificity in the nonprogressing patient eyes was 55% for
PixR-NP CT.

Figures 1 and 2, respectively, show the glaucomatous
progression maps generated by each of the methods for an

example normal eye and a progressing eye. In contrast to the
other methods, PixR-NP CT that uses Bonferroni correction for
type I error control detected fewer retinal changes in the
normal eye (Fig. 1bi versus Figs. 1bii, 1biii) and the progressing
eye (Fig. 2bi versus Figs. 2bii, 2biii). However, the overall
diagnostic accuracy of PixR-NP CT was comparable to that of
PixR-NP STT and PixR-P STT.

For permutation testing in the nonparametric PixR-NP and
SIM methods, 999 unique pseudo-topographic series were
simulated by Monte Carlo sampling of all possible unique
permutations of the observed topographies series of each eye.
Figure 3 shows a procedural example of building a null-
distribution of the test statistic at each retinal location. Figure 4
illustrates the construction of null distributions of the maximal
rate-of-change and maximal cluster-size test statistics required
to control FWER in the PixR-NP CT method. Figure 5 shows
the null-distribution of the k-maximal rate-of-change test
statistic required for controlling k-FWER in the PixR-NP STT
method. By comparing the null distributions of the maximal
rate-of-change test statistic and the P values at selected retinal
locations in Figure 4b versus Figure 5, it can be observed that
the k-FWER procedure is less conservative than the FWER or
Bonferroni procedure. For example, at the retinal location
labeled k, the FWER and k-FWER procedures provided a P

value of P(k) ¼ 0.340 and P(k) ¼ 0.005, respectively.
In this study, we defined progressive visual field loss based

on ‘‘likely progression’’ by SAP GPA indicative of significant
visual function degradation seen in three or more test points
on three consecutive follow-up tests. We evaluated whether
HRT-based techniques are detecting subtle and/or early stages
of progression in a subset of the nonprogressing patient eyes
that have not yet met the criteria of ‘‘likely progression’’ on
SAP GPA. We defined three categories of visual field changes in
the nonprogressing patients and found that PixR methods
identified more of these eyes as progressing than SIM (Table 3).
Specifically, of 54 nonprogressing eyes with ‘‘possible progres-
sion’’ by SAP GPA (defined as significant change in three or
more test points on two consecutive follow-up tests),
progression was detected by SIM in 15 eyes, by PixR-NP CT
in 31 eyes, by PixR-NP STT in 27 eyes, and by PixR-P STT in 29
eyes. A second subset of seven eyes developed ‘‘possible
progression’’ by SAP GPA within one year after the last HRT
follow-up exam. Of these seven eyes, progression was detected
by SIM in two eyes and by all PixR strategies in five eyes. A
third subset of 17 eyes developed at least two progression
points (possible and/or likely), including at least one likely
progressing point in SAP GPA. Of these 17 eyes, progression

TABLE 2. Diagnostic Accuracy of the SIM Method and the New PixR Strategies for Detecting Glaucomatous Progression

Techniques Test Type

Sensitivity (95% CI)

in Progressing

Eyes, n ¼ 36 Eyes

Specificity (95% CI)

in Longitudinal Normal

Eyes, n ¼ 21 Eyes

Specificity (95% CI)

in Nonprogressing

Eyes, n ¼ 210 Eyes

SIM Patterson et al.5 Nonparametric test by resampling

raw measurements

39% (22–56) 90% (76–100) 79% (73–84)

PixR-NP Cluster Test,

PixR-NP CT

Nonparametric test by resampling

regression residuals under the

null hypothesis

86% (73–99) 81% (62–100) 49% (42–56)

At 90% specificity in the

longitudinal normal eyes

86% (73–99) 90% (76–100) 55% (48–62)

PixR-NP Single

Threshold, PixR-NP

STT

Nonparametric test by resampling

regression residuals under the

null hypothesis

75% (59–91) 90% (76–100) 56% (49–63)

PixR-P Single Threshold,

PixR-P STT

Parametric test 81% (66–95) 90% (76–100) 50% (43–57)
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was detected by SIM in 1 eye, by PixR-NP CT in 11 eyes, by
PixR-NP STT in 5 eyes, and by PixR-P STT in 6 eyes.

DISCUSSION

At high specificity (90%) in the longitudinal normal eyes, the
nonparametric PixR-NP CT strategy provided higher sensitivity
(86%) than SIM (39%), suggesting that this method may
improve our ability to detect glaucomatous structural change.
Moreover, our results suggested that this technique detected a
larger proportion of eyes with more subtle visual field changes
than SIM (Table 3).

The PixR-NP CT method was extended directly from SIM by
controlling the overall false detection errors among retinal
locations as well as among clusters or spatial extents of
progression, and by building nonparametric distributions for
hypothesis testing using pseudo-topographic series of each
study eye simulated without any significant retinal change over
time (i.e., under null hypothesis). The parametric PixR-P STT
and nonparametric PixR-NP STT provided high sensitivity
(‡75%) and specificity (90%) in normals. In contrast to the
nonparametric PixR-NP STT method, the parametric PixR-P
STT method requires significantly less computational resources
with the promise of providing a similar diagnostic accuracy.

The SIM method provided higher specificity for the
nonprogressing patient eyes (79%) than the PixR strategies
(specificities ranging from 49%–56%), indicating that the PixR
strategies detected progression more often than SIM. Given the
high specificity reported by PixR in normal eyes, it is likely that
a subset of these patient eyes are progressing, but do not yet
meet the threshold definition for progression by stereopho-
tography and visual field-guided progression analysis used in
this study. These results are also supported by the moderate
specificity in this same group of nonprogressing patient eyes
(at 86% specificity in the longitudinal normal eyes) provided by
the HRT TCA (57%)42 and the POD framework (43%–51%)7 in
previous studies. Moreover, our post hoc analysis (Table 3) of
the nonprogressing patient eyes suggested that HRT tech-
niques are detecting subtle and/or early stages of visual
function progression. Longer follow-up is needed to determine
whether the progression detected by PixR in the nonprogress-
ing patient eyes later develops into GPA ‘‘likely progression.’’

For statistical tests, the SIM method uses a level of
significance (LOS) ap ¼ 5% (two-tailed) at each pixel location
and addresses the multiple comparison problem at the cluster-
level (using Bonferroni correction) at an LOS ac ¼ 1%.5 For
PixR-NP CT, we used the same LOS as SIM, namely ap ¼ 2.5%
(one-tailed) at pixel-level and ac ¼ 1% at cluster-level. In
contrast to SIM and PixR-NP CT methods, we used a less
conservative Lehman-Romano’s k-FWER procedure for address-

ing multiple comparison problem at pixel-level in PixR-NP STT
and PixR-P STT methods. Similar to the standard LOS for one-
tailed tests, we chose the number of false-positive errors k

allowed by the k-FWER procedure to be 2.5% (of retinal
locations within the disk margin). For the PixR-NP STT
method, because we allowed up to k errors, we chose a
stricter level of significance of ap ¼ 1% (one-tailed) to address
the multiple comparison problem. In the parametric PixR-P
STT method, probabilities of progression were estimated
parametrically using t-tests. Therefore, we empirically deter-
mined that at a liberal level of significance ap ¼ 25% (one-
tailed), the PixR-P STT parametric method is able to achieve a
similar diagnostic accuracy as the PixR-NP STT nonparametric
method. Differences in the LOS between parametric and
nonparametric PixR STT methods highlight likely significant
differences between their respective k-maximal test statistic
distributions. Further study of these techniques and progres-
sion criteria using independent population groups will be
useful to identify limitations and avenues for improvement of
these techniques.

In PixR-NP CT, type I error is controlled using Bonferroni
correction, which places higher confidence on retinal loca-
tions marked as progressing in glaucoma progression maps.
However, at the pixel-level, Bonferroni correction is conserva-
tive because thousands of locations are tested simultaneously
and increases type II or false-negative errors. Therefore, a
generalized family-wise error rate or k-FWER method was used
in PixR-NP STT and PixR-P STT methods to control type I error
while maximizing the detection power (or reducing type II
error; see Fig. 2bi versus Fig. 2bii). Because the number of
clusters is fewer than the number of locations, SIM circum-
vents the issue of increased type II error at pixel-level by
controlling type I error only at the cluster-level.42–44 Entirely
avoiding type I control at pixel-level, however, may affect the
diagnostic accuracy of the cluster-based progression criterion
because of the increased number and increased chances of
false progressing locations present in the cluster-level analysis.
Thus, the sensitivity of SIM is likely to be influenced by the
spatial extent (or cluster-size) of glaucomatous progression.45

For example, glaucomatous progression with smaller spatial
extents may be missed by the cluster-level test alone because of
the increased type I error propagated from the pixel-level to
the cluster-level test. Therefore, before cluster-level analysis in
SIM, the suprathreshold or the common global probability
threshold at pixel-level should be adjusted depending on the
anticipated spatial extent of changes (i.e., large diffuse changes
versus regional changes with smaller spatial extent).45,46 For
optimal control of false change locations, empirically derived
thresholds of rate of change may be used during pixel-level

TABLE 3. Detection of Progression by the SIM Method and PixR Strategies in a Subset of 78 Nonprogressing Eyes That Developed ‘‘Possible
Progression’’ by SAP GPA

Techniques

Nonprogressing Eyes With

‘‘Possible Progression’’

by SAP GPA Within the

HRT Follow-up Duration,

n ¼ 54 Eyes (%)

Nonprogressing Eyes With

‘‘Possible Progression’’

by SAP GPA Within 1 Year

After the Last HRT Follow-up,

n ¼ 7 Eyes (%)

Nonprogressing Eyes With

at Least 2 Progression Points,

Possible and/or Likely,

Including at Least 1 Likely

Progression Point in SAP

GPA Within the HRT

Follow-up Duration,

n ¼ 17 Eyes (%)

SIM 15 (27.8) 2 (28.6) 1 (5.9)

PixR-NP cluster test, PixR-NP CT 31 (57.4) 5 (71.4) 11 (64.7)

PixR-NP single threshold, PixR-NP STT 27 (50.0) 5 (71.4) 5 (29.4)

PixR-P single threshold, PixR-P STT 29 (53.7) 5 (71.4) 6 (35.3)
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analysis 47 with the difficulty that the absolute rate of change
may vary by region.

Among the nonparametric procedures, permutation tests
are exact; that is, the probability of incorrectly rejecting a test
at a significance level a is exactly a.48 In practice, building the
full permutation distribution comprising of all unique permu-
tations of the observed measurements is computationally
demanding. For example, as pointed by Patterson et al.,5 an
eye with four HRT exams will have 369,600 unique permuta-
tions at each retinal location. Therefore, approximate permu-
tation distributions were built by Monte Carlo sampling of the
full permutation distribution. The Monte Carlo permutation
test, however, also provides an exact or at least an
asymptotically exact control of type I error at the chosen
significance level a.31,49,50 In contrast, bootstrap control of
type I error is only asymptotically exact. Therefore, Monte
Carlo permutation tests are more suitable for detecting
glaucomatous progression.

It is likely that retinal measurements in an observed
topographic series, for example in a progressing eye, may
exhibit significant rates of retinal changes. Pseudo-topographic
series simulated from the observed retinal measurements,
however, should reflect the null hypothesis of no change.
Simulating pseudo-topographic series by resampling residuals
under the null hypothesis ensures that the test statistic
distribution built from the pseudo-topographic series follows
null hypothesis even when the underlying population that
generated the observed topographic series does not satisfy the
null hypothesis (e.g., in a progressing eye). Thus, as suggested
by the Hall-Willson guidelines for resampling-based testing51,52

and Westfall-Young guidelines for multiple testing,13 pseudo-
topographic series not generated under the null hypothesis
may result in loss of power; however, loss of power is
minimized when a studentized test statistic is used for
hypothesis testing.32 Further, because overall type I error
control requires a joint distribution (i.e., maximal null-
distribution) of the test statistics, centering the test statistics
under the null hypothesis is likely an optimal choice to address
multiple comparison problem in retinal imaging. In PixR
strategies, pseudo-topographic series for each study eye were
generated by resampling residuals under the null hypothesis.
Other promising approaches for building null-distributions are
generating pseudo-topographic series using physiology-based
simulations53 and by generating pseudo follow-up exams with
no changes using the baseline subspace of the proper
orthogonal decomposition framework.7

Resampling residuals in the nonparametric PixR strategies
was based on the assumption of exchangeability of residuals
under the null hypothesis. Exchangeability was justified by the
assumption of independence (i.e., no autocorrelation) and
identical distribution (i.e., constant error variance over time) of
the regression errors.36 When regression errors are autocorre-
lated or when error variance is not constant over time
(heteroscedasticity), resampling residuals over time will not
preserve the observed temporal (time) dependence structure
or autocorrelation in pseudo-topographic series. This may
result in inaccurate null distributions and affect the exactness
of the tests. Therefore, though permutation tests are exact and
do not assume normality of distribution, likely heteroscedas-
ticity (e.g., due to changes in disease severity) or autocorre-
lated errors in topographic series may violate the
exchangeability criterion required for resampling and may
affect its performance.54 One of the sources of autocorrelated
errors is methodological due to omission of one or more key
predictor variables, such as the IOP at each follow-up, in the
regression model.30 Model errors autocorrelated over time in a
retinal time series of an eye can be modeled as a moving-
average process.55 In addition to autocorrelated errors, there is

an obvious autocorrelation of retinal height measurements in
the time series of an eye due to repeated measurements in each
retinal location in each eye over time. Retinal measurements
autocorrelated over time within an eye can be modeled as an
autoregressive process.55 Possible variation of autocorrelation
among retinal locations and among eyes, as well as presence of
glaucomatous progression should be factored while building
such retinal time series models. Further studies are necessary
to characterize fully sources of autocorrelation of retinal
measurements in optical retinal images acquired over time.
Upon characterizing autocorrelation and heteroscedasticity in
the optic nerve head time series, several procedures are
available to account for autocorrelation and heteroscedasticity
during resampling.30,56–60

Similar to the temporal (time) autocorrelation of retinal
measurements at a given retinal location, it also is essential to
preserve the spatial dependence or correlation among retinal
measurements in pseudo-topographic series similar to that of
the observed topographic series.36 This is due to the fact that
spatial information from all retinal locations are combined to
control family-wise type I error by building a null distribution
of the maximal rate-of-change test statistic and maximal cluster-
size test statistic. In the nonparametric PixR-NP methods, the
observed spatial correlation among retinal measurements in
each eye were preserved in all simulated pseudo-topographic
series by using the same temporal resampling order at each
retinal location.

The second guideline of Hall-Wilson recommends using a
pivotal or studentized statistic for testing a single hypothesis,
which does not significantly affect the power of a test, but
influence convergence accuracy of the test statistic.13,51

Therefore, a single hypothesis evaluating a simple linear
regression is not affected in the absence of a pivotal statistic.33

Westfall-Young,13 however, recommends a pivotal statistic for
multiple comparison problems. In PixR methods, a studentized
test statistic based on the regression coefficient (b1/SE[b1],
where SE is the standard error) was used for hypothesis
testing. When a nonstudentized test statistic (b1) was used in
PixR-NP CT, sensitivity decreased to 44% (95% confidence
interval [CI]¼ 27%–62%) with the same specificity in normals
of 81% (62%–100%). Although pivotal statistic does not have a
significant effect on the diagnostic accuracy of an individual
hypothesis test, it is evident from the diagnostic accuracy of
PixR-NP CT that a pivotal statistic facilitates improved
diagnostic accuracy for multiple comparison problems by
providing a uniform type I error rate in all retinal locations.36 A
uniform type I error rate is achieved in all retinal locations
because the distribution of a pivotal statistic is independent of
the data generating distribution at each retinal location and,
therefore, is comparable across retinal locations during type I
error control (for building the null-distribution of the maximal
test statistic). Further, use of a pivotal statistic assures an
asymptotically exact Monte Carlo permutation test.31,49 To
standardize the test statistic in the nonparametric PixR
methods, the standard errors of the regression coefficients
SE(b1) were estimated in a parametric setup to reduce
computational demands. Improved standard error estimates
can be obtained by using a second level of bootstrap for each
pseudo-topographic series.14

For multiple testing procedures such as PixR, a subset
pivotality criterion based on the joint distribution of the test
statistics at individual retinal location is suggested to achieve a
strong control of the family-wise error rate.13 While detecting
localized glaucomatous progression, the subset pivotality
guideline for multiple testing is trivially satisfied because the
significance of the rate of change observed in a retinal location
is not dependent on the significance of other retinal locations
(e.g., in contrast, tests for spatial correlation among retinal
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locations do not satisfy the subset pivotality guideline13,36,61).
Therefore, the nonparametric PixR-NP CT method provides a
strong control of the family-wise error rate.

For parametric cluster-level analysis, a parametric null
distribution of the cluster-size statistic is required, which is
not yet established for optical images of the retina. Therefore,
at present, glaucomatous progression is detected in the
parametric PixR-P strategy using inferences at the pixel-level
only. Based on random field theory, parametric distribution of
the cluster size statistic has been developed in neuroimag-
ing.62,63 It has potential for use with the parametric PixR-P
strategy and may facilitate real-time inferences on cluster-size
statistics from retinal images.

One of the limitations of the methods presented is the
assumption of linearity in the progression of structural
changes. In future studies, we will investigate suitable
nonlinear multiple regression models with additional predictor
variables, such as the IOP at each follow-up for the PixR
strategies. Another limitation is that we used HRT exams
acquired within a short interval (median follow-up of 0.5 years)
in longitudinal normal eyes to assess specificity. The shorter
follow-up duration provides confidence that there is no
significant glaucomatous progression without requiring SAP
GPA and/or manual assessment of stereophotographs. Further
studies, however, are necessary to assess the performance of
these techniques using longer longitudinal series acquired over
a longer follow-up duration from healthy normal eyes to assess
the effects of long-term variability as well as the effects of age-
related changes on detecting progression.

In conclusion, by reducing false-positive errors using FWER
or Lehmann-Romano’s k-FWER strategies, the PixR provided
higher diagnostic accuracy for detecting glaucoma progression
than SIM. Moreover, in nonprogressing patient eyes, retrospec-
tive inspection indicated that PixR techniques are detecting a
higher proportion of subtle and/or early stages of visual
function progression than SIM. The PixR strategies show
promise for improving our ability to detect glaucoma
progression.
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