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Abstract 

We present findings from an experiment with 6-year-old 
children in Norway who are getting started with the process 
of learning the numbers from 1 to 10. The findings provide 
information on number line estimation - that is, translating a 
number to a spatial position on a number line. The results 
show different categories of representation of the 
magnitudes on the number line, which may represent 
different stages in a learning sequence. On this basis, we 
show a proposal for a cognitive model of the learning 
process towards a linear representation of magnitudes.  

Keywords: Learning; numerical magnitudes; number line; 
dynamic decision making; memory; cognitive architectures; 
ACT-R. 

 

Introduction 

In this paper we will present our first findings from the 

pre-test of a larger experiment where the subjects are 

Norwegian 6 year old children just started on pre-school 

education learning numbers from 1 to 10. One important 

learning process that is involved when dealing with 

number magnitude is the estimation of what position a 

number value has on a number line. 

The learning sequence involved is the one that Siegler 

calls the logarithmic-to-linear shift in representations of 

numerical magnitude (Siegler, Thompson, & Opfer, 2009). 

In order to make a cognitive model of this learning process 

we want to investigate what cognitive processes are 

involved in learning the positioning of number magnitudes 

on a number line.  

Siegler et al (2009) show that children undergo parallel 

changes from logarithmic to linear representation on 

numerosity estimation tasks. The example we have reused 

from their article in figure 1 shows long-term changes in 

estimation of whole number magnitudes. (A) On 0–100 

number lines, kindergartners’ estimates were better fit by 

the logarithmic function than by the linear, whereas 

second-graders’ estimates were better fit by the linear 

function than by the logarithmic; (B) On 0–1000 number 

lines, second-graders’ estimates were better fit by the 

logarithmic function than by the linear, whereas fourth-

graders’ estimates were better fit by the linear function 

than by the logarithmic. 

 

 

Parallel Changes 
 

 
Figure 1. The logarithmic to linear shift. From Siegler, 

Thompson, & Opfer, (2009), Copyright 2009 Wiley. 

Reprinted with permission.  

 

From Siegler et al’s research and from others (Dehaene, 

Izard, Spelke, & Pica, 2008) we know that a logarithmic 

representation is likely to be the starting point of this 

learning sequence. This representation is usually attributed 

to Weber’s law. However, in some of the Ramani and 

Siegler’s work (2008) the initial performance is not 

logarithmic, but on average linear but incorrect. Maybe 

this has something to do with the scale: 1..10 as opposed to 

1..100 compared to the size of the task sheets. But then the 

simple Weber explanation will not hold universally. 

We also know from the research of Siegler and 

colleagues (2009) that this learning sequence happens 

several times at different stages during lifetime. That 

means children can have multiple representations of 

numerical magnitudes. As an example they can have a 

logarithmic representation of the numerical magnitudes on 

a number line from 0 to 100 while they have a linear 

representation on the number line from 0 to 10. As the 

children get older and learn a linear representation on the 

number line from 0 to 100 too, they may still have a 

logarithmic representation on the number line from 0 to 

1000, and so on. 

A possible account for the transition from logarithmic to 

linear is that children learn the location of particular points 

on the number line. Schneider et al. (2008) have 

investigated the role of anchor points in an eye-movement 
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study. They confirmed in a cross-sectional design with 

children from Grades 1 to 3 that the distance from the 

nearest orientation point is the most important and highly 

significant predictor of the frequency with which a position 

on the number line is fixated. Furthermore the results show 

that the distribution of fixations on the number line for all 

three groups of first grade, second grade and third grade 

children are concentrated around beginning, midpoint and 

ending of the number-line, see figure 2. 

 

 

Distribution of fixations 
 

 
Figure 2: Distribution of fixations on the number line (left: 

first grade; middle: second grade; right: third grade). From 

Schneider et al. (2008), Copyright 2008 Elsevier. 

Reprinted with permission.  

 

This shows that a great deal of attention is directed to 

those three positions on the number line and that those 

positions are of importance when a subject is doing a 

number line estimation task. As Schneider himself notes, 

the results then replicate Petitto's (1990) findings with 

respect to the use of the midpoint strategy and a counting-

up strategy by students in Grades 1–3. 

By an anchor point on a number line we mean a location 

that the positions of other number values are related to. If 

zero is an anchor point we can say: I know where zero is, 

and I know that two is a bit to the right of zero’s position, 

and then the same for all of the actual distribution of 

number values. That means there is a mapping going on 

between a number value and a position on the number line 

that is related to an anchor point. The work of Schneider et 

al (2007) suggests at least three such anchor points: the 

endpoints and the midpoint. They also show that from 

grade 1 to3 children tend to increasingly focus on the 

correct positions on the number line while solving the 

estimation tasks.  

A possible model of progressing towards a linear time 

scale can therefore be one that increasingly learns the 

locations of particular points on the number line, and uses 

those as anchors to determine the points that it does not 

know. It therefore needs some sort of representation of the 

positions of anchor points, but also a method of 

determining points in between those anchors.  

As a theory of how anchor points are stored in memory, 

we use the ACT-R declarative memory (Anderson, 2007). 

In order to determine positions between the anchor points, 

we use the optional mechanism of blending (Lebiere, 

Gonzalez, & Martin, 2007). This mechanism can generate 

weighted averages over examples in memory based on 

their activation and the distance from the requested item. 

Lebiere and colleagues (2007) used blending in an 

instance-based model of decision-making for repeated 

binary choice. An example of blending that is more similar 

to numeric magnitudes is one of time perception by 

Taatgen & van Rijn, (Submitted).  

To investigate the usefulness of this idea, we looked for 

evidence of anchoring in collected data of our own. 

The number line estimation task 

The experiment, from which we will use the findings from 

the pretest in this paper, is a sort of replication of a study 

first made by Siegler and Ramani  (2008) among preschool 

children from low income families. In Norway the 

population of children at kindergarten and preschool are 

mixed. Thus we have defined the population for the 

experiment by learning level. In Norway children start at 

school the year they are 6 years old. This first year in 

school they start to learn the numbers from 1 to 10. We 

assume that this represents a mental level that should make 

most of them just capable of dealing with the empty 

number line. 

The Method of the pre-test 

Participants 
Participants were 39 children in their first year at school, 

so called preschool, with no experience with number lines. 

All of them are born in 2004 and recruited from the same 

municipality, Gjesdal. 17 of them are recruited from Solås 

School, 7 from Dirdal School and 15 from Bærland 

School. The population at these schools is mixed, but at 

Bærland with a larger representation of children with two 

languages, Norwegian not being their mother tongue. 

 

Materials 

Stimuli for the number line estimation task were two stacks 

of 10 sheets of paper, each with a 25 cm long line arranged 

horizontally across the page, with ‘0’ just below the left 

end of the line, and ‘10’ just below the right end. A 

number from 1 to 10 inclusive was printed approximately 3 

cm above the center of the line, with each number printed 

on one of the 10 sheets in each stack. The order of the 

sheets in the stack is randomized.  

 

Procedure 

The test is conducted as a teacher to student task: 

- The teacher or student pulls a sheet from the stack. 

- The teacher says: “Here's the number [number that is on 

the pulled sheet]. And here you see a line that starts with 0 

and ends at 10. Where on this line is the correct position 

for the number you see. Put a mark with your pencil”. 

- The student makes a mark where he thinks the number 

should be positioned. 

In this way the task is carried out with all the sheets in 

the first stack. Then the task is continued in the same way 

with the second stack. In this way the numbers from 1 to 

10 inclusive were presented twice in random order, with all 

numbers presented once before any number was presented 
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twice. No feedback was given, only general praise and 

encouragement. 

 

Result and discussion 

Figure 3 shows the mapping between numbers and 

positions on the number line that we found in the 

experiment. Performance is on average reasonably good. 

What is surprising is that the extent in which the curve 

differs from linear is not towards a logarithmic curve, but 

in the opposite direction. Points are plotted with error bars.

 
Figure 3. Mean task result for 39 children 

 

To get a better sense of the difference of responses, we 

categorized individuals into four categories. From this 

categorization, three of the participants were excluded 

because they produced more or less random results. 

We found that there were roughly four groups that 

resemble a horizontal mirrored L, a mirrored Z, an S and a 

linear line. Even though the borders between these 

categories are fuzzy, they seem to represent a sequence in 

learning the number line from 0 to 10. The categories are 

classified as follows: 

 
Figure 5. Mean of results from category L-shape  

  

The mirrored L is represented by subjects that seem to 

position mostly by counting up and know something about 

one or two numbers close to zero and ten. They are 

classified in this category if 1 through 8 are all far below 

the midline, and 10 above. The plotting of the mean values 

gives something like a vertical mirrored L, see figure 5. 

The next group, from whom the plotting of mean values 

of the task result give us a vertical mirrored Z image, has 

positioned more of the numbers close to ten on the correct 

side of the middle of the number line and are classified in 

this group if at least 8-10 are far above five and 1-6 far 

below: 

 
Figure 6: Mean of results from category Z-shape 

 

The third group is even more close to a linear 

representation and the plotting of the mean values of this 

group gives us an image more like an italic S. The subjects 

in this group are classified to this category if 5 or 6 are put 

around the midpoint, and 1-4 are below, and 7-10 are 

above the line. The new learning step for this group is that 

they have obviously recognized one or two number 

magnitudes close to five to belong to the middle of the 

empty number line:  

 
Figure 7. Mean of results from category S-shape 
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The fourth and last group is the subjects that seem to 

have grasped it all. The plotting of mean values of the task 

result from this group looks linear and gives us an image 

close to a linear graph: 

  
Figure 8: Mean of results from category Linear-shape 

 

Our hypothesis is that this is also the order of progress in 

the involved learning sequence: mL -> mZ -> S -> linear. 

A computational cognitive model 

The results from the eye-tracking experiment of Schneider 

and colleagues, mentioned above, makes us believe that 

cognitive functions dealing with number line estimation 

connects to one or more anchor points. Thus, a general 

idea of this model is that it stores a set of anchor points of 

which it knows the location of on the line. These anchors 

are stored as chunks in declarative memory, more 

specifically as a pair of number and position. When the 

model wants to put a point on the line, it attempts a 

retrieval of that number and its position.  

 

How the model works 

In order to allow the model to mark positions of numbers 

for which it does not have a memory representation, we 

will use the blending mechanism that we mentioned 

earlier. Blending uses existing (anchor) chunks in 

declarative memory to construct intermediate 

representations. Two factors are important in this 

construction process: the mismatch between the anchor 

point in memory and the number we look for, and the 

memory strength of the anchor point. 

An appropriate function to define the mismatch between 

two numbers is Weber's law. Weber's law is typically used 

to express a "just noticeable difference" between two 

stimuli. We use it to calculate the magnitude of the 

perceived distance between values like this:  
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This perceived distance can then be used as the mismatch 

in the activation equation. Weber’s constant becomes a 

scaling parameter. 

We think that a subject that is involved in the learning 

sequence we are investigating, knows some anchor points 

and has a strategy for relating the remaining number values 

to those points. 

The activation of an anchor point is equal to its base 

level activation that is based on the number of experiences 

with that anchor in the past minus the distance (according 

to the Weber formula) between it and the number you are 

trying to retrieve. By first using the equation for base level 

learning of ACT-R the model uses the softmax equation to 

determine Pi, the probability of retrieving each qualifying 

chunk. 
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. 

In this equation t is a constant for the retrieval noise level 

and is set to its default level of 0.25. For the blending 

retrieval our model uses the value of Pj to calculate the 

result value that is retrieved by the formula of Taatgen and 

van Rijn (2010): 

 

$���%� &�%�� �  ' �#(#
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Vj is the position of the anchor point on the number line. 

So, the resulting position for the number on the number 

line is a weighted average of the locations of anchors 

(weighed according to their retrieval probability).In our 

model the case is not time intervals measured by number 

of pulses, but positions (where is the number on the 

number line), that are stored in a memory pool. 

The functions of the model 

The model is a very simple model, a general memory 

theory. And it is not the complete story. Counting will be 

implemented at a later stage. Now it has an activation 

baseline function and there are three functions dealing with 

the declarative memory.   

One function makes a reference list of numbers involved 

and their position on the number line. A chunk is 

represented as a list, with a number (what number is it 

about) and a position (where is it on the number line), and 

a references list with moments in time the chunk has been 

accessed. 

The mismatch function is based on Weber’s law and the 

result value is zero, a negative value or a positive value 

depending on whether the first number is similar, less than 

or greater than the second number. The mismatch assumes 

two numbers are more similar if they are closer and higher 

and is used to calculate the activation of a chunk. 
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A blending function is performing the retrieval and adds 

noise. Because of that we do not use the regular ACT-R 

retrieval rule and noise activation function.  

 

The blending retrieval 

 By using the four functions mentioned above, the model 

simulates one of each of the four cases involved in our 

empirical data. We have the L-shape case, where we 

assume that we know one better than ten. Then chunk 

containing number and position for the anchor point 1 is 

given one more activation entry. In the second case, the Z-

case, we assume that we know 10 a bit better. In the third 

case, the S-case, we assume that we now also know five. 

And in the fifth case, the linear case, we know pretty well 

where most or all numbers belongs on the number line. 

The number of entries we add to the chunk can also be 

used to manipulate the simulation of the model. The 

following table shows the number of activation entries 

used for the anchor points: 

 

Table 1: Number of activation entries 

 

Anchor points: 1 3 5 8 10 

Logarithmic 1    1 

Mirrored L-shape 2    1 

Mirrored Z-shape 5    3 

S-shape 6  1  4 

Linear shape 7 1 4 1 5 

 

Results from running the model and discussion 

The model gives five images of simulated values where 

four are related and rather similar images of estimated 

values to images from mean values of our four groups of 

empirical data, when plotted.   

The initial stage, is a case that gives a logarithmic curve 

and has the smallest activation of only one entry on each of 

1 and 10 as anchor points, see figure 9. 

                                                                                                                                                                                       

 
Figure 9: Model result from smallest activation 

 

The next case tries to simulate the mirrored L-shape 

category. In this case the anchor point 1 is given one more 

activation entry. The image we get from the curve of this 

case is not so clearly L-shaped, figure 10. The reason for 

this we assume is because there is a great bit of counting 

involved in children’s estimation at this level. Our model 

does not do counting as we rely solely on Weber’s law and 

blending.  

  
Figure 10: Model result simulating L-shape group  

 

In the next case we try to simulate the category when the 

results give a curve like a mirrored Z-shape. Now we know 

one and ten a bit better, and the activation in declarative 

memory is set to five entries for the anchor point 1 and 

three entries for anchor point 10. As figure 11 compared to 

the curve image in figure 6 shows, the model now fit a lot 

better. 

 
Figure 11: Model result simulating Z-shape group 

 

In the case where we get an S-shaped curve the model 

knows the anchor point 5 too, but with smallest activation, 

and 1 and 10 is strengthened with one entry each. We now 

clearly see that the image of the curve is more and more 
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similar to the relevant curve image from the result of our 

experiment data. The reason for that we assume is relaying 

on the subjects decreasing use of counting as they learn 

more anchor points and therefore corresponds better to our 

model as we already has mentioned do not use counting 

but only blending, see figure  12. 

 
Figure 12: Model result simulating S-shape group 

 

In our last case, the model knows even more anchor points. 

We have added 3 and 8 as new anchor points in declarative 

memory, but with smallest activation: one entry. Again the 

anchor points 1 and 10 are strengthened by one more entry. 

The anchor point 5 is strengthened by three more entries 

and has now almost the same activation level as the anchor 

point 10. 

 
Figure 13: Model simulating Linear-shape group 

 

In our data it seems like all of the subjects that 

understand the task use counting as an important part of 

the strategies for estimation. As we can see, in the same 

way as the results of our collected data from 6 year old 

children showed, we obtain no logarithmic curve from 

running our model. If we investigate the physical size of 

the unit used by the subjects in counting up or down from 

an anchor point, it is for all of them much smaller than a 

tenth of 25 cm, that was the length of the number line used 

in the estimation task. That shows that for the counting 

strategy the subjects do not have a clear clue of what the 

size of a unit should be.  

But on the opposite, with a larger scale, for example up 

to 100, the children’s unit will be too large and counting 

often will produce a logarithmic curve like Siegler and 

others has found.  

Conclusion 

The model produces a rather good fit to our data from 

real life. If counting-up and counting-down were added to 

the model’s simulation we assume that it would give an 

even better fit to our data. To adapt it to estimation tasks 

with number lines of longer length then 0 to 10, there is a 

need of implementing scaling to simulate the physical size 

of the number line. 
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