
UC Berkeley
UC Berkeley Previously Published Works

Title
Interactive Data Exploration with Smart Drill-Down

Permalink
https://escholarship.org/uc/item/99t2g80v

ISBN
9781509020195

Authors
Joglekar, Manas
Garcia-Molina, Hector
Parameswaran, Aditya

Publication Date
2016-05-01

DOI
10.1109/icde.2016.7498300

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99t2g80v
https://escholarship.org
http://www.cdlib.org/

Interactive Data Exploration with Smart Drill-Down

Manas Joglekar,
Stanford University

Hector Garcia-Molina, and
Stanford University

Aditya Parameswaran
University of Illinois (UIUC)

Abstract

We present smart drill-down, an operator for interactively exploring a relational table to discover

and summarize “interesting” groups of tuples. Each group of tuples is described by a rule. For

instance, the rule (a, b, ⋆, 1000) tells us that there are a thousand tuples with value a in the first

column and b in the second column (and any value in the third column). Smart drill-down presents

an analyst with a list of rules that together describe interesting aspects of the table. The analyst can

tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule

to explore that part of the table. We demonstrate that the underlying optimization problems are

NP-HARD, and describe an algorithm for finding the approximately optimal list of rules to display

when the user uses a smart drill-down, and a dynamic sampling scheme for efficiently interacting

with large tables. Finally, we perform experiments on real datasets on our experimental prototype

to demonstrate the usefulness of smart drill-down and study the performance of our algorithms.

I. Introduction

Analysts often use OLAP (Online Analytical Processing) operations such as drill down (and

roll up) [7] to explore relational databases. These operations are very useful for analytics and

data exploration and have stood the test of time; all commercial OLAP systems in existence

support these operations. (Recent reports estimate the size of the OLAP market to be $10+

Billion [21].)

However, there are cases where drill down is ineffective; for example, when the number of

distinct values in a column is large, vanilla drill down could easily overwhelm analysts by

presenting them with too many results (i.e., aggregates). Further, drill down only allows us

to instantiate values one column at a time, instead of allowing simultaneous drill downs on

multiple columns—this simultaneous drill down on multiple columns could once again

suffer from the problem of having too many results, stemming from many distinct

combinations of column values.

In this paper, we present a new interaction operator that is an extension to the traditional drill

down operator, aimed at providing complementary functionality to drill down in cases where

drill down is ineffective. We call our operator smart drill down. At a high level, smart drill

down lets analysts zoom into the more “interesting” parts of a table or a database, with fewer

HHS Public Access
Author manuscript
Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

Published in final edited form as:
Proc Int Conf Data Eng. 2016 May ; 2016: 906–917. doi:10.1109/ICDE.2016.7498300.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

operations, and without having to examine as much data as traditional drill down. Note that

our goal is not to replace traditional drill down functionality, which we believe is

fundamental; instead, our goal is to provide auxiliary functionality which analysts are free to

use whenever they find traditional drill downs ineffective.

In addition to presenting the new smart drill down operator, we present novel sampling

techniques to compute the results for this operator in an interactive fashion on increasingly

larger databases. Unlike the traditional OLAP setting, these computations require no pre-

materialization, and can be implemented within or on top of any relational database system.

We now explain smart drill-down via a simple example.

Example 1

Consider a table with columns ‘Department Store’, ‘Product’, ‘Region’ and ‘Sales’. Suppose
an analyst queries for tuples where Sales were higher than some threshold, in order to find
the best selling products. If the resulting table has many tuples, the analyst can use
traditional drill down to explore it. For instance, the system may initially tell the analyst
there are 6000 tuples in the answer, represented by the tuple (⋆, ⋆, ⋆, 6000, 0), as shown in
Table I. The ⋆ character is a wildcard that matches any value in the database. The Count
attribute can be replaced by a Sum aggregate over some measure column, e.g., the total
sales. The right-most Weight attribute is the number of non-⋆ attributes; its significance will
be discussed shortly. If the analyst drills down on the Store attribute (first ⋆), then the
operator displays all tuples of the form (X, ⋆, ⋆, C, 1), where X is a Store in the answer
table, and C is the number of tuples for X (or the aggregate sales for X).

Instead, when the analyst uses smart drill down on Table I, she obtains Table II. The (⋆, ⋆, ⋆,

6000) tuple is expanded into 3 tuples that display noteworthy or interesting drill downs. The
number 3 is a user specified parameter, which we call k.

For example, the tuple (Target, bicycles, ⋆, 200, 2) says that there are 200 tuples (out of the
6000) with Target as the first column value and bicycle as the second. This fact tells the
analyst that Target is selling a lot of bicycles. The next tuple tells the analyst that comforters
are selling well in the MA-3 region, across multiple stores. The last tuple states that Walmart
is doing well in general over multiple products and regions. We call each tuple in Table II a
rule to distinguish it from the tuples in the original table that is being explored. Each rule
summarizes the set of tuples that are described by it. Again, instead of Count, the operator
can display a Sum aggregate, such as the total Sales.

Say that after seeing the results of Table II, the analyst wishes to dig deeper into the Walmart
tuples represented by the last rule. For instance, the analyst may want to know which states
Walmart has more sales in, or which products they sell the most. In this case, the analyst
clicks on the Walmart rule, obtaining the expanded summary in Table III. The three new
rules in this table provide additional information about the 1000 Walmart tuples. In
particular, one of the new rules shows that Walmart sells a lot of cookies; the others show it
sells a lot of products in the regions CA-1 and WA-5.

Joglekar et al. Page 2

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

When the analyst clicks on a rule r, smart drill down expands r into k sub-rules that as a set
are deemed to be “interesting.” (We discuss other smart drill down operations in Section II-
C.) There are three factors that make a rule set interesting. One is if it contains rules with
high Count (or total sales) fields, since the larger the count, the more tuples are summarized.
A second factor is if the rules have high weight (number of non-⋆ attributes). For instance,
the rule (Walmart, cookies, AK-1, 200, 3) seems more interesting than (Walmart, cookies, *,

200, 2) since the former tells us the high sales are concentrated in a single region. A third
desirability factor is diversity: For example, if we already have the rule (Walmart, ⋆, ⋆, 1000,

1) in our set, we would rather have the rule (Target, bicycles, ⋆, 200, 2) than (Walmart,
bicycles, ⋆, 200, 2) since the former rule describes tuples that are not described by the first
rule.

In this paper we describe how to combine or blend these three factors in order to obtain a

single desirability score for a set of rules. Our score function can actually be tuned by the

analyst (by specifying how weights are computed), providing significant flexibility in what

is considered a good set of rules. We also present an efficient optimization procedure to

maximize score, invoked by smart drill down to select the set of k rules to display.

Relationship to Other Work

Compared to traditional drill down, our smart drill down has two important advantages:

• Smart drill down limits the information displayed to the most interesting k facts

(rules). With traditional drill down, a column is expanded and all attribute values

are displayed in arbitrary order. In our example, if we drill down on say the store

attribute, we would see all stores listed, which may be a very large number.

• Smart drill down explores several attributes to open up together, and

automatically selects combinations that are interesting. For example, in Table II,

the rule (Target, bicycles, ⋆, 200, 2) is obtained after a single drill down; with a

traditional approach, the analyst would first have to drill down on Store, examine

the results, drill down on Product, look through all the displayed rules and then

find the interesting rule (Target, bicycles, ⋆, 200, 2).

Incidentally, note that in the example we only described one type of smart drill down, where

the analyst selects a rule to drill down on (e.g., the Walmart rule going from Table II to Table

III). In Section II-C we describe another option where the analyst clicks on a ⋆ in a column

to obtain rules that have non-⋆ values in that column.

Our work on smart drill down is related to table summarization and anomaly detection [29],

[28], [30], [13]. These papers mostly focus on giving the most “surprising” information to

the user, i.e., information that would minimize the Kullback-Liebler(KL) divergence

between the resulting maximum entropy distribution and the actual value distribution. For

instance, if a certain set of values occur together in an unexpectedly small number of tuples,

that set of values may be displayed to the user. In contrast, our algorithm focuses on rules

with high counts, covering as much of the table as possible. Thus our work can be thought of

as complementary to anomaly detection. Furthermore, our summarization is couched in an

Joglekar et al. Page 3

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

interactive environment, where the analyst directs the drill down and can tailor the

optimization criteria.

Our work is also related to pattern mining. Several pattern mining papers [36], [8], [39]

focus on providing one shot summaries of data, but do not propose interactive mechanisms.

Moreover, to the best of our knowledge, other pattern mining work is either not flexible

enough [15], [34], [12], restricting the amount of tuning the user can perform, or so general

[24] as to preclude efficient optimization. Our work also merges ‘interesting pattern mining’

into the OLAP framework. We discuss related work in detail in Section V.

Contributions

Our chief contribution in this paper is the smart drill down interaction operator, an extension

of traditional drill down, aimed at allowing analysts to zoom into the more “interesting”

parts of a dataset. In addition to this operator, we develop techniques to support this operator

on increasingly larger datasets:

• Basic Interaction: We demonstrate that finding the optimal list of rules is NP-

HARD, and we develop an algorithm to find the approximately optimal list of

rules to display when the user performs a smart drill down operation.

• Dynamic Sample Maintenance: To improve response time on large tables, we

formalize the problem of dynamically maintaining samples in memory to support

smart drill down. We show that optimal identification of samples is once again

NP-HARD, and we develop an approximate scheme for dynamically maintaining

and using multiple samples of the table in memory.

We have developed a fully functional and usable prototype tool that supports the smart drill-

down operator that was demonstrated at VLDB 2015 [20]. From this point on, when we

provide result snippets, these will be screenshots from our prototype tool. Our prototype tool

also supports traditional drill-down: smart drill-down can be viewed as a generalization of

traditional drill-down (with the weighting function set appropriately). In Section IV-A, we

compare smart drill-down with traditional drill-down and show that smart drill-down returns

considerably better results.

Our tool and techniques are also part of a larger effort for building DATASPREAD [6], a data

analytics system with a spreadsheet-based front-end, and a database-based back-end,

combining the benefits of spreadsheets and databases.

Overview of paper

• In Section II, we formally define smart drill down. After that, we describe

different schemes for weighting rules, and our interactive user interface.

• In Section III, we present our algorithms for finding optimal sets of rules, as well

as our dynamic sampling schemes for dealing with large tables.

• Based on our implemented smart drill down, in Section IV we experimentally

evaluate performance on real datasets, and show additional examples of smart

drill down in action.

Joglekar et al. Page 4

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• We describe related work in Section V, and conclude in Section VI.

II. Formal Description

We describe our formal problem in Section II-A, describe different scoring functions in

Section II-B, and describe our operator interfaces in Section II-C.

A. Preliminaries and Definitions

Tables and Rules—As in a traditional OLAP setting, we assume we are given a star or

snowflake schema; for simplicity, we represent this schema using a single denormalized

relational table, which we call . For the purpose of the rest of the discussion, we will

operate on this table . We let T denote the set of tuples in , and C denote the set of

columns in .

Our objective (formally defined later) is to enable smart drill downs on this table or on

portions of it: the result of our drill downs are lists of rules. A rule is a tuple with a value for

each column of the table. In addition, a rule has other attributes, such as count and weight

(which we define later) associated with it. The value in each column of the rule can either be

one of the values in the corresponding column of the table, or ⋆, representing a wildcard

character representing all values in the column. For a column with numerical values in the

table, we allow the corresponding rule-value to be a range instead of a single value. The

trivial rule is one that has a ⋆ value in all columns. The Size of a rule is defined as the

number of non-starred values in that rule.

Coverage—A rule r is said to cover a tuple t from the table if all non-⋆ values for all

columns of the rule match the corresponding values in the tuple. We abuse notation to write

this as t ∈ r. At a high level, we are interested in identifying rules that cover many tuples. We

next define the concept of subsumption that allow us to relate the coverage of different rules

to each other.

We say that rule r1 is a sub-rule rule r2 if and only if r1 has no more stars than r2 and their

values match wherever they both have non-starred values. For example, rule (a, ⋆) is a sub-

rule of (a, b). If r1 is a sub-rule of r2, then we also say that r2 is a super-rule of r1. If r1 is a

sub-rule of r2, then for all tuples t, t ∈ r2 ⇒ t ∈ r1.

Rule Lists—A rule-list is an ordered list of rules returned by our system in response to a

smart drill down operation. When a user drills down on a rule r to know more about the part

of the table covered by r, we display a new rule-list below r. For instance, the second, third

and fourth rule from Table II form a rule-list, which is displayed when the user clicks on the

first (trivial) rule. Similarly, the second, third and fourth rules in Table III form a rule-list, as

do the fifth, sixth and seventh rules.

Scoring—We now define some additional properties of rules; these properties help us score

individual rules in a rule-list.

Joglekar et al. Page 5

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

There are two portions that constitute our scores for a rule as part of a rule list. The first

portion dictates how much the rule r “covers” the tuples in ; the second portion dictates

how “good” the rule r is (independent of how many tuples it covers). The reason why we

separate the scoring into these two portions is that they allow us to separate the inherent

goodness of a rule from how much it captures the data in .

We now describe the first portion: we define Count(r) as the total number of tuples t ∈ T that

are covered by r. Further, we define MCount(r, R) (which stands for ‘Marginal Count’) as

the number of tuples covered by r but not by any rule before r in the rule-list R. A high value

of MCount indicates that the rule not only covers a lot of tuples, but also covers parts of the

table not covered by previous rules. We want to pick rules with a high value of MCount to

display to the user as part of the smart drill down result, to increase the coverage of the rule-

list.

Now, onto the second portion: we let W denote a function that assigns a non-negative weight
to a rule based on how good the rule is, with higher weights assigned to better rules. As we

will see, the weighting function does not depend on the specific tuples in , but could

depend on the number of ⋆s in r, the schema of , as well as the number of distinct values in

each column of . A weighting function is said to be monotonic if for all rules r1, r2 such

that r1 is a sub-rule of r2, we have W(r1) ≤ W(r2); we focus on monotonic weighting

functions because we prefer rules that are more “specific” rather than those that are more

“general” (thereby conveying less information). We further describe our weighting functions

in Section II-B.

Thus, the total score for our list of rules is given by

Our goal is to choose the rule-list of a given length that maximizes total score.

We use MCount rather than Count in the above equation to ensure that we do not

redundantly cover the same tuples multiple times using multiple rules, and thereby increase

coverage of the table. If we had defined total score as ∑r∈R Count(r)W(r), then our optimal

rule-list could contain rules that repeatedly refer to the most ‘summarizable’ part of the

table. For instance, if a and b were the most common values in columns A and B, then for

some weighting functions W, the summary may potentially consist of rules (a, b, ⋆), (a, ⋆,

⋆), and (⋆, b, ⋆), which tells us nothing about the part of the table with values other than a
and b.

Our smart drill downs still display the Count of each rule rather than the MCount. This is

because while MCount is useful in the rule selection process, Count is easier for a user to

interpret. In any case, it would be a simple extension to display MCount in another column.

Formal Problem—We now formally define our problem:

Joglekar et al. Page 6

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problem 1—Given a table T, a monotonic weighting function W, and a number k, find the
list R of k rules that maximizes

for one of the following smart drill down operations:

• [Rule drill down] If the user clicked on a rule r′, then all r ∈ R must be super-
rules of r′

• [Star drill down] If the user clicked on a ⋆ on column c of rule r′, then all r ∈ R
must be super-rules of r′ and have a non-⋆ value in column c

Throughout this paper, we use the Count aggregate of a rule to display to the user. We can

also use a Sum of values over a given ‘measure column’ cm instead. We discuss how to

modify our algorithms to use Sum instead of Count in our technical report [19].

B. Weighting Rules

We now describe our weighting function W that is used to score individual rules. At a high

level, we want our rules to be as descriptive of the table as possible, i.e. given the rules, it

should be as easy as possible to reproduce the table. We consider a general family of

weighting functions, that assigns for each rule r, a weight W(r) depending on how expressive

the rule is (i.e., how much information it conveys). We mention some canonical forms for

function W(r) (their detailed interpretations are described in the technical report); later, we

specify the full family of weighting functions our techniques can handle:

Size Weighting Function—W(r) = | {c ∈ C | r(c) ≠ ⋆} | : Here we set weight equal to the

number of non-starred values in the rule r i.e. the size of the rule. For example, in Table II,

the rule (Target, bicycles, ⋆) has weight 2.

Bits Weighting Function—W(r) = ∑c∈C:r(c)≠⋆ ⌈log2(|c|)⌉ where |c| refers to the number of

distinct possible values in column c. This function weighs each column based on its inherent

complexity, instead of equally like the Size function.

Other Weighting Functions—Even though we have given two example weighting

functions here, our algorithms allow the user to leverage any weighting function W, subject

to two conditions:

• Non-negativity: For all rules r, W(r) ≥ 0.

• Monotonicity: If r1 ≥ r2, then W(r1) ≤ W(r2). Monotonicity means that a rule that

is less descriptive than another must be assigned a lower weight.

A weight function can be used in several ways, including expressing a higher preference for

a column (by assigning higher weight to rules having a non-⋆ value in that column), or

expressing indifference towards a column (by adding zero weight for having non-⋆ value in

that column).

Joglekar et al. Page 7

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C. Smart drill down Operations

When the user starts using a system equipped with the smart drill down operator, they first

see a table with a single trivial rule as shown in Table I. At any point, the user can click on

either a rule, or a star within a rule, to perform a ‘smart drill down’ on the rule. Clicking on a

rule r causes r to expand into the highest-scoring rule-list consisting of super-rules of r. By

default, the rule r expands into a list of 3 rules, but this number can be changed by the user.

The rules obtained from the expansion are listed directly below r, ordered in decreasing

order by weight (the reasoning behind the ordering is explained in Section III).

Instead of clicking on a rule, the user can click on a ⋆, say in column c of rule r. This will

also cause rule r to expand into a rule-list, but this time the new displayed rules are

guaranteed to have non-⋆ values for in column c. Finally, when the user clicks on a rule that

has already been expanded, it reverses the expansion operation, i.e. collapses it.

III. Smart drill down Algorithms

We now describe online algorithms for implementing the smart drill down operator. We

assume that all columns are categorical (so numerical columns have been bucketized

beforehand). We further discuss bucketization of numerical attributes in the Extensions

section in the technical report [19].

A. Problem Reduction and Important Property

When the user drills down on a rule r′, we want to find the highest scoring list of rules to

expand rule r′ into. If the user had clicked on a ⋆ in a column c, then we have the additional

restriction that all resulting rules must have a non-⋆ value in column c. We can reduce

Problem 1 to the following simpler problem by removing the user-interaction based

constraints:

Problem 2—Given a table T, a monotonic weight function W, and a number k, to find the
list R of k rules that maximizes the total score given by :

Problem 1 with parameters (T, W, k) can be reduced to Problem 2 as follows:

1. [Rule drill down] If the user clicked on rule r in Problem 1, then we can

conceptually make one pass through the table T to filter for tuples covered by

rule r, and store them in a temporary table Tr. Then, we solve Problem 2 for

parameters (Tr, W, k).

2. [Star drill down] If the user clicked on a ⋆ in column c of rule r, then we first

filter table T to get a smaller table Tr consisting of tuples from T that are covered

by r. In addition, we change the weight function W from Problem 1 to a weight

function W′ such that : For any rule r′, W′(r′) = 0 if r′ has a ⋆ in column c, and

W′(r′) = W(r′) otherwise. Then, we solve Problem 2 for parameters (Tr, W′, k).

Joglekar et al. Page 8

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1

Greedy Algorithm for Problem 3

Input: k (Number of rules required), T (database table), mw (max weight), W
 (weight function)

Output: S (Solution set of rules)

S = ϕ

for i from 1 to k do

Rm = Find_best_marginal_rule(S, T, mw, W)

S = S ∪ {Rm}

return S

As a first step towards solving Problem 2, we show that the rules in the optimal list must

effectively be ordered in decreasing order by weight. Note that the weight of a rule is

independent of its MCount. The MCount of a rule is the number of tuples that have been

‘assigned’ to it, and each tuple assigned to rule r contributes W(r) to the total score. Thus, if

the rules are not in decreasing order by weight in a rule list R, then switching the order of

rules in R transfers some tuples from a lower weight rule to a higher weight rule, which can

increase total score.

Lemma 1—Let R be a rule-list. Let R′ be the rule-list having the same rules as R, but
ordered in descending order by weight. Then Score(R′) ≥ Score(R).

The proof of this lemma, as well as other proofs, can be found in the technical report [19].

Thus, it is sufficient to restrict our attention to rule-lists that have rules sorted in decreasing

order by weight. Or equivalently, we can define Score for a set of rules as follows:

Definition 2—Let R be a set of rules. Then the Score of R is Score(R) = Score(R′) where
R′ is the list of rules obtained by ordering the rules in the set R in decreasing order by
weight.

This gives us a reduced version of Problem 2:

Problem 3—Given a table T, a monotonic weight function W, and a number k, find the set

(not list) R of k rules which maximizes Score(R) as defined in Definition 2.

The reduction from Problem 2 to Problem 3 is clear. We now first show that Problem 3, and

consequently Problem 1 and Problem 2 are NP-HARD, and then present an approximation

algorithm for solving Problem 3.

B. NP-Hardness for Problem 3

We reduce the well known NP-HARD Maximum Coverage Problem to a special case of

Problem 3; thus demonstrating the NP-HARDness of Problem 3. The Maximum Coverage

Problem is as follows:

Joglekar et al. Page 9

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problem 4—Given a universe set U, an integer k, and a set S = {S1, S2, …Sm} of subsets
of U (so each Si ⊂ U), find S′ ⊂ S such that |S′| = k, which maximizes Coverage(S′) = |

∪s∈S′ s|.

Thus, the goal of the maximum coverage problem is to find a set of k of the given subsets of

U whose union ‘covers’ as much of U as possible. We can reduce an instance of the

Maximum Coverage Problem (with parameters U, k, S) to an instance of Problem 3, which

gives us the following lemma:

Lemma 2—Problem 3 is NP-HARD.

C. Algorithm Overview

Given that the problem is NP-HARD, we now present our algorithms for approximating the

solution to Problem 3. The problem consists of finding a set of rules, given size k, that

maximizes Score.

The next few sections fully develop the details of our solution:

• We show that the Score function is submodular, and hence an approximately

optimal set can be obtained using a greedy algorithm. At a high level, this greedy

algorithm is simple to state. The algorithm runs for k steps; we start with an

empty rule set R, and then at each step, we add the next best rule that maximizes

Score

• In order to find the rule r to add in each step, we need to measure the impact on

Score for each r. This is done in several passes over the table, using ideas from

the a-priori algorithm [4] for frequent item-set mining.

In some cases, the dataset may still be too large for us to return a good rule set in a

reasonable time; in such cases, we run our algorithm on a sample of the table rather than the

entire table. In Section III-E, we describe a scheme for maintaining multiple samples in

memory and using them to improve response time for different drill down operations

performed by the user. Our sampling scheme dynamically adapts to the current interaction

scenario that the user is in; drawing from ideas in approximation algorithms and

optimization theory.

D. Greedy Approximation Algorithm

Submodularity—We will now show that the Score function over sets of rules has a

property called submodularity, giving us a greedy approximation algorithm for optimizing it.

Definition 3—A function f : 2S → ℝ for any set S is said to be submodular if and only if,
for every s ∈ S, and A ⊂ B ⊂ S with s ∉ A: f(A ∪ {s}) − f(A) ≥ f(B ∪ {s}) − f(B)

Intuitively, this means that the marginal value of adding an element to a set S cannot

increase if we add it to a superset of S instead. For monotonic non-negative submodular

functions, it is well known that the solution to the problem of finding the set of a given size

with maximum value for the function can be found approximately in a greedy fashion.

Joglekar et al. Page 10

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 3—For a given table T, the Score function over sets S of rules, defined by the
following is submodular:

High-Level Procedure—Based on the submodularity property, the greedy procedure,

shown in Algorithm 1, has desirable approximation guarantees. Since Score is a submodular

function of the set S, this greedy procedure is guaranteed to give us a score within a

factor of the optimum (actually, it is for k rules, which is much better for

small k).

The expensive step in the above procedure is when Score is computed for every single rule.

Since the number of rules can be as large as the table itself, this is very time-consuming.

Instead of using the procedure described above directly, we instead develop a

“parameterized” version that will admit further approximation (depending on the parameter)

in order to reduce computation further. We describe this algorithm next.

Parametrized Algorithm—Our algorithm pseudo-code is given in the box labeled

Algorithm 1. We call our algorithm BRS (for Best Rule Set). BRS takes four parameters as

input: the table T, the number k of rules required in the final solution list, a parameter mw

(which we describe in the next paragraph), and the weight function W.

The parameter mw stands for Max Weight. mw tells the algorithm to assume that all rules in

the optimal solution have weight ≤ mw. Thus, if So denotes set of rules with maximum score,

then as long as mw ≥ maxr∈SoW(r), BRS is guaranteed to return So. On the other hand if mw

< W(r) for some r ∈ So, then there is a chance that the set returned by BRS does not contain

r. BRS runs faster for smaller values of mw, and may only return a suboptimal result if mw <

maxr∈SoW(r). In practice, maxr∈SoW(r) is usually small. This is because as the size (and

weight) of a rule increases, its Count falls rapidly. The Count tends to decrease exponentially

with rule size, while Weight increases linearly for common weight functions (such as W(r) =

Size(r)). Thus, rules with high weight and size have very low count, and are unlikely to

occur in the optimal solution set So. Our experiments in Section IV also show that the

weights of rules in the optimal set tend to be small. In the technical report [20], we describe

strategies for setting k, mw and other parameters.

BRS initializes the solution set S to be empty, and then iterates for k steps, adding the best

marginal rule at each step. To find the best marginal rule, it calls a function to find the best

marginal rule given the existing set of rules S.

Finding the Best Marginal Rule—To find the best marginal rule, we need to find the

marginal values of several rules and choose the best one. A brute-force way to do this would

be to enumerate all possible rules, and to find the marginal value for each rule in a single

Joglekar et al. Page 11

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

pass over the data. But the number of possible rules may be as large as the size of the table,

making this step very expensive in terms of computation and memory.

To avoid counting too many rules, we leverage a technique inspired by the a-priori algorithm

for frequent itemset mining [4]. Recall that the a-priori algorithm is used to find all itemsets

that have a support greater than a threshold. Unlike the a-priori algorithm, our goal is to find

the single best marginal rule. Since we only aim to find one rule, our pruning power is

significantly higher than a vanilla a-priori algorithm, and we terminate in much fewer passes

over the dataset.

We compute the best marginal rule over multiple passes on the dataset, with the maximum

number of passes equal to the maximum size of a rule. In the jth pass, we compute counts

and marginal values for rules of size j. To give an example, suppose we had three columns

c1, c2, and c3. In the first pass, we would compute the counts and marginal values of all rules

of size 1. In the second pass, instead of finding marginal values for all size 2 rules, we can

use our knowledge of counts from the first pass to upper bound the potential counts and

marginal values of size 2 rules, and be more selective about which rules to count in the

second pass. For instance, suppose we know that the rule (a, ⋆, ⋆) has a count of 1000, while

(⋆, b, ⋆) has a count of 100. Then for any value c in column c3 we would know that the count

of (⋆, b, c) is at most 100 because it cannot exceed that of (⋆, b, ⋆). This implies that the

maximum marginal value of any super-rule of (⋆, b, c) having weight ≤ mw is at most

100mw. If the rule (a, ⋆, ⋆) has a marginal value of 800, then the marginal value of any

super-rule of (⋆, b, ⋆) cannot possibly exceed that of (a, ⋆, ⋆). Since our aim is to only find

the highest marginal value rule, we can skip counting for all super-rules of (⋆, b, ⋆) for future

passes.

We now describe the function to find the best marginal rule. The pesudo-code for the

function is in the technical report. The function maintains a threshold H, which is the highest

marginal value that has been found for any rule so far. The function makes several iterations

(Step 3), counting marginal values for size j rules in the jth iteration. We maintain three sets

of rules. C is the set of all rules whose marginal values have been counted in all previous

iterations. Cn is the set of rules whose marginal values are going to be counted in the current

pass. And Co is the set of rules whose marginal values were counted in the previous

iteration. For the first pass, we set Cn to be all rules of size 1. Then we compute marginal

values for those rules, and set C = Co = Cn.

For the second pass onwards, we are more selective about which rules to consider for

marginal value evaluation. We first set Cn to be the set of rules of size j which are super-

rules of rules from Co. Then for each rule r from Cn, we consider the known marginal values

of its sub-rules from C, and use them to upper-bound the marginal value of all super-rules of

r, as shown in Step 3.3.2. Then we delete from Cn the rules whose marginal value upper

bound is less than the currently known best marginal value, since they have no chance of

being returned as the best marginal rule. Then we make as actual pass through the table to

compute the marginal value of the rules in Cn, as shown in Step 3.5. If in any round, the Cn

obtained after deleting rules is empty, then we terminate the algorithm and return the highest

value rule.

Joglekar et al. Page 12

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The reader may be wondering why we did not simply count the score of each rule using a

variant of the a-priori algorithm in one pass, and then pick the set of rules that maximizes

score subsequently. This is because doing so will lead to a sub-optimal set of rules: by not

accounting for the rules that have already been selected, we will not be able to ascertain the

marginal benefit of adding an additional rule correctly.

E. Dynamic Sampling for Large Tables

BRS makes multiple passes over the table in order to determine the best set of rules to

display. This can be slow when the table is too large to fit in main memory. We can reduce

the response time of smart drill down by running BRS on a sample of the table instead,

trading off accuracy of our rules for performance. If we had obtained a sample s by selecting

each table tuple with probability p, and run BRS on s, then we multiply the count of each

rule found by BRS, by to estimate its count over the full table.

In Section III-E1, we describe the problem of optimally allocating memory to different

samples. We show that the problem is NP-Hard, and describe an approximate solution. In

Section III-E2, we describe a component of the system called the SampleHandler, which is

responsible for creating and maintaining multiple samples of different parts of the table in

memory, and creating temporary samples for BRS to process. Detailed descriptions of the

sampling problem and the SampleHandler are in the technical report. The technical report

also contains some additional optimizations, and ways to set the minimum sample size.

1) Deciding what to sample—We are given a memory capacity M, and a minimum

sample size minSS, both specified by the user. minSS is the minimum number of tuples on

which we are allowed to run BRS, without accessing the hard disk. A higher value of minSS
increases both accuracy and computation cost of our system.

At any point, we have a tree U of rules displayed to the user. Initially, the tree consists of a

single node corresponding to the empty rule. When the user drills down on a rule r, the sub-

rules of r obtained by running BRS are added as children of node r. Our system maintains

multiple samples in memory, with one sample per rule in U. Specifically, for each rule r ∈ U,

we choose an integer nr, and create a sample sr consisting of nr uniformly randomly chosen

tuples covered by r from the table. Because of the memory constraint, we must have ∑r∈U nr

≤ M.

When a user attempts to drill down on r, the SampleHandler takes all nr tuples from sr, and

also tuples covered by r from samples sr′ for all r′ ∈ U that are sub-rules of r. If the total

number of such tuples is ≥ minSS, then we run BRS on that set of tuples to perform the drill

down. Note that this set of tuples forms a uniformly random sample of tuples covered by r. If
not, then we need to access the hard disk to obtain more tuples covered by r.

Leaves of tree U correspond to rules that may be drilled down on next. We assume there is a

probability distribution over leaves, which assigns a probability that each leaf may be drilled

down on next. This can be a uniform distribution, or a machine learned distribution using

Joglekar et al. Page 13

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

past user data. We aim to set sample sizes nr so as to maximize the probability that the next

drill down can be performed without accessing disk.

If r′ is a sub-rule of r, and covers x times as many rules as r, then it means that when drilling

down on r, sr′ can contribute around tuples to the sample for r. We denote the ratio of

selectivities x by S(r′, r). S(r′, r) is defined to be 0 if r′ is not a sub-rule of r. If r is to be

drilled down on next, the total number of sample tuples we will have for r from all existing

samples is given by ess(r) = ∑r′∈U S(r′, r)nr′. We can drill down on r without accessing hard

disk, if ess(r) ≥ minSS. We now formally define our problem:

Problem 5: Given a tree of rules U with leaves L, a probability distribution p over L, an
integer M, and selectivity ratio S(r1, r2) for each r1, r2 ∈ U, choose an integer nr ≥ 0 for each
r ∈ U so as to maximize :

where the I’s are indicator variables, with : ∑r∈U nr ≤ M

Problem 5 is non-linear and non-convex because of the indicator variables. We can show that

Problem 5 is NP-HARD using a reduction from the knapsack problem.

Lemma 4: Problem 5 is NP-HARD.

Proof: (Sketch; details in [20]) Suppose we are given an instance of the knapsack problem

with m objects, with the ith object having weight wi and value υi. We are also given a weight

limit W, and our objective is to choose a set of objects that maximizes value and has total

weight < W. We will reduce this instance to an instance of Problem 5.

We first scale the wis and W such that all wis are < 1. For Problem 5, we set M to (m + W) ×

minSS. Tree U has m special nodes r1, r2, …rm, and each ri has two leaf children ri,1, ri,2. All

other leaves have expansion probability 0. The S values are such that ∀i ∈ {1, 2, ‥m}, j ∈
{1, 2} : (S(x, ri,j) ≠ 0 ⇒ x = ri,j ‖x = ri). In reality, the S values cannot be exactly zero, but

can be made small enough for all practical purposes. Thus, ∀1 ≤ i ≤ m, j ∈ {1, 2} : ess(ri,j) =

nri,j + nriS(ri, ri,j). In addition, S(ri, ri,1) = 1, and S(ri, ri,2) = 1 − wi. Finally,

and . So in any optimal solution, ∀i : ess(ri,1) = minSS, and we’ve to

decide which i’s also have ess(ri,2) = minSS. Having ess(ri,2) = minSS requires consuming

wi × minSS extra memory and gives an extra probability value. Thus,

having ess(ri,2) = minSS is equivalent to picking object i from the knapsack problem.

Solving Problem 5 with the above U, S, p and picking the set of i’s for which ess(ri,2) =

minSS gives a solution to the instance of the knapsack problem.

Joglekar et al. Page 14

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Approximate DP Solution: Even though the problem as stated is NP-HARD, with an

additional simplifying assumption, we can make the problem approximately solvable using a

Dynamic Programming algorithm. The assumption is: for each r ∈ L, we assume that its ess
can get sample tuples only from samples obtained for itself and its immediate parent. That

is, we set S(r1, r2) to be zero if r1 ≠ r2 and r2 is not a child of r1. This is similar to what we

had for tree U in our proof of Lemma 4. ess(r) now becomes ess(r′) = nr′ + nrS(r, r′) where r
is the parent of r′.

We present the idea behind the approximate solution below. A more detailed description can

be found in the technical report. The solution consists of two main steps:

• Locally Optimal Solutions : For each rule r0 ∈ U \ L, let Mr0 be the set

consisting of r0 and its leaf children. We consider the number of tuples assigned

to members of Mr0. Each such assignment of numbers has a ‘cost’ equal to total

number of tuples assigned, and ‘value’ equal to sum of probabilities of Mr0
members with ess > minSS. We consider all ‘locally optimal’ assignments,

where probability value cannot be increased without increasing the cost.

• Combining Solutions : Then, we use dynamic programming to pick one optimal

solution per r0 so as to get maximum probability value with the given cost

constraint. We discretize costs, say to have granularity 100. Let M0, M1, …MD

be the sets for which we have found locally optimal solutions. We make D
iterations in all, where in the ith iteration, we try different locally optimal

solutions for Mi and use it to update the maximum attainable value for each cost.

2) Design of the SampleHandler—We now briefly describe the design of the

SampleHandler, which given a certain memory capacity M, and a minimum sample size

minSS, creates, maintains, retrieves, and removes samples, all in response to user

interactions on the table. A detailed description, with some potential optimizations, can be

found in [20].

At all points, the SampleHandler maintains a set of samples in memory. Each sample s is

represented as a triple: (a) A ‘filter’ rule fs, (b) a scaling factor Ns (c) a set Ts of tuples from

the table. The set Ts consists of a uniformly sampled fraction of tuples covered by fs. The

scaling factor Ns is used to translate the count of a rule on the sample into an estimate of the

count over the entire table. The sum of |Ts| over all samples s is not allowed to exceed

capacity M at any time.

Whenever the user drills down on a rule r, our system calls the SampleHandler with

argument r, which returns a sample s whose filter value is given by fs = r and has |Ts| ≥

minSS. The Ts of the returned sample consists of a uniformly random set of tuples covered

by r. The SampleHandler also computes Ns when a sample is created. Then we run BRS on

sample s to obtain the list of rules to display. The SampleHandler uses one of the

mechanisms below to obtain such a sample s:

Joglekar et al. Page 15

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Find: If the SampleHandler finds an existing sample s in memory, which has r as

its filter rule (i.e. fs = r) and at least minSS tuples (|Ts| ≥ minSS, then it simply

returns sample s.

• Combine: If Find doesn’t work i.e., if the Sample-Handler cannot find an

existing sample with filter r and ≥ minSS tuples, then it looks at all existing

samples s′ such that fs′ is a sub-rule of r. If the set of all tuples that are covered

by r, from all such Ts′ ’s combined, exceeds minSS in size, then we can simply

treat that set as our sample for rule r.

• Create: If Combine doesn’t work either, then the SampleHandler needs to create

a new sample s with fs = r by making a pass through the table. Since accessing

the hard disk is expensive, it also creates samples for rules other than r and

augments existing samples in the same pass. It first deletes all existing samples,

then uses the algorithm from Section III-E1 to determine how many tuples to

sample for each rule, and uses reservoir sampling [26], [35] to create a uniformly

random sample of a given size for each rule.

IV. Experiments

We have implemented a fully-functional interactive tool instrumented with the smart drill

down operator, having a web interface. We now describe our experiments on this tool with

real datasets.

Datasets

The first dataset, denoted ‘Marketing’, contains demographic information about potential

customers [1]. A total of N = 9409 questionnaires containing 502 questions were filled out

by shopping mall customers in the San Francisco Bay area. This dataset is the summarized

result of this survey. Each tuple in the table describes a single person. There are 14 columns,

each of which is a demographic attribute, such as annual income, gender, marital status, age,

education, and so on. Continuous values, such as income, have been bucketized in the

dataset, and each column has up to 10 distinct values.

The columns (in order) are as follows: annual household income, gender, marital status, age,

education, occupation, time lived in the Bay Area, dual incomes?, persons in household,

persons in household under 18, householder status, type of home, ethnic classification,

language most spoken in home.

The second dataset, denoted ‘Census’, is a US 1990 Census dataset from the UCI Machine

Learning repository [5], consisting of about 2.5 million tuples, with each tuple

corresponding to a person. It has 68 columns, including ancestry, age, and citizenship.

Numerical columns, such as age, have been bucketized beforehand in the dataset. We use

this dataset in Section IV-B in order to study the accuracy and performance of sampling on a

large dataset.

Unless otherwise specified, in all our experiments, we restrict the tables to the first 7

columns in order to make the result tables fit in the page. We use the current implementation

Joglekar et al. Page 16

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of our the smart drill down operator, and insert cropped screenshots of its output in this

paper. We set the k (number of rules) parameter to 4, and mw to 5 for the Size weighting and

20 for the Bits weighting function (see Section II-B). Memory capacity M for the

SampleHandler is set to 50000 tuples, and minSS to 5000.

A. Qualitative Study

We first perform a qualitative study of smart drill down. We observe the effects of various

user interface operations on the Marketing Dataset (the results are similar on the Census

dataset), and then try out different weight functions to study their effects.

1) Testing the User Interface—We now present the rule-based summaries displayed as a

result of a few different user actions. To begin with, the user sees an empty rule with the

total number of tuples as the count. Suppose the user expands the rule. Then the user will see

Figure 1. The first two new rules simply tell us that the table has 4918 female and 4075 male

tuples. The next two rules also slightly more detailed, saying that there are 2940 females

who have been in the Bay Area for > 10 years, and 980 males who have never been married

and been in the Bay Area for > 10 years. Note that the latter two rules give very specific

information which would require up to 3 user clicks to find using traditional drill down,

whereas smart drill down displays that information to the user with a single click.

Now suppose the user decides to further explore the table, by looking at education related

information of females in the dataset. Say the user clicks on the ⋆ in the ‘Education’ column

of the second rule. This opens up Figure 2 that shows the number of females with different

levels of education, for the 4 most frequent levels of education among females. Instead of

expanding the ‘Education’ column, if the user had simply expanded the third rule, it would

have displayed Figure 3.

2) Weighting functions—Our system can display optimal rule lists for any monotonic

weighting function. By default, we assign a rule weight equal to its size. In this section, we

consider other weighting functions.

We first try the weighting function given by:

where |c| refers to the number of distinct possible values in column c. This function gives

higher weight to rules that have non-⋆ values in columns that have many possible values.

The rule summary for this weighting is in Figure 6 (contrast with Figure 1). The weighting

scheme gives low weight for non-⋆ values in binary columns, like the gender column. Thus,

this summary instead gives us information about the Marital Status/Time in Bay Area/

Occupation columns instead of the Gender column like in Figure 1.

The other weighting function we try is given by:

Joglekar et al. Page 17

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This gives us Figure 7. This weighting gives a 0 weight to rules with a single non-⋆ value,

and thus forces the algorithm to finds good rules having at least 2 non-⋆ values. As a result,

we can see that our system only displays rules having 2 or 3 non-⋆ values, unlike Figure 1

which has two rules displaying the total number of males and females, that have size 1.

A regular drill down can be thought of as a special case of smart drill-down with the right

weighting function and number of rules (see technical report for details). We use this to

perform a drill down on the ‘Age’ column using our experimental prototype. The result is

shown in Figure 4. We can contrast it with Figure 1; the latter gives information about

multiple columns at once and only displays high count values. Regular drill down on the

other hand, serves a complementary purpose by focusing on detailed evaluation of a single

column.

B. Quantitative Study

The performance of our algorithm depends on various parameters, such as mw (the max

weight) and minSS (minimum required sample size). We now study the effects of these

parameters on the computation time and accuracy of our algorithm. We use the Marketing

and Census datasets. The Marketing dataset is relatively small with around 9000 tuples,

whereas the Census dataset is quite large, with 2.5 million tuples. The accuracy of our

algorithm depends on mw and minSS, rather than the underlying database size. The worst

case running time for large datasets is close to the time taken for making one pass on the

dataset. When we expand a rule using an existing sample in memory, the running time is

small and only depends on minSS rather than on the dataset size.

1) Effects of mw—Our algorithm for finding the best marginal rule takes an input

parameter called mw. The algorithm is guaranteed to find the best marginal rule as long as its

weight is ≤ mw, but runs faster for smaller values of mw. We now study the effect of varying

mw on the speed of our algorithm running on a Dell XPS L702X laptop with 6GB RAM and

an Intel i5 2.30GHz processor.

We fix a weighting function W, and a value of mw. For that value of the W and mw

parameters, we find the time taken for expanding the empty rule. We repeat this procedure

10 times and take the average value of the running times across the 10 iterations. This time

is plotted against mw, for W(r) = Size(r) and W(r) = ∑c∈C:r(c)≠⋆⌈log2(|c|)⌉ in Figure 5. The

figure shows that running time seems to be approximately linear in mw.

For the Census dataset, the running time is dominated by time spent in making a pass

through the 2.5 million tuples to create the first sample. The response time for the next user

click should be quite small, as the sample created for the first expansion can usually be re-

used for the next rule expansion.

The value of mw required to ensure a correct answer is equal to the maximum weight of a

selected rule. Thus, for size scoring on the Marketing dataset, according to Figure 1, we

Joglekar et al. Page 18

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

require mw ≥ 3. For the second weighting function, according to Figure 6, the minimum

required value of mw is 10. At these values of mw, we see that the expansion takes 1.5

seconds and about 0.25 seconds respectively. Of course, the minimum value of mw we can

use is not known to us beforehand. But even if we use more conservative values of mw, say 6

and 20 respectively, the running times are about 1.5 and 0.5 seconds respectively.

2) Effects of minSS—We now study the effects of the sampling parameter minSS. This

parameter tells the SampleHandler the minimum sample size on which we run BRS. Higher

values of minSS cause our system to use bigger samples, which increases the accuracy of

count estimates for displayed rules, but also correspondingly increases computation time.

We consider one value of minSS and one weight function W at a time. For those values of

minSS and W, we drill down on the empty rule and measure the time taken. We also

measure the percent error in the estimated counts of the displayed rules. That is, for each

displayed rule r, if the displayed (estimated) count if c1 and the actual count (computed

separately on the entire table) is c2, then the percent error for rule r is . We

consider the average of percent errors over all displayed rules. For each value of minSS and

W, we drill down on the empty rule and find the computation time and percent error 50

times, and take the average value for time and error over those 50 iterations. This average

time is plotted against minSS, for W(r) = Size(r) and W(r) = ∑c∈C:r(c)≠⋆⌈log2(|c|)⌉ in Figure

8(a). The average percent error is plotted against minSS, for W(r) = Size(r) and W(r) =

∑c∈C:r(c)≠⋆⌈log2(|c|)⌉ in Figure 8(b).

Figure 8(a) shows that sampling gives us noticeable time savings. The percent error

decreases approximately as , which is again expected because the standard

deviation of estimated Count is approximately inversely proportional to the square root of

sample size.

In addition, we measure the number of incorrect rules per iteration. If the correct set of rules

to display is r1, r2, r3 and the displayed set is r1, r3, r4 then that means there is one incorrect

rule. We find the number of incorrect displayed rules across 50 iterations, and display the

average value in Figure 8(c). This number for the Marketing dataset is almost always 0 for

the Size weighting function, and between 1 and 2 for the Bits weighting function. For the

Census dataset, it is around 1 for minSS ≤ 1000 and falls to about 0.3 for larger values of

minSS. Note that even when we display an ‘incorrect’ rule, it is usually the 5th or 6th best

rule instead of one of the top 4 rules, which still results in a reasonably good summary of the

table.

3) Scaling properties of our algorithms—The computation time for a smart drill-

down is linear in both the table size |T| and in parameter minSS. That is, the runtime can be

written as a × |T| + b × minSS where a and b are constants. In the worst-case where we

cannot form a sample from main memory and need to re-create a sample, a stands for the

time taken to read data from hard disk. That is, a × |T| is the time taken to make a single

sequential scan over the table on disk. The constant b is bigger than a, because BRS makes

Joglekar et al. Page 19

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiple passes over the sample, while creating a sample only requires a single pass over the

table.

When the |T| is small, the runtme is dominated by the b × minSS term, as seen for the

Marketing Dataset in Figure 8(a). When |T| is large relative to minSS, like for the Census

Dataset, the runtime is dominated by the a × |T| term (this is when we need to create a fresh

sample from hard disk). When we have a few million tuples, our total runtime is only a few

seconds. But if the dataset consisted of billions of tuples, the process of reading the table to

create a sample could itself take a very long time. To counteract this, we could preprocess

the dataset by down-sampling it to only a million tuples, and perform the summarization on

the million tuple sample (which also effectively summarizes the billion tuple table).

V. Related Work

There has been work on finding cubes to browse in OLAP systems [29], [28], [30]. This

work, along with other existing work [25] focuses on finding values that occur more often or

less often that expected from a max-entropy distribution. The work does not guarantee good

coverage of the table, since it rates infrequently occurring sets of values as highly as

frequently occurring ones. Some other data exploration work [31] focuses on finding

attribute values that divide the database in equal sized parts, while we focus on values that

occur as frequently as possible.

There is work on constructing ‘explanation tables’, sets of rules that co-occur with a given

binary attribute of the table [13]. This work again focuses on displaying rules that will cause

the resulting max entropy distribution to best approximate the actual distribution of values.

A few vision papers [22], [11] suggest frameworks for building interactive data exploration

systems. Some of these ideas, like maintaining user profiles, could be integrated into smart

drill down. Reference [10] proposes an extension to OLAP drill-down that takes

visualization real estate into account, by clustering attribute values. But it focuses on

expanding a single column at a time, and relies on a given value hierarchy for clustering.

Some related work [17], [16] focuses on finding minimum sized Tableaux that provide

improved support and confidence for conditional functional dependencies. There has also

been work [9], [23], [38], [14] on finding hyper-rectangle based covers for tables. In both

these cases, the emphasis is on completely covering or summarizing the table, suffering from

the same problems as traditional drill down in that the user may be presented with too many

results. The techniques in the former case may end up picking rare “patterns” if they have

high confidence, and in the latter case do not scale well to a large number of attributes (in

their case, ≥ 4).

Several existing papers also deal with the problem of frequent itemset mining [4], [37], [18].

Vanilla frequent itemset mining is not directly applicable to our problem because the flexible

user-specified objective function emphasizes coverage of the table rather than simply

frequent itemsets. However, we do leverage ideas from the a-priori algorithm [4] as

applicable. Several extensions have been proposed to the a-priori algorithm, including those

for dealing with numerical attributes [33], [27]. We can potentially use these ideas to

Joglekar et al. Page 20

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

improve handing of numerical attributes in our work. Unlike our paper, there has been no

work on dynamically maintaining samples for interaction in the frequent itemset literature,

since frequent itemset mining is a one-shot problem.

There has also been plenty of work on pattern mining. Several papers [36], [8], [39] propose

non-interactive schemes that attempt to find a one shot summary of the table. These schemes

usually consume a large amount of time processing the whole table, rather than allowing the

user to slowly steer into portions of interest. In contrast, our work is interactive, and includes

a smart memory manager that can use limited memory effectively while preparing for future

requests.

Our Smart Drill-Down operator is tunable because of the flexible weighting function, but the

monotonicity of the weighting function and the use of MCount, still make it possible for us

to get an approximate optimality guarantee for the rules we display. In contrast, much of the

existing pattern mining work [15], [34], [12] is not not tunable enough, providing only a

fixed set of interestingess parameters. On the other hand, reference [24] allows a fully

general scoring function, necessitating the use of heuristics with no optimality guarantees,

and very time consuming algorithms. A lot of pattern mining work [15], [39], [36] also

focuses on itemsets rather than Relational Data, which does not allow the user to express

interest in certain ‘columns’ over others.

We use sampling to find approximate estimates of rule counts. Various other database

systems [2], [3] use samples to find approximate results to SQL aggregation queries. These

systems create samples in advance and only update them when the database changes. In

contrast, we keep updating our samples on the fly, as the user interacts with our system.

There is work on using weighted sampling [32] to create samples favouring data that is of

interest to a user, based on the user’s history. In contrast, we create samples at run time in

response to the user’s commands.

VI. Conclusion

We have presented a new data exploration operator called smart drill down. Like traditional

drill down, it allows an analyst to quickly discover interesting value patterns (rules) that

occur frequently (or that represent high values of some metric attribute) across diverse parts

of a table.

We presented an algorithm for optimally selecting rules to display, as well as a scheme for

performing such selections based on data samples. Working with samples makes smart drill

down relatively insensitive to the size of the table.

Our experimental results on our experimental prototype show that smart drill down is fast

enough to be interactive under various realistic scenarios. We also showed that the accuracy

is high when sampling is used, and when the maximum weight (mw) approximation is used.

Moreover, we have a tunable parameter minSS that the user can tweak to tradeoff

performance of smart drill down for the accuracy of the rules.

Joglekar et al. Page 21

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

1. http://statweb.stanford.edu/ tibs/ElemStatLearn/datasets/marketing.info.txt.

2. Acharya S, Gibbons PB, Poosala V, Ramaswamy S. The aqua approximate query answering system.
SIGMOD’99. 1999:574–576.

3. Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I. Blinkdb: Queries with bounded
errors and bounded response times on very large data. EuroSys. 2013:29–42.

4. Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. VLDB.
1994:487–499.

5. Bache K, Lichman M. UCI machine learning repository. 2013

6. Bendre M, Sun B, Zhou X, Zhang D, Lin S-Y, Chang K, Parameswaran A. Data-spread: Unifying
databases and spreadsheets (demo). VLDB. 2015

7. Bosworth A, Gray J, Layman A, Pirahesh H. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Technical report, Microsoft Research. 1995

8. Bringmann B, Katholieke L, Zimmermann A. The chosen few: On identifying valuable patterns.
ICDM. 2007

9. Bu S, Lakshmanan LVS, Ng RT. Mdl summarization with holes. VLDB. 2005:433–444.

10. Candan KS, Cao H, Qi Y, Sapino ML. Alphasum: size-constrained table summarization using
value lattices. EDBT. 2009:96–107.

11. Cetintemel U, Cherniack M, DeBrabant J, Diao Y, Dimitriadou K, Kalinin A, Papaemmanouil O,
Zdonik SB. Query steering for interactive data exploration. CIDR. 2013

12. De Bie T, Kontonasios K-N, Spyropoulou E. A framework for mining interesting pattern sets.
Proceedings of the ACM SIGKDD Workshop on Useful Patterns, UP ’10. 2010

13. Gebaly KE, Agrawal P, Golab L, Korn F, Srivastava D. Interpretable and informative explanations
of outcomes. PVLDB. 2014:61–72.

14. Geerts F, Goethals B, Mielikinen T. Tiling databases. Discovery Science. 2004:278–289.

15. Goethals, B., Moens, S., Vreeken, J. Mime: A framework for interactive visual pattern mining;
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’11; 2011.

16. Golab L, Karloff H, Korn F, Srivastava D, Yu B. On generating near-optimal tableaux for
conditional functional dependencies. Proc. VLDB Endow. 2008:376–390.

17. Golab L, Korn F, Srivastava D. Efficient and effective analysis of data quality using pattern
tableaux. IEEE Data Eng. Bull. 2011; 34(3):26–33.

18. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. SIGMOD. 2000:1–12.

19. Joglekar M, Garcia-Molina H, Parameswaran A. http://arxiv.org/pdf/1412.0364.

20. Joglekar M, Garcia-Molina H, Parameswaran AG. Smart drilldown: A new data exploration
operator. PVLDB. 2015; 8(12):1928–1939. [PubMed: 26844008]

21. Kalakota R. Gartner: Bi and analytics a $12.2 billion market. 2013 Jul. [retrieved october 30, 2014]

22. Kersten ML, Idreos S, Manegold S, Liarou E. The researcher’s guide to the data deluge: Querying
a scientific database in just a few seconds. VLDB’11. 2011

23. Lakshmanan LVS, Ng RT, Wang CX, Zhou X, Johnson TJ. The generalized mdl approach for
summarization. VLDB. 2002:766–777.

24. Leeuwen M, Knobbe A. Diverse subgroup set discovery. Data Min. Knowl. Discov. 2012:25.

25. Mampaey M, Tatti N, Vreeken J. Tell me what i need to know: Succinctly summarizing data with
itemsets. KDD. 2011:573–581.

26. McLeod AI, Bellhouse DR. A convenient algorithm for drawing a simple random sample. Journal
of the Royal Statistical Society. Series C (Applied Statistics). 1983:182–184.

27. Miller RJ, Yang Y. Association rules over interval data. SIGMOD. 1997:452–461.

28. Sarawagi S. User-adaptive exploration of multidimensional data. VLDB. 2000:307–316.

29. Sarawagi S. User-cognizant multidimensional analysis. The VLDB Journal. 2001:224–239.

30. Sarawagi S, Agrawal R, Megiddo N. Discovery-driven exploration of olap data cubes. EDBT.
1998:168–182.

Joglekar et al. Page 22

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://statweb.stanford.edu/tibs/ElemStatLearn/datasets/marketing.info.txt
http://arxiv.org/pdf/1412.0364

31. Sellam T, Kersten ML. Meet charles, big data query advisor. CIDR’13. 2013:1–1.

32. Sidirourgos, L., Kersten, M., Boncz, P. Scientific discovery through weighted sampling; Big Data,
2013 IEEE International Conference on; 2013. p. 300-306.

33. Srikant R, Agrawal R. Mining quantitative association rules in large relational tables. SIGMOD.
1996:1–12.

34. Tatti N, Moerchen F, Calders T. Finding robust itemsets under subsampling. ACM Trans. Database
Syst. 2014:39.

35. Vitter JS. Random sampling with a reservoir. ACM Trans. Math. Softw. 1985:37–57.

36. Vreeken J, Leeuwen M, Siebes A. Krimp: Mining itemsets that compress. Data Min. Knowl.
Discov. 2011

37. Wang J, Han J, Lu Y, Tzvetkov P. Tfp: an efficient algorithm for mining top-k frequent closed
itemsets. Knowledge and Data Engineering, IEEE Transactions on. 2005:652–663.

38. Xiang Y, Jin R, Fuhry D, Dragan FF. Succinct summarization of transactional databases: an
overlapped hyperrectangle scheme. KDD. 2008:758–766.

39. Yan, X., Cheng, H., Han, J., Xin, D. Summarizing itemset patterns: A profile-based approach;
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining, KDD ’05; 2005.

Joglekar et al. Page 23

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Summary after clicking on the empty rule

Joglekar et al. Page 24

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Star expansion on ‘Education’ Column

Joglekar et al. Page 25

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
A rule expansion

Joglekar et al. Page 26

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
A regular drill down on Age

Joglekar et al. Page 27

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Running time for different values of parameter mw

Joglekar et al. Page 28

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Bits scoring

Joglekar et al. Page 29

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Size minus one weighting

Joglekar et al. Page 30

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
(a) Running time for different values of parameter minSS (b) Error in Count for different

values of parameter minSS (c) Average number of incorrect rules for different values of

parameter minSS

Joglekar et al. Page 31

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Joglekar et al. Page 32

TABLE I

Initial Summary

Store Product Region Count Weight

⋆ ⋆ ⋆ 6000 0

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Joglekar et al. Page 33

TABLE II

Result After First Smart Drill Down

Store Product Region Count Weight

⋆ ⋆ ⋆ 6000 0

⊲ Target bicycles ⋆ 200 2

⊲ ⋆ comforters MA-3 600 2

⊲ Walmart ⋆ ⋆ 1000 1

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Joglekar et al. Page 34

TABLE III

Result After Second Smart Drill Down

Store Product Region Count Weight

⋆ ⋆ ⋆ 6000 0

⊲ Target bicycles ⋆ 200 2

⊲ ⋆ comforters MA-3 600 2

⊲ Walmart
⊲⊲ Walmart
⊲⊲ Walmart
⊲⊲ Walmart

⋆ ⋆ 1000 1

cookies ⋆ 200 2

⋆ CA-1 150 2

⋆ WA-5 130 2

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 February 14.

	Abstract
	I. Introduction
	Example 1
	Relationship to Other Work
	Contributions
	Overview of paper

	II. Formal Description
	A. Preliminaries and Definitions
	Tables and Rules
	Coverage
	Rule Lists
	Scoring
	Formal Problem
	Problem 1

	B. Weighting Rules
	Size Weighting Function
	Bits Weighting Function
	Other Weighting Functions

	C. Smart drill down Operations

	III. Smart drill down Algorithms
	A. Problem Reduction and Important Property
	Problem 2

	Algorithm 1
	B. NP-Hardness for Problem 3
	Problem 4
	Lemma 2

	C. Algorithm Overview
	D. Greedy Approximation Algorithm
	Submodularity
	Definition 3
	Lemma 3
	High-Level Procedure
	Parametrized Algorithm
	Finding the Best Marginal Rule

	E. Dynamic Sampling for Large Tables
	1) Deciding what to sample
	Problem 5
	Lemma 4
	Proof
	Approximate DP Solution

	2) Design of the SampleHandler

	IV. Experiments
	Datasets
	A. Qualitative Study
	1) Testing the User Interface
	2) Weighting functions

	B. Quantitative Study
	1) Effects of mw
	2) Effects of minSS
	3) Scaling properties of our algorithms

	V. Related Work
	VI. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	TABLE I
	TABLE II
	TABLE III

