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Results on Stability and Robustness of Hybrid Limit Cycles
for A Class of Hybrid Systems

Xuyang Lou, Yuchun Li and Ricardo G. Sanfelice

Abstract— This work addresses stability and robustness prop-
erties of hybrid limit cycles for a class of hybrid systems,
which combine continuous dynamics on a flow set and discrete
dynamics on a jump set. Under some mild assumptions, we
show that the stability of hybrid limit cycles for a hybrid system
is equivalent to the stability of a fixed point of the associated
Poincaré map. As a difference to related efforts for systems
with impulsive effects, we also explore conditions under which
the stability properties of the hybrid limit cycles are robust to
small perturbations. The spiking Izhikevich neuron is presented
to illustrate the notions and results throughout the paper.

I. INTRODUCTION

Hybrid systems are models having state variables that can
evolve continuously (flows) and/or discretely (jumps). In
recent years, the study of limit cycles in nonlinear hybrid
systems has received substantial attention. One reason is
the existence of hybrid limit cycles in many engineering
applications, such as walking robots [1], genetic regulatory
networks [2], among others. Stability of hybrid limit cycles
is often a fundamental requirement for their practical value
in applications. The literature shows a variety of techniques
for the study of hybrid limit cycles; see, e.g., [1], [3], [4]-
[7]. In particular, Grizzle et al. established the existence and
stability properties of a periodic orbit of nonlinear systems
with impulsive effects via the method of Poincaré sections
[1]. Nersesov et al. generalized the Poincaré’s method to
analyze limit cycles for left-continuous hybrid impulsive
dynamical systems [4]. The trajectory sensitivity approach
in [5] was employed to develop sufficient conditions for
stability of limit cycles in a differential-algebraic impulsive
switched model. Motivated by robotics applications, a state-
feedback controller to render limit cycles stable within the
hybrid zero dynamics is designed in [6]. More recently, in
[7], the existence and stability of limit cycles in reset control
systems were investigated via techniques that rely on the
linearization of the Poincaré map about its fixed point.

To the best of our knowledge, all of the aforementioned
results about limit cycles are only suitable for hybrid systems
that have jumps on switching surfaces and under nominal
noise free conditions. In fact, the results therein do not char-
acterize the robustness properties to perturbations of stable
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hybrid limit cycles, which is a very challenging problem due
to the impulsive behavior in such systems. Motivated by this
open question, the contributions of this paper include the
following:

• We introduce a notion of hybrid limit cycle with one
jump per period for a class of hybrid systems in [8].
Also, we define the notion of flow periodic solution and
asymptotic stability of the hybrid limit cycle for such
hybrid systems.1

• We establish sufficient and necessary conditions for
guaranteeing stability properties of hybrid limit cycles
for a class of hybrid systems. We construct impact
functions and Poincaré maps that cope with one jump
per period of a hybrid limit cycle.

• Via perturbation analysis for hybrid systems, we show
that asymptotic stability of a hybrid limit cycle is robust
to small perturbations.

The organization of the paper is as follows. Section II
presents a motivational example. Section III gives some
preliminaries on hybrid systems. Section IV presents the def-
inition of hybrid limit cycle, stability notions, and Poincaré
map. In addition, sufficient and necessary conditions for
stability of hybrid limit cycles are established. Section V
provides results on general robustness of stability to perturba-
tions. Due to space constraints, the proofs will be published
elsewhere.

Notation. Rn denotes the n-dimensional Euclidean space.
R>0 denotes the set of nonnegative real numbers, i.e.,
R>0 := [0,+∞). N denotes the set of natural numbers
including 0, i.e., N := {0, 1, 2, · · · }. Given a vector x ∈
Rn, |x| denotes the Euclidean norm. Given a continuously
differentiable function h : Rn → R and a function f :
Rn → Rn, the Lie derivative of h at x in the direction of f
is denoted by Lfh(x) := 〈∇h(x), f(x)〉. Given a function
f : Rm → Rn, its domain of definition is denoted by dom f ,
i.e., dom f := {x ∈ Rm : f(x) is defined}. Given a set
A ⊂ Rn and a point x ∈ Rn, |x|A := infy∈A |x − y|
when A is closed; A (respectively, co A) denotes its closure
(respectively, closed convex hull). B denotes a closed unit
ball in Euclidean space (of appropriate dimension). Given
δ > 0 and x ∈ Rn, x + δB denotes a closed ball centered
at x with radius δ. A function β : R>0 × R>0 → R>0

belongs to class-KL (β ∈ KL) if for each t > 0, β(·, t) is
nondecreasing and lims→0+ β(s, t) = 0 and, for each s > 0,
β(s, ·) is nonincreasing and limt→∞ β(s, t) = 0.

1In this work, a hybrid limit cycle is given by a closed set, while the
limit cycle defined in [1] is given by an open set due to the right continuity
assumption in the definition of solutions.



II. MOTIVATIONAL EXAMPLE

The following example motivates the study of limit cycles
for hybrid systems in this paper.

Example 2.1: (Izhikevich neuron) Consider the Izhikevich
neuron model [10] given by

{

v̇ = 0.04v2 + 5v + 140− w + Iext

ẇ = a(bv − w)
(1)

where v is the membrane potential, w is the recovery vari-
able, and Iext represents the synaptic current or injected DC
current. When the membrane voltage of a neuron increases
and reaches a threshold (30 millivolts – see [10]), the mem-
brane voltage and the recovery variable are instantaneously
reset following the resetting rule

if v > 30, then

{

v+ = c

w+ = w + d.
(2)

The value of the input Iext and the model parameters a, b, c,
and d are used to determine the neuron type, that is, the
model can exhibit a specific firing pattern (of all known
types) of cortical neurons when these parameters are ap-
propriately chosen [10]. For instance, when the input is
Iext = 10 and the parameters are chosen as a = 0.02, b =
0.2, c = −55, d = 4, the neuron model exhibits intrinsic
bursting behavior (see the blue lines shown in Fig. 1). This
corresponds to a hybrid limit cycle O defined by the solution
to (1)-(2) that jumps from point A to point B, and then flows
back to A.

As suggested in Fig. 1, the hybrid limit cycle O is
asymptotically stable. In particular, solutions initialized close
to the set O stay close for all time and converge to the set
O as time gets large. For instance, the trajectory (black line)
of a solution starting from (−54.76,−3.5) (the point C in
the subfigure), which is close to the point B, remains close
to the hybrid limit cycle O and approaches it eventually.
However, solutions initialized relatively far away from the
set O may not stay close for all time. For instance, as shown
in Fig. 1, the trajectory (red line) of a solution starting from
(−54.5,−3.5) (the point D in the subfigure) that is close to
the point B first goes far away from the hybrid limit cycle
O and approaches it eventually.

Interestingly, solutions to the neuron model with state
perturbations, in particular, solutions to (1)-(2) with an
admissible state perturbation, may not be always close to
the nominal solutions. For instance, an additive perturbation
e = (0.24, 0) (or e = (0.5, 0), respectively) to the jump map
after a jump from the point A would result in a state value
equal to the point C (or the point D, respectively) instead
of the point B. As shown above, the trajectory (black line)
from the point C remains close to the hybrid limit cycle O
and approaches it eventually, while the trajectory (red line)
from the point D does not stay close to the one from the
point B. This suggests that the hybrid limit cycle O has a
small margin of robustness to perturbations. △

Motivated by this example, our interest is in developing
analysis tools that can be applied to such systems so as to
determine the stability and robustness properties of the limit
cycle with hybrid dynamics.
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Fig. 1. Phase plot of several solutions to the Izhikevich model in (1)-(2) with
different conditions. The point A corresponds to (v, w) = (30,−7.5), the
point B corresponds to (v, w) = (−55,−3.5), the point C corresponds
to (v, w) = (−54.76,−3.5), and the point D corresponds to (v, w) =
(−54.5,−3.5).

III. PRELIMINARIES ON HYBRID SYSTEMS

Consider a hybrid system H in [8], which is given by

H :

{

ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D
(3)

where x ∈ Rn denotes the state of the system. The function
f : C → Rn (respectively, g : D → Rn) is a single-valued
map describing the continuous evolution (respectively, the
discrete jumps) while C ⊂ Rn (respectively, D ⊂ Rn) is the
set on which the flow map f is effective (respectively, from
which jumps can occur). The data of a hybrid system H is
given by H = (C, f,D, g). A solution to H is parameterized
by ordinary time t and a counter j for jumps. It is given by
a hybrid arc2 φ : dom φ → Rn. A solution φ to H is said
to be complete if dom φ is unbounded. It is Zeno if it is
complete and the projection of dom φ onto R>0 is bounded.
It is said to be maximal if it is not a truncated version of
another solution. The set of maximal solutions to H from
the set K is denoted as
SH(K) :={φ :φ is a maximal solution toHwithφ(0, 0)∈K}.

We define t 7→ φf (t, x0) as a solution of the flow dynamics

ẋ = f(x) x ∈ C

from x0 ∈ C. A hybrid system H is said to be well-posed if
it satisfies the hybrid basic conditions [8, Assumption 6.5].
For more details about this hybrid systems framework, we
refer the readers to [8].

IV. HYBRID LIMIT CYCLES AND BASIC PROPERTIES

A. Definitions

In this section, we introduce the notion of hybrid limit
cycles and, in the next section, reveal their basic properties.
We consider a class of flow periodic solutions defined as
follows.

Definition 4.1: (flow periodic solution) A complete so-
lution φ∗ to H is flow periodic with period T ∗ and one
jump in each period if there exists T ∗ ∈ (0,∞) such that
φ∗(t+ T ∗, j + 1) = φ∗(t, j) for all (t, j) ∈ dom φ∗.

2A hybrid arc is a function φ defined on a hybrid time domain and for
each j ∈ N, t 7→ φ(t, j) is locally absolutely continuous. A compact hybrid
time domain is a set E ⊂ R>0 × N of the form E =

⋃J−1
j=0 ([tj , tj+1], j)

for some finite sequence of times 0 = t0 6 t1 6 · · · 6 tJ ; the set E is a
hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, · · · , J}) is
a compact hybrid time domain.



Remark 4.2: The definition of a flow periodic solution φ∗

with period T ∗ > 0 and one jump per period above implies
that if (t, j) ∈ dom φ∗, then (t+ T ∗, j + 1) ∈ dom φ∗.

In fact, a flow periodic solution to H as in Definition 4.1
generates a hybrid limit cycle.

Definition 4.3: (hybrid limit cycle) A flow periodic solu-
tion φ∗ with period T ∗ and one jump in each period defines
a hybrid limit cycle O = {x ∈ Rn : x = φ∗(t, j), (t, j) ∈
dom φ∗}. 3

Remark 4.4: The definition of a hybrid limit cycle O with
period T ∗ > 0 and one jump per period implies that O is
nonempty and contains more than two points; in particular,
a hybrid arc that generates O cannot be discrete. A hybrid
limit cycle O is restricted to have one jump per period, but
extensions to more complex cases are possible.

The following example illustrates the notion of hybrid
limit cycles in Definition 4.3.

Example 4.5: (Izhikevich neuron, revisited) Consider the
Izhikevich neuron system in Example 2.1. This neuron
system is slightly modified and written as a hybrid system
as in (3), for which we denote as HI, and is given by

HI :=















ẋ = f(x) :=

[

f1(x)
a(bv − w)

]

x ∈ CI

x+ = g(x) :=

[

c

w + d

]

x ∈ DI

(4)

where x = (v, w), f1(x) = 0.04v2 + 5v + 140 − w + Iext,
CI = {x ∈ R2 : v 6 30}, DI = {x∈R2 :v = 30, f1(x)>0},
where f1(x)>0 models the fact that the spikes occur when
the membrane potential v grows to the threshold (30 mV).

The neuron system has a flow periodic solution with T ∗

and one jump per period. However, due to the form of
the flow map, an analytic expression is not obvious. By
numerical calculation, an approximate value of it can be
obtained, that is, the solution φ∗ to HI from φ∗(0, 0) =
(−55,−3.5) is a flow periodic solution with T ∗ = 31.24 ms
and one jump per period. △

B. Basic Properties of Hybrid Limit Cycles

In what follows, we focus on a class of hybrid systems
that satisfies the following assumption.

Assumption 4.6: For a hybrid system H = (C, f,D, g) on
Rn and a closed set M ⊂ Rn, there exists a continuously
differentiable function h : Rn → R such that

1) the flow set is given as C = {x ∈ Rn : h(x) > 0}
and the jump set is given as D = {x ∈ Rn : h(x) =
0, Lfh(x) 6 0};

2) the flow map f is continuously differentiable on an
open neighborhood of M ∩ C, and the jump map g

is continuous on M ∩D;
3) Lfh(x) < 0 for all x ∈ M ∩D and g(M ∩D)∩ (M ∩

D) = ∅;
4) HM = (M∩C, f,M∩D, g) has a flow periodic solution

φ∗ with period T ∗ > 0 and one jump per period that
defines a hybrid limit cycle O ⊂ M ∩ (C ∪D).

3For some ts ∈ R>0, it can be written as {x ∈ Rn : x = φ∗(t, j), t ∈
[ts, ts + T ∗], (t, j) ∈ dom φ∗}.

Item 1) in Assumption 4.6 implies that flows occur when h is
nonnegative and jumps only occur at points in the zero level
set of h. Note that since h is continuous and f is continuously
differentiable, the flow set and the jump set are closed. The
continuity property of f in item 2) of Assumption 4.6 is
further required for the existence of solutions to ẋ = f(x)
according to [8, Proposition 2.10]. Moreover, item 2) also
guarantees that solutions to ẋ = f(x) continuously depend
on initial conditions. Items 3) and 4) in Assumption 4.6 allow
us to restrict the analysis of a hybrid system H to a region
of the state space M ⊂ Rn. As we will show later, the
set M is appropriately chosen for each specific system such
that it guarantees completeness of solutions to HM and the
existence of periodic solutions.

It can be shown that a hybrid limit cycle generated by
periodic solutions as in Definition 4.3 is closed and bounded,
as established in the following result.

Lemma 4.7: Consider a hybrid system H = (C, f,D, g)
and a closed set M satisfying Assumption 4.6. Then, any
hybrid limit cycle O for H is compact.

Remark 4.8: By items 1) and 2) of Assumption 4.6,
the data of HM satisfies the hybrid basic conditions [8,
Assumption 6.5]. Then, using item 3) of Assumption 4.6,
by [9, Lemma 2.7], for any precompact solution φ to HM ,
there exists r > 0 such that tj+1 − tj > r for all j > 1,
(tj , j), (tj+1, j) ∈ dom φ (i.e., the elapsed time between two
consecutive jumps is uniformly bounded below by a positive
constant). These conditions guarantee that two successive
jumps without flow in between do not happen.

Remark 4.9: Since a hybrid limit cycle O to HM is
compact, for any solution φ to HM , the distance |φ(t, j)|O
is well-defined for all (t, j) ∈ dom φ.

The following example illustrates Assumption 4.6.

Example 4.10: (Izhikevich neuron, revisited) Consider the
Izhikevich neuron system introduced in Example 4.5. By
design, the sets CI and DI are closed; f is continuously
differentiable; and g is continuous. Define a function h :
R2 → R as h(x) = 30− v. Then, CI and DI can be written
as CI = {x ∈ R2 : h(x) > 0} and DI = {x ∈ R2 : h(x) =
0, Lfh(x) 6 0}. Consider the closed set M := {x ∈ R2 :
w 6 325 + Iext}. Then, for each x ∈ DI ∩ M we have
Lfh(x) = −f1(x) = −(0.04v2 + 5v + 140 − w + Iext) 6

−(326− (325 + Iext) + Iext) = −1 < 0.
For HIM = (CI ∩ M, f,DI ∩ M, g), it can be verified

that g(DI ∩M) ∩ (DI ∩ M) = ∅. Note that g(DI ∩M) ⊂
M ∩ (DI ∪ CI). Furthermore, for any point x̄ = (v̄, w̄) ∈
M ∩ (DI ∪ CI), if x̄ belongs to the boundary of the set
M ∩ (DI ∪ CI) and w̄ = 325 + Iext, then, bv̄ < w̄ (recall
b = 0.2), we have a(bv̄ − w̄) < 0, and the w component of
the vector field is negative, therefore, TM∩(DI∪CI)\DI(x̄) ∩
f(x̄) = {f(x̄)} 6= ∅.4 If x̄ belongs to the interior of the set
M∩(DI∪CI)\DI, TM∩(DI∪CI)\DI(x̄)∩f(x̄) = {f(x̄)} 6= ∅.
When x̄ ∈ M ∩ DI ∩ CI, f1(x̄) > 0, solutions cannot be
extended via flow. By [8, Proposition 6.10], every maximal

4TM∩(DI∪CI)\DI
(x̄) denotes the tangent cone to the set

M ∩ (DI ∪ CI) \DI at x̄, see [8, Definition 5.12].



solution to HIM is complete. Therefore, the neuron system
HI on R2 satisfies Assumption 4.6 and has a flow periodic
solution φ∗ with period T ∗ and one jump per period, which
defines a unique hybrid limit cycle O ⊂ M ∩ (CI ∪DI). △

The following result establishes a transversality5 property
of a hybrid limit cycle for H.

Lemma 4.11: Consider a hybrid system H = (C, f,D, g)
on Rn and a closed set M ⊂ Rn satisfying Assumption 4.6.
Any hybrid limit cycle O ⊂ M ∩ (C ∪D) for HM = (M ∩
C, f,M ∩D, g) is transversal to M ∩D.

Remark 4.12: In [1], the authors extend the Poincaré
method to analyze the stability properties of a periodic orbit
to nonlinear systems with impulsive effects. In particular,
the solutions to the systems considered therein are right-
continuous over (not necessarily closed) intervals of flow. In
particular, the model considered in [1] requires that C∩D =
∅ while Example 4.5 does not satisfy this condition. The
model employed in [4] suffers similar drawbacks.

C. Stability of Hybrid Limit Cycles

In this section, we present stability properties of hybrid
limit cycles for H. Following the stability notion introduced
in [8, Definition 3.6], we employ the following notion for
stability of hybrid limit cycles.

Definition 4.13: Consider a hybrid system H on Rn and
a compact hybrid limit cycle O. Then, the hybrid limit cycle
O is said to be

• stable for H if for every ε > 0 there exists δ > 0 such
that every solution φ to H with |φ(0, 0)|O 6 δ satisfies
|φ(t, j)|O 6 ε for all (t, j) ∈ dom φ;

• globally attractive for H if every maximal solu-
tion φ to H from C̄ ∪ D is complete and satisfies
lim

t+j→∞
|φ(t, j)|O = 0;

• globally asymptotically stable for H if it is both stable
and globally attractive.

• locally attractive for H if there exists µ > 0
such that every maximal solution φ to H start-
ing from |φ(0, 0)|O 6 µ is complete and satisfies
lim

t+j→∞
|φ(t, j)|O = 0;

• locally asymptotically stable for H if it is both stable
and locally attractive.

We will also employ the following stability notion.

Definition 4.14: (KL asymptotic stability) Let H be a
hybrid system on Rn, A ⊂ Rn be a compact set, and
BA be the basin of attraction of the set A.6 The set A is
KL asymptotically stable on BA for H if for every proper
indicator ω of A on BA, there exists a function β ∈ KL
such that for every solution φ ∈ SH(BA)

ω(φ(t, j)) 6 β(ω(φ(0, 0)), t+ j) ∀(t, j) ∈ dom φ. (5)

Before presenting the main results, let us introduce the
time-to-impact function and the Poincaré map for hybrid

5A hybrid limit cycle O is transversal to D if its closure intersects D at
exactly one point x̄ := O ∩D with the property Lfh(x̄) 6= 0.

6BA is the set of points ξ ∈ Rn such that every complete solution φ to
HM with φ(0, 0) = ξ is bounded and limt+j→∞ |φ(t, j)|O = 0.

systems. Following the definition in [1], for a hybrid system
H = (C, f,D, g), the time-to-impact function with respect
to D is defined by TI : C ∪D → R>0 ∪ {∞}, where7

TI(x) := inf{t > 0 : φ(t, j) ∈ D, φ ∈ SH(x)} (6)

for each x ∈ C ∪D.
Inspired by [1, Lemma 3], we show that the function x 7→

TI(x) is continuous on a subset of M ∩ (C ∪D).

Lemma 4.15: Suppose a hybrid system H on Rn and
a closed set M ⊂ Rn satisfy Assumption 4.6 and every
maximal solution to HM =(M∩C, f,M∩D, g) is complete.
Then, TI is continuous at points in X := {x ∈ M∩(C∪D) :
0<TI(x)<∞}.

The Poincaré map P : M ∩D → M ∩D given by
P (x) :=

{

φ(TI(g(x)), j) : φ ∈ SH(g(x)),
(TI(g(x)), j) ∈ dom φ

}

∀x ∈ M ∩D

is well-defined and continuous on X due to the continuity
of TI on X . The importance of the hybrid Poincaré map in
(7) is that it allows one to determine the stability of hybrid
limit cycles. Let P k denote k compositions of the Poincaré
map P with itself.

Definition 4.16: A fixed point x∗ of a Poincaré map P :
M ∩D → M ∩D is said to be

• stable if for each ǫ > 0 there exists δ > 0 such that for
each x ∈ M∩D, |x−x∗| 6 δ implies |P k(x)−x∗| 6 ǫ

for all integers k > 0;
• globally attractive if for all x∈M∩D, lim

k→∞
P k(x)=x∗;

• globally asymptotically stable if it is both stable and
globally attractive;

• locally attractive if there exists µ > 0 such that for all
x ∈ M ∩D, |x− x∗| 6 µ implies lim

k→∞
P k(x) = x∗;

• locally asymptotically stable if it is both stable and
locally attractive.

For x ∈ M ∩ (C ∪ D), define a distance function d :
M ∩ (C ∪D) → R>0 as

d(x) := sup
t∈[0,TI(x)], (t,j)∈dom φ, φ∈SH(x)

|φ(t, j)|O ,

when 0 6 TI(x) < ∞ and

d(x) := sup
(t,j)∈dom φ, φ∈SH(x)

|φ(t, j)|O,

if TI(x) = ∞. Note that d vanishes on O. Moreover, for
0 6 t 6 TI(x), φ(t, 0) = φf (t, x), and hence

d(x)= sup
t∈[0,TI (x)],φ∈SH(x)

|φ(t, 0)|O = sup
t∈[0,TI(x)]

|φf (t, x)|O .

Then, following the ideas in [1, Lemma 4], the following
property of the function d can be established.

Lemma 4.17: Suppose a hybrid system H on Rn and a
closed set M ⊂ Rn satisfy Assumptions 4.6, and every
maximal solution to HM is complete. Then, the function
d:M∩(C∪D)→R>0 is well-defined and continuous on O.

It can be shown that the local asymptotic stability of O
leads to a KL bound as in (5) on its basin of attraction.

Theorem 4.18: Consider a hybrid system H on Rn and
7In particular, when there does not exist t > 0 such that φf (t, x) ∈ D,

we have {t > 0 : φf (t, x) ∈ D} = ∅, which gives TI(x) = ∞.



a closed set M ⊂ Rn satisfying Assumption 4.6. If O is a
locally asymptotically stable compact set for HM , then O is
KL asymptotically stable on the basin of attraction BO of
the set O.

Next, a relationship between stability of fixed points of
Poincaré maps and the stability of the corresponding hybrid
limit cycles is established.

Theorem 4.19: Consider a hybrid system H on Rn and
a closed set M ⊂ Rn satisfying Assumption 4.6. Suppose
every maximal solution to HM = (M ∩ C, f,M ∩ D, g) is
complete. Then, the following statements hold:

1) x∗ ∈ M ∩D is a stable fixed point of the Poincaré map
P in (7) if and only if the hybrid limit cycle O generated
by a flow periodic solution φ with period T ∗ and one
jump in each period to HM from φ(0, 0) = g(x∗) is
stable for HM ,

2) x∗ ∈ M ∩ D is a globally asymptotically stable fixed
point of the Poincaré map P if and only if the unique
hybrid limit cycle O generated by a flow periodic
solution φ with period T ∗ and one jump in each period
to HM from φ(0, 0) = g(x∗) is globally asymptotically
stable for HM .

Proof (sketch): The sufficiency part follows from the
stability of O and the completeness of φ, and we omit it.
To prove the necessity of item 1), suppose that x∗ ∈ M ∩D

is a stable point of P . Then, by completeness of maximal
solutions, it is implied that there exists δ̄ > 0 such that for
each x̃∈(x∗+δ̄B)∩(M∩D), there exists a complete solution
φ to HM with φ(0, 0) = g(x̃). Furthermore, the distance
between φ and the hybrid limit cycle O is bounded by

sup
(t,j)∈dom φ

|φ(t, j)|O 6 sup
x∈(x∗+δ̄B)∩(M∩D)

d ◦ g(x).

By Lemma 4.17, d is continuous at x∗. Since O is transversal
to M ∩D, O∩ (M ∩D) is a singleton and g(x∗) ∈ O, d ◦ g
is continuous at x∗. Moreover, since d◦g(x∗)=0, it follows
that given ∀ǫ>0, we can pick ǭ and δ̄ such that 0<ǭ<ǫ and

sup
x∈(x∗+δ̄B)∩(M∩D)

d ◦ g(x) < ǫ.

Therefore, an open neighborhood of O given by V :=
d−1([0, ǫ)) is such that any solution φ to HM from φ(0, 0) ∈
V satisfies |φ(t, j)|O 6 ǫ for all (t, j) ∈ dom φ. Thus, the
necessity of item 1) follows immediately. The stability part
of item 2) follows similarly from the proof of item 1). �

Note that, at times, it might be difficult to guarantee
the conditions in item 2) of Theorem 4.19, while local
asymptotic stability of the fixed point of the Poincaré map
P can be readily verified. Such cases are handled by the
following corollary.

Corollary 4.20: Consider a hybrid system H on Rn and
a closed set M ⊂ Rn satisfying Assumption 4.6. Suppose
every maximal solution to HM = (M ∩C, f,M ∩D, g) is
complete. Then, x∗∈M∩D is a locally asymptotically stable
fixed point of the Poincaré map P if and only if the unique
hybrid limit cycle O generated by a flow periodic solution
φ with period T ∗ and one jump in each period to HM from
φ(0, 0)=g(x∗) is locally asymptotically stable for HM .

The following example illustrates the sufficient conditions
in Theorem 4.19 by checking the eigenvalues of the Jacobian
matrix of the Poincaré map at the fixed point. In this case,
we require the Poincaré map P to be differentiable in the
interior of its domain.

Example 4.21: (Izhikevich neuron, revisited) Consider the
Izhikevich neuron system analyzed in Example 4.10. Sup-
pose the Poincaré map for HIM is given by P with a fixed
point x∗. The sufficient condition in Corollary 4.20 can be
verified as follows. If x∗ is locally asymptotically stable
for HIM , then the hybrid limit cycle O of HIM is locally
asymptotically stable. To do this, it suffices to check the
eigenvalues of the Jacobian matrix of the Poincaré map at
the fixed point. However, due to the quadratic form in the
flow map of HI, the calculation of the Jacobian matrix of
the Poincaré map is as difficult as to find the solution of the
flow map of HI. Therefore, we apply the shooting method
[5] to compute the Jacobian matrix based on an approximate
Poincaré map numerically.

For the Izhikevich model (4), consider the case of intrinsic
bursting behavior with parameters a = 0.02, b = 0.2, c =
−55, d = 4, Iext = 10. Using a numerical method, a fixed
point x∗(0, 0) = (30,−7.5) and the period time between the
jumps is T ∗ = 31.218. The Jacobian matrix of the hybrid
Poincaré map at the fixed point is

JP (x
∗) =

[

0 0
−0.0246 −0.0246

]

.

The eigenvalues of JP are λ1 = 0 and λ2 = −0.0246,
with one eigenvalue at zero and the other one locates
inside the unit circle. Therefore, the hybrid limit cycle O
of the Izhikevich model is locally asymptotically stable.
The properties of the hybrid limit cycle O are illustrated
numerically in Fig. 1. Note that the hybrid limit cycle O
starting from (−55,−3.5) is locally asymptotically stable,
but not globally asymptotically stable. △

V. ROBUSTNESS OF HYBRID LIMIT CYCLES

In this section, we explore the robustness properties of a
hybrid limit cycle for H to generic state perturbations. In the
presence of perturbations, there is no guarantee that solutions
to the hybrid system would exist, even if such solutions to
the nominal hybrid system H are known to exist for every
point in C ∪D. However, this situation can be remedied, at
least for small noise by properly defining C and D; see [8].

Consider the flow dynamics of the hybrid system HM =
(M ∩ C, f,M ∩D, g) with perturbations

ẋ = f(x+ d1) + d2,

where d1 corresponds to state noise and d2 captures unmod-
eled dynamics. Similarly, we consider the perturbed discrete
dynamics

x+ = g(x+ d1) + d2.

Then, denoting by d̃i the signals di extended to the state
space of x, the hybrid system HM results in a perturbed
hybrid system, which is denoted by H̃M , with dynamics

{

ẋ = f(x+ d̃1) + d̃2 x+ d̃1 ∈ M ∩ C

x+ = g(x+ d̃1) + d̃2 x+ d̃1 ∈ M ∩D.



Suppose there exists a continuous function ρ : Rn → R>0

such that the two measurable functions can be defined as
d̃1, d̃2 : R>0 × N → ρ(x)B. A perturbation of the hybrid
system H̃M is the ρ-perturbation of HM , denoted Hρ

M ,
which is given by

{

ẋ ∈ Fρ(x) x ∈ Cρ

x+ ∈ Gρ(x) x ∈ Dρ

where

Cρ := {x ∈ R
n : (x+ ρ(x)B) ∩ (M ∩ C) 6= ∅},

Fρ(x) := cof((x+ ρ(x)B) ∩ (M ∩ C)) + ρ(x)B,

Dρ := {x ∈ R
n : (x+ ρ(x)B) ∩ (M ∩D) 6= ∅},

Gρ(x) := {v ∈ R
n : v ∈ η + ρ(η)B,

η∈g((x + ρ(x)B)∩(M∩D))}.

The following result establishes that the stability of O for
HM is robust to a class of perturbations defined above.

Theorem 5.1: Consider a hybrid system H on Rn and
a closed set M ⊂ Rn satisfying Assumption 4.6. If O is
an asymptotically stable compact set for HM with basin of
attraction BO, then O is semiglobally practically robustly
KL asymptotically stable for Hρ

M on BO, i.e., given a proper
indicator ω of O on BO there exists β̃ ∈ KL such that, for
every ε > 0 and each compact set K ⊂ BO, there exists
ρ̄ > 0 such that for every continuous function ρ : Rn → ρ̄B

that is positive on K\O, every solution φ to Hρ
M with

φ(0, 0) ∈ K satisfies

ω(φ(t, j)) 6 β̃(ω(φ(0, 0)), t+ j) + ε ∀(t, j) ∈ dom φ.

Remark 5.2: Robustness results of stability of compact
sets for general hybrid systems are available in [8]. Since
O is an asymptotically stable compact set for HM , Theorem
5.1 can be regarded as a direct consequence of [8, Lemma
7.20]. However, Theorem 5.1 is novel in the context of the
literature of Poincaré maps. In particular, if one was to write
the systems in [1] and [4] within the framework of [8], then
one would not be able to apply the results on robustness
for hybrid systems in [8] since the hybrid basic conditions
would not be satisfied and the hybrid limit cycle may not be
given by a compact set.

Example 5.3: (Izhikevich neuron, revisited) Consider the
Izhikevich neuron system in Example 4.5. Theorem 4.19
will be illustrated for the hybrid system HI by plotting
the solutions from the initial condition (−55,−6), when an
admissible state perturbation e = (e1, e2) affects the jump
map. The noise is injected as unmodeled dynamics on the
jump map as e = (e1, e2) = (κ sin(t), 0) where κ is chosen
differently in order to verify the robustness. Two simulations
are performed with different values of κ. Fig. 2 shows the
phase plots for both the perturbed solution (red line) and
normal solution (blue line). It is found that the hybrid limit
cycle O is robust to the state perturbation e when κ = 0.24
as shown in Fig. 2(a), while O is not robust to the state
perturbation e when κ = 0.42 as shown in Fig. 2(b). A
general method to determine the actual margin of robustness
guaranteed by Theorem 5.1 requires further investigation. By
simulation, it is possible to quantify the relationship between
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Fig. 2. Trajectories with initial condition (−55,−6) in Example 5.3

the maximal perturbation parameter κ and the size of the ball
where the steady state values converge to. △

VI. CONCLUSION

In this paper, we defined the notions of flow periodic
solution and hybrid limit cycle. To investigate the stability
properties of the hybrid limit cycles, we also constructed an
impact functions inspired by those introduced by Grizzle et
al. [1]. Based on these constructions, sufficient and necessary
conditions for the stability of hybrid limit cycles were
presented. Moreover, comparing to previous results in the
literature, we established conditions for robustness of hybrid
limit cycles with respect to small perturbations, which is a
very challenging problem in systems with impulsive effects.
An extension effort that characterizes the situation where
a hybrid limit cycle may contain multiple jumps within a
period can be found in [11].
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