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Strengthening Insights in Microbial Ecological Networks from
Theory to Applications

Xiaofei Lv,a,b Kankan Zhao,b Ran Xue,b Yuanhui Liu,b Jianming Xu,b Bin Mab

aDepartment of Environmental Engineering, China Jiliang University, Hangzhou, China
bInstitute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China

ABSTRACT Networks encode the interactions between the components in complex
systems and play an essential role in understanding complex systems. Microbial eco-
logical networks provide a system-level insight for comprehensively understanding
complex microbial interactions, which play important roles in microbial community
assembly. However, microbial ecological networks are in their infancy of both net-
work inference and biological interpretation. In this perspective, we articulate the
theory gaps and limitations in building and interpreting microbial ecological net-
works, emphasize developing tools for evaluating the predicted microbial interaction
relationships, and predict the potential applications of microbial ecological networks
in the long run.

KEYWORDS evaluation, inference, interpretation, microbial ecological network,
microbial interactions, network science

The term “complex system” represents a system whose collective behavior is difficult
to derive from a knowledge of the system’s components, such as the cooperation

between billions of individuals in human society (1), the links between countless
webpages of the Internet (2), or the interactions between thousands of genes within
cells (3). Given the important role complex systems play in every aspect of the world,
it is one of the major scientific challenges in understanding, describing, predicting, and
controlling complex systems (4). Network science emerging from the dawn of the 21st
century has been resolving this challenge by constructing an intricate network to
encode the interactions between a system’s components. For instance, social networks
determine the spread of knowledge, behaviors, and resources, communication net-
works are at the heart of modern communication systems, and gene, protein, and
metabolic networks are prerequisites of life. Accordingly, A.-L. Barabási, the bellwether
of the network science, claimed that “we will never understand complex systems unless
we develop a deep understanding of the networks behind them” (4).

Microbial communities are also complex systems. Microorganisms form complex
ecological interactions, including win-win relationships such as mutual cross-feeding
and cooperation interactions, win-lose relationships such as predator-prey and host-
parasite interactions, and loss-loss relationship such as competitive exclusion interac-
tions (5). These microbial interactions are known to be critical properties of microbial
communities and play important roles in microbial community assembly. Reconstruc-
tion of microbial ecological networks representing these interactions can advance our
understanding of the complex behaviors in microbial communities, predict the effects
of perturbations on community dynamics, and help with the engineering of complex
microbial communities (6).

Although the potential value of inferring and interpreting microbial interaction
networks has been known, inference and interpretation of microbial interaction net-
works are far from straightforward. In this perspective, we consider the gaps in theory
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and limitations in measuring microbial interactions, identifying indirect edges, under-
standing biological implications, and describing network evolution (Fig. 1). Additionally,
we look ahead to the applications of microfluidics, high-throughput culturing methods,
and verified interaction databases for evaluating the predicted microbial interaction
relationships. Finally, we predict the potential applications of microbial ecological
networks in detecting microbial dark matter and regulating microbial community
functions.

FILLING IN THE THEORY GAPS IN NETWORK INFERENCE AND INTERPRETATION

A network is a catalog of a system’s components often called nodes or vertices and
the interactions between them, called links or edges. For microbial ecological networks,
nodes represent microbial taxa or environmental factors, and edges represent potential
microbial interactions inferred from statistically significant similarities. There are differ-
ent toolkits and pipelines using a range of different statistical measure methods,
including Pearson and Spearman correlation, inverse covariance, Bray-Curtis dissimilar-
ity, and maximal information (5). Given that statistical measure methods differ in their
strengths and weaknesses, it is not straightforward to determine the most appropriate
model. The method chosen has a large impact on the association patterns in the
resulting networks. Weiss et al. (7) found that networks inferred with different ap-
proaches shared less than a third of edges. Additionally, edge directions in microbial

FIG 1 Microbial ecological networks are considered to represent the relationships of complex microbial communities. However, there are
still some gaps in theory and limitations in network inference and interpretation, such as selecting the statistical method, eliminating
indirect edges, describing ecological implications description, and reviving work on network evolution. Hence, we need to evaluate the
predicted interaction relationships through developing tools like lab-on-chip technologies and public verified interaction databases.
Ultimately, it could be used to detect microbial dark matter and regulate microbial community functions.
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ecological networks have critical implications in understanding ecological processes.
Although most of the methods based on cross-sectional data are unable to infer
directed network, directed edges can be generated from time series data or Lotka-
Volterra dynamics (6). Hence, criteria for statistical measure selection based on exper-
imental designs and data set characteristics will increase accuracy and facilitate net-
work interpretation. A set of simulated data sets with definite interaction relationships
could be useful for evaluating network inferring methods (6).

The final inferred microbial networks generally contain spurious indirect edges. If
two species cooccur with an unreported factor, such as undetected microbial species
and abiotic drivers, they may acquire an indirect edge from covariance because they are
both affected by the same factor. Although correlation-based tools have not removed
indirect edges, two papers published in 2013 introduced two different methods for
recognizing indirect edges in correlation-based networks. Feizi et al. (8) introduced a
deconvolution algorithm for inferring direct effects from a correlation matrix containing
both direct and indirect effects. At the same time, Barzel and Barabási (9) developed a
method to silence indirect effects in correlation-based network. However, the perfor-
mance of these two methods has not been evaluated for microbial ecological networks.
Lima-Mendez et al. (10) proposed a method for detecting indirect edges by checking
the association patterns in environmental triplet of taxon-environment networks. This
method detects indirect edges with the assistance of environmental variables, but it is
impossible to use all the environmental factors in the systems.

The edges in networks for social interactions, Internet links, and protein or gene
interactions are defined definitely and clearly. Accordingly, the topological properties of
these networks can be clearly interpreted. However, the implications of topological
properties of microbial ecological networks, such as modularity, transitivity, and assor-
tativity, are unclear because the edges of microbial ecological networks are defined
ambiguously (6). Moreover, correlation-based microbial ecological networks cannot
infer amensalism and commensalism and differentiate mutualism and competition.

In reality, microbial communities are dynamic; hence, microbial ecological networks
are evolving during community assembly processes. Mathematically describing evolv-
ing networks allows us to address the impacts of various processes on network
topology and evolution (4). Although time series data sets have been used for inferring
networks, those studies highlighted determining the directions of edges, rather than
determining the evolution of networks (11).

EVALUATING THE PREDICTED INTERACTIONS

At present, one of the defects in most of the microbial interaction network studies
is that the interaction relationships in the inferred microbial interaction network lack
further evaluations. Coculture experiments could provide substantial evidence for
evaluating the relationships in the microbial interaction networks. However, coculture
experiments in petri dishes cannot represent the complexity of the microbial interac-
tion networks. Lab-on-chip technologies might provide a solution for screening cocul-
ture features on a large scale. Moreover, given that more than 99% of microbial species
in natural environments are uncultured and unknown to us, microbial dark matter will
hamper our understanding of the microbial interaction networks. On one hand, ad-
vances in culture-independent methods, such as metagenomics and single-cell se-
quencing (12), will provide necessary information of microbial dark matter in interpret-
ing and evaluating the interaction relationships in the microbial interaction network.
On the other hand, emerging high-throughput culturing methods, such as iChip and
culturomics (13), could greatly expand the numbers of culturable microbial strains to
foster coculture evaluations.

It is almost impossible to experimentally evaluate all the microbial interaction
relationships in an inferred microbial ecological network in a single study. Lima-Mendez
et al. (10) evaluated the predicted interactions with a list of known symbiotic interac-
tions sensu lato built through screening the literature by a panel of four experts. Public
biological databases, which began in the early 1980s when DNA sequence data began
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to accumulate in the scientific literature, have been playing critical roles in promoting
the rapid development of biology. The molecular life sciences have been increasingly
driven by and reliant on these open-access public databases, such as the EMBL-EBI’s
ENA, the NCBI’s GenBank, and NIG’s DDBJ. Accordingly, we suggest that creating a
public database for archiving microbial interaction relationships could bridge the gaps
between inferring microbial ecology networks and evaluations of the networks and
advocate understanding microbial ecology networks.

HARNESSING MICROBIAL FUNCTIONS WITH MICROBIAL ECOLOGICAL
NETWORKS

Lacking interactions with cooccurring microorganisms from in situ environments is one
of the reasons that most microbial strains failed to be cultured in labs. Identifying cooc-
curring species of interesting uncultured microbial species in microbial ecological networks
might help to create the necessary growth environments for uncultured microbial species.
Theoretically, uncultured microbial species have the chance to be cultured when they grow
together with their mutualistic, syntrophic, or parasitic partners. For mutualistic relationship,
either cultured microorganisms could increase the fitness of their uncultured mutualistic
partner. For syntrophic relationship, only uncultured species that depend on the nutrients,
growth factors, or substrates provided by the other cultured partners have the potential to
be isolated. For parasitic relationship, a cultured microbial host could help to enrich
uncultured parasites. Moreover, if a predation relationship is obligate, a cultured microbial
prey could help to enrich uncultured predators as well. Other interaction relationships such
as competition, amensalism, and commensalism do not have the facilities for promoting
microbial dark matter detection.

The small-world property of network induces that any two members in microbial
community could interact with each other through a few intermediaries. Liu et al. (14)
investigated the controllability of networks and demonstrated that many real-world
networks could be controlled through a small number of vertices. Regulating the
functions of microbial communities is one of the core objects of microbial ecology.
Given the critical roles of microbial interactions in microbial community assembly
processes, realizing the controllability of microbial community functions needs to
employ network controlling theory to detect key vertices to control. Many engineering
microbial strains performed well in laboratory experiments but are difficult to apply in
practical environments (15). Understanding the controllability of microbial ecological
networks could support improving their performances in practical environments by
manipulating interaction networks of microbial communities.

In conclusion, network analysis is a valuable approach for comprehensively under-
standing microbial community structure and functions. However, researchers in sys-
tems microbiology have a long way to go to catch up with the advanced developments
in network science.
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