Lawrence Berkeley National Laboratory

Recent Work

Title

Crossed Beam Reaction of C({sup 3}P{sub j} with C{sub 2}H{sub 2}({sup 1}Sigma{sup +}over{sub g}): Observation of Tricarbon-hydride C{sub 3}H

Permalink

https://escholarship.org/uc/item/99v473m2

Journal

Journal of Chemical Physics, 103(23)

Authors

Kaiser, R.I. Lee, Yuan T. Suits, Arthur G.

Publication Date

1995-08-01

÷3.

 $\mathcal{L}_{\mathcal{F}}$

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

CHEMICAL SCIENCES DIVISION

Submitted to Journal of Chemical Physics

Crossed Beam Reaction of $C({}^{3}P_{j})$ with $C_{2}H_{2}({}^{1}\Sigma_{g}{}^{+})$: Observation of Tricarbon-Hydride $C_{3}H$

R.I. Kaiser, Y.T. Lee, and A.G. Suits

August 1995

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-37675 UC-401

Crossed Beam Reaction of $C({}^{3}P_{j})$ with $C_{2}H_{2}({}^{1}\Sigma_{g}{}^{+})$: Observation of Tricarbon-Hydride $C_{3}H$

R.I. Kaiser, Y.T. Lee, and A.G. Suits*

Department of Chemistry University of California

and

Chemical Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720

August 1995

*To whom the correspondence should be addressed.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Crossed beam reaction of $C({}^{3}P_{j})$ with $C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$: observation of tricarbon-hydride $C_{3}H$

R.I. Kaiser, Yuan T. Lee, and Arthur G. Suits*

Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California, 94720

ABSTRACT

The reaction between ground state carbon atoms, $C({}^{3}P_{1})$, and acetylene, $C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$, was studied at an average collision energy of (8.4±0.3) kJmol⁻¹ using the crossed molecular beam technique. The product angular distribution and time-of-flight spectra of m/z = 37, i.e. $C_{3}H$, were recorded. Only m/z = 37 was detected, but no signal from the thermodynamically accessible $C_{3}({}^{1}\Sigma_{g}^{+}) + H_{2}({}^{1}\Sigma_{g}^{+})$ channel. Forward-convolution fitting of the results yielded a center-of-mass angular flux-distribution forward scattered in respect to the carbon beam, whereas the translational energy flux distribution peaked at only (5.4±1.2) kJmol⁻¹, suggesting a simple C-H-bond-rupture to H + C₃H. The reaction likely proceeds on the triplet surface with an entrance barrier to the C₃H₂-PES of < (8.4±0.3) kJmol⁻¹ via addition of the carbon-atom to two bonding π -orbitals located both at C1 or at C1 and C2 of the acetylene molecule. The explicit identification of C₃H product under single collision conditions strongly demands incorporation of atom-neutral reactions in reaction networks simulating chemistry in the interstellar medium and in outflows of carbon stars.

* To whom the correspondence should be addressed.

I. INTRODUCTION

Chemical reactions of atomic carbon in its electronic ground state $C({}^{3}P_{j})$ are of major importance in combustion processes [1-3], hydrocarbon syntheses [1-3], and interstellar chemistry [4-7]. In the interstellar medium (ISM), i.e. the matter between the stars of our galaxy [2-3], isomers of C₃H and C₃H₂, i.e. propynylidyne (linear-C₃H) /cyclopropynylidyne (cyclo-C₃H) and cyclopropenylidene/propargylene, are among the most abundant molecules, with number densities $\approx 10^{-8}$ relative to H₂. Current reaction-networks explain their formation via elaborate, multiple ion-molecule reactions [8, 9]:

(1)	$C_2H_2 + C^+ \rightarrow$	$1/c-C_3H^+ + H$
(2)	$1/c-C_3H^+ + H_2 \rightarrow$	$c-C_3H_3^+ + hv$
(3)	$1/c-C_{3}H_{3}^{+}+e \rightarrow$	$l/c-C_3H_2 + H$
(4)		$l/c-C_3H + 2H$
(5)	\rightarrow	$l/c-C_3H + H_2$

This approach, however, neither reproduces column densities, isomer ratios, nor isotope enrichments [8]. In addition, the exact electron density necessary for dissociative recombinations (3-5) can only be estimated within two orders of magnitude. Furthermore, not all cross sections of ion-molecule reactions are experimentally accessible, but rather approximated as Langevin cross sections, i.e. exothermic ion-molecule reactions proceed within orbiting cross section [10]. Recently, however, entrance barriers for several exothermic reactions were determined to ca. 4 kJmol⁻¹ at 293 K [11]. The role of ion-molecule reactions in interstellar formation of some of these species is thus open to question. The possibility of generation of C₃H from neutral reactants, e.g., $C({}^{3}P_{j}) + C_{2}H_{2}({}^{1}\Sigma_{g}{}^{+})$ has not been considered in the past. This single step mechanism does not require a protracted chain of successive collisions under conditions with reactant number densities between 10^{-3} and 10^{-4} cm⁻³.

In order to demonstrate the importance of reactions of neutral species, systematic experiments need to be carried out to probe the detailed mechanism and dynamics of such atom-neutral and radical-

A)

radical reactions as $C({}^{3}P_{j}) + C_{2}H_{x}$ and $CH({}^{2}\Pi_{1/2}) + C_{2}H_{x}$ (x = 1, 2, 3, 4). In our communication, we focus on the reaction $C({}^{3}P_{j}) + C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$ studied under single collision conditions as provided in crossed beam experiments. These detailed insights in the reaction dynamics reveal possible reaction pathways to C₃H-isomers as well as valuable information on the C₃H-, and C₃H₂ potential energy surfaces (PES) and hitherto undetermined enthalpy of formations of 1- and c-C₃H.

II. EXPERIMENT AND DATA PROCESSING

 \diamond

The experiments were performed with a universal crossed molecular beam apparatus described in [12] in detail. Briefly, a pulsed supersonic carbon beam was generated via laser ablation of graphite at 266 nm [13]. The 30 Hz, (40±2) mJ output of a Spectra Physics GCR 270-30 Nd-YAG laser is focused onto a rotating graphite rod with a 1000 mm focal length UV-grade fused silica lens to a spot of (0.5 ± 0.05) mm diameter. Ablated carbon-atoms are subsequently seeded into neon gas released by a Proch-Trickl pulsed valve operating at 60 Hz, 80 µs pulses, and 4 atm backing pressure. Densities of $(0.7\pm0.3)*10^{13}$ C-atoms cm⁻³ in the interaction region are achieved. A chopper wheel mounted 40 mm after the laser ablation zone accomplishes selecting a 7 µs segment of the carbon-pulse. The pulsed carbon beam with a velocity v = (1177 ± 3) ms⁻¹ and speed ratio S = (6.4 ± 0.05) and continuous acetylene beam (v = (866 ± 7) ms⁻¹, S = (9.3 ± 0.1) , (563 ± 6) torr backing pressure) pass through skimmers with apertures of 1.0 mm and 0.58 mm and cross at 90° in the interaction region.

The scattered species were monitored using a triply differentially pumped detector consisting of a Brink-type electron-impact-ionizer [14], quadrupole mass-filter, and a Daly ion detector [15] in 2.5° steps between 7.5° and 67.5° with respect to the carbon beam. The electron energy was optimized to 200 eV with an emission current of 8.5 mA.

Information on the reaction dynamics is extracted from the TOF-spectra and the laboratory angular distribution by using a forward-convolution technique [18]. This iterative approach initially guesses the angular flux-distribution in the center-of-mass-(COM) coordinate system, $T(\theta_c)$, and the translational energy flux-distribution in the COM-system, $P(E_T)$ assumed to be independent of each other, and convolutes over the experimental parameters to obtain simulations of the experimental result.

III. RESULTS AND DISCUSSION

The thermochemistry of $C({}^{3}P_{j}) + C_{2}H_{2}({}^{1}\Sigma_{g}{}^{+})$ opens two energetically accessible product channels, i.e. $C_{3}H + H$ and $C_{3} + H_{2}$. Reaction to C_{3} in its ${}^{1}\Sigma_{g}{}^{+}$ electronic ground state is exothermic by 129 kJmol⁻¹, and has to proceed via inter-system-crossing from the initial triplet- to singlet surface. Unfortunately, the $C_{3}H$ -enthalpies of formation and relative stabilities of linear/cyclic isomers are not known. Simple additivity rules estimate $C({}^{3}P_{j}) + C_{2}H_{2}({}^{1}\Sigma_{g}{}^{+}) \rightarrow C_{3}H + H$ to be exothermic 69 kJmol⁻¹. Nevertheless, this value is not consistent with the acetylenic like C-H-bond of $C_{3}H$ as determined via FTIR-spectroscopy [17]: the dissociation energy of the C-H-bond $C_{3}H \rightarrow C_{3}$ (${}^{1}\Sigma_{g}{}^{+}$) + H(${}^{2}S_{1/2}$) is calculated to be 372 kJmol⁻¹, lower than typical aliphatic carbon-hydrogen bond strengths of 400 kJmol⁻¹. Alternative reaction enthalpies are obtained by imposing different C-H-bond dissociation energies of model hydrocarbons, and yield reaction enthalpies to $C_{3}H + H({}^{2}S_{1/2})$ between -114 (C-H-bond in ethane) and -253 kJmol⁻¹ (C-H bond in acetylene). These exothermicities allow calculation of the maximum recoil velocities of the $C_{3}H$ -fragment, shown as a limit circle in the kinematic diagram Fig. 1, assuming no rotational and vibrational excitation of the $C_{3}H$ product.

Reactive scattering signal was observed only at m/z = 37, i.e. C_3H (Fig. 2); no $C_3({}^{1}\Sigma_{g}^{+}) + H_2({}^{1}\Sigma_{g}^{+})$ -channel was detected. Time-of -flight spectra for several scattering angles are shown in Fig. 2.

A

Reaction of carbon with acetylene-dimers to $C_2H_3 + C_3H$ does not contribute to the signal within the detection limits of the experimental setup because the signal intensity scales linearly with the C_2H_2 number density in the interaction region. The laboratory angular distribution (Fig.1) peaks at 55° near the center-of-mass angle at $\theta_{COM} = (58.8\pm0.8)^\circ$. The product distribution was fitted with a center-of-mass angular flux distribution $T(\theta_c)$ forward scattered with respect to the carbon beam (Fig. 3) and a center-of-mass translational energy flux distribution $P(E_T)$ peaking at only (5.4±1.2) kJmol⁻¹, indicating nearly a simple barrierless C-H bond rupture process to C_3H .

The energy diagram in Fig. 3 outlines three different reaction pathways: insertion of $C({}^{3}P_{j})$ in the C-H-bond of an acetylene molecule leads to triplet-propargylene (1) on the A' or A'' surface ($\Delta G_{f}^{\circ} = 551 \text{ kJmol}^{-1}$, [18]), whereas addition of the electrophile carbon atom to carbon centers on C1- and C2atoms in C₂H₂ forms triplet-cyclopropenylidene (3) ($\Delta G_{f}^{\circ} = 706 \text{ kJmol}^{-1}$ [19-25]; A surface). Last, attack of two perpendicular C-2p-orbitals to both perpendicular π -MOs on C1 yields triplet-cis/trans propenediylidene (4)/(5) (ΔG_{f}° (trans) = 779 kJmol⁻¹, ΔG_{f}° (cis) = 859 kJmol⁻¹, [19-25], A'' surface). Finally, matrix studies via FTIR spectroscopy depict [2,1]-H-migration in propenediylidene proceeds with a barrier < 1 kJmol⁻¹ to triplet-vinylidenecarbene (2) ($\Delta G_{f}^{\circ} = 727 \text{ kJmol}^{-1}$ [19-25]) while heating the matrix from 10 K to 36 K.

Insertion of $C({}^{3}P_{j})$ into the C-H bond is expected to involve a significant entrance barrier. To our knowledge, no insertion of a triplet-species into a C-H-bond has been reported yet with a barrier less than our (8.4±0.3) kJmol⁻¹ collision energy; typical entrance barriers range between 20 and 100 kJmol⁻¹. Additionally, reaction via triplet-propargylene (1) should yield a forward-backward-symmetric $T(\theta_{c})$ due to the deep well of the collision complex in respect to the reactants and H + C₃H products. Therefore, a reaction via triplet-propargylene (1) can likely be ruled out.

()

The forward-peaking $T(\theta_c)$ in respect to the carbon beam suggests the reaction proceeds in a direct fashion via triplet-cyclopropenylidene (3), vinylidenecarbene (2), or triplet-cis/trans propenedividence (4/5) with a life-time of less than one rotational period. The initially formed C₃H₂-collision complex has to rotate perpendicular to the C2-H-axis in the plane of the three carbon atoms (collision complex (4/5)), perpendicular to the C(in-plane)-H-bond (collision complex (3)), or perpendicular to the C1-H-bond (collision complex (2)) after [1,2] H-migration in order to explain the backward-peaking of the C₃H-product in respect to the acetylene-beam. Due to the low reduced mass of 0.974 amu in the exit channel to $C_3H + H$, momentum conservation demands C_3H to be strongly rotationally excited: hydrogen-bond rupture at C2 in cis/trans-propenediylidene (4/5) fulfills this condition and could populate high rotational levels of l-C₃H-product. Likewise, bond-rupture at C2 in cis-propenedivlidene (5) might excite rotational levels as can be treated as a linear combination of the doubly degenerate bending mode of l-C₃H. Alternatively, rearrangement of (4/5) to triplet-vinylidenecarbene (2), followed by C-H-bond cleavage, fulfills the angular momentum criterion. Finally, an anisotropic exit potential in the triplet-cyclopropenylidene (3) PES could populate rotational levels of c-C₃H after C-H bond cleavage.

At the present stage, we cannot identify the reaction pathway unambiguously. However, future experiments will increase the center-of-mass collision energy to $\approx 50 \text{ kJmol}^{-1}$. Within orbiting limits, the additional collision energy should reduce the maximum impact parameter and result in a less polarized center-of-mass angular flux-distribution. Further, reactions of $C({}^{3}P_{j})$ with deuterated acetylene $C_{2}D_{2}$ and methyl-acetylene $CH_{3}C_{2}H$ shift the reduced mass from 0.974 amu ($C_{3}H + H$), to 1.897 amu ($C_{3}D + D$) to 10.673 amu ($CH_{3} + C_{3}H$). Under these conditions, for the $C_{3}H$ product, the increased reduced mass and, hence, final orbital momentum can reduce the rotational excitation. Finally, ab-initio calculations on the equilibrium geometry of (2)-(5) and the transition-state frequencies are in

preparation. Comparisons of the complex-lifetimes elucidated via the osculating complex model and RRKM-based reaction rate constants should identify the collision complex unambiguously.

Although atom-neutral reactions have been discussed for over a decade to influence interstellar column densities [4-6], they are only slowly being incorporated into interstellar reaction networks, predominantly owing to assumed order-of magnitude advantage of ion-molecule rate constants versus atom-neutral reactions (k (C⁺ + C₂H₂) = $(2.6\pm0.3)*10^{-9}$ cm³s⁻¹ [26], k(C(³P_j) +C₂H₂) = $(2.0\pm0.1)*10^{-10}$ cm³s⁻¹ [22], both at 293 K). The ratio of C(³P_j) to singly ionized carbon ranges from 30 to 250 [27] in interstellar clouds, however, clearly undermining the order-of-magnitude rate constant advantage of ion-molecule reactions as compared to atom-molecule reactions. Hence, formation of interstellar C₃H via C(³P_j) +C₂H₂ yields a more realistic approach than postulated ion molecule reactions (1) - (2) and (4) - (5).

ACKNOWLEDGMENTS

R.I.K. is indebted the Deutsche Forschungsgemeinschaft for a post-doctoral fellowship. We thank Prof. H. Reisler, USC, for valuable discussion regarding the carbon source. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

- [1] Reactive Intermediates in the Gas Phase, D.W. Setser, ed., Academic, New York (1979).
- [2] Reactive Intermediates, R.A. Abramovich, ed., Plenum, New York (1980).
- [3] Short-Lived Molecules, M.J. Almond, ed., Ellis Horwood, New York (1990).
- [4] K. Roessler, H.J. Jung, B. Nebeling, Adv. Space Res., 4, 83 (1984).
- [5] K. Roessler, Rad. Eff. 99, 21 (1986).
- [6] R.I. Kaiser, R.M. Mahfouz, K. Roessler, Nucl. Instr. Meth. B 65, 447 (1992).
- [7] E. Herbst, H.H. Lee, D.A. Howe, T.J. Millar, Mon. Not. Roy. Astrono. Soc. 268, 335 (1994).
- [8] S.C. Madden in Chemistry in Space, J.M. Greenberg, V. Pirronello, eds., Kluwer (Dordrecht), 437 (1991).
- [9] S. Yamamoto, S. Saito, Ap. J. 363, L13 (1990).
- [10] R.D. Levine, R.B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, Oxford University Press, Oxford (1987).
- [11] D.R. Bates, Ap.J. 375, 833 (1991).
- [12] Y.T. Lee, J.D.McDonald, P.R.LeBreton, D.R. Herschbach, Rev. Sci. Instr. 40, 1402 (1969).
- [13] R.I. Kaiser, A.G. Suits, Rev. Sci. Instr. (submitted).
- [14] G.O. Brink, Rev. Sci. Instr. 37, 857 (1966).
- [15] N.R. Daly, Rev. Sci. Instr. 31, 264 (1960).
- [16] R.J. Buss, Ph.D. Thesis, University of California, Berkeley (1979).
- [17] M. Rittby, Texan Christian University, private communication (1995).
- [18] R. Herges, University of Nürnberg, private communication.
- [19] J.M. Bofill, J. Farras, S. Olivella, A. Sole, J. Vilarrasa, J. Am. Chem. Soc. 110, 1694 (1988).
- [20] G. Maier, H.P. Reisenauer, W. Schwab, P. Carsky, V. Spirsko, B.A.Hess, L.J. Schaad, J. Chem. Phys. 91, 4763 (1989).

- [21] T.J. Lee, A. Bunge, H.F. Schaefer, J. Am. Chem. Soc. 107, 137 (1985).
- [22] V. Jonas, M. Böhme, G. Frenking, J. Phys. Chem. 96, 1640 (1992).
- [23] H. Clauberg, D.W. Minsek, P. Chen, J. Am. Chem. Soc. 114, 99 (1992).
- [24] R. Herges, A. Mebel, J. Am. Chem. Soc. 116, 8229 (1994).

(A)

- [25] W.J. Hehre, J.A. Pople, W.A. Lathan, L. Radom, E. Wasserman, Z.R. Wasserman, J. Am. Chem. Soc. 98, 4378 (1976).
- [26] D.C. Clary, N. Haider, D. Husain, M. Kabir, Ap.J. 422, 416 (1994).

[27] J. Le Bourlot, G.P. des Forets, E. Roueff, P. Schilke, Ap. J. 416, L87 (1993).

Fig. 1. Lower: Newton diagram for the reaction $C({}^{3}P_{J}) + C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$ at a collision energy of 8.8 kJmol⁻¹. The circle stands for the maximum center-of-mass recoil velocity of the C₃H-product (see text). Upper: Laboratory angular distribution of product channel at m/z = 37. Circles and error bars indicate experimental data, the solid line the calculated distribution.

Fig. 2. Time-of-flight data for laboratory angle 42.5, 47.5, 52.5, 57.5, 62.5, and 67.5°.

Fig. 3: Lower: Center-of-mass angular flux distribution for the reaction $C({}^{3}P_{J}) + C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$ at a collision energy of 8.8 kJmol⁻¹. Upper: Center-of-mass translational energy flux distribution for the reaction $C({}^{3}P_{J}) + C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$ at a collision energy of 8.8 kJmol⁻¹.

Fig. 4. Energy level diagram for the reaction $C({}^{3}P_{J}) + C_{2}H_{2}({}^{1}\Sigma_{g}^{+})$: (1) triplet-propargylene, (2) tripletvinylidenecarbene, (3) triplet-cyclopropenylidene, (4) triplet-trans propenediylidene, (5) triplet-cis propenediylidene.

11

 $\langle \cdot \rangle$

~

-1

LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA TECHNICAL INFORMATION DEPARTMENT BERKELEY, CALIFORNIA 94720

.