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Bayesian adaptive design for covariate-adaptive historical 
control information borrowing

Huaqing Jin1, Mi-Ok Kim2, Aaron Scheffler2, Fei Jiang2

1Department of Radiology and Biomedical Imaging, University of California, San Francisco, 
California

2Department of Epidemiology and Biostatistics, University of California, San Francisco, California

Abstract

Interest in incorporating historical data in the clinical trial has increased with the rising cost of 

conducting clinical trials. The intervention arm for the current trial often requires prospective 

data to assess a novel treatment, and thus borrowing historical control data commensurate in 

distribution to current control data is motivated in order to increase the allocation ratio to the 

current intervention arm. Existing historical control borrowing adaptive designs adjust allocation 

ratios based on the commensurability assessed through study-level summary statistics of the 

response agnostic of the distributions of the trial subject characteristics in the current and 

historical trials. This can lead to distributional imbalance of the current trial subject characteristics 

across the treatment arms as well as between current control data and borrowed historical 

control data. Such covariate imbalance may threaten the internal validity of the current trial by 

introducing confounding factors that affect study endpoints. In this article, we propose a Bayesian 

design which borrows and updates the treatment allocation ratios both covariate-adaptively and 

commensurate to covariate dependently assessed similarity between the current and historical 

control data. We employ covariate-dependent discrepancy parameters which are allowed to grow 

with the sample size and propose a regularized local regression procedure for the estimation of the 

parameters. The proposed design also permits the current and the historical controls to be similar 

to varying degree, depending on the subject level characteristics. We evaluate the proposed design 

extensively under the settings derived from two placebo-controlled randomized trials on vertebral 

fracture risk in post-menopausal women.
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1 | INTRODUCTION

Historical data for the control arm of a prospective clinical trial is often available from 

previous randomized controlled clinical trials. Such data are conventionally used to establish 

design parameters in the planning stage, such as to perform sample size calculations based 

on variance estimates for targeted outcomes. Since the current trial may be different from 

the historical ones in many ways, for example, the characteristics of study participants 

and outcome definitions, it would be ideal to evaluate how comparable the historical and 

concurrent control data are and adaptively decide how much information can be borrowed to 

infer the parameters in the current trial control arm. Such evaluation can facilitate properly 

incorporating the historical information in order to improve the statistical power or reduce 

the sample size on the control arm. On the other hand, it is well known that balancing study 

participant profiles across different treatment arms in a trial with limited sample size is hard, 

whereas failure to do so could lead to biased estimates or lower power.1 Thus, controlling 

the covariate imbalance across the treatment arms of the current trial is also important in 

borrowing historical control data. All of the existing adaptive designs control the amount 

of borrowing by assessing the discrepancy between the historical data and the current trial 

data at the study level and balancing of the covariates in the process is not a consideration 

(see, e.g., Jin and Yin,2 Kim et al.3). Here, we assume the historical data are available at the 

individual participant level and propose covariate-adaptive evaluation and borrowing at the 

individual participant level.

Our motivation arises from two placebo-controlled randomized trials studying the effects of 

bisphosphonate treatment on vertebral fracture risk in post-menopausal women, the health 

outcomes and reduced incidence with zoledronic acid once yearly (HORIZON) pivotal 

fracture trial4 and the fracture intervention trial (FIT).5,6 The trials evaluated zoledronic 

acid and alendronate as interventions to reduce vertebral fracture risk. We consider a 

particular clinical population of interest, elderly women aged approximately 80 years or 

above who are at elevated vertebral fracture risk compared to younger women and thus 

suffer disproportionately with respect to disability and medical costs resulting from fracture 

events.4,7 Both studies enrolled women using the similar enrolment criteria including 

baseline hip bone mineral density (BMD) and a lack of prior bisphosphonate use. We use the 

hip BMD measured at 24 months by dual-energy x-ray absorptiometry as our common study 

outcome for the two trials, an established objective surrogate endpoint for vertebral fracture 

to determine treatment efficacy.8 These are large trials each enrolling 6459 and 7736, but 

the number enrolled for the target population of interest is 388 and 620 for the FIT and the 

HORIZON studies, respectively.

The placebo control arm data in the FIT study, which was completed in 1996, can be used 

as historical data for the latter initiated HORIZON trial, permitting borrowing of the control 

arm information corresponding to 69.5% (the ratio between historical control and current 

control sample sizes) of the current trial enrollment. The risk of vertebral fracture varies by 

factors such as the history of a vertebral fracture or a fall and the years since menopause. It 

would be ideal to match historical control participants with the current trial ones on those 

important prognostic factors to assess the similarity between the historical and the current 

trial data and to update allocation ratios to control balance of the important prognostic 
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factors by accounting for the borrowed historical information. No existing designs meet this 

need.

Little is found on developing a design that adaptively control both historical information 

borrowing and balance of the covariate distribution. The idea of using historical control 

data has been around in the clinical trial world since the seminal work by Pocock,9 

Dempster, Selwyn and Weeks10 and Ryan11 which combine the current and historical data to 

estimate the treatment effect by discounting historical data to account for the between-trial 

heterogeneity. Interest in the use of historical controls has increased in recent years. Hong, 

Fu and Carlin12 and Wang et al.13 synthesize historical information for better parameter 

estimation and inference in network meta-analysis. Several Bayesian designs address the 

between-trial heterogeneity by determining the degree of borrowing on the control arm 

using power prior,14,15 commensurate prior,16 meta-analytic-predictive prior17,18 and the 

unit information prior.2 Kim et al.3 develop a sequential design that uses borrowed historical 

information to adjust allocation ratios in order to improve the current trial participants 

outcomes and raises the probability of early trial stopping.

In parallel, many covariate-adaptive randomization designs have been developed to achieve 

covariate balancing across treatment arms in clinical trials.19 For discrete covariates, these 

methods include the biased coin covariate-adaptive randomization design,20,21 which is 

an extension of the biased coin design22 for balancing the sample size, and the Pocock–

Simon design which is based on a minimization method for the sequential treatment 

assignment.23,24 Recently, Hu and Hu25 and Jiang et al.26 extend the covariate-adaptive 

designs to handle both discrete and continuous covariates.

We propose a covariate-adaptive historical control borrowing Bayesian design (CAHB) 

integrating the historical trial information in a covariate-adaptive randomization design to 

achieve the goals of balancing the covariate specific information on the treatment arms 

when additional historical data are available. Specifically with the application of the design 

to the the vertebral fracture risk study, the prior of the mean 24-month BMD outcome 

for the current control arm depends on the historical estimates, while the degree of the 

information borrowing is covariate-adaptively determined by a precision parameter that 

measures the difference between the mean 24-month BMD from historical and current 

control arms locally using study participants sharing similar characteristics. Furthermore, the 

mean 24-month BMD, its prior, and the precision parameter depend on the covariates so 

that the amount of information borrowing can vary across the subgroups of subjects with 

different covariate values. Thus, as study participants in the current trial are recruited, the 

probability of treatment assignment varies depending on the assessment of the agreement of 

the current and historical trials.

Control borrowing Bayesian design is related to but clearly different from existing 

historical borrowing and covariate-adaptive designs. First, CAHB essentially quantifies the 

information in the historical control arm using the effective sample size, which is similar 

in spirit as many existing adaptive designs.2,3,14–18,27 Building on these approaches, we 

define the covariate-dependent effective control sample size (CECSS) as an estimate of 

the sample size required to achieve the same level of precision in the control arm if that 
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sample is a simple random sample with given covariate values. We utilize CECSS in the 

design to quantify the imbalance of the information in treatment arms such that the amount 

of historical information borrowed is locally defined and therefore is commensurate to the 

similarity of the historical data with the current trial data in the neighborhood defined by 

the covariates. Hence the amount of borrowed information can vary across the covariate 

domain. Second, we utilize a kernel-biased coin design to adaptively allocate subjects based 

on the covariate imbalance information, which is similar to the covariate-adaptive design 

proposed by Jiang et al. (2019).1 But CAHB considers the additional information from the 

historical control arm when measuring the covariate imbalance, and hence CAHB tends 

to allocate more trial participants to experimental treatment arms when the information 

from the historical trial is sufficient to infer the current mean 24-month BMD outcome in 

the control arm. We illustrate the CAHB with a two-arm clinical trial, but the design is 

equally applicable to clinical trials with more than two arms. Also, the method can be easily 

generalized to consider discrete outcomes by adopting proper likelihoods.

The rest of the article is organized as follows. Section 2 presents the prior, likelihood, and 

the posterior distributions of the parameters in CAHB model. In Section 3, we introduce 

the concept of CECSS and develop the CAHB design to achieve the effective sample size 

balance between two treatment arms. Furthermore, Section 4 illustrates a nonparametric 

kernel-based procedure to estimate the parameters of interest based on their posterior 

distributions. Section 5 provides numerical studies and revisits our motivating examples. 

We conclude and discuss the design in Section 6.

2 | PROBABILITY MODEL

We let Y i ∈ R be the outcome of interest, Zi be the treatment indicator with Zi = 1
and Zi = 0 indicating assignment to the experimental treatment and the control groups, 

respectively, Xi ∈ ℝp be a p-dimensional vector containing the baseline covariates. We 

let μ0 X = E Y ∣ Z = 0, X  and μ1 X = E Y ∣ Z = 1, X , and define δ = μ1 X − μ0 X  to be 

the overall treatment effect, which does not depend on the covariates. Let θ0 X  be the 

conditional mean outcomes of the historical control arm. We assume

μ0 X ∼ N θ0 X , 1/τ X

where τ X  is a covariate-dependent precision parameter. A larger value of τ X  implies that 

the historical and current conditional means of the outcome on the control arm are similar, 

and hence more information can be borrowed from the historical samples. We assume the 

prior of τ(X)1/2 is half normal with scale parameter γ, and the prior density of τ X  is

πτ{τ(X); γ} = 1
τ(X)1/2 2πγ

exp − τ X
2γ2 , τ(X) > 0 .

Such prior specification has been widely used to model variance parameters, because it 

restricts the support of τ X  to be positive and the parameter γ prevents the resulting 

estimator from diverging to the infinite when μ0 X  and θ0 X  are close.28 An improper 
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flat prior that is proportional to 1 is adopted for μ1 X  because we assume there is no prior 

information about the experimental treatment group.

Furthermore, let ℒ μ0 X , ϕ0, Y  and ℒ μ1 X , ϕ1, Y  be the likelihood functions for data from 

the control and experimental arms, respectively, where ϕ0, ϕ1  are the auxiliary parameters in 

the model, such as the scale parameters in the normal likelihood. We assume the densities of 

ϕ0
2 and ϕ1

2 are πϕ ϕ0
2; a0, b0  and πϕ ϕ1

2; a1, b1 , respectively, where πϕ ⋅ ; a, b  is an inverse gamma 

density with shape and scale parameters a, b. We choose a0 = b0 = a1 = b1 = 0.01 which results 

in noninformative priors that have little influence on the posterior distributions.2 Denote 

Dn = Y i, Xi, Zi , i = 1, …, n  and we assume Y i, Xi, Zi , i = 1, …, n are independent. When we 

define Δi X = I Xi = X  as the indicator function, the conditional posterior distributions of 

μ0 ⋅ , τ ⋅  and ϕ0 given the observed n subjects are

Pμ0 μ0(X) ∣ ϕ0, τ( ⋅ ), Dn

∝ ∏
i = 1

n
ℒ μ0 Xi , ϕ0, Y i exp − μ0 Xi − θ0 Xi

2τ Xi
2

1 − Zi Δi(X)
,

(1)

Pτ{τ(X) ∣ μ0( ⋅ ), ϕ0, Dn}

∝ πτ{τ(X); γ} ∏
i = 1

n τ Xi
2π

1/2
exp − μ0 Xi − θ0 Xi

2τ Xi
2

1 − Zi Δi(X)
,

(2)

Pϕ0 ϕ0
2 ∣ μ0( ⋅ ), τ( ⋅ ), Dn

∝ πϕ ϕ0
2; a0, b0 ∏

i = 1

n
ℒ μ0 Xi , ϕ0, Y i

1 − Zi .

(3)

And the conditional posterior distributions of μ1 X  and ϕ1 are

Pμ1 μ1 X ∣ ϕ1, Dn ∝ ∏
i = 1

n
ℒ μ1 Xi , ϕ1, Y i

ZiΔi X ,

(4)

Pϕ1 ϕ1
2 ∣ μ1 ⋅ , Dn ∝ πϕ ϕ1

2; a1, b1 ∏
i = 1

n
ℒ μ1 Xi , ϕ1, Y i

Zi .

(5)
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From (1), it is easy to see that the current samples and the historical samples provide 

the information through the likelihood function and the historical control mean θ0 X , 

respectively, to estimate μ0 X . From (1), (2) and (4), we can see that only the samples with 

covariate value X contribute to the posteriors of μ0 X , τ X , μ1 X . On the other hand, (3) and 

(5) indicate that all samples on the control and experimental treatment arms contribute to the 

posteriors of ϕ0
2 and ϕ1

2 respectively regardless their covariate values. It is worth mentioning 

that when ℒ is a normal likelihood, the maximizer of (1) is

μ0 X = i = 1
n 1 − Zi Δi X Y iϕ0

−2 + τ Xi θ0 Xi

i = 1
n 1 − Zi Δi X ϕ0

−2 + τ Xi
.

(6)

It is easy to see that when τ ⋅ , ϕ0, θ0 ⋅  are given, the optimization procedure is similar 

to adding pseudo outcomes θ0 Xi  into the current trial data weighted by Xi , i = 1, …, n. 

A higher τ Xi  will give higher weight to these pseudo samples, where the amount of 

borrowed information from the historical control arm is represented by τ Xi ϕ0
2. In addition, 

the maximizer for (2) is

τ X = i = 1
n 1 − Zi Δi X

i = 1
n 1 − Zi Δi X μ0 Xi − θ0 Xi

2 + 1/γ2 .

We can see that τ X  is larger when μ0 X  and θ0 X  are closer, and therefore when combining 

with (6), the historical control samples will provide more information to estimate μ0 ⋅ .

We propose an iterative procedure Algorithm 1 in Section 4 to obtain the posterior 

estimators for μ0( ⋅ , τ( ⋅ ), ϕ0, μ1( ⋅ ), ϕ1, denoted by μ0( ⋅ ), τ( ⋅ ), ϕ0, μ1( ⋅ ), ϕ1. Here, instead of 

using a parametric method, we use a nonparametric kernel technique to approximate the 

unknown functions μ0( ⋅ ), τ( ⋅ ), μ1( ⋅ ), which is more robust to the mis-specifications of their 

parametric forms. Next, given the above estimators, we illustrate the CAHB design in detail.

3 | COVARIATE-ADAPTIVE HISTORICAL BORROWING BAYESIAN DESIGN

The goal of the covariate-adaptive historical borrowing Bayesian design is to assign more 

subjects to the treatments in order to balance the total information between the control and 

the experimental arms after accounting for the covariate-adaptively borrowed information 

on the control arm. To achieve this goal, it is necessary to quantify the CECSS from the 

historical and current control arms3 for the given covariates. We define the CECSS by 

extending the effect sample size defined in Hobbs, Carlin and Sargent (2013).29 We define

Rn(X) = varref{μ0(X) ∣ ϕ0, Dn}/var{μ0(X) ∣ ϕ0, τ Dn , Dn}

(7)

to be the ratio of the information on the control arm considering and not considering 

the historical data. The CECSS given X is then defined by Rn(X) times the size of 
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the actual control samples with covariate X. A detailed derivations of general forms of 

varref {μ0(X) ∣ ϕ0, Dn} and var{μ0(X) ∣ ϕ0, τ Dn , Dn}, and their specific forms when ℒ is a 

normal likelihood are presented in the supplementary material. To measure the covariate 

imbalance, we define a similarity measure between each of n previously enrolled subjects in 

the trial and n + 1 th new subject as follows:

wi =
k = 1

p
Kℎk Xik − X n + 1 k , i = 1, …, n

where Kℎk x = K x/ℎk /ℎk is a kernel function satisfies K ⋅ ≥ 0, K 0 = 1 and ℎk > 0 is a 

bandwidth. The CAHB design utilizing the CECSS and the similarity measure is outline 

below. Specifically in Step 5 the similarity measure is used to evaluate the imbalance 

between the two arms below, and the new subject is assigned to the treatment arm based on 

the allocation probability that is designed to reduce the imbalance in Step 6.

Step 1: Enroll ninitial number of subjects and equally assign to the control and experimental 

treatment arms.

Step 2: When the n + 1  th subject is enrolled and up for treatment allocation, we use 

Algorithm 1 to obtain the estimators μ0(X), τ Dn , ϕ0, μ1(X) and ϕ1.

Step 3: Obtain Rn Xn + 1  according to (7) based on the current trial data in n enrolled subjects.

Step 4: Calculate the similarity measure of the new subject with each of the existing n
subjects in trial to obtain wi, i = 1, …, n based on (8).

Step 5: For the control arm (arm 0) and the experimental treatment arm (arm 1), define the 

respective CECSSs as

n0 = Rn Xn + 1
i = 1

n
wi 1 − Zi , n1 =

i = 1

n
wiZi .

Obtain the imbalance measure gu = nu/ n0 + n1 , u = 0, 1.

Step 6: Define the allocation probability πu g0, g1 = gu
−1 − 1 / g0

−1 + g1
−1 − 2 ,26,30 which is a 

decreasing function of gu. Assign the new subject to arm 0 and arm 1 with probability 

π0 g0, g1  and π1 g0, g1 , respectively.

Step 7: Continue Step 2 – Step 6 until it reaches the maximum sample size N.

If Pr[N−1∑i = 1
N μ1 Xi − μ0 Xi > δ0 ∣ ϕ0, ϕ̂1, τ DN , DN] > c, we reject the null hypothesis 

H0:δ = 0, where δ0 is a cut-off for the indifference region and c is a pre-specific 

value to control the type I error rate. The point estimate of the treatment effect is 

δ̂ = N−1∑i = 1
N μ1 Xi − μ0 Xi .
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Here Rn Xn + 1  represents the ratio of the information with and without historical borrowing. 

When no information is borrowed, Rn Xn + 1 = 1 and n0 = ∑i = 1
n wi 1 − Zi  in Step 5, which 

reduces to the information on the control arm at stage n in Jiang, Ma and Yin (2018).26 

Furthermore, to achieve a balanced allocation ratio, the allocation probability must satisfy 

(1) πu g0, g1  is a decreasing function of gu and (2) πu g0, g1  is twice continuously differentiable 

function of vector g0, g1
⊤ with a uniformly bounded Hessian matrix. Smith (1984)31 shows 

that the proposed allocation probability satisfies these two conditions, and hence could 

yield balanced allocation between the treatment and control arms. In our design, a balanced 

allocation means the effective sample sizes n1 and n0 defined in Step 5 are the same for 

both arms. Here n1 and n0 measure the information in the two arms when considering the 

borrowed data from historical control arm. It is worth noting that to implement the design, 

while the patient-level data are required for the current trial, they are not necessary for 

the historical data. All the historical information needed is an estimation of the conditional 

mean outcome θ0(X) from the historical control arm. This property simplifies practical 

implementation of this design.

4 | PARAMETER ESTIMATION

Directly optimizing (1)–(5) to obtain the parameter estimators can be difficult when there 

are continuous covariates in the data. We assume μ0 ⋅ , μ1 ⋅ , τ ⋅  are smooth functions with 

finite second derivatives, and then adopt a kernel device to estimate them without imposing 

parametric assumptions. Specifically, we update μ0(X), τ(X) and ϕ0 iteratively as follows: 

when l = 1, …, L  is the iteration index and the superscript l  denotes the l th iteration, we 

first update μ0(X) at the lth iteration given τ(X), ϕ0 at the l − 1 th iteration as

μ0
l X = argmaxμ ∑

i = 1

n
1 − Zi KH Xi − X

× logℒ(μ, ϕ0
l − 1), Y i − μ − θ0 Xi

2τ l − 1 Xi
2 ,

(8)

where KH(X) = H −1/2K(Hx) is a multivariate kernel function with bandwidth matrix H
satisfies K 0 = 0 and K ⋅ > 0. When X only contains discrete random variables, the kernel 

function can be reduced to an indicator function. Therefore, the kernel function handles both 

the continuous and discrete covariates. After obtaining μ0
l , we update τ(X) as

τ(X) = argmaxτ ∑
i = 1

n
1 − Zi KH Xi − X

× 1
2 log(τ) − {μ0

(l) Xi − θ0 Xi }2τ
2 + log πτ(τ; γ) ,

(9)
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τ l Dn = Proj τ Dn , λ1, λ2 ,

(10)

where τ Dn = τ Xi , i = 1, …, n ⊤, τ l Dn = τ l Xi , i = 1, …, n ⊤
. The function 

Proj τ l Dn , λ1, λ2  projects τ Xi I τ Xi > λ1 , i = 1, …, n ⊤ onto the space B1 λ2 , a simplex 

in ℝn, which can be implemented by the linear programming method proposed by Duchi et 

al. (2008).32 When ℒ is a normal likelihood, the solution for (9) is

τ(X) = i = 1
n 1 − Zi KH Xi − X

i = 1
n 1 − Zi KH Xi − X {μ0

l Xi − θ0 Xi }2 + 1/γ2
.

Here, the parameter γ prevents τ(X) from exploding. In addition, the Proj ⋅  function induces 

sparseness in τ l Dn , a parameter vector with growing dimension, and forces τ l (X) to zero 

if the distance between μ0
l (X) and θ0(X) is large. This is a desirable property as it prevents 

the information borrowing if the historical and current control samples are not from the same 

population. Finally, we update ϕ0 as

ϕ0
l = argmaxϕ0 ∑

i = 1

n
1 − Zi log ℒ{μ0

l ⋅ , ϕ0, Y i, Xi} + log πϕ ϕ0
2; a0, b0 .

(11)

We solve for μ0(X), τ(X), ϕ0 iteratively until the algorithm converges.

Similarly, following (4) and (5), we obtain the estimators for μ1(X) and ϕ1 as follows:

μ1 X = argmaxμ ∑
i = 1

n
ZiKH Xi − X logℒ μ, ϕ1, Y i

(12)

ϕ1 = argmaxϕ1 ∑
i = 1

n
Zi logℒ μ1 ⋅ , ϕ1, Y i, Xi + log πϕ ϕ1

2; a1, b1 .

(13)

We summarize the estimation procedure in Algorithm 1.

The selections of λ1, λ2 and γ are crucial to determine the amount of information borrowing 

from the historical control. We select λ2 = 300 log n  and γ = 3, which are chosen to 

minimize the average estimation errors of the treatment effects in the simulation. We select 

λ1 to be the 10% quantile of the estimated precision parameters when assuming the historical 
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and current control data are consistent. We illustrate the selection of λ1 in Algorithm 2 and 

summarize how to select the tuning parameters in Table 1.

The tuning parameter λ1 is used to eliminate the spurious estimators of Xi , i = 1, …, n. 

Because the posterior distribution of τ Xi  contains the term log τ Xi , directly maximizing 

the posterior distribution is impossible to obtain a correct estimator of τ Xi  at τ Xi = 0. 

Instead, the algorithm will provide very small estimators of τ Xi  at these points. Therefore, 

to eliminate the bias, we remove the τ Xi  estimates whose values are less than λ1. This 

selection rule in Algorithm 2 ensures that when the historical and control arm have the same 

distribution, the majority of the information (over 90%) is retained. It’s worth noting that the 

10% quantile can be adjusted according to specific requirements; other values such as 5% 

or 20% could also be used. This selection of λ1 leads to satisfactory type I and II errors, and 

yields the smallest estimation error of the treatment effect in our simulation studies.

ALGORITHM 1.

Estimation of parameters

Input: The maximal number of iterations L, the observed dataset Y i, Xi, Zi i = 1
n

, the historical mean model for the 

control arm θ0 X .

   1 forl = 1, …, Ldo

   2  Update μ0
l X , τ l Dn , ϕ0

l
 using (8)–(11), respectively.

   3  Define 

max ∑i = 1
n μ0

l Xi − μ0
l − 1 Xi

2/n, ∑i = 1
n τ l Xi − τ l − 1 Xi

2/n, ϕ0
l 2 − ϕ0

l − 1 2 2
 as 

iteration error.

   4  if iteration error<10−5then

   5   break

   6  end if

   7 end for

   8

   9 μ0 X = μ0
l X ,τ Dn = τ l Dn ,ϕ0 = ϕ0

l

 10 Estimate μ1 X , ϕ̂1  with (12) and (13), respectively.

Output: The estimated parameters μ0 X , τ Dn , ϕ0, μ1 X , ϕ1 .

ALGORITHM 2.

Tuning the parameter λ1

Input: The observed data in the current study Y i, Xi, Zi i = 1
n

.

 1: Estimate the conditional mean outcome of the current control samples without considering the historical data.

 2: Treat the estimated conditional mean as the historical mean model θ0 X  and obtain 

τ Dn = τ Xi , i = 1, …, n ⊤
 using Algorithm 1 by setting λ1 = 0.

 3: Select λ1 as the 10% quantile of the τ Xi ’s.
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Output:λ1.

5 | NUMERICAL STUDY

5.1 | Comparison with a study level historical borrowing design.

We compare our method with a study level historical borrowing design (SLHBD) that 

ignores the covariate information. In the SLHBD, we assume μ0, μ1, τ are independent of X
and have the same prior specifications as those used in our model. We obtain their posterior 

distributions and Rn as the ratio of the posterior variances of μ0 with a flat prior and with 

our proposed prior. We also define the effective control sample size as Rn times the size of 

the actual control samples. Without considering the covariates, SLHBD utilizes the classical 

biased coin design21 to balance the effective control sample size and the sample size on 

the treatment arm. We consider the scenarios where the relationship between historical 

and current samples varies across different subgroups. More specifically, we generate the 

outcome in the current study from the model

Y = δZ + μ0(X) + ϵ,

where X = (1, X)⊤, μ0(X) ≡ β0 + β1X, X is a binary covariate with equal probability to be 0 or 

1, ϵ is the mean zero Gaussian noise with variance 0.25, δ = 0.3 and β0 = β1 = 1. We assume 

the mean of the outcome in the historical sample follows θ0(X) = α0 + α1X.

We consider two choices of α0, α1 :

• Scenario 1: α0, α1 = 1, 10 . In this setting, μ0(X) = θ0(X) only when X = 0, but 

E μ0(X) ≠ E θ0(X) .

• Scenario 2: α0, α1 = 6, − 9 . In this setting, μ0(X) ≠ θ0(X), but 

E μ0(X) = E θ0(X) = 1.5.

We simulate historical and current samples 2000 times with sample size N = 100, and 

present the resulting allocation ratios to the treatment arm, absolute errors between the 

estimated and true treatment effects, and statistical powers under the alternative hypothesis 

that δ = 0.3 in Table 2. Note that a design that borrows more information from the historical 

samples on the control arm would have higher allocation ratio onto the experimental 

treatment arm, because less information on the control arm is needed from the current study 

to achieve the same information level as that in the experimental treatment arm. On the other 

hand, if a design does not borrow historical information, the subjects in the current study 

will approximately equally allocated in the two arms. In all settings, we adjust δ0 and c in 

Step 7 to control the type I errors at 0.05. All the other tuning parameters are selected based 

on Table 1. The results show that when ignoring the covariates, SLHBD does not borrow 

the historical information in Scenario 1 with the allocation ratio approximately 0.5 in both 

subgroups, because the outcomes in historical and current control samples have different 

marginal means. CAHB borrows the information from the historical observations with 
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X = 0, which yields higher allocation ratio in the subgroup with X = 0. In Scenario 2, by 

only considering the marginal similarity between the historical and current control samples, 

SLHBD mistakenly borrows the historical information, which results in more than 80% 

subjects being allocated to the experimental treatment arm even if there are large differences 

between the historical and current control samples. On the other hand, CAHB correctly 

identifies the difference between historical and control samples in the subgroups and refuses 

to borrow any information from the historical data with allocation ratio approximately 0.5 

across the subgroups. Furthermore, with the correct information borrowing mechanism, 

CAHB enjoys higher estimation accuracy and higher statistical power in both scenarios.

5.2 | Simulations based on a real data example

The motivating HORIZON and FIT trials are used to inform simulation studies to assess 

the benefit of the proposed CAHB method. The FIT and the HORIZON are similarly 

conducted placebo-controlled randomized trials that studied the effects of bisphosphonate 

treatments on vertebral fracture risk in post-menopausal women. The clinical population 

of interest is elderly women aged approximately 80 years or above who are at elevated 

vertebral fracture risk compared to younger women and thus suffer disproportionately with 

respect to disability and medical costs resulting from fracture events.4,7 We restrict the 

evaluation to consider only women with white race/ethnicity since the FIT study lacks 

diverse recruitment. The HORIZON enrolls 620 of such women and borrows the placebo 

control arm information in the FIT study permitted utilizing the control arm information 

collected in its sample corresponding to 62.6% of the HORIZON sample.

Because the primary outcome, vertebral fracture by 36 months, is adjudicated slightly 

differently between the two trials,4–6 we instead use the hip BMD measured at 24 months 

by dual-energy x-ray absorptiometry as our common study outcome for the two trials, 

an established objective surrogate endpoint for vertebral fracture to determine treatment 

efficacy.8 Using a more readily observable surrogate has been well accepted in the adaptive 

trial design literature.34–36 Four covariates associated with vertebral fracture risk37–40 are 

used to match subjects from the historical FIT study and the current HORIZON study: 

fall history (X1, X1 = 1 if there is any fall history, otherwise 0), vertebral fracture history 

(X2, X2 = 1 if there is any fracture history, otherwise 0), the years since menopause X3  and 

the baseline hip BMD X4 . The two binary covariates divide the data to four subgroups. 

The distributions of the BMD at 24 months in the FIT and the HORIZON control arm are 

similar in subgroups 2 and 3 and rather discrepant in subgroups 1 and 4 (Figure 1). The 

primary outcome distributions are also similar in subgroups 2 and 3, but rather different in 

subgroups 1 and 4. We utilize this real data setting and examine the performance of the 

CAHB design for adaptively assigning the subjects based on the covariate information so 

that more subjects can be assigned to the experimental treatment arm when sufficient control 

information is provided from both current and historical trials.

More specifically, we let μ0(X) = β0 X1, X2 + β1 X1, X2 X3 + β2 X1, X2 X4, and simulate the 

current trial samples from the model

Y = δZ + μ0 X + ϵ,
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where X1, X2 are two binary covariates with probability 31.0%, 71.9% to be one, 

respectively. The values of X1, X2 divide samples to four subgroups which comprise (19.8%, 

8.2%, 49.2%, and 22.7%) of the total sample size, respectively. The covariates X3 and 

X4 are simulated from estimated distributions of the standardized years since menopause 

and the standardized baseline hip BMD in the HORIZON data, and ϵ is a mean zero 

Gaussian random error with variance 0.11. Here δ = 0.349 is the overall treatment effect, and 

β0 X1, X2 , β1 X1, X2 , β2 X1, X2  are regression coefficients, which vary across the subgroups. 

We summarize the true values of β0 X1, X2 , and β1 X1, X2 , β2 X1, and X2  and the subgroup 

specifications in Table 3. The values of ϕ0
2, δ and β0, β1, β2 are all estimated from the 

HORIZON dataset.

Furthermore, we let θ0 = α0 X1, X2 + α1 X1, X2 X3 + α2 X1, X2 X4 and assume the historical 

samples are generated from the model,

Y = δℎZ + θ0(X) + ϵℎ,

(14)

where α0 X1, X2 , α1 X1, X2 , α2 X1, X2  are subgroup-specific parameters, ϵℎ is a mean zero 

random error. We vary the values of α0, α1, α2 to represent different degrees of consistency 

between historical and current control data.

To start the trial, we first equally randomize 20 subjects to the experimental treatment and 

control arms. When implementing CAHB, we specify ℒ to be a normal likelihood, KH

to be a multivariable gaussian kernel with H = diag 0.1, 0.1, w1, w2 , where w1, w2 are the 

rule-of-thumb bandwidths discussed in Scott (2015).33 The bandwidth 0.1 is selected for the 

discrete covariates so that the kernel function works like an indicator function in the first two 

dimensions. Following Jiang, Ma and Yin,26 Kℎn is Epanechnikov kernel, with bandwidths 

ℎ1 = ℎ2 = 1.1 for the binary covariate and, ℎ3 = ℎ4 = 1.3 for the continuous covariates. In all 

simulations, we set δ0 = 0 and adjust c in Step 7 to achieve 0.05 type I error rate.

5.2.1 | Simulation studies under varying discrepancy between the historical 
and current control.—We first investigate the performance of CAHB under varying 

amounts of discrepancy between historical and current control data when the relationships 

between βk X1, X2  and αk X1, X2 , k = 0,1, 2 are the same across the subgroups. We specify 

αk X1, X2 = βk X1, X2 d, k = 0,1, 2, where d is generated from a normal distribution with 

mean 1 + ξ  and variance 0.3I ξ ≠ 0 . It can be seen that when ξ = 0, d = 1 so that 

αk X1, X2 = βk X1, X2 , and the difference between αk X1, X2  and βk X1, X2  increases with the 

magnitude of ξ. Here, we assume d is random, because θ0(X) is often estimated from the 

historical sample, which is a random variable in practice. We vary ξ from 0 to 1 and generate 

2000 datasets with the maximal sample size N = 200 under different specifications of ξ. 

We compare CAHB with the kernel-based biased coin design (KBCD)26 for (a) the mean 

estimation error |δ̂ − δ| over the simulations (b) the power of a hypothesis test with the null 

that δ = 0 when the true effect is 0.349 at 5% significance level and (c) the mean percentages 

of subjects assigned to the experimental treatment arm.
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Compared with KBCD method, the CAHB method yields smaller mean |δ̂ − δ| when the 

historical and current control are similar ξ ≤ 0.2  and slightly larger mean |δ̂ − δ| when 

ξ > 0.25) (Figure 2 a). Whereas both CAHB and KBCD achieve 85% of power, CAHB 

has higher power when the distributions of the historical and current control are consistent 

ξ ≤ 0.1  (Figure 2b). Finally, the allocation ratio to the experimental arm is always higher 

for the CAHB. The allocation ratio decreases as the more discrepant the historical and the 

current trial control arm data become, that is, the distance between αk X1, X2  and βk X1, X2

increases (Figure 2c). Across the different subgroups, the allocation ratio changes by the 

subgroup sample size: the allocation ratio to the experimental treatment is higher in the 

subgroups with larger sample sizes. In conclusion, these results suggest that CAHB yields 

comparable mean |δ̂ − δ| and power as the KBCD does, while more subjects have been 

allocated to the experimental arms by using CAHB than that by using KBCD. Furthermore, 

the allocation ratio is larger when the historical and current control samples are similar. 

Moreover, by using CAHB, more subjects are assigned to the experimental arm in the 

subgroups with larger samples on the population.

We further investigate the operating characteristics of CAHB when the relationship 

between αk X1, X2  and βk X1, X2  varies across the subgroups. More specifically, we assume 

αk X1, X2 = βk X1, X2  in Subgroups 1 and 4, and αk X1, X2 = βi X1, X2 d, k = 0, 1, 2. in 

Subgroups 2 and 3. Figure 3a and b show the similar overall properties as those observed in 

Figure 2 that CAHB yields better |δ̂ − δ| and power on average than the KBCD does, while 

more subjects have been allocated to the experimental arms by using CAHB than that by 

using KBCD. In addition, Figure 3 (c) shows that the allocation ratio in Subgroups 1 and 

4 are consistent to be around 0.58, and the allocation ratios in Subgroup 2 and 3 decrease 

dramatically when the discrepancy between historical and current control samples increases 

(ξ from 0 to 1). Furthermore, when the discrepancy between historical and current control 

samples is considerably large ξ = 1 , the allocation ratio reduces to 0.5.

5.2.2 | Simulation studies under varying current and historical sample sizes.
—We use the data from FIT trial to estimate the parameters αk X1, X2 , and k = 0, 1, 2. 

The conditional mean outcomes from FIT and HORIZON are similar in certain subgroups 

as shown in Figure 1 and we expect that CAHB will have more subjects allocated to 

experimental treatment arm when considering the historical data.

We first assess the performance of CAHB when the sample size of the current data varies. 

We simulate 2000 datasets for the settings when current sample size N varies from 40 

to 400. To capture the variability of the historical model, in each simulation, we sample 

N0 = 350 observations without replacement from the historical datasets to estimate θ0(X)
based on (14).

We summarize the mean |δ̂ − δ|, the power, and the allocation ratio to the experimental 

arm for CAHB and KBCD in Figure 4. Figure 4 shows that CAHB yields consistently 

better |δ̂ − δ| and power on average than the KBCD does, while the allocation ratio from 

CAHB is always greater than 0.5. This suggests that CAHB allocates more subjects to 

the experimental treatment arm without sacrificing estimation accuracy and power. It is 
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worth mentioning that the allocation ratio starts to decrease when N reaches 350. This 

phenomenon indicates that when there are sufficient samples on both arms, CAHB tends to 

take less information from historical studies.

Lastly, we study the operating characteristics of CAHB when the historical sample size N0

varies. We vary the N0 from 30 to 350 and simulate 2000 datasets under each setting. In each 

simulation, we sample N0 observations without replacement to estimate θ0(X) based on (14), 

and fix the current maximal sample size at N = 200.

We summarize the mean |δ − δ|, the power, and the allocation ratio to the experimental 

arm for CAHB and KBCD in Figure 5. Figure 5 shows that the mean |δ̂ − δ|, power and 

allocation ratio improve when the historical sample size N0 increases. This is because when 

the historical control sample size increases, the estimation variation of θ0(X) decreases. 

Hence the estimator becomes closer to the true values, and in turn is also closer to the 

μ0(X) in the current data. In summary, when the historical and current control samples are 

consistent, larger historical control samples yield smaller mean |δ − δ|, higher power, and 

better allocation ratio to the experimental treatment arm.

6 | CONCLUSION

We proposed a CAHB design, which incorporates the historical information and adaptively 

allocates subjects to balance the conditional effect sample size. CAHB automatically 

adjusts the amount of information borrowed by covariate-adaptively evaluating the similarity 

between the distributions of the current and historical control samples. Compared with the 

study level historical borrowing design, when the agreement between the historical and 

current studies in the subgroups are different from those at the study level, CAHB is more 

likely to make the correct treatment assignment decision, which yields higher power and 

more accurate effect size estimation. When the historical and current control samples are 

not from the same population, CAHB yields the similar estimation accuracy and statistical 

power and achieves covariate balancing as the kernel-based biased coin design26 does, which 

does not utilize the historical information. Importantly, compared with the kernel-based 

biased coin design, CAHB has better estimation accuracy, statistical power, and assigns 

more subjects to the experimental treatment arm when the distributions of the historical and 

current control samples are consistent.

This new design has several practical implications. First, it can help to reduce distributional 

imbalance of the current trial subject characteristics across the treatment arms. This is 

important because covariate imbalance can threaten the internal validity of the current trial 

by introducing confounding factors that affect study endpoints. Second, the proposed design 

can be used to borrow historical control data from trials with different distributions of 

subject characteristics. This can be useful in settings where there is limited historical control 

data available, or where the available historical control data are not well-matched to the 

current trial. Overall, the proposed design is a promising new approach to historical control 

borrowing in clinical trials. It has the potential to reduce distributional imbalance, increase 

the efficiency of trials, and improve the accuracy of treatment effect estimates.
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Our primary outcome hip BMD at 24 months is continuous, however, CAHB can be 

extended to handle discrete outcomes, where μ0(X) can be exp b⊤X / 1 + exp b⊤X  for 

the logistic model and can be exp b⊤X  in the Poisson model with b to be the unknown 

parameter. Algorithm 1 and the covariate-adaptive design discussed in Section 3 are directly 

applicable for the parameter estimation and the adaptive allocation of the subjects.

Although our prior selection is based on the Gaussian distribution, our likelihood function 

is designed to be flexible to accommodate various data distributions. By using a Gaussian 

prior, we implicitly used weighted prior mean that contains historical information as pseudo 

samples as shown in (6) to improve the estimation efficiency of the parameter of interest in 

the current study. Additionally, when the likelihood is Gaussian, selecting a Gaussian prior 

leads to a closed-form solution of the posterior distribution of the parameters of interest. 

This facilitates us to analyze how each model parameter affects the information borrowing 

from the historical study.

Finally, an important limitation of our design is its inability to consider the variance of the 

estimated mean outcome from the historical control arm during information borrowing. 

Consequently, the amount of information borrowed from the historical study remains 

unchanged as long as the estimated mean remains constant, even if the historical sample 

size increases. To address this limitation, it is necessary to clearly define how the variability 

of historical estimators impacts the accurate borrowing of information. This aspect presents 

an avenue for the future research and is worth exploring in further studies.
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FIGURE 1. 
The distributions of the BMD at 24 months under different subgroups from the control arms 

of the current and historical trials.
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FIGURE 2. 
The results from 2000 simulations. The absolute error (a), the power when the type I error is 

0.05 (b), and the percentage of the subjects assigned to experimental treatment arm (c) when 

varying ξ from 0 to 1. The shadow indicates the 95% confidence intervals of the absolute 

error. A larger ξ yields a larger difference of the outcome-covariates association between the 

historical and current control samples.
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FIGURE 3. 
The results from 2000 simulations. The absolute error (a), the power when the type I error 

is 0.05 (b), and the percentage of the subjects assigned to experimental treatment arm (c) 

when varying ξ from 0 to 1 in subgroups 2 and 3. The shadow indicates the 95% confidence 

intervals of the absolute error. A larger ξ yields a larger difference of the outcome-covariates 

association between the historical and current control samples.
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FIGURE 4. 
The results from 2000 simulations. The absolute error (a), the power when the type I error is 

0.05 (b), and the percentage of the subjects assigned to experimental treatment arm (c) when 

varying the total sample size N from 40 to 400 when the historical sample size is N0 = 350. 

The shadow indicates the 95% confidence intervals of the absolute error.
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FIGURE 5. 
The results from 2000 simulations. The absolute error (a), the power when the type I error is 

0.05 (b), and the percentage of the subjects assigned to experimental treatment arm (c) when 

varying the total historical sample size N0 from 30 to 350 when the current sample size is 

N = 200. The shadow indicates the 95% confidence intervals of the absolute error.
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TABLE 1

Tuning parameter selections.

λ1 Algorithm 2

λ2, δ Minimize the average estimation error of the treatment effect in the simulation.

The kernel bandwidth for discrete covariate Less than the smallest distance between two covariate values in the historical study

The kernel bandwidth for continuous covariate Rule-of-thumb bandwidth discussed in Scott (2015)33
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TABLE 2

The comparison between CAHB and SLHBD designs. The 95% confidence intervals (CIs) are reported. The 

power is reported when the type I error is controlled at 0.05.

Allocation ratio Absolute error

Design Overall X = 0 X = 1 |δ − δ̂| Power

Scenario 1: α0, α1 = 1, 10
CAHB 0.643 0.817 0.468 0.070 0.959

95% CI [0.642, 0.644] [0.816, 0.819] [0.466, 0.469] [0.068, 0.072]

SLHBD 0.504 0.502 0.506 0.146 0.681

95% CI [0.503, 0.505] [0.500, 0.504] [0.503, 0.508] [0.142, 0.151]

Scenario 2: α0, α1 = 6, − 9
CAHB 0.501 0.500 0.501 0.080 0.912

95% CI [0.500, 0.502] [0.499, 0.502] [0.499, 0.502] [0.077, 0.082]

SLHBD 0.814 0.812 0.815 0.340 0.166

95% CI [0.812,0.815] [0.810,0.815] [0.813,0.817] [0.329, 0.352]
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TABLE 3

The subgroup-specific parameters used in the simulation study to generate current study samples, which are 

estimated from the HORIZON dataset.

Subgroup 1 (X1 = 0, X2 = 0) Subgroup 2 (X1 = 1, X2 = 0) Subgroup 3 (X1 = 0, X2 = 1) Subgroup 4 (X1 = 1, X2 = 1)

β0 X1, X2 −0.159 −0.170 −0.175 −0.189

β1 X1, X2 −0.003 −0.055 0.009 0.004

β2 X1, X2 0.922 0.954 0.939 0.910
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