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Multiplexing Gains in Bit Stream Multiplexors

Tkhlaq Sidhu, Member, IEEE, and Scott Jordan, Member, IEEE

Abstract—We are concerned with characterizing the variation
of multiplexing gains with source type and burstiness in inte-
grated service systems such as ATM. We model a fixed capacity
high speed bit pipe that multiplexes a moderate number of
bit streams with minimal buffer under a low loss constraint.
Each service type is defined by its instantaneous bitrate dis-
tribution, but the bitrate distribution of multiplexed streams
is approximated as Gaussian. The Gaussian approximation is
not as accurate as Chernoff bounds, but it allows for stronger
characterization of multiplexing gains. We consider three schemes
for allocating bandwidth to services: by individual user, by path
and service type, and by path only. We find explicit formulae
for sensitivities of required capacity to source rate mean and
variance and to loss rate. We characterize multiplexing gains
and costs to identify the benefits of each allocation policy. We
find that the capacity savings resulting from sharing resources is
proportional to the square root of the ratio of source rate variance
to source rate mean. This suggests that although bursty sources
require more bandwidth, multiplexing gains are increasing with
burstiness. We also find that the extra capacity required to
multiplex dissimilar source types is increasing with the difference
between their burstinesses. This suggests that when bit streams
are partially grouped, it is most important first, to group similar
source types.

1. INTRODUCTION

E ARE currently witnessing unprecedented mergers in

the telecommunications industry. Regulatory barriers
between market segments are falling and major players in
the market are positioning themselves to be able to offer as
many services as possible. They perceive many communica-
tions services are complementary in nature, and can be more
efficiently offered over a single system than over separate
dedicated facilities. This coalescence of telecommunication
services requires new capabilities of the underlying networks
that will provide these services. Historically, voice services
have required guaranteed performance at a continuous bitrate.
Data services, on the other hand, have had variable bitrates
but no guaranteed performance. Integration of these services
onto a common platform requires that the network be able
to offer variable bitrate services with guaranteed performance.
This capability is also expected to be used by new services,
such as, compressed video.

The problem of guaranteeing performance for differing,
bursty services is multifaceted. Recent work on source mod-
eling includes on-off sources, fluid models, and effective
bandwidth (see e.g., [1], [3], [4]). Recent work on source
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policing includes leaky bucket flow control (see e.g., [2], [10],
[14], [16]). We are interested here, in understanding when
resources should be pooled and for what types of sources.
Services are to be multiplexed onto common channels with the
expectation that resource sharing will result in a more effective
use of resources. However, it is still unclear as to which service
types are more suitable for resource multiplexing. Although we
do expect muitiplexing gains to increase with greater resource
sharing, we must keep in mind that the complexity of the
sharing scheme is also increasing and the benefits of resource
sharing should outweigh the cost of additional complexity.

In ATM, capacity will be allocated to virtual paths on which
a number of virtual circuits will be multiplexed. It has not yet
been decided how to group virtual circuits, and how to allocate
bandwidth to virtual paths in order to guarantee the quality
of service of each connection. The level of resource sharing,
and resulting multiplexing gain, depend on what service types
will share resources. Circuit switching represents no sharing.
If virtual paths contain virtual circuits with identical paths
and source types, here called homogeneous sharing, then a
traditional statistical multiplexing gain is achieved. If virtual
paths contain virtual circuits with different source types, here
called complete sharing, then a further gain will be achieved.
These gains must be gauged and compared to each method’s
complexity. )

Previous studies have identified two distinct components
of multiplexing related congestion; cell scale congestion and
burst scale congestion [13], [15]. Cell scale congestion is
caused by cells from many independent sources simultane-
ously arriving at a node for outbound transmission on the same

“link. Cell scale congestion can occur even when the average

incoming source rates are substantially less than the available
capacity on the virtual path connection. Buffers required to
avoid cell scale congestion are relatively small, typically on

. the order of the number of services feeding the virtual path

connection. It has also been shown that buffer delay due to cell
scale congestion is small compared to the interarrival times
for the particular sources. Burst scale congestion, on the other
hand, is caused by high speed bursts which may temporarily
overload the virtual channel capacity. Buffer lengths must be
quite large to avoid this type of congestion and significant
queuing delays will be observed. Resource allocation propos-
als, therefore, generally either allocate capacity close to the
peak rate and use short buffers to avoid cell scale congestion,
or allocate capacity close to the mean rate and use long buffers
to avoid burst scale congestion. The former approach results
in low channel utilization for bursty traffic, while the latter
approach resuits in higher channel utilization, higher traffic
delay, and substantially larger buffers.

1063-6692/95$04.00 © 1995 IEEE
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One approach that tends toward the second option is ef-
fective bandwidth. In the buffered case [4]-[6], [11], each
source type is assigned an effective bandwidth, and a new
call is admitted if the sum of effective bandwidths for all
multiplexed sources remains less than the channel capacity.
The multiplexing gain, combined with buffering, successfully
lets the system avoid burst level congestion. Sources must
have a common loss probability, and effective bandwidth is
accurate for small loss probabilities and large buffers.

In contrast, some prefer the simpler approach of allocating
a higher capacity and reducing buffer length to the min-
imum. This approach results in simpler traffic descriptors,
simpler policing controls, and reduction in delay times [15].
Commonly, a source’s type is defined by its instantaneous
distribution of bitrate, and each source requires a minimum
loss rate. For a given total bandwidth C, the acceptance
region is defined as the set of all combinations of numbers of
each service type that can be simultaneously accommodated
while meeting the minimum loss requirements. The source
types are often thought of as-different services provided by
the network, such as video, voice and data. Several efforts
have been made to determine the acceptance region. Hui
initially suggested that the bitrate distribution of the sum
of several sources could be approximated by a Gaussian
distribution [7]. He noted that this approximation is not
accurate in the tail, and thus provides inaccurate information
for systems with low loss rates. Hui then derived a more
accurate bound on the acceptance region using a Chernoff
bound and large deviations theory [7], [8]. Hui [7] and Kelly
[9] further suggest linear approximations to the acceptance
region boundary that are often accurate. Mitra and Morrison
[12] derive a uniform asymptotic approximation (UAA) for
on-off sources with heterogenous channel requirements, and
use this to characterize the acceptance region.

While the Chernoff bound and UAA produce more accurate
approximations to the acceptance region than the Gaussian
approximation, it is difficult to use them to find sensitivities of
system capacity to source parameters, or to find the variation
of multiplexing gain with source burstiness. Since these are
our goals, we adopt the rougher Gaussian approximation.
Our results are, therefore, not strictly valid for non-Gaussian
sources at Jow loss probabilities. The analysis is also restricted
to sources with common overflow probability requirements,
and systems with no buffer.

In this paper, we consider the capacity required to multiplex
a given set of sources under a maximum overflow criterion
under complete sharing (capacity Ccs); under homogenous
sharing (Cps); and under no sharing (Cs). We define two
types of multiplexing gain: complete sharing gain (Cgs —
Ccs) and homogenous sharing gain (Cns — Crs). We define
a source’s burstiness as the ratio of its bitrate variance to
mean. We show the complete sharing gain, defined as the
extra capacity required. when only like type services are
sharing resources over that required when all services share,
is increasing with the square root of burstiness. We also show
that the homogenous sharing gain, defined as the additional
capacity required under no sharing over that required for
homogenous sharing, is bounded by a quantity that also
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Fig. 1. Bit stream multiplexing block diagram.

increases with the square root of burstiness. These -results
suggest resources are more effectively used when separate
allocations are combined. Indeed, -although bursty sources re-
quire more bandwidth, multiplexing gains are increasing with
burstiness. Finally, we define a diversity cost that measures the
excess capacity required by a system with two services using
complete sharing over one in which all capacity is devoted
to only one service type. We find that this diversity cost
increases with the difference in the burstinesses of the two
source types. This result suggests that when bit streams are
partially grouped, it is most important to first group similar
source types. v
Our model is presented in Section II. The acceptance region
under a complete sharing discipline is introduced in Section III.
We derive approximations to this region in Sections IV and V.
In Section VI, we derive the sensitivity of required capacity
to blocking probability, and source rate mean and. variance.
Finally in Section VII, we show that sharing of resources
can obtain the same blocking probability as partitioning . of
resources at a capacity savings proportional to the square root
of the ratio of the source rate variance to source rate mean.

TI. BIT STREAM MULTIPLEXING MODEL

In this section we define a bit stream multiplexing model
and three resource allocation disciplines. The model addresses
N different types of bit stream generating sources multiplexed
onto a fixed capacity channel. A schematic of the model is
shown in Fig. 1. .

Bit streamn sources generate data (in bits or cells) at a- time
varying rate. The combined data stream shares a channel of
capacity (' in accordance with a specific multiplexing. disci-
pline. There is no buffer in this model. We will evaluate: the
effectiveness for the following three alternative multiplexing
disciplines: complete sharing, homogeneous sharing, and no
sharing. k '

Sources are classified as one of N different source types.
Each source is defined by an instantaneous data rate distribu-



SIDHU AND JORDAN: MULTIPLEXING GAINS IN BIT -STREAM MULTIPLEXORS

tion. Sources of the same source type are indexed. We assume
each source has a data rate that is an ergodic random process
and that the sources are independent of each other. We adopt
the following notation:

N Number of source types.

S .. Set of source types, S = {1,2,---, N}.

z(s) or z; Number of sources of type s € 3, z(s) > 0.
Type s sources are indexed (1, 2, - -« , x5).

X Operating point, X = [z(1), 2(2), - -- , z(N)].

7s,i(%) Time varying data rate for the ith source of type
sesS, ie{l .- z(s)}

fs(r) Density function of the instantaneous distribu-

tion of data rate r, ;(t) of source type s € S.
c Capacity of the channel. :

Ceos Capacity required to multiplex using the com-
plete sharing discipline.

Cus Capacity required to multiplex using the homo-
geneous sharing discipline.

Cns Capacity required to multiplex using the no
sharing discipline.

PBhax Worst case acceptable level of PB, indicating

the desired quality of service.
A Acceptance region, the set of operating points
X resulting in an acceptable quality of service.

Four examples of source types are defined in Fig. 2 for
future use. The density function f,(r) and a possible sample
path of r, ;(¢) are shown for each. We note that the lack of
a buffer at the multiplexing point implies that the marginal
density of each source is sufficient to specify the distribution
of the rate of the combined data stream. No.joint densities
are needed. In accordance with an allocation discipline, data
streams from all sources share a channel with fixed capacity
C. We define blocking to be the event that some portion of
the combined data stream is not accepted by the channel. In
this paper, we assume all sources have identical maximum loss
requirements and that any loss is split among the constituent
source streams proportional to the mean rate.

We present three alternative disciplines to allocate the
channel between sources. These disciplines are presented in
decreasing order of resource sharing or multiplexing; complete
sharing, homogeneous sharing, and no sharing.

In complete sharing, all source types share the entire chan-
nel. Blocking occurs only when the combined data stream is
greater than the channel capacity C = Ccg

z(s)
Bes=|Y_ Y rs;(t)>Cos|. M)

s€S j=1

In homogeneous sharing, the channel of capacity C is parti-
tioned into Cy s, 1, CHs,2, -, Cus, v and each subchanne]
is devoted to its respective source type. For example, a 1
type source cannot use capacity Cpg, o even if Cpg 1 is fully
utilized and Cyg, 2 is free. A particular homogeneous sharing
policy is defined by a choice of partition

C=Y Cus,. )

s€S

- Bns,s,j = [1s,i(t) > CRs, sl
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Distribution f(r) Sample Path rg (t)
5
“Deterministic” 1.0 4
mean 2.0 3
variance 0 2 S
1
1234 t
1.0 i
“‘On/Off”
3
mean 2.0
2
vaﬂance4 1
1234 t
- 10 ;
“Uniform” |
mean 2 3
variance 2 2
1 —l l
1234 t
. 5
“Arbitrary” 1.0 4
mean 3
N 3
variance 4.5 2
il
1234 t
Fig. 2. Examples of bit stream generating sources.
Blocking occurs when a partition is overloaded
=(s)
Bus,s= | 7s,j(t) > Cus,s|, s€S. ()

j=1

In the no sharing discipline, there is no sharing of capacity
between sources. Each source of type s € S is allocated a
capacity of Cfg ,. A particular no sharing policy is defined
by a choice of partition

C= 3 #(5)Chs, . @

s€S

Blocking occurs if an individual bit stream generating
source exceeds it’s allocated capacity

se€S,jel, -, z(s).
&)
Given a channel of capacity C, we define the complete
sharing acceptance region as the set of all operating points
X = [z(1), z(2), ---, z(N)] that satisfy the service qual-
ity criterion that P(Bcs) < PBpax. Similarly, for each
homogeneous sharing partition, we can find the set of all
operating points X that satisfy P(Bys,s) < PBmaxVs. We
define the homogeneous sharing acceptance region as the
union of such sets over all possible partitions. The no sharing
acceptance region is similarly defined as the union (over all
partitions) of sets of operating points satisfying P(Bns, s, ;) <
PB.x Vs, j. We further discuss the relationship between
blocking probability and loss in future sections.
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Fig. 3. Acceptance regions for each discipline.

Fig. 3 depicts these acceptance regions for the case of
N = 2 source types. Since the channel of capacity C can
be considered to be a resource, we call the upper boundary of
each acceptance region a resource allocation constraint. Each
acceptance region is the set of first quadrant points contained
within the two axis and its corresponding constraint.

The z-axis gives the number of type 1 sources and the y-axis
gives the number of type 2 sources that may be multiplexed
together. Points above and/or right of each constraint curve
do not satisfy the constraint on blocking probability and thus
do not provide the acceptable level of service under the corre-
sponding discipline for any partition. The point on each curve
with z = 0 indicates the maximum number of type 2 sources
that can be accommodated by the channel with the prescribed
quality of service, and is achieved in homogeneous and no
sharing disciplines when all capacity is allocated to type 2
services. By reducing the number of type 2 sources, more
type 1 sources can be accommodated. The complete sharing
constraint is shown farthest from the origin. For homogenous
sharing, a choice of Cyg 1 and Cpg,2 results in a rectan-
gular acceptance region. The union of all regions such that
Crus, 1+ Crs,2 = C results in the homogenous sharing curve
shown above. The no sharing discipline is the same as fixed
bandwidth allocation. Disciplines that allow more sharing can
accommodate more services. In the next three sections, we in-
vestigate the form of the complete sharing resource allocation
constraint. In Section VII, we return to consideration of the
homogeneous and no sharing resource allocation constraints.

III. ACCEPTANCE REGION FOR COMPLETE SHARING

In this section, we present the resource allocation constraint
under a complete sharing discipline. We illustrate this con-
straint for three sample cases using bit stream generating
sources from Fig. 2. The example cases have been constructed
with N = 2 source types. We will build on these examples
in later sections.

The combined data rate R(t) at a fixed time ¢ and an
operating point X is the sum of the rates of each source

z(s) .
RX, )= > 74 5(b). - (6

seS j=1
Since these rates are independent random variables, the dis-

tiibution fr(r) of R(t) can be expressed by the following
convolution equation:

Freoy(r) = FECED) s fo(1)E@) vk fu(m)EOD ()

where f(*) denotes the z-fold convolution of f.
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Given a specific channel capacity ' and maximum
blocking probability PBx, the complete sharing constraint
P(Bgs) € PBpay is satisfied if and only if the operating
point is in the complete sharing acceptance region given by

AX | Frx)(C) > 1 = PBrax} @®

where Fr is the distribution function corresponding to the
density function in (7).

The corresponding probability of cell loss (9) is given by
dividing the average overflow rate by the mean rate of the
offered stream. The reader may refer to [7] for a model relating
cell loss to burst lengths

/OO [r = Clfrixy(r) dr
c )
/ TfR(X)(T) dr
0 N

As an illustration, we select parameters C' = 100 and
PBp.x = 1073, Using the examples from Fig. 2, the con-
straint was numerically evaluated for the following three cases
of source type pairs: i) deterministic versus on—off, ii) on—off
versus uniform, and iii) uniform versus arbitrary. The result is
shown in Fig. 4. The points shown correspond to the complete
sharing boundary. .

We note that for the deterministic data rate type source, the
number of allowable sources is the channel capacity divided
by the data rate, here 50. A source type with the same mean
but larger variance (e.g., uniform or on—off sources in Fig. 2)
is more bursty and, as we expect, fewer of the more bursty
sources can be accommodated. In addition, we observe that
each boundary is nearly linear. This leads us to explore a few
continuous approximations in the next section.

PL =

)

IV. GAUSSIAN APPROXIMATION TO
COMPLETE SHARING ACCEPTANCE REGION

Although the complete sharing resource allocation con-
straint can be obtained using convolutions as shown in the Jast
section, the method is calculation intensive, and furthermore,
a closed form result is not available. In this and the next sec-
tion, we analyze two approximations of the complete sharing
boundary suggested by Hui [7]. Each approximation can be
written in closed form. In addition, using these approximations,
we bound the extra capacity required to multiplex two source
types over that required if the entire capacity is used for one
source type.

Fix the operating point X. Suppose that the source rates
means and variances are u, and aﬁ, respectively, for source
types s € S. The instantaneous mean and variance of the
combined data stream rate R(X, t) (6) are then given by

.U'R(X) = ZHS *Tg
SES

Thx)= D 05 Ta (10)

i s€S X
Since the distribution fp(x)(r) is obtained through con-
volutions of fs(r), s € S (7), by the central limit theorem,
frex)(r) approaches a Gaussian distribution as the number of
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sources z(s) of each type increases. This results in the first
approximation.
Gaussian approximation:

R(X, t) ~ Nlpr(xys Or(x)]- (11

Given a specific channel capacity C' and maximum blocking
probability P Bn,x, the corresponding approximate complete
sharing acceptance region is given by

{JJ @( ) Sl—PBmax}.

This can be written more easily using (10) as those operating
points X satisfying

N N
Zﬂs'$s+l) Zﬂz'ﬂvsﬁc
s=1 s=1

C — pr(x)
TR(X)

12)

(13)

where
p =011 - PBpax)-

Call the upper boundary of this subset the Gaussian con-
straint surface. Note that this surface is entirely specified by
the source rate means and variances, the channel capacity C,
and the service quality P By,ax or p. The entire distribution for
each source is not required. If the combined rate distribution is
not taken as Gaussian, then the number of standard deviations
C must be above the mean is p(X) where X is the vector of
numbers of sources being multiplexed. We consider this more
general case in the appendix.

For a solution of (13) (at equality) for z; in terms of xz;
i # 7 € S, see (14) at the bottom of the page. A second
solution can be found to have a similar form but it provides
inappropriate values for positive valued square roots in (13)
and is disregarded. Equations (13) and (14) simplify for the
two source case (N = 2), see (15), (16) at the bottom of
the page. In Fig. 5, we overlay the Gaussian approximation
to the complete sharing acceptance region (curve) with the
exact region resource allocation constraint (dots) for the three
examples of the previous section.

The Gaussian approximation fits the complete sharing ac-
ceptance curves well in these examples. The error is always

789

at least O(1), since the exact curve is discrete and the approx-
imation is continuous, however, in these examples the error
is usually less than one. The approximation does introduce
higher errors when there are few sources with significant rate
variance, e.g., near the lower right in Fig. 5(a). In addition,
the approximation may not fit as well at lower blocking
probabilities, depending on the form of the tail of the source
rate distribution {7]. Our primary use of the approximation,
however, will be to gauge multiplexing gains.

For the Gaussian approximation, the mapping between
blocking probability and loss probability (9) becomes

/P e - plo(z) dz

TR(X)
HR(X)

PL = 17)

where ¢(-) is the density of the standard normal distribution.

Previous studies have shown that a complete sharing ac-
ceptance region based on the Chernoff bound has a convex
complement in the first quadrant [7], [9]. We find that the
Gaussian approximate constraint surface (13) also has a con-
vex complement in the first quadrant when pgx) < C, ie.,
PB.x < 05. )

Theorem 1: The Gaussian approximate acceptance region
has a convex complement in the first quadrant if PBp.x <
0.5.

Proof: Define

(13)

N N
CX)= pa-zatpy| D, 02
s=1 s=1

so that (13) now becomes C(X) < C.

We first show that C(X), X € Rff , is"a concave function
of X. .

Consider two arbitrary points X' and X* € RY. Substi-
tuting in (13), we get

N
CXY) =D ps-zs+p

. s=1

N
S ot el
\ s=1]

N N
C(X2)=Zu8-x§+p Zo§~m§ 19
s=1 s=1

7 F 7 .
o= i o= s
RT3 ) | P Y - Y| 8
J#i J#i
= L L s
T o (14)
C=M1'$1+u2'1‘2+l)\/<f%‘$1+0§'$2 (15)
2 2\ 2
2% 1 20— men) — oy (22) + 45 4+ 0y (o - o32)
[22] H2 M2 H2

T9 = (]6)

2p0
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(a)

©
Fig. 4. Acceptance regions under a complete sharing discipline for three
example source pairs: (a) Type 1: deterministic, Type 2: on~off; (b) Type 1:
on—off, Type 2: uniform; (c¢) Type 1: uniform, Type 2: arbitrary.
C(X) is concave iff
CIAX + (1= NX?] 2 AC(XY) + (1 - X)C(X?)
‘ Xe o, 1]

PBipax < 0.5 implies that p > 0, therefore using (13) and
(19), this occurs iff

N N
/\(Z ag-xg> +(1-X) (Zag~xg)

for

However

Aa+ (1= X)b>Aa+(1-AvVb
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10;
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Fig. 5. Gaussian épproxj_mation to complete sharing acceptance region for
three examples: (a) Type 1: deterministic, Type 2: on—off; (b) Type 1: on—off,
Type 2: uniform; (c) Type 1: uniform, Type 2: arbitrary.

for any positive constants a, b, and for A € [0, 1]. It follows
that C(X) is a concave function of X on X € RY.

Define A(C) = {X|C(X) > C}. the first quadrant
complement of the Gaussian approximate acceptance region.
A(C) is an upper level set of C(X), and every upper level
set of a concave function is convex. It follows that A(C) is a
convex set, and. the theorem is proved.

V. LINEAR APPROXIMATION TO COMPLETE SHARING
ACCEPTANCE REGION AND DIVERSITY COST

The near linearity of the exact acceptance constraint in
Fig. 4 leads us to explore a linear approximation. We will
derive such an expression by further approximating the Gauss-
ian constraint. The Gaussian approximate resource allocation
constraint is a N — 1 dimensional surface. Consider a linear
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Liberal Linear Approximation
- *% .
Number Gaussian Approximation

of 2 type
Sources

Number of 1 type

Sources ),

Fig. 6. Liberal linear approximation of resource allocation constraint curve.

approximation defined as the hyperplane passing through the
axis intercepts of the Gaussian constraint. Such a linear
approximation is pictured in Fig. 6 and is equivalent to the
outer bound approximation in [7].

By Theorem 1, the Gaussian acceptance region has a
convex complement in the first quadrant, and therefore such
a linear approximate acceptance region would contain points
not contained in the Gaussian region. For this reason, we
call this linear approximation the liberal linear constraint
approximation. A conservative approximation would be a strict
subset of the exact acceptance region.

An equation for this linear approximation is easily derived.
Each axis intercept z{ of the Gaussian constraint is easily
obtained by setting z; j # ¢ to zero in (14) which yields

o_C 1 po; ? 40“1
“i-z'a(z) (\/”7207‘1
C 1 4
=2 1-z2K(J1+— -1 2
2 - gr(r g ) e
where
K=ot
’ C/J'i.

The liberal linear constraint (LLC) and its normal vector are
thus defined by ‘

Liberal Linear Constraint Approximation:

i _
LLC: 25—1_0 Q1)
€S
VLLC=(_15,_13,...,LO). @2)
Ty Ty TN

The parameter K; for each source is a function of the
burstiness of the source and of the desired quality of service
normalized by the capacity. These parameters will be useful
in future sections. We note for sources with zero variance,
20 = C/p;. As variance is increased, the intercepts decrease.
We discuss sensitivities to system parameters in more detail
in the next section. '

In Fig. 7, we overlay the linear approximation (dashed
line) with the previously generated Gaussian (solid curve) and
exact (dots) constraints for the three examples of the previ-
ous section. The difference between the linear and Gaussian

91

©

Fig. 7. Liberal linear approximation to complete sharing acceptance region
for three examples: (a) Type 1: deterministic, Type 2: on—off; (b) Type 1:
on-off, Type 2: uniform; (c) Type 1: uniform, Type 2: arbitrary.

approximations is barely noticeable in Fig. 7(b) and (c), but
significant in Fig. 7(a). See [7] for an analysis of the accuracy
of this linear approximation.

Note that the Gaussian boundary and linear constraint are
equivalent if the two services are jdentical or if the means
and variances of the services are scaled equally such that one
service can be thought of as an additive collection of the other
service. This implies if the burstiness descriptor o2/p, is the
same for the two services, the Gaussian boundary will be
linear.

Thus, if g1 = oy and 62 = ao? for some o € Ry then
(15) becomes C' = (az1 + 22)p2 + py/03(az1 + x2) and the
required capacity is constant along the linear boundary where
axy1 + T2 is itself a constant. This result holds for the general
N source case as well. ’
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f(z)
A jo-tz
N
’ S = P+ (1-0b
Wa Aa+ (1-2) /b
T A T 71
a 2° =da+ (1-A)b b
Fig. 8. Graphic translation of constrained maximization problem of Theorem
2.

Now, hold the intercept point zJ of the constraint fixed
while increasing 1, and decreasing o2 in proper proportion.
The linear property of the constraint is destroyed and the
Gaussian boundary diverges away from the linear constraint
and bends in toward the origin. A point on the linear constraint
will require a greater capacity than points on the Gaussian
constraint. Denote the maximum of such additional capacity
as ACyax, namely:

AChax = max {C(X) — C| X satisfies 21)}.

AC.x provides a measure of the distance between the
Gaussian and liberal linear constraints as well as a measure
of the cost incurred in multiplexing genuinely different source
types. For this reason we call AC . the diversity cost of the
system.

The diversity cost can be tightly bounded in the 2 service
. type case.

Theorem 2: Ina N = 2 source type system, if z$ and z35
of type 1 and type 2 sources, respectively, require a capacity
(' at service criterion p then

AC.. — PVO3 a5 — ol -ag)®
T AWoE a3+ Vol ad)

Proof: From (15)
C =izl +p4/ot-z8
= p2as + p /03 - 5.

Any point (z, y) on the liberal linear approximation can be
represented as '

(Z‘, y) = /\(Ii, O) + (1 - /\)(Oa $;)

(23)

where A € [0, 1]. The additional  capacity AC required at
(z,y) is

AC =C(z,y) - C
=C(Azg, (1= N)a23) ~ [AC+ (1 - )]

=p {\ﬂ\afwi’ + (1= N)o3z
-

o3z$ + (1 — A)4/o223]}.
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Define a = min (0?x$, 03x3) and b = max (0%x3, 03x3).

%sz—wam—»m-

AC/p is illustrated in Fig. 8 as the vertical distance between
the curve and the line. This distance is maximum at a point
2° = Aa + (1 — A)b, where the derivative of f(z) is equal to
the slope of the line

1 1 _Vb-va
5\/2«_0_ b—a
2 =3(Vb+a).

The corresponding maximum vertical distance is

———AC;max =Vz° - [\/L—H—(z"—q) (___\/i—ﬁ)}

24

—a
Some algebra yields
ACy, = b Vo= Vay?
S VN
_o(JoF w5~ o)
4(\/0% - 25 + /o2 - 29)

or, alternatively

(12§ ~ po3)®
4p(\/ 05 - 15+ \/of - 29)

In the 2 service type system, the diversity cost is an increasing
function of the difference in burstiness of the two source types,
or equivalently of the difference in mean aggregate source
rates. If the two source types have identical burstiness ratios
o2/ 1 = 03/ s, then the cost of multiplexing the two types
together, over that required if the entire capacity were devoted
to either type, is zero. As the difference in burstiness increases
this cost also increases.

The diversity cost has one- additional use. A conservative
linear constraint can be defined by first finding ‘a capacity
C’' < C such that C' + AC/ .. = C and then constructing
the linear constraint in (21) with C replaced by C’. Such a
constraint should be viewed as a non-unique linear constraint
which is completely contained within the actual acceptance
region and is consistent with the usual understanding of
effective bandwidth for the unbuffered case [9]. In this view,
the diversity cost may help us understand some of the potential
inefficiencies of the effective bandwidth concept.

Aomax =

VI. SENSITIVITIES

In this section, we use the Gaussian approximate resource
allocation constraint to gain insight into the variation of the
complete sharing acceptance region with source rate mean,
variance, and quality of service. We present two methods
of reacting to more demanding system parameters. First, we
consider increasing capacity to accommodate the same number
of each service type, then we consider decreasing the number
of each service type undet a constant capacity.
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Fig. 9. z9/(C/us) plotted in terms of the parameter K.

First, consider the marginal capacity required to increase
the rate mean or variance of source type s while maintaining

a mix of services X = (z1, -++, TN)
dc
B =z, (25)
acC pPTs
507 = 2on(X) o

The sensitivity of capacity to source rate mean is simply
equal to the number of that source type in the service mix. The
sensitivity to source rate variance is proportional to the number
of that source type and to quality of service, and inversely
proportional to the standard deviation of the total stream rate
at the given operating point.

Next, consider the marginal capacity required to increase
the quality of service while maintaining the same service mix

aC _0‘ R(X )

OP Brnax o(p)

As the blocking probability decreases, p increases, and
hence, ¢(p) decreases exponentially in p?. As we would

expect, this sensitivity is strongly dependent upon the Gaussian
approximation, and might differ significantly if the tail of the

@27)
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distribution of the rate of the combined data stream has a
different form.

Alternatively, we now consider keeping the capacity of
the system constant, and reacting to more demanding system
parameters by decreasing the acceptance region. The simplest
manner of measuring such a decrease is to measure the change
in the maximum number of each service type in the region,
namely, the axis intercepts, x7 defined in (20). The service
mix could then be changed to any point remaining inside the
corresponding acceptance region.

For a deterministic source, the axis intercept is equal to
C/us. As the burstiness of the source increases, the axis
intercept decreases to some proportion of C/pu,. Similarly,
for any non-deterministic source, an increase in desired ser-
vice quality produces a decrease of the axis intercept. The
size of the decrease is entirely determined by the composite
parameter K, as given by (20). Fig. 9 shows the relationship
of 22 /(C/ ) with respect to the parameter K, = p?02/Cls
in three different ranges of K.

The decrease in the number of a service type that can be
accommodated, in a system of capacity C' with a quality of
service given by p, when the source rate mean increases are
given in (28) '

p*a}  3Cpa,

gw‘; _ % _ ﬂzf;? pd I 28
Hs M Hg 020-3 4C
7 T
B2

The first term is the expected decrease due to the change
in the ratio C'/u,. The remaining, less significant terms reflect
the secondary effect due to an increase in burstiness and hence,
a change in K. This sensitivity is graphed in Fig. 10(a).

Similarly, the decrease in the number of a service type that
can be accommodated in a system of capacity C with a quality
of service given by p when the source rate variance increases is

oy __ O | K42

oK. 2u | JKI VK.

ox°  9x°  p?

30 ~ 9K, Cha @

Variance is increasing with K. For larger variances the quo-
tient in the first line of (29) approaches one and the marginal
number of service types approach zero asymptotically, This
sensitivity is graphed in Fig. 10(b).

Finally, capacity and the maximum number of sources can
be related by the marginal capacity required to increase the
number of sources of type s, x4, in a system operating at an
operating point X and a blocking probability given by p

oc _ . _roe
ar, T 20p(X)"

The first term is simply the extra capacity required to
accommodate the extra mean bitrate. The second term is
proportional to the desired quality of service and to the source
type s rate variance normalized by the standard deviation of
the total stream rate at the given operating point.

(30
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VII. MULTIPLEXING GAINS

In previous sections we have given approximate resource
allocation constraints for multiplexing with complete sharing.
In this section, we will consider similar approximate con-
straints for homogeneous sharing and no sharing multiplexing
disciplines. Our primary copcern is to analyze the gains
achieved by various amounts of multiplexing.

We start with the Gaussian approximation to the complete
sharing acceptance region. From (13), we recall that multiplex-
ing of X = (x4, ---, zn) sources under a complete sharing
discipline at a quality of service given by p requires a capacity
of approximately

. N N
Cos = psTs+py| Y 0200
s=1 s=1

In homogeneous sharing, the channel is partitioned into
sub-channels defined by source type. All sources of the type
s are multiplexed onto sub-channel s, but no multiplexing
is attempted between different source types. We assume the

€}V
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system accommodates a moderate number of each source type,
and we use the same Gaussian approximation. Multiplexing of
z, sources of type s at a quality of service given by p thus
requires a capacity of approximately

CHS,s:wsﬂs+p\/Ug’$5 VSGS

The total capacity required under a homogeneous sharing

(32)

discipline to accommodate X = (1, ---, ) sources at a
quality of service given by p is, therefore, approximately
Cus =Y Cus,s
SES

N N
= Z UsZs + p Z V 0'35735-
s=1 s=1

In the no sharing discipline, there is no sharing of capacity
between sources. Each source of type s € S is allocated a
capacity of C{g ,. For a single source, a Gaussian’ approx-
imation would sﬁrely be erroneous, and therefore we simply
assume that C 5 , is set such that each individual service of
type s will satisfy the loss criterion P B.,. Typically, we
expect the capacity C% 5 ; to be near or equal to the peak
rate of source type s when P By, is small. The total capacity
required under a no sharing discipline to accommodate X =
(z1, -~ , zn) sources at a quality of service given by P B ax
is therefore

(33)

N
CNS = Z O;)VS,sxs'

s=1

(34)

These three multiplexing disciplines are compared in Fig. 11
for the three example source mixes considered in previous
sections. The acceptance regions, as calculated by (31), (32),
(34), are shown in Fig. 11(b) and (c¢); (8), (34) are used in
Fig. 11(a). In each case, the capacity allowed each discipline
is fixed at Ccs = Cgs = Cnys = 100, and the quality of
service is fixed at PB,,, = 1073, For the homogenous and
no sharing disciplines, the boundary is mapped by varying the
partition of the capacity among all possible combinations.

The complete sharing and homogeneous sharing discipline’s
boundary constraints intersect at axis intercepts, since the
two schemes are identical at operating points where only
one source type is accommodated. If there is, at most, one
nondeterministic source type, e.g., Fig. 11(a), then the entire
constraints overlap, since no meaningful sharing is possible. At
operating points accommodating multiple source types, how-
ever, complete sharing results in capability to accommodate a
greater number of each source type, providing there is some
variability in at least onie source rate. The distance between
these two curves indicates the gain achieved by multiplexing
heterogeneous source types. The Gaussian approximate accep-
tance region for complete sharing was shown to have a convex
complement in the first quadrant in Theorem 1. Similarly,
the Gaussian approximate acceptance region for homogeneous
sharing has a similar character.

The no sharing boundary constraint is linear, from (34).
The distance between this constraint. and that correspond-
ing to homogeneous sharing indicates the gain achieved by
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Fig. 11. Resource allocation constraints under (a) complete sharing; (b)
homogeneous sharing and; (c) no sharing disciplines for three examples.
Outside constraint is for complete sharing, middle is for homogeneous sharing,
inside is for no sharing. (a) Type 1: deterministic, Type 2: on—off; (b) Type
1: on—off, Type 2: uniform; (c) Type 1: uniform, Type 2: arbitrary.

2 35

multiplexing homogeneous sources. This is the standard sta-
tistical multiplexing gain commonly addressed in the research
literature.

To provide some insight into the variation of these two
multiplexing gains with system parameters, we now compare
competing multiplexing disciplines on the basis of the capacity
required to accommodate a given combination X of service
types at a given service quality PBp,x. This basis differs
from that used in Fig. 11, where capacity was fixed and the
acceptance regions were compared. This basis also differs
from that used in the discussion of diversity cost in Section
V. Diversity cost was defined for a single discipline, but for
differing operating points. The comparisons in this section will
be for a single operating point, but for differing disciplines.
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Fig. 12. Heterogeneous multiplexing gain for three examples.

An alternative basis might be the capacity required to ac-
commodate a given combination X of service types at a given
loss probability. The relationship between blocking probabil-
ity, PB, and loss probability, PL, was given in (9) in general
and for the Gaussian approximations. Cell loss probability is
a more reasonable measure of quality of service than blocking
probability, but results in a more complex comparison for the
Gaussian case. Equating of blocking probabilities results in
loss probabilities that are proportional to the coefficient of
variation of the total rate of the multiplexed traffic. Since this
coefficient of variation increases with partitioning of capacity,
equating of loss probabilities would result in a greater required
capacity than presented here for muitiplexing disciplines that
incorporate less sharing.

We know from the queuing literature that the magnitude of
the statistical multiplexing gain is dependent on the variability
of the customer process. We now consider the effect of bursti-
ness on the homogeneous and heterogeneous multiplexing
gains in this system. We define the burstiness of a source to
be the source rate variance divided by the source rate mean

B, ==,
Ihs

(35)

We consider increasing the burstiness of all source types
simultaneously, in proportion, by defining a set of burstiness

factors p1, pe, -+, PN
B=p1By=psBs =,--,=pnBn. (36)

Chs — Ceg is the complete sharing gain achieved by sharing
the entire channel between all sources over partitioning the

channel among source types. From (31) and (32)

N
Crs—Ccs =p Z Voiz, —
s=1

N
- (352
s=1 8 ‘

Note that Cys — Ccs is an increasing positive function of
B, for any given service quality, operating point, mean source
rates, and burstiness factors.

In Fig. 12, we illustrate the homogenous sharing gain for
the three example illustrations at a specific operating point as
we vary the burstiness of the sources using (37). Note that if
one of the two source types is deterministic then p; becomes
arbitrarily large causing the multiplexing gain to be zero.
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We define Cys—Chg to be the multiplexing gain in sharing
the channel among all services of the same type compared
with allocating a fixed C%,5 , for each type s service. Note
that Cnyg — Cgs is a sum of multiplexing gains over each
source type s € S

N

CNS - OHS : Z [ONS,sxs - (/J'sxs + I2AY 0§$s)]~ (38)

s=1

An upper bound on each term in the summation can be
found by applying the Chebyshev Inequality
2

o
P(X——u>e)§P(|X—u|>s)<§

2
o
P(X>E+/L)SE—2

PBmax :P[rs,i(t) > CXI’S,s]

< B s '
(CNS,S - Ist)

s
C3 < B, —— . 39
NS,S—<\/— psPBma.x>+ﬂs ( )
By substituting this result into (38), we find that the bound

on Cyg—Cgg also increases with the square root of burstiness
B

N
1 I l
Cns —Cus < \/EZ [ms ( - p\/xs> 2.
5=1 PBmaX ps

In this section, we have seen that multiplexing is more
beneficial when source types are more bursty. This does not
imply that burstiness improves efficiency. Indeed, as source
burstiness increases, all three curves shown in Fig. 3 move
toward the origin (See [7] for results concerning burstiness
versus channel utilization). The distance between each curve,
however, also increases with burstiness. Therefore, if the
system is required to transmit bursty sources, it is more
efficient to share capacity as much as possible. Sharing within
like source types results in a homogeneous sharing gain that
increases with burstiness. This gain is what we traditionally
call statistical multiplexing gain. Similarly, sharing between
heterogeneous source types results in a complete sharing gain
that also increases with burstiness. In both cases, the effect of
multiplexing bursty sources is to reduce the burstiness of the
combined stream and thereby increase the efficiency as given
by channel utilization. Sources with less bitrate variance are
already characterized by higher channel utilizations and the
available multiplexing gain is therefore, diminished.

VIII. SUMMARY

We have studied the variation of multiplexing gains with
source burstiness in integrated service networks such as ATM.
Using a Gaussian approximation for the distribution of bitrate
of multiplexed sources, we considered three definitions of
a virtual path in increasing order of bandwidth sharing: a
single virtual circuit, all virtual circuits with identical paths
and service types, and all virtual circuits with identical paths.
We found that the capacity savings for systems that adopted
greater sharing is proportional to the burstiness of the source
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types. These savings must be weighed against increased system
complexity to accomplish greater sharing. Furthermore, we
also found that the cost of having dissimilar source types
present in the system is increasing with the difference be-
tween their burstinesses, suggesting that when bit streams are
partially grouped, it is most important to first' group similar
source types.

The analysis is limited in several ways. First, the Gaussian
approximation has been shown to be inaccurate in the tail, of
interest when loss rates must be low. It is unknown whether the
nature of the results found here will be affected by alternate tail
behavior, such as that given by Chernoff bounds used by others
to produce more accurate approximations to the acceptance
region. Second, we assumed that all sources have an equal
overflow probability. In ATM, virtual circuits with several
different loss rate requirements might also be multiplexed onto
a single virtual circuit. It would be of interest to similarly
characterize the gains achieved by this additional level of
resource sharing. Finally, the analysis is based on a system
that uses only a small buffer, intended to resolve cell-scale
congestion. It is unclear whether similar results would be
found in a system that uses a large buffer, intended to resolve
burst-scale congestion.

APPENDIX
NON-GAUSSIAN ANALYSIS

We consider in this appendix, the generalization of multi-
plexing gain results for non-Gaussian rate distributions. The
capacity required under complete sharing, previously given in
(31), now depends on the aggregate source rate distribution
for all sources

N '
CCS = Zﬂs *Tg +p($17x2a"'7$N)

s=1

where
Frexylurexy + o1, 22, -, 28 )0 r(x)] = 1 — PBrmax-

Similarly, the capacity required under homogeneous shar-
ing, previously given in (33), now depends on the aggregate
source rate distribution for each source class

N N
CHS :Zu’s 'xs'"'zps(@'s)\/ C"g‘ms

s=1 s=1

where
Ts
P er,j(t) > ps + ps(%5)0s | = PBrmaxVs € S.
j=1 '

In the Gaussian case, p(z1, z2, -+, 2n) = ps(zs) = p =
®~1(1 — PBumax). Under general source rate distributions,
this equality does not follow. Indeed, p(z1, z2, -+ -, zn) and
ps{(xs) vary with the number of sources being multiplexed. As
the number increases, the central limit theorem states that both
quantities converge to p = ®7*(1 — PByax)-
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The additional capacity required under homogeneous shar-
ing over that required under complete sharing is thus given
by

N
CHS - CCS = Z ps(x.s) V ngs

s=1

— P(fl?lg T, o, xN)

N
Z o2z,
s=1

We consider an increase in the burstiness B, = o2/u,
of each source type. Now in the Gaussian case,
p(z1, T2, -+, oN) = ps(xs) = p = 711 — PBpax)
is independent of burstiness. The resulting multiplexing gain
thus follows from (37) either by fixing source means and
varying source variances Or vice versa.

In the general case, however, we must specify how to
change the source rate distribution to effect an increase in
the source burstiness. We classify such modifications on the
basis of whether they effect p(z1, z2, - -+, zn) and ps(z,).
Modifications that do not affect these parameters produce a
multiplexing gain that varies with the square root of burstiness

UsTs
Ps

N
Crs = Cos =VB | Y ps(s)
s=1

N
UsZs
—,0(1'1,332,"',:1!]\1) g .
s=1

Ds

This class includes changes of scale and translations. Define
H as a scaling of G: Fg(t) = Fg(t/a). Suppose pg =
[Fg'(1 — PB) — ugl/oc, then

Fg'(l - PB) - pg
on

_ olue +peog) — oG _
(6701

PH =

PG

however, the burstiness has changed

2 2.2
o a0,
B H _ G

LH o
Similarly, define H as a translation of G: Fg(t) = Fg(t —
3), then

= Oth.

Fg'(l—PB) - pg
o
_ B+ (pe+pcog) = (B+pc)
o

PH =

= PG

Again, however, the burstiness has changed

B},{za—%{:—-——aév .
v Btpe

Therefore changes of scale and translations can be used
to increase source burstiness, and such changes will produce
multiplexing gains that are proportional to the square root of
burstiness. '

Modifications to the shape of a source rate distribution, how-
ever, modify p(z1, 2, -+ , zn) and p,(z,) and thus, produce
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multiplexing gains that may have a different dependence on
burstiness.
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