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The Effect of the Precipitate Size Distribution on the Aging Curve of Order 
Hardening Alloys 

J. Glazer and J. W. Morris, Jr. 

Depar.tment of Materials" Sc:i;ence and Mineral Engineering, 
University .. o£.ca.lifornia,'.and Center for Advanced Materials, 
Lawrence'Berk~ley, Laboratory, Berkeley, California 94720 

Abstract 

The effect of the shape of the precipitate size distribution on the age-hardening 
behavior of alloys strengthened by ordered precipitates is investigated using a modified 
version of the Hanson and Morris strong line model for the critical resolved shear stress. 
This model accounts for the influence of dislocation self-interactions on the effective 
strength of obstacles to dislocation glide. The model predicts that the largest precipitates are 
responsible for the peak in strength, but that the value of the peak strength is determined 
principally by the average precipitate radius at peak strength. The peak strength for a given 
volume frac'tion is maximized if all of the precipitates are the same size. These qualitative 
results are used to interpret existing data on the effect of the precipitate size distribution. 
The contributions of obstacles of differing strengths are included through a quadratic sum 
rule. Binary aluminum-lithium alloys are used-as a model system with which to examine 
the quantitative accuracy of the model. 

1. Introduction 

The age-hardening behavior of a material strengthened by a precipitates of varying 
size has been modeled by Melander and Persson [1-3]. The effect of the shape of the 
precipitate size distribution on the critical resolved shear stress at a fixed average precipitate 
size has also been considered [4]. However, the consequences of the precipitate size 
distribution shape for aging behavior have not been investigated in the context of a model 
suitable for treating strong obstacles to dislocation glide. Since the precipitate size 
distribution about an average diameter <d> can be varied by heat treatment [4,5], the effect 
of the distribution on aging behavior is of practical importance. This paper will examine 
the influence of the shape of the precipitate size distribution on the aging response of 
materials hardened by strong she arable precipitates. The role of the largest precipitates in 
the distribution on behavior near peak strength is specifically discussed. 

The critical resolved shear stress is modeled in this investigation using the extension 
of the Hanson and Morris "strong line" model [6] developed by Glazer and Morris [7] for 
materials hardened by a random array of strong ordered precipitates. The problem is 
approached by representing the precipitate size distribution as a distribution of obstacles to 
dislocation glide of varying strengths. Any quantitative strengthening theory must be able 
to account for the effects of such an obstacle strength distribution since there will always be 
a distribution of obstacle strengths in any real material (even monodisperse spherical 
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particles are cut at various cross sections [8]). The effect of the distribution of obstacle 
strengths, not dealt with by Glazer and Morris [7], is included through the quadratic sum 
rule derived by Hanson and Morris [6]. Binary aluminum-lithium alloys are used as a 
model system with which to check the quantitative accuracy of the model. 

2. The Critical Resolved Shear Stress of a Random Array of Distinct 
Obstacles 

The development of the critical resolved shear stress model used in this work is 
described in detail by Hanson and Morris [6], Glazer and Morris [7], and Glazer [9] and is 
summarized only briefly below. Other relevant work in this area is summarized in a recent 
review by Ardell [8]. The solution considers the critical resolved shear stress of a 
dislocation gliding athermally in a random array of point obstacles. The dislocation, 
modeled as a flexible and extensible string of constant line tension, bows out in a circular 
arc between the obstacles. Poisson's ratio is taken to be zero. The properties of the point 
obstacles are adjusted so that the interaction between the mathematical point and dislocation 
is identical to the interaction between the physical obstacle and dislocation. The strength of 
the obstacle corresponds to the peak in the force-distance curve for the physical dislocation­
precipitate interaction, and is given by.8 = F/2T = cos('P/2) where 'P is the angle included 
by the bowing arms of the dislocation when it bypasses the precipitate ("the breaking 
angie"). The critical resolved shear stress is operationally defmed by the weakest point in 
the strongest line that the dislocation encounters in the array. If all of the obstacles have 
strength .8, then the dimensionless critical resolved shear stress t* is given by 

t* = 0.9.83/2 (1) 

where ---------'1''&* -'t-lsb/~ctT------------ (2) 

and t is the critical resolved shear stress, Is is the mean square obstacle spacing, b is the -
Burgers vector in the matrix and T is the dislocation line tension [6]. Various solutions for 
the critical resolved shear stress of a random array of obstacles account differently for the 
statistical randomness of the array, resulting in a range of values that bracket the constant 
0.9 in equation (1) [e.g. 10]. The analytic version of the Hanson and Morris solution 
given in equation (1) is restricted to values of.8 less than 0.7. The total volume fraction of 
precipitates, f, is included through Is in equation (2), which can be expressed as 

For strong shearable obstacles, the maximum effective obstacle strength is the 
strength at which Orowan looping is preferred over shear: 

(3) 

When the strength of the obstacle is due to its ordered structure, the force required to 
bypass the obstacle is proportional to its cross-sectional diameter. Consequently, Floop is 
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proportional to a critical diameter dloop for which the forces required to loop or shear the 
obstacle are identical, and equation (3) may be rewritten 

(4a) 

The strengths of smaller obstacles scale with the ratio of their diameter to the looping 
diameter: 

(4b) 

The value of Be is unity if the effects of dislocation self-interactions are ignored However, 
it has been shown that the Orowan stress is strongly affected by self-interactions in 
materials that are elastically isotropic [11] and anisotropic [12]. The interaction between the 
arms of the dislocation as it bows out around an obstacle pulls them together. The net 
effect of this distortion of the dislocation shape is that the force required to make the arms 
antiparallel (the condition for Orowan looping) is lower than it would be if the dislocation 
bowed in a circular arc. Conversely, if the elliptically bowed arc that defines the actual 
looping criterion is approximated by the circular arc assumed in most solutions for the 
critical resolved shear stress, including the Hanson and Morris solution, then looping 
occurs before the arms of the dislocation are antiparallel. Bacon, et al. [11] suggest that 
when the ratio of particle diameter to particle spacing is small this effect can be incorporated 
into solutions that assume that the dislocation bows in a circular arc. The Hanson and 
Morris solution may be modified [7] by making the definitions: 

and T = (Gb2/41tK) In (lslb) (5) 

where K is I-v for screw dislocations and one (1) for edge dislocations. Physically, the 
dependence of the line tension on Is occurs because self-interaction forces playa smaller 
role when the obstacles are well separated. It is important to note that equation (4b) 
implies that the measured looping radius is not a constant, but is instead dependent on the 
dislocation line tension, which is in turn (equation (5» dependent on the precipitate 
spacing. 

When the precipitates are ordered, matrix dislocations couple into superdislocations 
that are total dislocations in the precipitate crystal structure. For materials strengthened by 
L12 precipitates (e.g. binary aluminum-lithium alloys and nickel-aluminum superalloys), 
the dislocations are paired. For a simple pileup of two uncoupled dislocations, the stress 
on the lead dislocation is twice the applied stress, but in ordered alloys, the stress is further 
increased by the antiphase boundary area between the coupled dislocations [8]. However, 
since the critical resolved shear stress in the Hanson and Morris solution is fixed by the 
strongest line in the array, the configuration in which the applied stress is least magnified 
(i.e. by a factor of two) detennines the critical resolved shear stress (see ref. [7]). Equation 
(2) should be modified accordingly by multiplying the right side of the equation by two. 
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The problem of determining the strength of a random array of point obstacles has 
been addressed both theoretically [6] and by computer simulation [13]. Under the 
assumptions mentioned above, Hanson and Morris [6] show that for an array of obstacles 
of different strengths 

(6) 

where, in analogy to equation (2), 

(7) 

where the 'ti are the critical resolved shear stresses for identical arrays composed only of 
obstacles of type i, the Xi are the volume fractions of these obstacles, and 't is the critical 
resolved shear stress of the actual array. 

It should be noted that the critical resolved shear stress, 't, calculated here represents 
only the obstacle-controlled portion of the strength of the material and should properly be 
denoted L\'t. Other contributions to the total strength come from the frictional stress 
provided by the matrix and the grain size. 

3. Aging behavior of materials strengthened by a distribution of 
precipitates . 

A model that considers the effect of a precipitate size distribution on aging behavior 
must generate an obstacle distribution that corresponds to a given precipitate size 
distribution and specify how that distribution evolves with time. 

The obstacle distribution can be easily generated for a distribution of spherical 
precipitates. (The problem is more difficult for plate-like precipitates.) The precipitates 
may be cut at any cross-section; consequently, each spherical precipitate contributes a series 
of obstacles with dimensionless diameters d* = dIb 

where ex runs from 0 to d* /2. The obstacle size distribution generated if all the precipitates 
are the same size (i.e. when the precipitate size distribution can be described as a 0-
function) is shown in Figure 1. For a more general precipitate size distribution, the 
obstacle size distribution is the sum of those for each precipitate size. The obstacles are 
present in fractions that correspond to the fraction of precipitates in each size range. An 
obstacle size distribution for a Gaussian precipitate size distribution is shown in Figure 2. 
Since the maximum effective obstacle diameter is d*loop' all obstacles with diameters larger 
than d*loop are included in the large spike at d*loop' 

The assumptions derived above make it possible to calculate the critical resolved 
shear stress for a given obstacle distribution using equations (1) - (7). However, as 
discussed in Section 2, the values of Is and T that are used in equation (2) to 

v 
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redimensionalize 't* will change during aging, so the variation of't* is qualitatively different 
from the variation of 'to Therefore it is convenient to define a second dimensionless 
strength't** based on the initial values of the constants that is proportional to the critical 
resolved shear stress throughout aging 

't** = 'tls,ob/2T o. (8) 

The strengthening contribution of precipitates of type i is then given by 

(9) 

where Bi is the strength of an obstacle of type i, defmed in equation (4), and Is and T are 
defined for the entire array at the same time as 'ti **. Equation (9) may be rewritten so that 
it depends only on the obstacle strengths and the initial constants Is,O and TO. The full 
equation which is quadratically summed using equation (6) and the fraction of precipitates 
with each diameter di and then redimensionalized using equation (8) is 

where the index a runs from 0 to d*/2 and ~ct cannot exceed dloop *, the maximum 
effective obstacle diameter. The additional terms in equation (10) are from the expansion 
of Bi. The factor of (2/~ *)1/2 is included so that the number of obstacles contributed by the 
sum is unity (the fraction is fixed by Xi in the quadratic sum). The values of Is,o and Is for a 
precipitate size distribution may be determined analogously to the single precipitate size 
case. The dependence on volume fraction appears through the dependence on Is. 

Predicting the shape of the aging curve requires generating the precipitate size 
distribution as a function of time from a single measured (or defined) precipitate size 
distribution. The discussion of aging behavior below makes three assumptions about the 
evolution of the precipitate size distribution: 1) that the precipitate size distribution coarsens 
self-similarly with respect to the ratios dI<d>; 2) that the total volume fraction of 
precipitates is constant in the region of the aging curve under study; and 3) that coarsening 
obeys the Lifshitz-Slyozov-Wagner (LSW) rule, 

where do is a constant and k is the LSW constant, so that the variation in strength with 
precipitate size can be related to strength as a function of aging time. The coarsening rule 
may be restated in'dimensionless form in terms of a dimensionless time t* = ktldo3 as 

for t* » 1. The validity of these assumptions for binary aluminum-lithium alloys will be 
considered in the next section. The assumption of constant volume fraction is easily 
dropped by varying Is at each point along the aging curve, but is included for simplicity. 
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A quantitative comparison illustrating the magnitude of the effect of precipitate size 
distribution width on aging behavior for three Gaussian distributions is shown in figure 3. 
Peak strength for the o-function distribution is approximately ten percent higher than for the 
wide Gaussian distribution, but it occurs later. These results may be qualitatively explained 
by considering the functional dependence of strength (equation (10» on precipitate size 
and aging time. If all of the obstacles have the same strength, these relationships are 
greatly simplified. Before the looping diameter is reached the critical resolved shear stress 
is proportional to d1/2 or t1l6; when the precipitates are greater than the looping diameter in 
size, the critical resolved shear stress is proportional to d-1 or rl/3 (the effective strength 
remains constant, but Is continues to increase). The obstacle size distribution weakens 
these dependences and eliminates the sharp cusp in the dependence of the critical resolved 
shear stress on obstacle diameter that occurs at the looping diameter. However, it is still 
true that the critical resolved shear stress depends more strongly on precipitate size after 
looping than before. Consequently, if a distribution of precipitate sizes exists, peak 
strength will occur almost immediately after the largest of the precipitates reaches the 
looping diameter, not when the average-sized precipitate reaches the looping diameter. By 
contrast the amount of strengthening provided by the precipitates is most closely related to 
the average precipitate diameter. As a result, the maximum achievable strength increases as 
the distribution narrows. As illustrated schematically in figure 4, when the largest 
precipitates reach the looping diameter, the average precipitate radius for a narrow 
distribution is greater than the average radius of a broad distribution of the same volume 
fraction. The strength of the distribution is correspondingly higher. Thus, the critical 
resolved shear stress at peak strength is maximized if all the precipitates are the same size. 

4. Sample calculation for a binary aluminum-lithium alloy 

Binary aluminum-lithium alloys are an excellent model system with which to test the 
usefulness of the solution to the critical resolved shear stress model described above 
because these alloys nearly satisfy the idealizations of the model. The physical metallurgy 
of this system has been extensively studied [14,15]. A comparison of assumptions of the 
solution with experimental observations of this system precedes the critical resolved shear 
stress calculations. A more detailed discussion of the experimental data may be found in 
Glazer [9]. 

Precipitate: The alloys are hardened by the face-centered cubic based ordered L12 
precipitate 0' [16,17]. This precipitate is the only obstacle that contributes importantly to 
the strength of the alloy. The precipitates are spherical [18] and are neither observed nor 
expected to change shape as they coarsen [19,20]. The misfit of these precipitates is 
extremely small (- -0.1 %) (see for example, [21,22]), so the strengthening contribution is 
almost entirely due to the ordered structure of the precipitate and is a function of the sheared 
cross-sectional diameter only. The looping diameter has been measured and lies between 
40 and 60 nm [7]. As discussed in Section 2, the looping radius depends on the mean 
square obstacle spacing when the sample was deformed (see ref. [7] for a more extensive 
discussion). The value of 50 nm reported by Furukawa, et al. [23] for a mean square 
obstacle of 275 nm was selected for the computations described below. The Burgers 
vector in aluminum is approximately 0.29 nm. 

v 
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Precipitate coarsening: The precipitates coarsen according to LSW even at very small sizes 
(e.g. [18,24]). Precipitate size distributions have been measured and found to coarsen in a 
self-similar fashion [5,25]. The interfacial energy of the precipitates in the aluminum 
matrix is small (e.g. [26]), so the volume fraction is essentially constant during coarsening 
for reasonable initial volume fraction and precipitate size [9]. Evidently, the assumptions 
about the evolution of the precipitate size distribution in Section 3 are satisfied. 

Dislocations: As discussed by Glazer and Morris [7], screw dislocations are observed to 
control deformation in aluminum-lithium alloys. The dislocations are observed to move as 
superdislocation pairs. The effect of this pairing is that the actual stress at the obstacle is 
twice the applied stress (see Section 2). In the overaged condition, when Orowan looping 
is the dominant deformation mechanism, the dislocations are not coupled [22,27]; 
consequently, the applied stress is no longer multiplied and the strength of the material is 
comparatively increased. Presumably, at and slightly beyond peak strength, when both 
shearing and looping are important mechanisms, the dislocations are weakly coupled. 

Direct comparison of the theoretically predicted and experimentally measured strengthening 
increment during the aging process is possible for the precipitate size distribution 
reproduced in figure 5 from Gu, et al [5] for AI-2.7Li-0.3Mn aged at 200°C. The Mn in 
this alloy is precipitated in the form of Al-Mn dispersoids and does not affect the aging 
behavior. Theoretical aging curves were calculated using a looping diameter of 50 nm and a 
corresponding value of the mean square obstacle spacing of 275 nm. The calculations use a 
shear modulus of 30 GPa. ~e experimental and theoretical aging curves are shown in 
figure 6. The theoretical coarsening rate has been fixed using the experimentally 
determined rate constant [5]. Since the quenched alloy undoubtedly contains some atom 
clusters, the theoretical aging curve has been shifted to slightly shorter aging times to obtain 
the best fit. The strength increment for both yield strength curves is the increase over the 
lowest measured strength. To convert theoretical critical resolved shear stress values to 
yield strengths a Taylor factor of 3 has been assumed. Figure 6 shows that the theoretical 
and experimental aging curves are in excellent agreement up to peak strength. Beyond peak 
strength the model is no longer valid since it does not account for the uncoupling of paired 
dislocations after Orowan looping begins. As described above, this uncoupling would 
cause the strength to drop off more gradually after the peak than it would if the dislocations 
remained coupled. The difference between the experimental and theoretical curves in the 
figure in this regime is therefore as expected. 

It should be noted that this plot differs slightly from the one in references 19 and 28 
both in the choice of looping diameter and in the proper incorporation of the fact that much 
of the lithium remains in solution. Many more experimental measurements of the looping 
diameter are now available, and a looping diameter of 50 nm rather than 60 nm now seems 
appropriate. 
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s. Discussion 

Previous studies of aging behavior 

Melander and coworkers have previously calculated aging behavior using measured 
precipitate size distributions for various alloys including some hardened by ordered 
precipitates using a slightly improved version of the Hanson and Morris solution [2]. The 
solution described here is similar; it differs from Melander and Persson's work chiefly in 
the handling of the dislocation line tension and the related topic of dislocation self­
interactions. Melander and Persson use the deWit-Koehler form of the line tension given 
by Ardell [8], but with an adjustable parameter to describe the amount of edge or screw 
character of the dislocation. This fitting parameter is varied along the aging curve as the 
strength of the precipitates increases. The fitting parameter, the value of Be, and the 
measure of length in the logarithmic term (here lslb) are found iteratively from the average 
precipitate strength and segment length along the strong line. This iterative approach seems 
unnecessarily cumbersome since the fundamental shortcoming of the Hanson and Morris 
solution for this application, the assumption that the dislocation bows in a circular arc and 
does not interact with itself, is still not addressed. The approach used here is simpler and 
eliminates the fitting parameter from formulation of the line tension. 

Advantage of uniforrt:l precipitate size distribution. 

As discussed previously, the model of order hardening described here predicts that 
for a fixed volume fraction a narrow precipitate size distribution will age to a higher peak 
strength than a broad precipitate size distribution. The critical resolved shear stress is 
maximized if the distribution is a 8-function. The effect of the width of the precipitate size 
distribution with an average diameter <d> on the critical resolved shear stress (as opposed 
to the maximum strength achievable by coarsening a precipitate size distribution) has been 
investigated previously by computer simulation [29,30], theoretical analysis [7,19,30] and 
experimental studies [4]. The formalism of this study permits the apparently different 
results of these authors to be reconciled. 

Foreman and Makin [29] considered the effect of distribution width for two types 
of obstacle distributions in their computer simulations: square breaking angle spectra 
(biased toward strong obstacles) and square obstacle strength spectra. Their results 
indicate that widening the distribution symmetrically strengthens the array (because 
stronger obstacles are included). When the distribution is widened by adding weak 
obstacles, the critical resolved shear stress for a given volume fraction of obstacles 
decreases. Altintas [30] considered the same cases analytically using the Hanson and 
Morris strong line solution [6] and was able to closely reproduce the computer simulation 
results. 

Munjal and Ardell [4] attempted to measure experimentally the effect of the width of 
the precipitate size distribution on the critical resolved shear stress in a Ni-AI alloy aged to 
near peak strength. They found that a 30% increase in the width of the precipitate size 
distribution corrected to constant volume fraction resulted in an 8% decrease in the 
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strengthening increment near peak strength due to precipitation. Because this difference is 
much larger than that predicted by Foreman and Makin for the same case, Munjal and 
Ardell suggest that the finite size of the obstacles may play an important role. However, 
there are two reasons for believing that these results can be viewed as consistent with point 
obstacle models: firstly, as they realized, the method of comparison selected by Munjal and 
Ardell is biased toward strong obstacles, and secondly, the comparison between precipitate 
size distributions is made at fued average precipitate radius without regard for the size of 
the precipitates relative to the looping diameter. To begin with, Munjal and Ardell compare 
a breaking angle histogram computed from the measured distribution of precipitate radii 
(rather than from the corresponding distribution of obstacles) with the square breaking 
angle distribution of the same standard deviation studied by Foreman and Makin. The 
histograms generated by Munjal and Ardell are both narrower and more biased toward 
strong obstacles than the actual obstacle strength histogram. Both of these errors lessen the 
size of the distribution width effect predicted by Foreman and Makin, so their results are 
not necessarily inconsistent Secondly, the critical resolved shear stresses are compared at 
a fixed average precipitate diameter that corresponds to peak strength for the narrower 
precipitate size distribution. Since widening the distribution causes peak strength to occur 
at a smaller average precipitate diameter, the distribution is overaged at this point. 
Consequently, the observed decrease in strength is greater than the difference between the 
peak strengths associated with the distributions. IfMunjal and Ardell had chosen to fix the 
average radius at the peak strength of the wider distribution, they might have concluded that 
widening the distribution increased the critical resolved shear stress. 

Obstacle strength swnming rules 

The applicability of the quadratic sum to the problem of summing the contributions 
of obstacles of varying strength to the critical resolved shear stress was asserted earlier on 
theoretical grounds, despite the debate in the literature [8,9]. However, there is 
considerable justification for the use of the quadratic sum, the basis of which is outlined 
below. All of the formulae take the form 

There are only three values of q that have been theoretically justified for obstacle 
strengthening: two (2) (the quadratic sum given in equation (1» for distinct point obstacles 
by Hanson and Morris [6], three-halves (3/2) which was predicted by Labusch [31] for 
diffuse obstacles, and one (1) for regular arrays of obstacles [32]. More recently, a 
number of researchers have found it necessarily to invoke other, variable, values of q to fit 
their experimental data with theory [33-35]. While summing theories with values of q less 
than 2 may be valid in certain regimes, it is disturbing that for a combination of weak and 
strong obstacles 

lim 
x.->o 

dtldxs --->00 q < 2 

---> 0 q ~ 2 
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where Xs is the fraction of strong obstacles [8,30]. 

The Hanson and Morris derivation of the quadratic sum restricts the dimensionless 
obstacle strength.B to values less than 0.7. Good agreement with the quadratic sum is not 
expected for larger values of .B. The key question is whether obstacles with high strengths 
(.B » 0.7) actually occur. As mentioned earlier, dislocation self-interactions limit the 
effective value of.B in a circular bow-out model to -0.7 [7]. Furthermore, Foreman and 
Makin's simulations [29], which also assume that the dislocation bows in a circular arc, 
indicate that when obstacles described by very large values of.B dominate the array, long 
fingers of the dislocation move forward along paths of easy movement, eventually 
encircling groups of obstacles. This type of motion seems unphysical and does not provide 
a suitable test of summing rules, yet the two cases considered by Foreman and Makin that 
are often cited as evidence against the quadratic sum rule include obstacles of this sort (.B > 
0.9). For values of.B less than 0.7, the quadratic sum rule seems adequate to describe the 
existing computer simulation data [29,30]. Altintas examined a number of cases by 
computer simulation using obstacles with strength .B < 0.1 [30]. In all of the cases he 
considered, the quadratic sum is an adequate description of the observed behavior; 
unfortunately, in this strength regime the difference between a quadratic sum and a linear 
one (q=l) is not that great, even when the obstacles have widely differing strengths. 
Efforts to study summing behavior in actual systems are hampered by questions about 
other aspects of the. relevant strengthening theory that cast doubt on the accuracy of 
predictions of the strength of the individual obstacles [34,36]. 

Finally, the dimensionless form of the quadratic sum rule given in equation (6) is 
often quoted in the literature [8,37] as providing a theoretical justification for the summing 
rule 

(11) 

first proposed by Koppenaal and Kuhlman-Wilsdorf [38]. The empirical justification for 
equation (11) is that it relates the critical resolved shear stress to the average free segment 
length along the dislocation line. However, it should be noted the quadratic sum rule for 
the dimensionless critical resolved shear stress only implies equation (11) if the 
dimension ali zing factors for the critical resolved shear stress - Is, b and T - are constant 
for all the 'tie There is no theoretical basis for equation (11) without these restrictions. In 
many of the efforts to verify this summing rule experimentally by isolating obstacle types 
[for example, 33,35], this requirement is not met. The values of Is and T must be 
determined for each experimental case and used to compute values of 'ti * which can then be 
compared with the predictions of the dimensionless quadratic sum rule given in equation 
(6). A different calculation for the summing exponent q wi11lead to a different (non­
quadratic) dependence of the strength on the value of q. However, these values of q 
cannot be generalized beyond the specific cases for which they experimentally determined. 
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6. Conclusion 

The aging behavior of a material strengthened by ordered precipitates is sensitive to 
the precipitate size distribution primarily near peak strength. The onset of peak strength 
occurs when the size of largest precipitates in the distribution reaches the looping diameter. 
The value of peak strength is principally determined by the average precipitate diameter at 
that point Thus, the strength is maximized if all of the precipitates are the same size. This 
qualitative approach was used to reconcile apparently conflicting results of previous authors 
regarding the effect of precipitate size distributions on the critical resolved shear stress. 
The quantitative accuracy of the model comes from the use of the Hanson and Morris 
strong line solution as modified to account for dislocation self-interactions. This modified 
solution sets the maximum value of the dimensionless obstacle strength B at 0.7. In this 
strength regime, the quadratic sum rule seems to describe obstacle strength summing 
behavior adequately. The assumptions of the model are relatively accurate for binary 
aluminum-lithium alloys. There is good agreement between the predictions of the model 
and experimental data on a binary aluminum-lithium alloy. 
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14 



(b) 

1.2 

C\I 1.0 "",:.:',. 
0 ,,",111"" ,.... .,., ",." 

>< " --,-
0.8 ,,- ""' . . 

~ -
~ 0.6 

Gaussian 
~ 

Narrow Gaussian C\I 0.4 - & Function 

0.2 
0 1 2 3 4 5 

Log (t* ) 
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Figure 6 Comparison of experimentally measured and predicted aging 
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curve is taken from ref. 5. The theoretical curve is shifted to slightly 
shorter aging times to account for atom clustering. The predicted aging 
curve for a {i-function precipitate size distribution with the same average 
precipitate diameter and volume fraction is shown for comparison. 
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