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Abstract	
This	 article	 presents	 a	 general	 statistical	 approach	 suitable	 for	 the	
analysis	of	time-resolved	(time-series)	cross-cultural	data.	The	goal	
is	 to	 test	 theories	 about	 the	 evolutionary	 processes	 that	 generate	
cultural	change.	This	approach	allows	us	to	investigate	the	effects	of	
predictor	 variables	 (proxying	 for	 theory-suggested	 mechanisms),	
while	 controlling	 for	 spatial	 diffusion	 and	 autocorrelations	 due	 to	
shared	 cultural	 history	 (known	 as	 Galton’s	 Problem).	 It	 also	 Cits	
autoregressive	 terms	 to	 account	 for	 serial	 correlations	 in	 the	 data	
and	tests	 for	nonlinear	effects.	 I	 illustrate	 these	 ideas	and	methods	
with	an	analysis	of	processes	that	may	inCluence	the	evolution	of	one	
component	 of	 social	 complexity,	 information	 systems,	 using	 the	
Seshat:	Global	History	Databank.		

General	Introduction	
Ten	 thousand	 years	 ago	 all	 humans	 lived	 in	 egalitarian	 small-scale	 societies	 of	
some	hundreds,	or	perhaps	a	few	thousands	of	individuals.	Today	we	live	in	huge	
societies	with	millions	of	members	 (the	average	population	of	 a	member	of	 the	
United	 Nations	 is	 30	 million),	 with	 extensive	 inequalities,	 intricate	 division	 of	
labor,	 and	 elaborate	 government	 structures.	 Understanding	 how	 and	 why	 this	
“major	evolutionary	transition”	(Maynard	Smith	and	Szathmáry	1995)	occurred	is	
of	huge	intellectual	and	practical	importance	(Turchin	2016).		
	 Recent	 analysis	 of	 social	 complexity 	 data	 in	 the	 Seshat	 Databank	 revealed	1

that	 characteristics,	 such	 as	 social	 scale,	 economy,	 features	 of	 governance,	 and	
information	systems,	show	strong	evolutionary	relationships	with	each	other	and	
that	 complexity	 of	 a	 society	 across	 different	world	 regions	 can	 be	meaningfully	
measured	using	a	 single	principal	 component	of	variation	 (Turchin	et	al.	2018).	
Although	 different	 world	 regions	 began	 the	 transition	 to	 complex	 societies	 at	
different	 times,	 and	 the	 pace	 of	 the	 evolution	 of	 social	 complexity	 was	 highly	
variable,	 our	 results	 suggest	 that	 key	 aspects	 of	 social	 organization	 are	

	I	explain	“social	complexity”	later	in	the	article.1
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functionally	related	and	tend	to	coevolve	in	predictable	ways.	The	next	step,	thus,	
is	to	understand	general	principles	that	guided	these	evolutionary	trajectories.	
	 We	don’t	lack	explanatory	theories	(e.g.,	Fukuyama	2011;	Johnson	and	Earle	
2000;	 Trigger	 2003;	 Turchin	 2016);	 the	 main	 issue	 is	 how	 we	 test	 them	
empirically.	 Because	 it	 is	 not	 feasible	 (or	 even	 ethical)	 to	 subject	 large-scale	
societies	 to	 experiments,	 the	 main	 avenue	 of	 empirical	 testing	 must	 rely	 on	
historical	 and	 cross-cultural	 analyses.	 Such	 approaches	 have	 already	 yielded	
many	 insights	 into	 the	 evolution	 of	 human	 societies.	 As	 an	 example,	 one	 of	 the	
most	 fruitful	 data	 compilations	 in	 anthropology	 has	 been	 the	 Standard	 Cross-
Cultural	 Sample	 (SCCS),	 which	 codes	 the	 characteristics	 of	 186	 well-described	
ethnographic	 societies	 (Murdock	and	White	1969).	Every	year,	between	70	and	
80	 articles	 are	 published	 that	 use	 data	 in	 the	 SCCS	 to	 test	 a	 variety	 of	
anthropological	theories	(Turchin	et	al.	2012).	Overall,	more	than	1200	analyses	
of	the	SCCS	data	were	published	since	its	introduction	in	1969.		
	 There	are,	however,	serious	 limitations	of	 the	SCCS	and	similar	repositories	
of	 cultural	 information	 that	 restrict	 its	 application	 in	 testing	 theories	 about	 the	
evolution	 of	 complex	 societies.	 One	 problem	 is	 that	 the	 SCCS	 focuses	 on	 small-
scale	societies.	As	a	result,	large-scale	societies	are	seriously	undersampled.	More	
important,	the	SCCS	is	a	synchronic	or	static	database:	it	codes	the	characteristics	
of	any	particular	society	at	a	single	point	in	time.	Because	the	SCCS	does	not	tell	
us	 how	 societies	 change	 with	 time,	 its	 data	 are	 less	 suitable	 to	 testing	
evolutionary	 theories.	 After	 all,	 sociocultural	 evolution	 is	 all	 about	 change.	 A	
similar	 problem	 afflicts	 another	 popular,	 and	 related,	 anthropological	 database,	
the	Ethnographic	Atlas	(Murdock	1967).		
	 As	I	discuss	in	the	next	section,	the	temporal	dimension	greatly	enhances	the	
ability	 of	 statistical	 analysis	 to	 make	 inferences	 about	 causal	 mechanisms	 in	
cultural	 evolution.	 Investigators	 have	 circumvented	 the	 limitation	 of	 classical	
ethnographic	 databases,	 which	 lack	 such	 a	 temporal	 dimension,	 in	 a	 variety	 of	
ways.	 For	 example,	 one	 fruitful	 avenue	 has	 been	 to	 use	 the	 methods	 of	
phylogenetic	analysis	developed	in	evolutionary	biology	(Currie	and	Mace	2012;	
Mace	 and	 Holden	 2005;	 Watts	 et	 al.	 2015).	 In	 the	 “deep	 roots”	 literature	
(Spolaore	 and	Wacziarg	 2013),	 which	 attempts	 to	 discern	 long-term	 processes	
affecting	economic	development,	 researchers	supplement	easily	obtainable	data	
on	modern	 societies	 (e.g.,	 the	 Gross	 Domestic	 Product	 per	 capita,	 GDPpc)	with	
historical	“snapshots”	taken	at	irregular	time	intervals.	For	example,	Comin	et	al.	
(2010)	assembled	a	dataset	on	technology	adoption	in	1000	BCE,	0	CE,	and	1500	
CE	for	the	predecessors	of	today’s	nation	states	and	regressed	GDPpc	in	2002	on	
these	 measures	 of	 technological	 sophistication	 in	 the	 past.	 Peregrine’s	 (2003)	
Atlas	of	Cultural	Evolution	 and	 the	 related	Encyclopedia	of	Prehistory	 (Peregrine	
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and	 Ember	 2001)	 more	 systematically	 captures	 the	 time	 dimension,	 but	 at	 a	
relatively	coarse	scale	with	a	time	step	of	one	thousand	years.	Most	recently,	the	
Seshat	 project	 has	 started	 publishing	 historical	 and	 archaeological	 data	 on	 a	
global	 sample	 of	 past	 societies	 spanning	 the	 time	period	 between	 the	Neolithic	
and	Industrial	Revolutions	(Turchin	et	al.	2018).	These	data	are	resolved	at	100-
year	 intervals,	 enabling	 us	 to	 fit	 dynamic	 regression	 models	 and,	 thus,	 greatly	
increasing	 our	 statistical	 power	 to	 empirically	 test	 predictions	 from	 rival	
theories.	

An	Approach	to	the	Analysis	of	Time-Resolved	Cross-Cultural	Data	

A	huge	advantage	of	dynamic	(time-series)	data	is	that	it	enhances	our	ability	to	
investigate	 the	 evolutionary	 processes	 that	 generate	 cultural	 change.	When	we	
observe	a	high	degree	of	correlation	between	two	variables	in	a	synchronic	data	
set,	it	is	not	possible	to	determine	which	of	the	factors	is	the	cause,	and	which	is	
the	effect.	This	problem	is	sometimes	referred	to	as	the	problem	of	“endogeneity”	
or	 simultaneous	 causality.	Recent	developments	 in	 statistical	methods	of	 causal	
inference	 (Pearl	 2009)	 hold	 the	 promise	 of	 circumventing	 this	 problem	 by	
analyzing	 simultaneously	 a	 large	 number	 of	 variables	 representing	 potential	
causes	(for	an	example	in	cross-cultural	analysis,	see	Eff	and	Dow	2009).	
	 Analyzing	time-series	data,	on	the	other	hand,	enables	us	to	capitalize	on	the	
general	observation	that	causes	tend	to	precede	effects	in	time	(Suppes	1970).	In	
econometric	 literature	 this	 principle	 is	 known	 as	 Granger	 causality	 (Granger	
1969).	There	are	certain	limitations	to	this	idea	(a	crowing	rooster	does	not	cause	
the	 sun	 to	 rise),	 and	 I	deal	with	 such	caveats	 in	 the	next	 section.	However,	 it	 is	
clear	 that	 time-resolved	 data,	 at	 the	 very	 least,	 provide	 us	 with	 a	 more	
informative	data	set	to	test	dynamical	theories.	
	 Consider	the	following	dynamic	model:	

!!!! = ! !! ,!! ,!! 	

!!!! = ! !! ,!! ,!! 	

Here	 Xt	 and	 Yt	 are	 two	 variables	 that	 could	 be	 dynamically	 inter-related.	 For	
example,	 Xt	 could	 be	 population	 density	 at	 time	 t,	 and	 Yt	 is	 warfare	 intensity,	
measured	 by	 death	 rates	 resulting	 from	war	 (Turchin	 and	Korotayev	 2006).	Ut	
summarizes	 the	 influences	 of	 exogenous	 variables	 (also	 known	 as	 dynamical	
noise),	which	affect	the	change	of	Xt	and	Yt,	but	are	not	themselves	affected	by	the	
main	variables.	The	generative	 functions	 f	 and	g	 specify	how	 future	values	of	X	
and	Y	 (at	 time	 t	 +	 1)	 are	 determined	 by	 joint	 effects	 of	 all	 variables	 at	 present	
(time	 t).	 If	 we	 know	 the	 generative	 functions,	 initial	 conditions,	 and	 how	 Ut	
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changes	with	time	(for	example,	we	can	model	it	as	a	stochastic	process),	then	we	
can	iterate	this	model	forward	in	time	to	study	what	dynamics	it	predicts.	
	 In	data	analysis	we	have	an	inverse	problem:	we	know	the	trajectories	of	Xt	
and	 Yt,	 but	 wish	 to	 make	 some	 inferences	 about	 the	 generative	 functions.	 In	
particular,	we	wish	 to	know	whether	Xt	 and	Yt	 affect	 the	 time	evolution	of	each	
other.	 For	 simplicity,	 I	 will	 assume	 that	 we	 will	 use	 the	 following	 linear	
regression	model	to	answer	this	question:	

!!!! = ! + !"! + !!! + !!	
!!!! = ! + !"! + ℎ!! + !!	

where	a,	b,	…	h	are	regression	coefficients	and	Ut	is	the	error	term.	However,	it	is	
not	necessary	to	make	the	 linearity	assumption	(see	Turchin	2003)	and	 later	 in	
this	article	I	will	be	fitting	nonlinear	dynamic	models	to	data.		
	 There	are	four	possible	outcomes	that	such	analysis	could	yield.	

• If	neither	c	nor	e	are	significantly	different	from	zero,	we	conclude	that	Xt	
and	Yt	evolve	independently	of	each	other.	

• If	c	is	significantly	different	from	zero,	but	e	is	not,	we	have	the	situation	
of	one-directional	causation:	Y	affects	the	evolution	of	X,	but	is	not	itself	
affected	by	X.		

• If	 e	 is	 significantly	 different	 from	 zero,	 but	 c	 is	 not,	we	 again	 have	 the	
situation	of	one-directional	causation,	but	now	it	is	X	that	is	a	cause	for	Y.		

• Finally,	 if	 both	 regression	 coefficients	 are	 significantly	 different	 from	
zero,	 then	X	 and	Y	 co-evolve	 as	 a	 dynamic	 complex	 (this	 is	 sometimes	
known	 as	 “circular	 causation,”	 which	 is	 different	 from	 the	 problem	 of	
simultaneous	causality).	

A	 famous	 example	 of	 dynamics	 characterized	 by	 circular	 causation	 is	 the	
interaction	between	predators	and	prey,	which	is	known	to	have	the	capacity	to	
generate	 population	 cycles	 (Lotka	 1925;	 Volterra	 1926).	 Another	 example,	
involving	the	interaction	between	population	dynamics	and	warfare,	is	discussed	
by	Turchin	 and	Korotayev	 (2006).	 In	 that	 article	we	also	demonstrate	 that	 in	 a	
dynamical	system	with	circular	causation	it	is	possible	to	observe	no	correlation	
between	 Xt	 and	 Yt,	 when	 these	 variables	 are	 measured	 at	 the	 same	 time.	 This	
paradoxical	result	(X	affects	Y’s	rate	of	change	and	Y	affects	X’s	rate	of	change,	but	
X	and	Y	are	not	correlated)	is	an	important	reason	to	fit	dynamic	models	to	time-
series	data	(or,	if	such	data	are	unavailable,	build	dynamic	databases).	
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Complicating	Factors	

Time-series	 data,	 thus,	 offer	 us	 a	 possibility	 of	 resolving	 causal	 relationships	
between	variables.	However,	in	real-life	applications	there	are	many	factors	that	
could	defeat	our	ability	to	detect	cause-effect	arrows.	One	fundamental	difficulty	
is	that	although	our	analysis	might	implicate	X	as	a	causal	factor	for	Y,	 in	reality	
the	true	cause	could	be	Z,	with	which	X	is	closely	correlated.	This	is	known	as	the	
“hidden	 variable”	 problem	 or	 omitted	 variable	 bias.	 Failure	 to	 address	 this	
problem	can	result	in	spurious	results.	As	an	example,	in	his	analysis	of	SCCS	data	
Nolan	 (2003)	 found	 a	 positive	 relationship	 between	 high	 population	 densities	
and	incidence	of	warfare.	Yet	a	reanalysis	of	the	same	data	by	Eff	and	Routon	(Eff	
and	Routon	2012)	indicated	a	reverse	relationship:	high	population	densities	lead	
to	 less	 war.	 Eff	 and	 Routon	 show	 that	 the	 previous	 result	 was	 due	 to	 omitted	
variable	bias	(omitting	variables	from	the	analysis	that	are	highly	correlated	with	
high	 population	 densities,	 such	 as	 metal-working	 and	 writing	 systems,	 biasing	
their	results).	
	 A	somewhat	less	obvious	problem	is	an	“uninformative	dataset,”	which	could	
result	when	the	observed	trajectories	sample	a	small	subset	of	the	phase	space	in	
which	 dynamics	 could	 potentially	 evolve.	 For	 example,	 if	 the	 relationship	
between	 Y	 and	 X’s	 rate	 of	 change	 is	 ∩-shaped,	 and	 our	 dataset	 contains	
observations	only	for	the	middle	range	of	Ys,	where	the	relationship	is	nearly	flat,	
our	analysis	will	incorrectly	conclude	that	Y	does	not	influence	change	in	X.	Such	
potential	 complications	 need	 to	 be	 considered	 during	 the	 design	 stage	 of	
database	 building.	 Generally	 speaking,	 one	 should	 aim	 to	 include	 as	 much	
variability	 in	 as	 many	 different	 variables	 as	 possible.	 An	 additional	 reason	 for	
uninformative	datasets	are	noise,	especially	measurement	errors	(on	which	more	
below).		
	 Another	 well-known	 complication	 in	 the	 analysis	 of	 cross-cultural	 data	 is	
Galton’s	 problem	 (Eff	 and	 Dow	 2009;	 White	 et	 al.	 2011).	 A	 fundamental	
assumption	 of	 regression	 analysis	 is	 that	 analytical	 units	 are	 statistically	
independent	 of	 each	 other.	 However,	 historical	 societies	 are	 not	 independent:	
they	 interact	 with	 each	 other	 by	 trade,	 conquest,	 and	 the	 exchange	 of	 cultural	
information.	 As	 a	 result,	 two	different	 societies	may	possess	 the	 same	 trait	 not	
because	it	evolved	independently	in	each,	but	because	of	borrowing,	conquest,	or	
inheritance	 from	a	common	ancestor.	Our	statistical	methods	need	 to	 take	such	
processes	into	account.		
	 Finally,	 our	 knowledge	 about	 past	 societies	 is	 usually	 imprecise	 and	 often	
incomplete.	 Furthermore,	 even	 professional	 academic	 historians	 often	 disagree	
about	certain	aspects	of	 the	societies	 they	study.	This	means	 that	our	statistical	
methods	must	be	able	 to	deal	with	missing	data,	uncertainty,	and	disagreement	
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between	 the	 experts.	 Currently	 the	 preferred	 method	 for	 dealing	 with	 these	
issues	uses	the	technique	of	Multiple	Imputation	(Eff	and	Dow	2009).		

The	Evolution	of	Information	Systems	

This	 article	 will	 illustrate	 these	 ideas	 and	 methods	 of	 analysis	 by	 focusing	 on	
processes	 that	 may	 influence	 the	 evolution	 of	 one	 component	 of	 social	
complexity,	 information	 systems,	 using	 the	 Seshat:	 Global	 History	 Databank	
(Turchin	 et	 al.	 2015).	 There	 is	 a	 long	 tradition	 in	 anthropology	 that	 identifies	
writing,	 literacy,	 and	 specialized	 knowledge	 as	 some	 of	 the	 key	 features	 that	
define	civilization	(Childe	1950;	Goody	1986;	Trigger	2003;	van	der	Leeuw	1981).	
Trigger	(2003)	identified	three	different	functions	that	early	information	systems	
served:	 state	 propaganda	 (commemorating	 kings	 and	 their	 deeds),	
administration,	 and	 religion	 (including	 divination	 and	 sacred	 texts).	 Earlier	
Goody	(1986)	explored	a	list	of	four	functions	of	writing:	religion,	economy,	state	
administration,	and	law.	
	 Because	the	main	purpose	of	this	article	is	not	a	thorough	test	of	evolutionary	
hypotheses	 explaining	 the	 rise	 and	 development	 of	 information	 systems,	 but	
presenting	 the	 dynamic	 regression	 methodology	 (with	 information	 systems	
serving	 as	 an	 illustration),	 in	 the	 following	 I	 will	 focus	 on	 a	 limited	 set	 of	
hypotheses.	 The	 main	 theory	 that	 I	 will	 investigate	 is	 that	 the	 evolution	 of	
information	 systems	 was	 driven	 by	 administrative	 needs,	 and	 I	 will	 use	 the	
Seshat	 measure	 of	 specialized	 governance	 as	 a	 proxy	 for	 this	 explanation.	 A	
subsidiary	 hypothesis	 suggests	 that	 writing	 would	 be	 particularly	 useful	 in	
territorially	extensive	polities,	which	required	an	efficient	and	accurate	delivery	
of	information	between	distant	regional	capitals	and	the	central	government.	This	
hypothesis	will	be	proxied	by	 the	extent	of	polity	 territory	as	a	covariate	 in	 the	
regressions.	 Finally,	 I	 will	 investigate	 the	 importance	 of	 economic	 functions	 of	
writing	by	using	 the	Seshat	variable	Money,	which	reflects	 the	sophistication	of	
monetary	instruments.			
	 I	will	also	include	in	the	analysis	all	other	Seshat	variables	that	reflect	various	
characteristics	of	social	complexity.	Including	as	many	covariates	as	are	available	
helps	 to	 reduce	 the	 omitted	 variable	 bias,	 as	 was	 explained	 in	 the	 previous	
section.	 Thus,	 the	 plan	 is	 to	 fit	 dynamic	 regression	 models	 with	 Info	 (the	
sophistication	 of	 information	 systems)	 as	 the	 response	 variable	 and	 other	
components	of	social	complexity	as	predictor	variables.	I	will	use	the	dataset	that	
was	recently	published	by	Turchin	et	al.	(2018).		
	 The	rest	of	the	article	is	organized	as	follows.	I	begin	with	a	brief	introduction	
to	the	goals,	structure,	and	methodology	employed	by	the	Seshat	project.	Next,	 I	
describe	the	methodology,	based	on	Multiple	Imputation,	for	dealing	with	missing	



Turchin:	Fitting	Dynamic	Regression	Models.	Cliodynamics	9:1	(2018)	

	
31	

	

data,	uncertainty,	 and	expert	disagreement.	My	goal	 is	 to	gather	all	 information	
needed	to	understand	the	Seshat	data	and	analyses	in	this	methodology	article;	to	
do	 this	 I	 borrow	 some	 text	 from	 the	 Supplementary	 Online	 Information	 of	
(Turchin	 et	 al.	 2018).	 Finally,	 I	 fit	 a	 series	 of	 dynamic	 regression	 models,	
including	 nonlinear	 versions,	 to	 the	 data	 with	 the	 goal	 of	 detecting	 the	 causal	
factors	influencing	the	evolution	of	information	systems.	

A	Quick	Introduction	to	Seshat:	Global	History	Databank	

Founded	in	2011,	Seshat:	Global	History	Databank	systematically	collects	what	is	
currently	 known	 about	 the	 social	 and	 political	 organization	 of	 human	 societies	
and	how	they	have	evolved	over	time	(François	et	al.	2016;	Turchin	et	al.	2015).	
The	 overall	 goal	 of	 Seshat	 is	 to	 enable	 researchers	 to	 conduct	 comparative	
analyses	 of	 human	 societies	 and	 rigorously	 test	 different	 hypotheses	 about	 the	
social	and	cultural	evolution	of	societies	across	the	globe,	spanning	long	periods	
of	human	history.		

Temporal	and	Geographic	Scope	

Currently	Seshat	focuses	on	the	time	period	between	the	Neolithic	and	Industrial	
Revolutions.	The	spatial	reach	is	global,	and	eventually	we	plan	to	include	in	the	
Databank	information	on	all	past	societies,	up	to	the	present,	for	which	historical	
or	archaeological	data	are	available.	However,	reaching	this	goal	will	take	time.	As	
a	 first	 step,	 we	 collected	 data	 on	 a	 sample	 of	 30	 locations	 across	 the	 globe,	
stratified	by	the	world	region	and	the	antiquity	of	complex	societies	(Turchin	et	
al.	2018).	We	are	now	 in	 the	process	of	expanding	 the	global	 coverage,	 and	 the	
results	below	are	based	on	32	locations.	For	each	of	the	32	global	points	we	start	
at	 a	 period	 just	 before	 the	 Industrial	 Revolution	 (typically,	 1800	 or	 1900	 CE	
depending	on	 the	 location)	 and	 go	back	 in	 time	 to	 the	Neolithic	 (subject	 to	 the	
limitation	of	data).	
	 Our	 unit	 of	 analysis	 is	 a	polity,	 an	 independent	 political	 unit	 that	 ranges	 in	
scale	from	villages	(independent	local	communities)	through	simple	and	complex	
chiefdoms	 to	 states	 and	 empires.	 For	 each	 polity	 we	 code	 variables	 on	 social	
complexity,	warfare,	 religion	and	rituals,	 agriculture	and	resources,	 institutions,	
well-being,	 and	 the	 production	 of	 public	 goods.	 Overall,	 the	 current	 codebook	
includes	over	1500	variables.	These	variables	are	coded	 for	any	past	polity	 that	
occupied	 one	 of	 our	 30	 world	 locations	 between	 the	 Neolithic	 and	 Industrial	
Revolutions.	Currently	there	are	over	400	such	polities	in	Seshat.	As	of	December	
2017,	 the	 Databank	 contains	 >200,000	 coded	 values	 (“Seshat	 records”,	 see	
below).	 In	 this	article,	however,	 I	will	 focus	only	on	Social	Complexity	variables	
(Turchin	et	al.	2017).	
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Figure	1.	 (a)	 Locations	 of	Natural	Geographic	Areas	 (NGAs)	 that	 sample	 global	
variation	in	cultural	evolution.	For	the	current	list	of	NGAs	see	our	Methods	page.	
(b)	 Frequency	 distribution	 of	 the	 starting	 dates	 for	 data	 sequences	 in	 Seshat	
Databank.	 For	 “late	 complexity”	 NGAs	 data	 series	 are	 short,	 often	 starting	 only	
when	 European	 explorers	 reached	 the	 area	 in	 the	 eighteenth	 or	 nineteenth	
century.	 For	 “early	 complexity”	 locations	 data	 sequences	 extend	 back	 in	 time	
between	4,000	and	10,000	years	ago.	“Intermediate	complexity”	cases	are	usually	
located	between	these	two	extremes.	

a)	

b)	
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In	 order	 to	 assess	 whether	 different	 societies	 show	 commonalities	 in	 the	 way	
they	have	evolved	we	developed	a	geo-temporal,	stratified	sampling	scheme	that	
aimed	(1)	to	 include	as	much	variation	among	the	sampled	societies	as	possible	
in	terms	of	social	organization	and	(2)	to	ensure	representation	of	different	parts	
of	 the	 world.	 This	 issue	 is	 challenging	 as	 societies	 can	 expand	 or	 contract	 in	
geographical	 space,	 appear	 or	 disappear	 in	 the	 historical	 and	 archaeological	
records,	and	show	varying	degrees	of	continuity	with	earlier	or	later	societies.		
	 To	overcome	these	 issues	and	ensure	that	we	collected	data	 in	a	systematic	
manner	 we	 divided	 the	 world	 into	 ten	major	 regions	 (Figure	 1a).	Within	 each	
region	we	selected	three	natural	geographic	areas	(NGAs),	our	basic	geographical	
sampling	units.	Each	NGA	is	defined	spatially	by	a	boundary	drawn	on	the	world	
map	that	encloses	an	area	delimited	by	naturally	occurring	geographical	features	
(for	example,	river	basins,	coastal	plains,	valleys,	and	islands).	The	extent	of	 the	
NGAs	 does	 not	 change	 over	 time,	 and	NGAs	 thus	 act	 as	 our	 fixed	 points	which	
determine	which	societies	we	collected	data	 for.	The	data	 themselves,	however,	
are	collected	not	for	an	NGA,	but	for	the	entire	society,	or	polity,	that	happened	to	
occupy	 the	NGA	at	a	given	 time.	Each	NGA,	 then,	 serves	as	geographic	 “anchor”	
from	which	we	generate	a	list	of	all	the	polities	that	occupied	it	over	the	course	of	
history.	 Such	 a	 sampling	 approach	 allows	 us	 to	 be	 consistent	 and	 methodical	
about	 designating	 societies	 for	 which	 we	 gather	 data.	 It	 also	 allows	 us	 to	
construct	 spatially	 anchored	 time-series,	 as	 long	 as	 it	 is	 understood	 that	 the	
spatial	extent	of	sampled	societies	 fluctuates	with	time	(as	polities	rise,	expand,	
go	into	decline,	and	collapse).			
	 Within	each	world	region	we	looked	for	NGAs	that	would	allow	us	to	cover	as	
wide	a	 range	of	 forms	of	 social	organization	as	possible.	 In	effect	we	wanted	 to	
ensure	that	we	captured	information	about	the	kinds	of	societies	that	researchers	
have	previously	discussed	in	relation	to	social	complexity	(“states”,	“chiefdoms”,	
“stratified	societies”,	“empires”,	etc.)	without	using	typological	definitions	of	such	
societies	 or	 employing	 a	 strong,	 limiting	 definition	 about	 what	 features	 such	
societies	should	have.	We	also	wanted	to	make	sure	that	we	captured	information	
about	 societies	 that	 are	 not	 traditionally	 thought	 of	 as	 complex	 (“small	 scale	
societies”,	“egalitarian	tribes”,	“acephalous	societies”).		
	 Accordingly,	 within	 each	 world	 region	 one	 NGA	was	 selected	 that	 saw	 the	
earliest	developments	of	a	centralized,	stratified	society.	We	also	chose	a	second	
NGA	 that	was	 the	opposite;	 ideally,	 it	was	 free	of	 centralized	 societies	until	 the	
colonial	 period.	 Finally,	 the	 third	 NGA	 was	 intermediate	 in	 terms	 of	 the	 time	
when	political	centralization	emerged	within	the	world	region.	Because	different	
world	 regions	 acquired	 centralized	 societies	 at	 different	 times	 there	 can	 be	
substantial	 variation	 across	 “early	 complexity”	 NGAs	 both	 in	 the	 time	 at	which	
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our	 measures	 of	 social	 complexity	 start	 increasing	 and	 the	 degree	 of	 social	
complexity	 that	 is	 eventually	 reached	 at	 the	 end	 of	 our	 sampling	 period.	 For	
example,	Susiana,	the	early	complexity	NGA	in	Southwest	Asia	has	a	much	longer	
history	 of	 large	 societies	 than	 Hawaii,	 the	 early	 complexity	 NGA	 in	 the	 Pacific	
region.	The	distribution	of	starting	dates	for	all	NGAs	currently	in	Seshat	is	shown	
in	Figure	1b.	
	 More	 recently	 (in	 2017)	 we	 began	 expanding	 data	 coverage	 beyond	 the	
original	 sample	 of	 30	 NGAs.	 Currently,	 we	 have	 good	 data	 on	 two	 additional	
NGAs,	and	I	will	include	these	data	in	the	analyses	reported	below.		

Data	Collection	

To	 populate	 the	 Databank,	 for	 each	 NGA	 we	 consult	 the	 literature	 and	
chronologically	 list	all	polities	 that	were	 located	 in	 the	NGA,	or	encompassed	 it.	
We	chose	a	temporal	sampling	rate	of	one	hundred	years,	and	we	only	included	
polities	 that	 span	a	century	mark	 (for	example,	300	CE,	400	CE,	500	CE,	and	so	
on)	 while	 omitting	 any	 polities	 of	 short	 duration	 that	 only	 inhabited	 an	 NGA	
between	these	points.	One	century	is	short	enough	to	capture	meaningful	changes	
in	 the	 social	 complexity	 of	 historical	 societies,	 but	 not	 too	 short	 to	 lead	 to	
oversampled	 data	 (“oversampling”	 results	 when	 the	 succeeding	 point	 in	 time	
contains	 the	 same	 information	 as	 the	 preceding	 one,	 thus	 not	 adding	 to	 the	
overall	information	content	of	the	data	set).		
	 For	 those	periods	when	 the	NGA	 is	divided	up	among	a	multitude	of	 small-
scale	polities	(e.g.,	 independent	villages,	or	small	chiefdoms)	 it	 is	not	 feasible	 to	
code	each	individual	polity.	In	such	instances	we	use	the	concept	of	“quasi-polity,”	
which	is	defined	as	a	geographic	area	with	some	degree	of	cultural	homogeneity	
that	 is	 distinct	 from	 surrounding	 areas	 and	 approximately	 corresponds	 to	 an	
ethnological	 “culture”	 (Murdock	 1967;	 Murdock	 and	 White	 1969)	 or	 an	
archaeological	 sub-tradition	 (Peregrine	 2003).	 We	 then	 collect	 data	 for	 each	
quasi-polity	as	a	whole.	This	way	we	can	integrate	over	(often	patchy)	data	from	
different	sites	and	different	polities	within	the	NGA	to	estimate	what	a	“generic”	
polity	 was	 like.	 Such	 an	 approach	 is	 especially	 useful	 for	 societies	 known	 only	
archaeologically,	for	which	we	usually	don’t	know	polity	boundaries.		
	 It	 is	 important	to	point	out	that	our	use	of	polities	and	quasi-polities	is	best	
understood	 as	 a	means	 of	 sampling	 the	 vast	 literature	 on	past	 human	 societies	
rather	 than	 trying	 to	 impose	 a	 rigid	 framework	 on	 the	 human	 past.	 Our	 data	
coding	 procedures	 enable	 us	 to	 capture	 changes	 in	 a	 particular	 variable	within	
the	 lifetime	of	 a	polity	 and	also	allow	us	 to	 capture	variation	within	a	polity	or	
quasi-polity	where	there	is	such	evidence.	We	also	allow	a	gradual	emergence	or	
disappearance	 of	 a	 polity,	 as	 when	 an	 empire	 slowly	 disintegrates	 and	 its	



Turchin:	Fitting	Dynamic	Regression	Models.	Cliodynamics	9:1	(2018)	

	
35	

	

constituent	 pieces	 gain	 an	 increasing	 degree	 of	 independence	 from	 the	 old	
imperial	 master.	 Finally,	 we	 are	 able	 to	 flexibly	 incorporate	 multiple	 lines	 of	
evidence	and	uncertainty	as	we	outline	below.	
	 When	 gathering	 data	 into	 Seshat,	 our	 approach	 is	 to	 avoid	 forcing	
information	 about	 a	 past	 society	 into	 an	 arbitrary	 scale	 (e.g.,	 “rate	 the	 social	
complexity	 of	 this	 society	 on	 a	 scale	 from	 0	 to	 10”).	 Instead,	 and	 prior	 to	
collecting	the	data,	we	run	a	workshop	that	develops	a	conceptual	scheme	for	the	
particular	aspect	that	we	aim	to	capture	in	Seshat.	Generally	speaking,	we	aim	to	
use	either	a	quantitative	variable	(e.g.,	an	estimate	of	the	population	of	the	coded	
polity)	or	break	up	complex	variables	 into	multiple	simple	variables	that	can	be	
coded	 in	 a	 binary	 fashion	 (absent/present).	 The	 initial	 coding	 scheme	 is	 then	
tested	 by	 Seshat	 research	 assistants	 (RAs)	 applying	 it	 to	 several	 test	 cases,	 in	
consultation	 with	 experts	 (archaeologists	 or	 historians	 who	 study	 the	 coded	
polities).	The	coding	scheme	is	then	refined	based	on	the	suggestions	from	both	
experts	and	RAs	and	is	applied	to	the	whole	sample.		
	 Once	 a	 coding	 scheme	 is	 defined,	 data	 collection	 occurs	 in	 several	 phases.	
First,	RAs	search	published	articles	and	books	on	a	particular	polity	(with	advice	
from	a	regional	or	polity	expert	on	what	sources	are	likely	to	be	most	useful)	in	
order	 to	 find	 information	 about	 each	 variable	 and	 enter	 it	 into	 the	 databank.	
Second,	 RAs	 compile	 lists	 of	 questions	 on	 values	 that	 cannot	 be	 coded	
unambiguously,	or	on	which	information	in	the	published	sources	is	lacking,	and	
seek	help	from	the	experts	on	the	polity.	In	the	final	phase	we	ask	experts	to	go	
over	 the	 data	 to	 check	 coding	 decisions	 made	 by	 RAs	 and	 help	 us	 fill	 any	
remaining	 gaps.	 Experts	 also	 indicate	 when	 the	 value	 should	 be	 coded	 as	
“unknown”	 (RAs	may	 use	 the	 code	 “suspected	 unknown,”	 but	 only	 experts	 can	
definitively	state	that	something	is	indeed	“unknown”).	
	 When	 two	 or	 more	 experts	 disagree	 about	 the	 value	 or	 there	 is	 ongoing	
debate	 in	 the	 literature,	 all	 choices	are	entered	as	alternatives.	For	quantitative	
variables	whose	values	are	known	only	approximately,	 coders	are	 instructed	 to	
enter	 a	 likely	 range	 [min,	 max]	 that	 roughly	 corresponds	 to	 a	 90	 percent	
confidence	 interval	 (i.e.,	 omitting	 possible,	 but	 unlikely	 or	 unrepresentative	
values).		
	 We	refer	to	a	coded	value	of	a	particular	variable	for	a	particular	polity	as	a	
“Seshat	record.”	Seshat	records	have	complex	internal	structure.	First,	there	is	the	
value	 of	 the	 coded	 variable.	 For	 a	 numerical	 variable	 the	 value	 can	 be	 either	 a	
point	 estimate,	 or	 a	 range	 approximating	 the	 90-percent	 confidence	 interval.	
Binary	variables	can	take	the	following	values:	present,	absent,	inferred	present,	
inferred	 absent,	 and	 unknown	 (a	 numerical	 variable	 can	 also	 be	 coded	 as	
unknown).	“Inferred”	presence	or	absence	indicates	some	degree	of	uncertainty:	
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when	 direct	 evidence	 of	 presence	 (for	 example)	 is	 lacking,	 but	 the	 expert	 can	
confidently	 infer	 it.	For	example,	 if	 iron	smelting	has	been	attested	both	 for	 the	
period	preceding	the	one	that	is	coded,	and	for	the	subsequent	period,	we	code	it	
as	 “inferred	 present”	 even	 though	 there	 is	 no	 direct	 evidence	 for	 it	 (assuming	
there	are	no	indications	that	this	technology	was	lost	and	then	regained).		
	 Binary	 variables	 can	 also	 have	 temporal	 uncertainty	 associated	with	 them.	
For	 example,	 if	 we	 know	 that	 iron	 smelting	 appeared	 in	 a	 particular	 polity	 at	
some	 point	 between	 300	 and	 600	 CE,	 we	 code	 period	 previous	 to	 300	 CE	 as	
absent,	the	period	following	600	CE	as	present,	and	the	period	between	300	and	
600	 CE	 as	 effectively	 “either	 absent,	 or	 present”	 (this	 is	 different	 from	
“unknown”).			
	 The	 second	 important	 part	 of	 a	 Seshat	 record	 is	 a	 narrative	 paragraph	
explaining	 why	 this	 particular	 variable	 was	 coded	 in	 this	 particular	 way.	
Typically,	this	narrative	is	first	written	by	an	RA,	who	may	quote	the	relevant	text	
from	a	reference	(a	book	or	an	article)	of	from	a	personal	communication	by	an	
expert.	The	narrative	is	then	checked	and	edited	by	experts.	Subsequent	experts	
can	add	to	it	and	disagree	with	previously	recorded	estimates.		
	 The	 third	 part	 of	 a	 Seshat	 record	 is	 the	 references	 to	 publications	 or	 other	
databases.	Reference	can	also	be	a	“personal	communication”	 from	an	expert	or	
from	several	experts	participating	in	a	Seshat	workshop.		

Aggregation	of	Social	Complexity	Data	into	“Complexity	Components”	

As	 the	 preceding	 discussion	 shows,	 during	 the	 data	 collection	 stage	 complex	
variables	 are	 broken	 down	 into	 simpler	 components	 and	 data	 are	 gathered	 for	
each	 component.	 Before	 analysis	we	 assemble	 simpler	 (often,	 binary)	 variables	
into	more	quantitative	measures	 that	are	more	suitable	 for	statistical	analysis.	 I	
illustrate	 the	process	with	 Information	Complexity	 (Info	 for	 short;	variables	are	
italicized	for	readability).	
	 Info	 is	based	on	15	binary	Seshat	variables.	The	 first	 four	provide	 the	basis	
for	measuring	the	sophistication	of	the	writing	system	(following	the	description	
of	the	variables	in	the	Seshat	codebook):	

Mnemonic	devices	such	as	tallies	
Non-written	 records,	 which	 are	more	 extensive	 than	mnemonics,	 e.g.,	
quipu	
Script	 as	 indicated	 at	 least	 by	 fragmentary	 inscriptions	 (note	 that	 if	
written	records	are	present,	then	so	is	script)	
Written	 records:	 these	 are	 more	 than	 short	 and	 fragmentary	
inscriptions	(such	as	those	found	on	tombs	or	runic	stones).	There	must	
be	 at	 least	 several	 sentences	 strung	 together.	 For	 example,	 royal	
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proclamations	from	Mesopotamia	and	Egypt,	which	can	be	quite	lengthy,	
qualify	as	written	records	

These	binary	measures	are	combined	to	produce	a	writing	scale	from	0	to	4:	
0	=	no	evidence	of	writing	for	the	coded	polity	
1	=	only	evidence	of	mnemonic	devices	is	present	
2	=	non-written	records	are	present,	but	no	script		
3	=	evidence	for	script	in	fragmentary	inscriptions,	but	no	lengthy	texts	
4	=	written	records	are	present	

Presence	or	absence	of	a	 “less	sophisticated”	writing	variable	doesn’t	affect	 this	
scale	(so	if	“script”	is	present,	it	does	not	matter	wither	non-written	records	are	
present	or	absent).	
	 The	 next	 two	 Seshat	 variables	 code	 for	 whether	 the	 writing	 system	 is	
phonetic	(e.g.,	alphabetic)	or	non-phonetic	(e.g.,	 ideographic).	They	are	not	used	
in	the	scale	for	Info,	as	they	only	code	for	the	type	of	script.	
	 The	next	nine	binary	variables	code	for	presence	or	absence	of	various	kinds	
of	texts:	

• Lists,	tables,	and	classifications,	as	used	in	trade		
• Calendar	
• Sacred	Texts,	which	originate	from	supernatural	agents	(deities),	or	are	

directly	inspired	by	them	
• Religious	 literature,	 which	 differs	 from	 the	 sacred	 texts	 in	 that	 it	

provides	 commentary	 on	 the	 sacred	 texts,	 or	 advice	 on	 how	 to	 live	 a	
virtuous	life	

• Practical	 literature:	 for	 example,	 manuals	 on	 agriculture,	 military,	
cooking,	etc.	

• History	
• Philosophy	
• Scientific	 literature	 including	 mathematics,	 natural	 sciences,	 social	

sciences	
• Fiction	including	poetry	(but	must	be	written	down)		

The	variable	texts,	which	scales	from	0	to	9,	sums	the	number	of	securely	attested	
types	 of	 texts	 (that	 is,	 coded	 as	 “present”).	 The	 idea	 here	 is	 that	 the	 more	
sophisticated	a	society	is	informationally,	the	more	different	types	of	texts	it	will	
have	in	circulation.	For	this	reason,	we	only	count	those	types	of	texts	that	were	
definitely	 in	 circulation	 and	 left	 clear	 evidence	 of	 their	 use	 (in	 other	 words,	
“absent”,	 “unknown”,	 or	 even	 “inferred	 present”	 do	 not	 constitute	 such	 strong	
evidence	of	presence).	Finally,	to	construct	Info	we	simply	sum	writing	and	texts	
scores.	Thus,	Info	can	vary	between	0	and	13.		



Turchin:	Fitting	Dynamic	Regression	Models.	Cliodynamics	9:1	(2018)	

	
38	

	

	 It	is	important	to	note	that	the	above	scheme	is	only	one	of	the	possible	ways	
to	 come	 up	 with	 a	 quantitative	 measure	 of	 information	 sophistication.	 Other	
analysts	 are	 free	 to	 combine	 and	 recombine	 Seshat	 variables	 in	 different	ways.	
One	of	our	goals,	when	designing	the	conceptual	approach	used	in	Seshat,	was	to	
separate	 data	 coding	 and	 data	 analysis	 steps	 as	 much	 as	 possible,	 providing	
analysts	with	freedom	to	define	entities	of	interest	that	are	most	suitable	to	their	
analysis	goals.		
	 Furthermore,	 the	 current	 set	 of	 variables	 is	 optimized	 to	 capture	 the	
evolution	of	information	complexity	in	early	agricultural	societies,	and	Info	tends	
to	max	out	by	the	time	we	get	to	the	Middle	Ages,	or	even	earlier	for	some	world	
regions	(for	example,	Roman	Empire	during	the	Principate	scores	the	maximum	
on	 the	 Info	 scale).	 Additional	 variables	 are	 needed	 to	 adequately	 score	 the	
informational	complexity	of	modern	societies.	These	could	be	an	elaboration	on	
the	 current	 scheme	 (e.g.,	 splitting	 “history”	 into	 “world	 history”,	 “military	
history”,	“biography”,	“economic	history”,	“intellectual	history”,	etc.),	or	adding	an	
entirely	 different	 set	 (for	 example,	 capturing	 the	 sophistication	 of	 information	
technology	due	to	computers).		
	 Whereas	 Info	 is	 the	 response	 (“dependent”)	 variable	 in	 the	 analysis,	 the	
predictor	(“independent”)	variables	represent	other	aspects	of	social	complexity,	
or	“Complexity	Characteristics”	as	defined	in	Turchin	et	al.	(2018:	see	Figure	2a).	
The	first	set	of	predictor	variables	relates	to	the	size	of	polities:	polity	population	
(PolPop),	extent	of	polity	territory	(PolTerr),	and	“capital”	population	(the	size	of	
the	largest	urban	center,	CapPop).	These	three	variables	serve	as	proxies	for	the	
social	 scale,	 and	 are	 log-transformed	 (base	 10)	 prior	 to	 analysis.	 Log-
transformation	 is	 an	 appropriate	 way	 to	 treat	 these	 quantitative	 variables	
because	our	main	focus	is	on	the	order	of	magnitude.	In	other	words,	a	transition	
in	polity	population	from	1000	to	10,000	(1	on	the	logarithmic	scale)	is	similar	to	
a	 transition	 from	10	million	 to	 100	million	 (also	 1	 on	 the	 logarithmic	 scale).	 If	
polity	 population	 is	 not	 log-transformed,	 nearly	 all	 variation	 in	 this	 variable	
would	be	dominated	by	the	upper	end	of	the	scale	(tens	of	millions).		
	 Another	 set	 of	 variables	 measures	 hierarchical	 complexity	 focusing	 on	 the	
number	 of	 control/decision	 levels	 in	 the	 administrative,	 religious,	 and	military	
hierarchies,	 and	 on	 the	 hierarchy	 of	 settlement	 types	 (village,	 town,	 provincial	
capital,	etc.).	These	four	Seshat	variables	were	combined	into	a	single	measure	of	
hierarchical	levels	(Hier)	by	averaging	(over	non-missing	values).		
	 Government	 (Gov)	 variables	 code	 for	 the	 presence	 or	 absence	 of	 official	
specialized	 positions	 that	 perform	 various	 functions	 in	 the	 polity:	 professional	
soldiers,	 officers,	 priests,	 bureaucrats,	 and	 judges.	 This	 class	 also	 includes	
characteristics	of	 the	bureaucracy	 (e.g.	presence	of	an	examination	system),	 the	
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judicial	 system,	 and	 specialized	 buildings	 (e.g.	 courts).	 Infrastructure	 (Infra)	
captures	 the	 variety	 of	 observable	 structures	 and	 facilities	 that	 are	 involved	 in	
the	functioning	of	the	polity.	Both	Gov	and	Infra	measures	add	together	a	number	
of	binary	variables	(11	for	Gov	and	12	for	Infra).		
	 Finally,	economic	development	is	reflected	in	Monetary	System	(Money).	The	
Money	scale	reflects	the	“most	sophisticated”	monetary	instrument	present	in	the	
coded	society	(0:	none,	1:	Articles,	2:	Tokens,	3:	Precious	metals,	4:	Foreign	coins,	
5:	Indigenous	coins,	6:	Paper	currency).	We	refer	to	PolTerr,	PolPop,	CapPop,	and	
Hier	 as	 “social	 scale”	Complexity	Characteristics,	and	 Info,	Gov,	 Infra,	 and	Money	
as	“non-scale”	Complexity	Characteristics.		

Sample	Size	and	Structure	

Once	all	Complexity	Characteristics	(CCs)	are	aggregated	they	are	put	together	in	
a	data	file	whose	columns	are	polity	name,	NGA	name,	time	(in	centuries),	and	the	
values	 of	 eight	 CCs	 (see	 the	 SOM	 for	 a	 description	 of	 the	 data	 file	 published	 as	
part	of	R-scripts).	The	data	file	analyzed	in	this	article	has	456	rows.	This	number	
is	larger	than	the	332	unique	polities,	because	many	polities	experience	changes	
in	one	or	more	of	CCs	during	their	duration.	When	data	change,	an	additional	row	
for	 the	 polity	 is	 created	 and	 added	 to	 the	 dataset.	 The	 two	 rows	will	 have	 the	
same	polity	name,	but	different	time	periods.	
	 The	proportion	of	missing	values	varies	by	CCs.	The	least	well	sampled	CCs	is	
PolPop	 with	 310	 observations	 (see	 SOM	 for	 these	 statistics).	 By	 definition,	 the	
response	 variable	 (Info)	 has	 no	 missing	 values,	 because	 it	 is	 not	 subjected	 to	
multiple	 imputation.	 Overall,	 222	 rows	 out	 of	 456	 in	 the	 data	 table	 have	 no	
missing	values.	Frequency	distributions	for	all	variables	are	plotted	in	Figure	S1	
in	the	SOM.	
	 Time-series	analysis	 requires	data	 sampled	at	 regular	 time	 intervals	 (set	 to	
one	 century:	 see	 Dynamic	 Regression:	 Methods	 below).	 This	 requires	
interpolation,	which	is	best	explained	with	a	concrete	example.	Thus,	the	Seshat	
polity	Latium	–	Iron	Age	starts	at	1000	BCE	end	ends	at	717	BCE.	Because	none	of	
the	CCs	changed	during	this	period,	the	data	file	has	a	single	row	for	this	polity.	
The	interpolated	data	file,	on	the	other	hand,	devotes	three	rows	to	the	polity	(for	
1000,	900,	and	800	BCE).	Each	row	is	identical	except	for	time.		
	 Interpolated	 data,	 used	 in	 time-series	 analysis,	 has	 902	 observations	 (of	
which	about	half	 simply	 repeat	 the	data	values	 for	 the	previous	 century).	Note,	
however,	that	if	we	need	to	estimate	autoregressive	terms,	we	end	up	with	fewer	
observations.	 For	example,	 if	 for	 an	NGA	we	have	a	 sequence	of	 centuries	 from	
500	 to	 1500	CE,	 or	 11	 observations,	 estimation	 of	 a	model	 that	 includes	AR(2)	
terms	will	 leave	 us	 with	 only	 9	 observations	 (because	 the	 dependent	 variable,	
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sampled	at	700,	800,	…	1500	CE,	requires	Lag1	sampled	at	600,	700,	…	1400	and	
Lag2	 sampled	 at	 500,	 600,	 …	 1300).	 The	 effective	 sample	 sizes	 and	 degrees	 of	
freedom	 for	 each	 specific	 analysis	 can	be	 found	 in	 the	R	output	 included	 in	 the	
SOM.	
	 Finally,	 the	 length	of	 time-series	varies	by	NGA	(see	Figure	1a).	The	 longest	
one	 is	 115	 time	 steps	 (for	 Konya	 Plain),	 and	 the	 shortest	 are	 several	 “late	
complexity”	NGAs	with	just	two	or	three	observations.		

Multiple	Imputation	

Dealing	with	Missing	Data,	Uncertainty,	and	Expert	Disagreement		

Due	 to	 the	 fragmentary	 nature	 of	 the	 information	 that	 is	 available	 about	 past	
societies	 it	 is	 not	 possible	 to	 reliably	 code	 all	 variables	 for	 all	 polities.	 There	 is	
therefore	 a	 non-trivial	 amount	 of	 data	 points	 which	 we	 have	 to	 code	 as	
“unknown”.	The	presence	of	such	missing	data	is	an	important	feature	of	Seshat	
in	 that	 it	accurately	 reflects	our	current	understanding	 (or	 lack	of	 it)	about	any	
particular	feature	in	any	particular	past	society.	Missing	data,	however,	present	a	
challenge	for	statistical	analyses.		
	 One	way	of	dealing	with	 incomplete	data	sets	 is	 to	simply	omit	 the	rows	 in	
the	 data	matrix	 that	 contain	missing	 values.	 There	 are	 two	 problems	with	 this	
approach.	First,	 it	 can	be	very	wasteful	 in	 that	omitted	rows	may	contain	much	
useful	 information	 relating	 to	 the	 variables	 that	were	 coded.	 Had	we	 used	 this	
approach	with	our	social	complexity	data,	 for	example,	we	would	have	to	throw	
away	 approximately	 half	 the	 rows.	 Second,	 row	 deletion	 may	 lead	 to	 biased	
estimates	 because	 there	 are	 often	 systematic	 differences	 between	 the	 complete	
and	 incomplete	 cases.	 In	 our	 case,	 in	 many	 NGAs	 small-scale	 societies	 were	
present	 far	 back	 in	 time	 and,	 as	 a	 result,	 they	 are	 much	 harder	 to	 code.	
Additionally,	 some	 regions	 of	 the	 world	 have	 been	 subject	 to	 greater	 levels	 of	
research	effort	than	others.	Omitting	many	of	the	lesser	known	cases,	due	to	their	
larger	proportion	of	missing	values,	would	give	too	much	weight	to	 later,	better	
known	societies	from	only	some	parts	of	the	world.	As	an	example,	had	we	used	
the	 row	deletion	 approach	 for	 our	 current	dataset,	we	would	 end	up	with	very	
few	 observations	 for	 Australia-Oceania.	 Such	 unequal	 deletion	 of	 observations	
would	very	likely	bias	the	results,	since	the	analysis	would	be	dominated	by	such	
regions	as	Europe	and	Southwest	Asia.	
	 In	order	to	deal	with	missing	values,	as	well	as	incorporating	uncertainty	and	
expert	disagreement	into	our	analyses,	we	employ	a	technique	known	as	multiple	
imputation	 (Rubin	1987),	which	utilizes	modern	computing	power	 to	extract	as	
much	 information	 from	 the	 data	 as	 possible.	 Imputation	 involves	 replacing	
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missing	entries	with	plausible	values,	and	this	allows	us	to	retain	all	cases	for	the	
analysis.	 A	 simple	 form	 of	 imputation,	 “single	 imputation”,	 might	 replace	 any	
unknown	cases	for	a	binary	“present/absent”	variable	with	simply	“absent”,	or	to	
replace	unknown	cases	of	continuous	variables	with	 the	mean	 for	 that	variable.	
These	 approaches	 have	 similar	 drawbacks	 to	 row	 deletion	 in	 that	 they	 tend	 to	
introduce	 a	 bias.	Multiple	 Imputation	 avoids	 this	 problem:	 Analysis	 is	 done	 on	
many	data	 sets,	 each	created	with	different	 imputed	values	 that	are	 sampled	 in	
probabilistic	 manner.	 This	 approach	 results	 in	 valid	 statistical	 inferences	 that	
properly	 reflect	 the	 uncertainty	 due	 to	 missing	 values	 (Yuan	 2010).	 Multiple	
imputation	procedures	can	vary	depending	on	the	type	of	variable	and	the	type	of	
data	coding	issue	faced.	
	 Expert	 disagreement.	 In	 cases	 where	 experts	 disagree	 we	 select	 each	
alternative	coding	with	equal	probability.	Thus,	if	there	are	two	conflicting	values	
coded	by	different	experts	and	we	create	20	imputed	sets,	each	alternative	will	be	
used	roughly	10	times.		
	 Uncertainty.	 Scalar	 values	 that	 are	 coded	 with	 a	 confidence	 interval	 are	
sampled	 from	 a	 Gaussian	 distribution	whose	mean	 and	 variance	 are	 estimated	
assuming	that	the	interval	covers	90	percent	of	the	probability.	For	example,	if	a	
value	of	[1000–2000]	was	entered	for	polity	population,	we	draw	values	from	a	
normal	 distribution	 centered	 on	 1500	 with	 a	 standard	 deviation	 of	 304.	 It	 is	
worth	 noting	 that	 this	 procedure	 means	 that	 in	 10	 percent	 of	 cases	 the	 value	
entered	into	the	imputed	set	will	be	outside	the	data	interval	coded	in	Seshat.	For	
categorical	 or	 binary	 variables	 we	 sample	 coded	 values	 in	 proportion	 to	 the	
number	of	categories	that	are	presented	as	plausible.	For	example,	if	our	degree	
of	 knowledge	 doesn’t	 allow	us	 to	 tell	whether	 a	 certain	 feature	was	 present	 or	
absent	at	a	particular	time	then	the	imputed	data	sets	will	contain	“present”	 for	
roughly	half	the	imputed	sets	and	“absent”	for	roughly	half	the	sets.	
	 Missing	data.	For	missing	data	we	impute	values	as	follows.	Suppose	for	some	
polity	we	 have	 a	missing	 value	 for	 variable	A	 and	 coded	 values	 for	 variables	 B	
through	H.	We	select	a	subset	of	cases	from	the	full	dataset	in	which	all	variables	
A	through	H	have	values	and	build	a	regression	model	for	A	based	on	predictors	
B-H.	 Not	 all	 predictors	 B–H	may	 be	 relevant	 to	 predicting	 A,	 and	 thus	 the	 first	
step	 is	 selecting	which	 of	 the	 predictors	 should	 enter	 the	model	 (see	 below	on	
model	 selection).	 Once	 the	 optimal	 model	 is	 identified,	 we	 estimate	 its	
parameters.	Then	we	go	back	 to	 the	polity	where	variable	A	 is	missing	and	use	
the	known	values	of	predictor	variables	 for	 this	polity	 to	calculate	 the	expected	
value	of	A	using	the	estimated	regression	coefficients.	However,	we	do	not	simply	
substitute	the	missing	value	with	the	expected	one	(because,	as	explained	above,	
this	 will	 result	 in	 biased	 estimates).	 Instead,	 we	 sample	 from	 the	 posterior	
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distribution	characterizing	the	prediction	of	the	regression	model	(in	practice,	we	
randomly	sample	the	regression	residuals	and	add	it	to	the	expected	value).	We	
apply	 the	 same	 approach	 to	 each	 missing	 value	 in	 the	 data	 set,	 yielding	 an	
imputed	data	set	without	gaps.		
	 Multiple	 imputation	 was	 applied	 only	 to	 the	 predictor	 variables	 (PolPop,	
PolTerr,	CapPop,	Hier,	Gov,	Infra,	and	Money).	The	response	(dependent)	variable	
(Info)	 was	 not	 imputed,	 and	 Info	 was	 not	 used	 for	 the	 imputation	 of	 predictor	
variables.	Thus,	 the	data	 rows	with	missing	values	of	 the	predictor	variable	are	
not	used	in	regressions.	The	overall	imputation	procedure	was	repeated	20	times,	
yielding	20	imputed	sets	that	were	used	in	the	analyses	below.	

Cross-validation	

One	 interesting	 issue	 in	helping	us	 interpret	multiple	 imputation	results	 is	how	
accurately	 the	 stochastic	 regression	 approach	 can	 predict	missing	 values.	Most	
importantly,	does	this	approach	actually	yield	better	estimates	than,	for	example,	
simply	using	the	mean	of	the	variable?	In	order	to	answer	this	question	I	employ	
a	statistical	technique	known	as	k-fold	cross-validation	(Kohavi	1995).		
	 Cross-validation	estimates	 the	 true	predictability	characterizing	a	 statistical	
model	 by	 splitting	 data	 into	 two	 sets.	 The	 parameters	 of	 statistical	 model	 are	
estimated	on	the	 fitting	set.	Next,	 this	 fitted	model	 is	used	to	predict	 the	data	 in	
the	 testing	 set.	 Because	 the	 prediction	 is	 evaluated	 on	 the	 “out	 of	 sample”	 data	
(data	 that	 were	 not	 used	 for	 fitting	 the	 model),	 the	 results	 of	 the	 prediction	
exercise	give	us	a	much	better	idea	of	how	generalizable	the	model	is,	compared	
to,	for	example,	such	regression	statistics	as	the	coefficient	of	determination,	R2.		
	 The	 accuracy	 of	 prediction	 is	 often	 quantified	 with	 the	 coefficient	 of	
prediction:	

!! =  1 − !!∗ − !! !!
!!!

! − !! !!
!!!

	

	
where	!! 	are	the	observations	from	the	testing	set	(the	omitted	values),	!!∗	is	the	
predicted	value,	!	is	the	mean	of	!! ,	and	n	is	the	number	of	values	to	be	predicted.	
The	coefficient	of	prediction	!!	equals	1	if	all	data	are	perfectly	predicted	and	0	if	
the	regression	model	predicts	as	well	as	the	data	average	(in	other	words,	if	the	
model	is	simply	!!∗ = !).	Unlike	the	regression	R2,	which	varies	between	0	and	1,	
prediction	!!	 can	be	negative—when	 the	regression	model	predicts	data	worse	
than	the	data	mean.	Prediction	!!	becomes	negative	when	the	sum	of	squares	of	
deviations	between	predicted	and	observed	is	greater	than	the	sum	of	squares	of	
deviations	from	the	mean.	
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	 In	k-fold	cross-validation,	rather	than	having	simply	a	single	fitting	set	and	a	
single	testing	set,	we	divide	the	data	into	k	sets.	Because	the	Seshat	World	Sample	
was	designed	 to	 code	polities	 in	10	major	 regions	 spanning	 the	globe,	 it	makes	
sense	to	use	these	regions	as	data	sets	(Turchin	et	al.	2018).	Such	a	procedure	is	
superior	 to	 dividing	 data	 into	 10	 sets	 randomly,	 because	 it	 automatically	
eliminates	 temporal	 and	 within-region	 correlations	 between	 the	 values	 in	 the	
fitting	set	and	values	in	the	testing	set.	Thus,	“out	of	sample”	prediction	becomes	
“out	 of	 region”	 prediction,	 which	 is	 obviously	more	 challenging	 than	when	 the	
prediction	method	utilizes	data	points	within	 the	same	region	both	 for	building	
the	predictive	model	and	for	testing	it.	
	 Here	 I	 illustrate	 this	 approach	 by	 testing	 how	 well	 the	 method	 predicts	
values	of	the	Info	variable.	In	the	previous	article	we	tested	the	approach	on	the	
part	of	the	dataset	for	which	all	rows	lacked	missing	values,	n	=	203	(Turchin	et	
al.	2018:	Supplementary	Results).	I	will	use	a	modification	that	allows	me	to	more	
fully	utilize	the	Seshat	data	(n	=	456).	
	 The	procedure	works	as	follows.	We	start	by	selecting	a	row	of	data	that	has	
a	coded	value	 for	 the	 Info	variable	and	check	how	many	other	variables	are	not	
missing.	For	example,	 for	Copper	Age	Italy	(3600–1800	BCE)	we	have	estimates	
for	 Hier,	 Gov,	 Infra,	 and	 Money	 variables	 (in	 addition	 to	 Info),	 but	 we	 lack	
estimates	 for	 PolPop,	 PolTerr,	 and	 CapPop.	 Next,	 we	 construct	 a	 fitting	 set	 by	
selecting	all	rows	which	have	data	for	Info,	Hier,	Gov,	Infra,	and	Money.	We	omit,	
however,	 any	 rows	 associated	with	 the	World	 Region	 in	which	 Italy	 is	 located,	
Europe	(because	our	goal	is	to	calculate	the	accuracy	of	out-of-region	prediction).	
The	remainder	is	our	fitting	data	set.		
	 We	don’t	know	whether	all	predictor	variables	(Hier,	Gov,	Infra,	and	Money)	
are	 needed	 to	 predict	 Info.	 One	 of	 the	most	 commonly	 used	methods	 of	model	
selection	 is	 to	 rely	 on	 the	 AIC,	 or	 Akaike	 Information	 Criterion	 (Burnham	 and	
Anderson	1998),	which	estimates	 the	 relative	 information	 loss	between	models	
based	 on	 different	 predictors.	 I	 performed	 an	 exhaustive	 search	 (fitting	
regressions	with	 all	 possible	 combinations	 of	 predictor	 variables)	 and	 selected	
the	 combination	 that	 minimizes	 the	 AIC.	 As	 an	 aside,	 such	 a	 “brute	 force”	
approach	 is	 not	 the	 most	 efficient	 way	 of	 doing	 model	 selection,	 but	 modern	
computers	 are	 so	 powerful	 that	 it	 doesn’t	 make	 sense	 to	 optimize	 the	 search	
strategy.		
	 Once	 the	 best	 model	 (as	 indicated	 by	 the	 AIC)	 is	 found,	 we	 can	 use	 it	 to	
predict	 the	 value	 of	 Info	 for	 Copper	 Age	 Italy,	 using	whichever	 of	 the	 potential	
predictor	 variables	 (Hier,	Gov,	 Infra,	 and	Money)	 that	 the	best	model	needs.	We	
now	store	both	the	observed	value	of	Info	and	the	predicted	one,	and	repeat	the	
procedure	for	all	456	rows	in	the	data	matrix.	Finally,	we	calculate	the	coefficient	



Turchin:	Fitting	Dynamic	Regression	Models.	Cliodynamics	9:1	(2018)	

	
44	

	

of	prediction	using	the	formula	above.	All	analyses	were	conducted	using	scripts2	
written	in	the	R	statistical	programming	language.		
	 The	k-fold	cross-validation	is	computer-intensive	but	it	utilizes	the	data	in	a	
very	efficient	way:	all	data	eventually	end	up	in	the	testing	set,	while	each	fitting	
set	uses,	on	average,	90	percent	of	data	(data	from	all	regions	except	the	one	in	
which	the	datum	to	be	predicted	is	located).		

Results:	k-Fold	Cross-Validation	of	Info	

Figure	2.	Comparing	observed	to	predicted	Info	values.	Data	are	color-coded	by	
world	region.	The	broken	straight	 line	 is	one-to-one	correspondence	(or	perfect	
prediction).		

																																																																				
2	These	are	available	at:	https://doi.org/10.17916/P6159W.	
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Plotting	observed	versus	predicted	values	of	Info	 for	 the	Seshat	data	 indicates	a	
strong	linear	relationship	between	the	two.	Prediction	!!	is	a	very	credible	0.73,	
showing	 that	 over	 70	 percent	 of	 variance	 in	 Info	 can	 be	 predicted	 from	 the	
knowledge	of	other	variables	for	the	particular	society.	This	result	supports	one	
of	the	main	conclusions	in	Turchin	et	al.	(2018)	that	key	aspects	of	human	social	
organization	tend	to	co-evolve	in	predictable	ways.	Note	that	the	cross-validation	
analysis	 in	 this	 article	 is	 based	 on	 a	 substantially	 larger	 sample	 size	 (n	 =	 456)	
compared	to	n	=	203	in	Turchin	et	al.	(2018).		
	 Ability	to	accurately	predict	values	of	Complexity	Components	also	supports	
the	 approach	 of	 using	 stochastic	 regression	 with	 multiple	 imputation.	 Using	
existing	 values	 to	 impute	 the	missing	 ones	 yields	 smaller	 variation	 in	 imputed	
values,	compared	to,	for	example,	sampling	from	the	overall	distribution,	and	this	
approach	enables	us	to	more	reliably	detect	the	patterns	present	in	the	data.		
	 As	a	final	note,	in	the	previous	article	(Turchin	et	al.	2018)	we	also	assessed	
whether	 the	multiple	 imputation	 (MI)	method	 used	 in	 this	 analysis	 could	 have	
introduced	bias	into	our	results.	We	created	100	artificial	data	sets	that	randomly	
introduced	 missing	 values	 into	 our	 “complete	 data	 set”	 (which	 contained	 only	
complete	 rows),	 reproducing	 the	 pattern	 of	missing	 values	 in	 the	 “overall	 data	
set”.	We	then	applied	the	MI	procedure	to	each	of	the	artificial	data	sets	in	exactly	
the	 same	way	as	 the	overall	 data	were	 analyzed.	By	 comparing	 the	PCA	 results	
based	on	artificial	datasets	with	results	 from	the	complete	dataset,	we	saw	that	
the	Multiple	Imputation	procedure	accurately	captures	the	overall	patterns	in	the	
data	 both	 in	 terms	 of	 the	 number	 and	 pattern	 of	 Principal	 Components	 (PCs)	
produced	 (Turchin	 et	 al.	 2018:	 Figure	 SI7),	 and	 the	 loadings	 of	 the	 different	
variables	 on	 to	 PC1	 (Figure	 SI8).	 Our	 overall	 conclusion	 was	 that	 the	 MI	
procedure	does	not	introduce	a	systematic	bias	into	analysis	results.	

Dynamic	Regression	

Methods	

The	general	regression	model	that	I	used	above	to	investigate	factors	affecting	the	
evolution	 of	 the	 Seshat	 measure	 of	 information	 complexity	 (Info)	 takes	 the	
following	form:	
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Here	 Yi,t	 is	 the	 response	 variable;	 in	 our	 case	 it	 is	 the	 value	 of	 Info	 coded	 for	
location	i	at	time	t.	Recollect	that	we	construct	a	spatio-temporal	series	for	Seshat	
variables	by	following	polities	(or	quasipolities,	such	as	archaeologically	attested	
cultures)	that	occupied	a	specific	NGA	(Natural	Geographic	Area)	at	each	century	
mark	during	the	sampled	period.	Thus,	the	time	step	Δt	=	100	years.		
	 On	the	right-hand	side,	a	is	the	regression	constant	(intercept).	The	next	term	
captures	the	influences	of	past	history	of	Info	(“autoregressive	terms”),	with	τ	=	1,	
2,	 …	 indexing	 time-lagged	 values	 of	 Y	 (as	 time	 is	 measured	 in	 centuries,	 Yi,t–1	
refers	to	the	value	of	Info	100	years	before	t).	The	third	term	represents	potential	
effects	 resulting	 from	 geographic	 diffusion	 of	 Info	 (Eff	 and	 Dow	 2009;	 Eff	 and	
Routon	2012).	 I	use	a	negative-exponential	 form	to	relate	 the	distance	between	
society	 i	and	society	 j,	δi,j,	 to	 the	 influence	of	 j	on	 i	because,	unlike	with	a	 linear	
kernel,	 the	negative-exponential	 one	does	not	 become	negative	 at	 very	 long	δi,j,	
instead	approaching	0	smoothly.	Note	that	we	avoid	the	problem	of	endogeneity	
(simultaneous	causality)	by	using	time	lagged	Yj,t–1	(see	General	Introduction).	The	
third	term,	thus,	is	a	weighted	average	of	Info	values	in	the	vicinity	of	society	i	at	
the	previous	time	step,	with	weights	falling	off	to	0	as	distance	from	 i	 increases.	
Parameter	 d	 measures	 how	 steeply	 the	 influence	 falls	 with	 distance,	 and	
parameter	c	 is	 a	 regression	 coefficient	measuring	 the	 importance	of	 geographic	
diffusion.		
	 The	 fourth	 term	detects	autocorrelations	due	 to	any	shared	cultural	history	
of	 Info	 at	 location	 i	with	 other	 regions	 j.	 Here	w	 represents	 the	 weight	 due	 to	
phylogenetic	 (linguistic)	distance	between	 locations	 (set	 to	1	 if	 locations	 i	 and	 j	
share	the	same	language,	0.5	if	they	are	in	the	same	linguistic	genus,	and	0.25	if	
they	are	in	the	same	linguistic	family).	Linguistic	genera	and	families	were	taken	
from	The	World	Atlas	of	Language	Structures	 (Dryer	and	Haspelmath	2013)	and	
Glottolog	(Hammarström	et	al.	2017).	The	rest	of	the	right-hand	side	represents	
the	 effects	 of	 the	 predictor	 variables	 Xk,i,t–1	 (time-lagged);	 gk	 are	 regression	
coefficients;	and	εi,t	is	the	error	term.		
	 This	approach	allows	us	 to	 investigate	 the	effects	of	 the	predictor	variables	
(Complexity	 Components	 other	 than	 Info),	 while	 controlling	 for	 serial	
autocorrelations,	 spatial	 diffusion,	 and	 autocorrelations	 due	 to	 shared	 cultural	
history	(as	discussed	in	General	Introduction,	the	latter	two	are	known	as	Galton’s	
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Problem).	It	is	important	to	note	that	effects	of	spatial	diffusion	and	shared	origin	
are	 not	 simply	 “nuisance	 parameters”	 that	 we	 want	 to	 eliminate.	 These	 are	
interesting	 mechanisms	 of	 cultural	 evolution	 in	 their	 own	 right.	 In	 particular,	
differentiating	 the	 effects	 of	 spatial	 diffusion	 from	 influences	 by	 the	 predictors	
allows	us	to	estimate	the	relative	importance	of	cultural	evolution	 in	situ	(under	
the	 influence	of	 the	predictor	variables)	versus	cultural	borrowing	 from	nearby	
areas.		
	 All	parameters	in	the	equation	above	can	be	estimated	with	linear	regression,	
except	for	d	(which	scales	the	distance	effect	of	the	spatial	diffusion	term).	I	set	an	
initial	 value	 of	 d	 equal	 to	 1000	 km,	 because	 this	 was	 a	 characteristic	 distance	
between	 neighbor	 NGAs	 (over	 two-thirds	 of	 nearest	 neighbor	 distances	 were	
between	 500	 km	 and	 1500	 km).	 Next,	 I	 searched	 for	 an	 optimal	 d	 value	 by	
running	the	best	regression	(see	below)	for	a	range	of	d-values	on	a	grid	of	(100,	
200,	300,	…,	1900,	2000).	The	estimated	value	of	d	(the	one	with	the	smallest	AIC)	
was	1100	km	(however,	for	none	of	these	values	the	spatial	term	was	significant	
at	the	P	=	0.05	level,	see	below).	
	 Given	a	value	of	d,	 I	 fitted	model	 (3)	using	 the	R	 function	glm	 (Generalized	
Linear	Models).	Model	 selection	was	 accomplished	 by	 fitting	 all	 possible	 linear	
models	and	selecting	the	one	that	yielded	the	smallest	AIC.		
	 All	 analyses	 reported	 in	 this	 article	 are	 based	 on	 data	 scraped	 from	 the	
Seshat	Databank	on	March	11,	2018.	These	data	will	be	available	for	download	at	
http://seshatdatabank.info/datasets/	upon	publication	of	the	article.	
	 The	 summary	 statistics	 and	 distributions	 of	 the	 response	 and	 predictor	
variables	are	given	in	the	Supplementary	Online	Material.	

Results:	Processes	Influencing	the	Evolution	of	Info	
The	 first	 step	 in	 the	 analysis	 aims	 to	 understand	 how	 much	 variability	 in	 the	
results	 is	 introduced	by	missing	data,	 uncertainty,	 and	 expert	 disagreement.	As	
was	 explained	 above	 (Dealing	 with	 Missing	 Data,	 Uncertainty,	 and	 Expert	
Disagreement),	I	generated	20	imputed	datasets.	I	then	submitted	each	dataset	to	
an	 R-script,	 which	 finds	 the	 combinations	 of	 predictors	 that	 yield	 the	 best	 AIC	
(Dynamic	Regression:	Methods).	As	we	shall	see	later,	variation	due	to	imputation	
was	slight.	For	this	reason,	I	first	report	the	regression	results	for	a	dataset	with	
averaged	predictors	(in	which	each	value	was	an	average	of	20	imputed	values;	as	
a	reminder,	the	response	variable	was	not	imputed	and	thus	we	only	have	one	set	
of	values	for	it).	The	spatial	diffusion	term	did	not	have	a	statistically	significant	
effect	 in	 any	 of	 the	models,	 and	 thus	 it	 is	 not	 included	 in	 the	 following	 results.	
Furthermore,	 additional	 checks	 indicated	 that	 the	 time	 evolution	 of	 Info	 is	
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appropriately	described	by	an	autoregressive	process	of	order	2	(in	other	words,	
only	the	first	two	autoregressive	terms	have	a	significant	effect).	
	 Fitting	 regression	 models	 with	 all	 possible	 combinations	 of	 linear	 terms	
suggests	 strong	 effects	 (t-values	 greater	 than	 3)	 of	 the	 autoregressive	 terms	
(Lag1	and	Lag2),	Phylogeny,	and	Money	(Table	1).	Two	other	predictors,	PolPop	
and	 Gov	 have	weaker	 effects	 (with	 t-values	 around	 2).	 Infra	 appears	 to	 have	 a	
negative	effect	on	the	trajectory	of	 Info;	however,	 this	effect	 is	not	significant	at	
the	 conventional	 level	of	P	 <	0.05.	The	 frequency	with	which	various	 terms	are	
included	in	the	ten	best	models	roughly	corresponds	to	this	variation	in	t-values.		
	
Table	1.	Results	of	the	best	10	linear	models	(with	the	smallest	AIC).	

Lag1	 Lag2	 PolPop	 PolTerr	CapPop	 Hier	 Gov	 Infra	 Money	 Phyl	 R2	 ΔAIC	

18.73	 3.86	 2.15	 		 		 		 1.83	 –1.48	 3.40	 3.67	 0.91	 0.00	

18.89	 3.80	 1.78	 		 		 		 1.49	 		 3.08	 3.72	 0.91	 0.22	

20.14	 4.04	 2.65	 		 		 		 		 		 3.53	 3.71	 0.91	 0.45	

18.75	 3.86	 2.06	 		 –1.07	 		 1.67	 		 3.19	 3.56	 0.91	 1.06	

18.73	 3.85	 1.93	 –0.83	 		 		 1.78	 –1.67	 3.33	 3.72	 0.91	 1.30	

20.14	 4.10	 2.84	 		 		 		 		 –1.04	 3.65	 3.67	 0.91	 1.37	

19.30	 3.81	 		 		 		 		 2.46	 		 3.39	 3.67	 0.91	 1.40	

18.64	 3.89	 2.20	 		 –0.75	 		 1.91	 –1.27	 3.43	 3.55	 0.91	 1.43	

18.53	 3.82	 1.90	 		 		 0.43	 1.59	 –1.52	 3.42	 3.67	 0.91	 1.81	

19.51	 3.93	 1.92	 		 		 0.79	 		 		 3.47	 3.70	 0.91	 1.83	

Note:	This	table	reports	t-values	associated	with	various	terms	in	the	best-fitting	
models.	Lag1	and	Lag2	refer	to	autoregressive	(lagged)	terms	(Yi,t	 –	 1	and	Yi,t	 –	 2);	
PolPop	through	Money	are	the	predictors,	Phyl	is	the	effect	of	phylogeny,	R2	is	the	
regression	coefficient	of	determination,	and	ΔAIC	 is	 the	difference	 in	 the	Akaike	
Information	Criterion	with	respect	to	the	best	model	(with	the	lowest	AIC).	
	
Before	proceeding	further,	we	need	to	run	some	diagnostic	checks	that	assess	the	
validity	 of	 various	 assumptions	 of	 the	 regression	 model.	 Figure	 3	 shows	 four	
standard	 diagnostic	 tests.	 The	 two	 top	 panels	 look	 good	 (there	 are	 no	 trends).	
The	 patterning,	 which	 we	 see	 in	 the	 Residuals	 vs.	 Fitted	 pane	 (and	 in	 Scale-
Location	 pane),	 is	 due	 to	 the	 fact	 that	 the	 dependent	 variable	 is	 not	 truly	
continuous,	 but	 takes	 one	 of	 14	 discrete	 values	 between	 0	 and	 13	 (see	
Aggregation	 into	 “Complexity	 Components”).	 This	 is	 also	 why	 the	 upper	 right	
portion	of	the	data	cloud	the	panel	 looks	“sliced	off”:	there	is	a	hard	upper	limit	
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above	which	 Info	 cannot	 increase.	 The	plot	 of	Residuals	 vs	 Leverage	 also	 looks	
good,	as	all	cases	are	well	inside	the	Cook’s	distance	lines.	

Figure	3.	Diagnostic	plots	for	the	best-fitting	model.	
	
The	Normal	 Q-Q	 plot,	 on	 the	 other	 hand,	 shows	 that	 residuals	 are	 clearly	 non-
Gaussian.	 Instead	 of	 points	 following	 an	 approximately	 straight	 line,	 there	 is	 a	
“plateau”	 in	 the	 middle,	 indicating	 an	 overabundance	 of	 small	 deviations	
(residuals	 near	 0).	 This	 pattern	 arises	 from	 a	 tendency	 of	 many	 traits	 under	
cultural	evolution	 to	be	 faithfully	 transmitted	 to	 future	generations.	As	a	 result,	
temporal	 trajectories	 of	 such	 traits	 are	 characterized	 by	 periods	 of	 stasis,	
punctuated	 by	 (sometimes)	 rapid	 change.	 Fortunately,	 unlike	 the	 problem	 of	
“heavy	tails”,	which	results	in	inflating	the	significance	levels	calculated	under	the	
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normality	assumption,	“heavy	middle”,	if	anything,	results	in	overly	conservative	
P-values	and	can	be	ignored	(Faraway	2002).		
	 Another	 diagnostic	 check	 that	 we	 need	 to	 do	 is	 whether	 there	 are	 any	
lingering	 temporal	 autocorrelations	 not	 captured	 by	 the	 regression	 model	
(recollect,	 that	 all	 best	 models	 include	 both	 Lag1	 and	 Lag2	 terms).	 A	 check	 of	
higher	order	effects	 indicated	that	 there	are	no	significant	correlations	between	
residuals	 and	 lags	 3,	 4,	 5	 …	 at	 P	 =	 0.05	 level.	 In	 other	 words,	 an	 AR2	 process	
(autoregressive	 model	 with	 two	 lags)	 appears	 to	 adequately	 capture	 all	 time	
dependencies	in	Info.	
	 Seshat	 data	 is	 a	 space-time	 series:	 a	 time	 trajectory	 anchored	 at	 each	NGA	
(Natural	 Geographic	 Area).	 One	 way	 to	 check	 for	 the	 influence	 of	 unobserved	
variables	is	to	hold	constant	all	time	invariant	NGA	characteristics	that	could	be	
driving	correlations	between	the	response	variable	and	regressors.	Accordingly,	I	
fitted	a	regression	model	 to	 the	data	with	NGAs	as	 fixed	effects.	The	results	are	
very	 interesting	 (see	 the	 SOM:	 Supplementary	 Results):	 two	 NGAs,	 Iceland	 and	
Ghanaian	Coast,	are	highlighted	by	this	analysis	as	being	different	from	the	rest.	
At	 the	 same	 time,	 the	 puzzling	 negative	 effect	 of	 Infra	 disappears	 in	 the	 fixed-
effects	model.	 Something	 is	different	about	 these	 two	NGAs,	but	 it	 is	difficult	 to	
determine	what	 is	 going	 on	 because	 they	 together	 have	 contributed	 only	 three	
observations	 to	 the	 data	 set.	 Dropping	 these	 three	 observations	 results	 in	 a	
simplified	model,	in	which	there	are	no	differences	between	remaining	NGAs	and	
no	effect	of	Infra	(SOM:	Supplementary	Results).	
	 Apart	from	clearing	up	the	puzzling	negative	effect	of	Infra,	the	output	of	the	
fixed-effect	regression	(on	both	the	complete	data,	or	the	one	in	which	the	three	
suspect	observations	are	dropped)	is	reassuring	in	another,	and	more	important	
way.	It	suggests	that	unobserved	heterogeneity	between	NGAs	is	not	what	drives	
the	main	 findings	 about	 factors	 affecting	 the	 evolution	 of	 Info.	 The	 fixed-effect	
regression	identifies	the	same	predictors:	Lag1,	Lag2,	Phylogeny,	Money,	PolPop,	
and	 Gov.	 This	 observation	 helps	 buttress	 the	 case	 that	 the	 partial	 correlations,	
revealed	by	these	regression	analyses,	represent	causal	relationships.	
	 Another	approach	of	testing	for	the	effect	of	unobserved	variables	 is	to	 fit	a	
regression	model	with	time	as	a	covariate.	Because	the	term	associated	with	time	
results	in	an	improvement	of	the	fit	(SOM:	Supplementary	Results),	my	conclusion	
is	that,	indeed	there	are	some,	as	yet	unidentified,	factors	affecting	the	evolution	
of	Info	(this	will	be	further	addressed	in	Discussion).	
	 Finally,	and	as	was	discussed	in	General	Introduction,	it	is	always	a	good	idea	
to	 test	 for	 nonlinear	 effects.	 Accordingly,	 I	 fitted	 a	 series	 of	 models	 by	 adding	
quadratic	terms	associated	with	those	predictors	that	were	selected	in	the	best-
fitting	 linear	 model.	 This	 investigation	 showed	 that	 adding	 squared	 terms	 for	
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Lag1	 and	 Money	 significantly	 improved	 the	 degree	 of	 fit	 (SOM:	 Supplementary	
Results).	It	also	indicated	that	dropping	the	Gov	term	further	betters	the	AIC.		
	 Table	2	presents	 the	results	of	 the	best	model	(smallest	AIC)	that	considers	
both	linear	and	quadratic	effects.	
	
Table	 2.	 Regression	 results:	 the	 best	 nonlinear	 model.	 Regression	 coefficients	
have	 been	 standardized	 by	 scaling	 all	 variables	 in	 the	model	 to	mean	 =	 0	 and	
variance	=	1.	
	 Standardized	Coefficients:	

	 Estimate	 Std.	Error	 t	value	 Pr(>|t|)	
(Intercept)	 0.000	 0.010	 0.000	 1.00000	
Lag1	 0.750	 0.040	 18.877	 0.00000	
Lag1.sq	 –0.078	 0.016	 –4.874	 0.00000	
Lag2	 0.124	 0.031	 4.001	 0.00007	
Gov	 0.058	 0.026	 2.221	 0.02665	
Money	 0.052	 0.019	 2.724	 0.00658	
Money.sq	 0.031	 0.013	 2.354	 0.01883	
Phylogeny	 0.033	 0.013	 2.550	 0.01095	
Time	 0.025	 0.013	 1.894	 0.05861	

Discussion	

This	 article	 presents	 a	 general	 methodology	 for	 fitting	 dynamic	 regression	
models	to	time-resolved	cross-cultural	data.	My	primary	focus	is	methodological,	
and	 I	 illustrate	 the	 general	 approach	by	 analyzing	 Info,	 the	 Seshat	 variable	 that	
attempts	 to	 capture	 the	 sophistication	 of	 information	 system	 of	 past	 societies.	
After	 a	 variety	 of	 analyses	 and	 diagnostic	 checks,	 documented	 in	 the	 previous	
section	 and	 in	 Supplementary	 Online	 Materials:	 Results,	 I	 converged	 on	 a	
particular	model,	 the	 results	 of	which	 are	 presented	 in	 Table	 2.	What	 do	 these	
results	 tell	 us	 about	 the	 evolution	 of	 Info?	 Most	 importantly,	 what	 are	 the	
caveats?	
	 Before	dealing	with	the	three	hypotheses	described	in	the	introduction,	let’s	
discuss	the	autoregressive	terms	in	the	model.	It	is	not	surprising	that	Lag1	(the	
value	of	a	location’s	Info	lagged	by	one	century)	has	an	enormous	impact	on	Info:	
this	 effect	 captures	 the	 memory	 in	 the	 system.	 Note	 that	 the	 estimated	
standardized	coefficient	 for	Lag1	 is	0.75.	This	means	 that	 changing	 the	value	of	
Info	at	the	previous	time	step	by	one	unit	will	result	in	a	change	of	Info	at	the	next	
time	step	by	0.75	units.	The	quadratic	term,	Lag1.sq,	is	also	highly	influential.	The	
negative	sign	associated	with	the	coefficient	tells	us	that	it	is	a	“regulatory”	term:	
when	 Info	 gets	 too	 high,	 this	 term	 “steps	 on	 the	 brakes”	 to	 impede	 its	 further	
increase.	One	possible	explanation	of	this	effect	is	that	it	is	simply	a	result	of	the	
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hard	 ceiling	 on	 Info	 values	 that	 I	 discussed	 above.	 But	 it	 is	 also	 plausible	 that	
when	other	 complexity	 characteristics,	 such	as	Gov	 and	Money,	 decline,	 so	does	
the	equilibrium	level	of	Info.	A	possible	example	of	such	dynamics	is	the	collapse	
of	 Roman	 Empire,	 which	 brought	 in	 its	 wake	 a	 substantial	 decline	 in	 the	
sophistication	of	government	and	economy	within	Italy,	followed	by	a	“Dark	Age”	
characterized	 by	 a	 drastic	 decline	 in	 literacy	 and	 the	 number	 of	 text	 types	 in	
circulation.		
	 The	 coefficient	 associated	 with	 Lag2	 is	 positive,	 suggesting	 that	 evolving	
social	systems	have	a	longer-term	memory	than	preceding	time	step.	Such	longer	
memory	 effect	 could	 help	 Info	 to	 recover	 after	 a	 negative	 shock.	 For	 example,	
suppose	that	a	systemic	collapse	results	in	a	loss	of	knowledge,	depressing	Info.	If	
Info	was	high	before	the	collapse,	then	it	would	recover	faster	after	it,	because	the	
social	 system	 could	 “remember”	 (or	 recover)	 recently	 lost	 information.	 More	
broadly,	 however,	 a	 highly	 influential	 second-order	 autoregressive	 term	 is	 a	
strong	 indication	 that	 we	 are	 missing	 information	 on	 an	 important	 dynamic	
driver	(Turchin	and	Ellner	2000).	
	 The	 coefficient	 associated	 with	 Phylogeny	 is	 also	 positive,	 while	 the	 direct	
spatial	effect	is	not	statistically	significant.	This	result	suggests	that	Info	tends	to	
be	transmitted	between	linguistically	similar	cultures,	no	matter	how	distant	they	
are,	rather	from	linguistically	dissimilar,	but	geographically	near	neighbors.	This	
result	 is,	perhaps,	not	surprising,	as	Info	has	an	obvious	linguistic	component.	It	
highlights	 the	 possible	 importance	 of	 cultural	 closeness	 in	 the	 diffusion	 of	
cultural	 traits,	over	and	above	 the	 impact	of	geographic	proximity.	However,	an	
important	 caveat	 here	 is	 that	 in	 the	 current	 Seshat	 data	 space	 is	 seriously	
“undersampled,”	as	a	typical	distance	between	neighbor	NGAs	is	on	the	order	of	
1000	 km.	 It	 is	 quite	 possible	 that	 when	 we	 analyze	 denser-sampled	 data	 in	
Seshat,	 we	 will	 be	 better	 able	 to	 detect	 the	 influences	 due	 to	 geographic	
proximity.		
	 Turning	 to	 Complexity	 Components,	we	 observe	 that	 the	 greatest	 influence	
on	the	evolution	of	Info	is	exerted	by	Money.	In	fact,	Money	is	the	most	important	
predictor	of	them	all,	barring	the	Lag1	and	Lag2	terms.	As	Table	2	shows,	Money	
enters	 the	 best	model	 in	 a	 nonlinear	 (quadratic)	 form.	 The	 positive	 sign	 of	 the	
coefficient	associated	with	 the	quadratic	 term	(Money.sq)	 indicates	 that	 it	 is	 the	
higher	ranges	of	this	variable	that	have	the	greatest	effect	on	increasing	Info.		
	 Gov	is	also	a	part	of	the	best-fitting	model.	It	is	an	interesting	and	somewhat	
unexpected	result,	however,	that	the	economic	sophistication,	proxied	by	Money,	
has	a	stronger	influence	on	Info	than	government	specialization.	However,	at	the	
current	 stage	 of	 the	 development	 of	 the	 database	 and	 analysis	 methodologies,	
this	 result	 should	be	 treated	 as	 a	 very	 tentative	 one.	 In	particular,	 it	 is	 entirely	
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possible	 that	 the	 inclusion	 into	 the	 analysis	 of	 additional	 variables,	 currently	
coded	 by	 the	 Seshat	 team,	 will	 change	 our	 understanding	 of	 this	 evolutionary	
process	 in	both	quantitative	 terms	 (relative	 strength	of	 various	predictors)	 and	
qualitative	 terms.	 For	 example,	 one	 of	 the	 predictors	 currently	 included	 in	 the	
best	model	may	be	replaced	by	a	better	causal	variable,	as	more	variables	become	
available	for	analysis.	
	 Finally,	PolTerr	does	not	appear	in	the	model,	suggesting	that	the	need	to	get	
messages	to	far	flung	regional	centers	was	not	a	strong	factor	in	the	evolution	of	
information	 systems.	 In	 fact,	 none	 of	 the	 social	 scale	 characteristics	 (PolPop,	
PolTerr,	or	CapPop)	appears	to	influence	Info,	once	other	factors	(e.g.,	Money	and	
Gov)	are	 taken	 into	account.	Again,	however,	 this	conclusion	must	be	 treated	as	
preliminary.	 First,	 note	 that	models	 including	PolPop,	 for	 example,	were	 among	
the	best	linear	models	(Table	1).	Second,	the	difference	in	AIC	between	the	best-
fitting	 nonlinear	 model,	 and	 the	 one	 that	 also	 includes	 PolPop	 is	 only	 1.4	 (see	
Supplementary	Online	Material).	As	a	rule	of	thumb,	models	that	differ	 in	AIC	by	
less	 than	 2	 are	 considered	 to	 have	 a	 similar	 degree	 of	 support.	 Thus,	 we	 need	
additional	data,	which	will	either	strengthen,	or	further	weaken	this	result.		
	 I	emphasize	that	 these	results	are	tentative	and	preliminary,	and	have	been	
included	in	the	paper	merely	for	illustrative	purposes.	An	important	caveat	is	that	
we	 need	 to	 run	 similarly	 careful	 analyses	 on	 other	 Complexity	 Characteristics	
before	 we	 can	 characterize	 the	 web	 of	 causal	 pathways	 connecting	 different	
aspects	 of	 Social	 Complexity.	 Second,	we	 should	keep	 in	mind	 that	 the	 effect	 of	
Gov	 or	Money	 could	 be	 due	 to	 some	 other,	 hidden	 variables	 with	 which	 these	
predictors	could	be	closely	correlated.	In	fact,	there	are	indications	in	the	analysis	
that	we	do	not	have	data	on	all	relevant	predictors,	since	the	best	model	includes	
a	temporal	trend	and	second-order	autoregressive	terms.	
	 Thus,	one	general	conclusion	from	this	analysis	is	as	expected:	we	need	more	
data	 on	 different	 aspects	 of	 past	 societies.	What	 this	 analysis	 adds,	 however,	 is	
that	we	can	confidently	invest	resources	in	collecting	such	data,	because	we	have	
now	demonstrated	that	they	will	be	very	useful	in	helping	us	distinguish	between	
various	 hypotheses	 about	 cultural	 evolution	 of	 social	 complexity.	 Prior	 to	
collecting	Seshat	data	and	running	statistical	analyses	on	it,	it	was	not	clear	at	all	
that	 this	 approach	 would	 work.	 One	 possible	 outcome	 could	 have	 been	 an	
uninformative	 data	 set	 and	 analytical	 results	 saying	 that	we	 cannot	 distinguish	
between	various	hypothesis.	In	other	words,	“history	is	just	one	damn	thing	after	
another,”	as	Arnold	Toynbee	famously	characterized	this	view.	But	our	analyses	
in	this	article	(and	in	Turchin	et	al.	2018)	show	that	there	are	strong	patterns	in	
historical	 data;	 and	 that	 the	 data	 already	 in	 Seshat	 allow	 us	 to	 go	 a	 long	 way	
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towards	 uncovering	 them.	 We	 can	 test	 rival	 theories	 against	 each	 other	 and	
obtain	clear	results	on	their	validity.	The	historical	record	is	highly	informative.	
	 In	 addition	 to	 more	 data,	 we	 also	 need	 more	 sophisticated	 methods	 of	
analysis.	 In	 particular,	 the	 geographic	 diffusion	 term	 in	 the	 general	 regression	
model	 (Dynamic	 Regression:	 Methods)	 is	 too	 vague.	 We	 need	 better	 models	 to	
distinguish	 between	 multiple	 ways	 that	 cultural	 traits	 could	 be	 transmitted	
across	 space:	 trade,	 conquest,	 and	 direct	 cultural	 borrowing.	 As	 I	 have	 pointed	
out	 above,	 horizontal	 transmission	 is	 not	 a	 “nuisance	 term”	 to	 include	 in	 the	
model	 and	 then	 to	 forget	 about.	 It	 represents	 processes	 of	 high	 interest	 to	
Cultural	 Evolution,	 and	we	 need	 better	methodology	 to	 detect	 such	 influences.	
We	 also	 need	 data	 that	 samples	 space	 better,	 because	 that	would	 increase	 our	
ability	to	distinguish	between	different	models	of	horizontal	transmission.	
	 The	 original	motivation	 behind	 developing	 Standard	 Cross-Cultural	 Sample	
was	 to	 eliminate	 Galton’s	 Problem.	 Subsequent	 analyses	 showed	 that	 the	 SCCS	
failed	 in	 this	 respect.	 Better	 statistical	 methods,	 which	 estimated	 Galton	 terms	
(spatial	diffusion	and	 related	phylogeny),	 resulted	 in	huge	progress.	The	Seshat	
project	 has	 made	 great	 strides	 in	 improving	 the	 temporal	 sampling,	 and	 this	
enables	us	to	fit	dynamic	regression	models,	as	was	illustrated	in	this	article,	and	
by	 doing	 so,	 to	 approach	 causal	 processes	 in	 cultural	 evolution.	 Expanding	 the	
Seshat	 approach	 to	 a	 denser	 spatial	 sample	 will	 allow	 us	 to	 investigate	 the	
influence	 of	 horizontal	 transmission	 of	 cultural	 traits	 resulting	 from	 trade,	
warfare,	and	direct	information	exchange.	
	 We	 also	 need	 to	 link	 more	 tightly	 theory	 development	 with	 data	 analysis.	
Atheoretical	 “Big	 Data”	 approaches	 are	 of	 limited	 utility	 for	 revealing	 causal	
mechanisms	 of	 cultural	 evolution.	 One	 potential	 problem	 is	 the	 one-to-many	
mapping	between	any	empirical	factor	and	a	set	of	potential	causal	mechanisms.	
Another	 is	 that	 there	 could	 be	 a	 mismatch	 between	 functional	 forms	 used	 in	
regression	analysis	(e.g.,	linear,	or	even	polynomial	relationships)	and	functional	
forms	arising	from	mechanism-based	models.	While	there	are	statistical	methods	
that	 fit	 arbitrary	 functional	 forms	 to	data,	 such	 approaches	 are	 extremely	data-
hungry.	 An	 alternative	 approach	 is	 to	 use	mechanism-based	models	 directly	 in	
data	analysis.	A	discussion	of	such	methodologies	is	well	beyond	the	scope	of	this	
article.	 I	merely	note	that	my	colleagues	and	I	are	working	 in	this	direction	(for	
example,	 see	 Turchin	 et	 al.	 2013).	 A	 combination	 of	 theory,	 built	 from	 first	
principles,	with	sophisticated	data	analysis	has	been	used	very	effectively	in	such	
nonlinear	 dynamics	 fields	 as	 complex	 population	 dynamics	 (for	 a	 review,	 see	
Turchin	 2003).	 I	 fully	 expect	 that	 this	 approach	 would	 work	 equally	 well	 in	
helping	us	understand	the	evolution	of	complex	societies.	
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