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Abstract— We present a novel dynamic duty cycling
scheme to maintain stochastic consistency for caches in
sensor networks. To reduce transmissions, base stations
often maintain caches for erratically changing sensor
sources. Stochastic consistency guarantees the cache-source
deviation is within a pre-specified bound with a certain
confidence level. We model the erratic sources as Brownian
motions, and adaptively predict the next cache update time
based on the model. By piggybacking the next update time
in each regular data packet, we can dynamically adjust
the relaying nodes’ duty cycles so that they are awake
before the next update message arrives, and are sleeping
otherwise. Through simulations on the ns-2 simulator, we
show that our approach can achieve very high source-
cache fidelity with low power consumption on many real-
life sensor data. On average, our approach consumes 4-5
times less power than GAF [1], and achieves 50% longer
network lifetime.

I. INTRODUCTION

Power-efficient sensor data acquisition has be-
come important as large-scale sensor networks
become increasingly practical. A framework for
data acquisition in sensor networks was introduced
in [2], and various power-efficient techniques have
been proposed in [3]–[6] for sensor data collection
in multi-hop wireless environments. Typically, users
present their queries to a base station (BS), which
collects data appropriately and generates responses.

In this paper, we show how to combine two
strategies for reducing sensors’ power consumption:
base station caching and dynamic duty cycling.
These ideas have been applied independently, but
little work exists on strategies for combining them
effectively in sensor networks.

A. Caching to Reduce Data Transmissions

Caching is commonly used to reduce data trans-
missions, which dominate power consumption in

sensor networks. Several models for caching have
been explored in the literature. In the first such
model, exemplified by [2], [3], queries explicitly
specify the sampling frequency for sensor data.
Queries arriving at intermediate times can be han-
dled using cached data at the BS. Source and
relaying transmissions can be scheduled to occur as
required by the known sampling times. The sensors
can also be put to sleep in between, saving even
more power. Although simple, this model cannot
offer any guarantees on the precision of the cached
data, especially when the underlying source data
change rapidly and unpredictably.

Another approach is represented by [7], in which
sources continuously stream updates to a central
server which handles a large number of aggregate
queries registered by users. The server caches a
copy of each source object. Sampling times are not
presepecified, but each aggregate query is associ-
ated with a precision requirement, indicating the
maximum error the user will tolerate. A filter, or
error bound, is installed on each source, and only
values exceeding the filter bounds will be sent to the
server. Filter bounds are adaptively set to minimize
transmission costs, while ensuring that the precision
requirements are met.

Unfortunately, for all the reasons discussed in [8],
this approach wastes significant amounts of power if
directly used in sensor networks. In addition, since
sampling intervals are not fixed, updates arrive un-
predictably, so all relaying nodes must always have
their radios on. It is well-known that sensors con-
sume significant amount of power in the listening
mode [9], [10]. For example, in MICA2, the power
consumed in listensing/receiving mode (7mW) is
very close to the power consumed in transmit-
ting mode (10mW); while in MICAz, the power



consumed in listening/receiving mode (19.7mW)
is even higher than in transmitting mode (17mW)
[11]. Thus, to conserve power in sensor networks,
we must put sensors into sleep as often as possible,
while still guaranteeing cache consistency require-
ments.

1) Erratic Data Sources and Stochastic Con-
sistency: Power optimization is particularly chal-
lenging in sensor networks that monitor erratic
data sources [12]. Erratic data are numerical data
that change frequently and unpredictably, such as
temperature, pressure, and humidity, and represent
an important class of sensor data. It is hard to
predict erratic data behavior, making it hard to
ensure cache-source consistency.

Strict cache-source consistency is unrealistic in
wireless sensor networks, since power is limited
and wireless channels are volatile. However, users
are often willing to tolerate some error, as long as
it remains within pre-specified bounds. Stochastic
consistency, first introduced in [12], captures this
idea, and guarantees that cache-source deviation is
within a user-specified error bound with a certain
confidence level.

For example, in a sensor network to monitor
temperatures, a user may be satisfied with a value
within ����� of the true value, with confidence �	��
 .
Therefore, the source sensor needs to update the
cached copy at the BS only when the cache-source
deviation is no longer within �	��� with confidence����
 . We address the issue of maintaining stochastic
consistency with minimum power consumption in
sensor networks.

B. Dynamic Duty Cycling to Reduce Power Con-
sumption

Our goal is to let each sensor node dynamically
adjust its duty cycle so that it is in sleep most of the
time, but has its radio on whenever an update must
be relayed to the BS. Lowering duty cycles is known
to be an effective way to extend the lifetime of the
network [1], [13]–[15]. Our approach is illustrated
in Figure 1, in which 	� and �� are two sources,
whose updates are delivered to the BS through ��
and �� . Both �� and �� turn on their radios only
when an update packet is expected to arrive. The key
challenge is how to let each relaying node estimate

time

: wake−up periodSensors

BS ���������
��� ���
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� �

Fig. 1. Duty-cycling sensor nodes

the arrival time of the next update, so that it can
adjust its duty cycles accordingly.

Approaches such as GAF [1] and SPAN [15] try
to maintain a routing backbone to ensure connectiv-
ity of the wireless ad hoc network, while allowing
as many nodes as possible to sleep. At least one
routing node is guaranteed to be within the trans-
mission range of any node. GAF uses geographic
location information (from GPS) to determine node
equivalance for routing. SPAN uses a distributed
randomized algorithm to maintain the backbone.
Unfortunately, neither scheme exploits source data
characteristics which may not require a connected
backbone at all times.

In a sample network with 100 nodes uniformly
distributed in a �����	�! #"%$��	�� region mentioned
in [1], the resulting GAF routing backbone consists
of 45 nodes. Hence, GAF always has 45 nodes
listening, whether or not a message is active. In
contrast, our approach captures source data char-
acteristics, so that each source can predict update
times, letting relaying nodes safely sleep till that
time. Our approach will save more power especially
under light source rates, since the relaying nodes are
allowed to sleep more often than in GAF or SPAN
(see Fig. 6).

We predict update times using the Brownian
motion model [16], a stochastic model widely used
to characterize randomly fluctuating data. Based
on the user-provided consistency requirement and
current data characteristics, the model adaptively
determines the due time of the next update so
that errors are bounded. The next update time is
piggybacked on the current update message and
delivered to the relaying nodes en route to the BS,
which can safely turn off their radios and sleep
before the arrival of the next update.

In our approach, each source delivers updates



only at the times predicted by the Brownian mo-
tion model. In contrast, in approaches such as [7],
updates are delivered at the times the source detects
that the actual value has exceeded the error bound.
The correctness of our approach is determined
solely by how well our model matches future data
behaviour under the stochastic consistency model.
As shown by our extensive experiments (see Sec-
tion VI), our method achieves high consistency
(or fidelity) on various real-life sensor data, while
saving a significant amount of power.

C. Our Contributions

We make several contributions in this paper. First,
we experimentally verify that sensor data, such as
temperature, humidity and ocean salinity, can be
modeled as Brownian motions. This model has been
successfully used in earlier work to model many
other real-world erratic data sources [12], [17]. We
confirm that model parameters, such as the drift
and diffusion parameters, can capture the short-term
linear trend and variance, respectively, with high
confidence.

Next, we propose a dynamic duty cycling scheme
based on the Brownian motion model, to allow
nodes to turn off their radios frequently, while
guaranteeing consistency requirements. A node will
turn on its radio only when an update message is
expected to arrive. In general, duty cycles are driven
by the consistency requirements and source data
characteristics.

Finally, we verify the correctness and efficiency
of our approach with extensive simulations, which
show that we can achieve high fidelity using far less
power than GAF.

The rest of this paper is organized as follows: We
review some related work in Section II. Our system
architecture and routing scheme are described in
Section III. In Section IV, we briefly introduce the
Brownian motion model and perform experiments
to verify its applicability on many sensor generated
data. Our dynamic duty cycling scheme is presented
in Section V. The experimental results are presented
in Section VI. Section VII concludes our work.

II. RELATED WORK

Various consistency models have been proposed
to accommodate different requirements for cache

freshness. For example, quasi-caching [18] allows
the cached value to deviate from the source value
in a controlled way (say, delay-bounded or error-
bounded). Probabilistic consistency [19] guarantees
that cached values are temporally consistent with
the true value with a probability & . The concept
of stochastic consistency was introduced in [12],
and aims to provide an error-bounded cached copy
with a given confidence. This model has been
successfully used in pull-based replicated systems
for erratic data streams [12]. We use this model in
sensor environment.

A. Duty Cycling

Dynamic duty cycling is another technique
widely used to achieve power efficiency in sen-
sor networks. In GAF [1] and SPAN [15], nodes
adaptively switch between sleeping and listening,
while guaranteeing the existence of a capacity-
preserving backbone routing network at any time.
In GAF, each node used geographic location in-
formation (provided by GPS) to associate itself
with a virtual grid. All the nodes in a virtual grid
are equivalent for routing. SPAN is a distributed
randomized algorithm, in which nodes can locally
determine whether to sleep or stay awake in the
backbone routing network, without knowledge of
their geographic locations. Periodically, the set of
routing nodes is changed to ensure even power
dissipation. LEACH [20] aims to provide a cluster-
based routing hierarchy where all sensor nodes are
divided into clusters. A cluster head is elected to
route data on behalf of the other nodes in each
cluster. In our approach, duty cycles are driven by
the source update rates, which are in turn governed
by consistency requirements. In Section VI, we
show that our approach lets sensors sleep more
often, thus saving more power than GAF.

A periodic duty cycling scheme was introduced
in S-MAC [21], in which nodes periodically switch
between the listening and sleeping modes to con-
serve power. Neighbouring nodes exchange their
listen/sleep schedules to synchronize their duty cy-
cles. To deliver a packet, a sending node waits till
the next hop node wakes up. However, significant
latency will still be introduced since delays are
accumulated along multiple-hop paths to the BS. A
similar scheme was proposed in STEM [14], which



assumes that two separate radios, a wakeup radio
and a data radio, are available to each sensor node.
To send a packet, the wakeup radio of the sending
node polls the receiving node until it wakes up, and
turns on its data radio. Again, data packets will
experience significant delays because such delays
at each hop will accumulate over the route. Both
schemes are clearly not suitable in our situation,
where updates must reach the BS as soon as pos-
sible, to ensure cache freshness. In TAG [3], the
nodes along the aggregation tree are periodically
synchronized with each other to relay and aggregate
new sensor data. Since the source sampling rate is
specified in the query, their synchronization scheme
is much simpler than ours.

The success of our scheme relies on modeling
the underlying data as Brownian motions. Apply-
ing probabilistic models to sensor data has been
shown to be effective in conserving power while
providing quality results [17], [22], [23]. Section IV
confirms earlier work that has shown that Brownian
motions can model erratic data streams with high
confidence [12], [17].

B. Stochastic Consistency

Stochastic consistency [12] guarantees that the
deviation between a cached value and the true
value is within a pre-specified error bound ' with
a confidence at least & . Let (!)+*�,.- and /0)1*2,.- be the
source and the cached values, respectively, of object3 ) at time , . The cache is stochastically consistent
with the source at time , if465�7�8 (�)1*2,.-:9;/0)+*�,.- 8=< '?>A@B&DC (1)

We must update the cached copies frequently
enough to maintain stochastic consistency. On the
other hand, to save cache/source communications,
we must send the updates right before the confi-
dence that cache-source deviation is within ' starts
to drop below & . In Section IV, we discuss how to
determine update times under this model.

III. OUR SYSTEM

Sensor networks typically consist of a BS with
ample resources and a set of resource-limited sensor
nodes communicating with the BS over multi-hop
wireless channels (see Figure 2). The BS serves as
the destination for sensor data, and as the interface

.  .  .
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Fig. 2. The BS Architecture

to user queries. It maintains caches to reduce com-
munications and provide prompt responses. Our fo-
cus is on how to maintain cache-source consistency
in a power-efficient way. Our caching system can
support a broad spectrum of queries, ranging from
monitoring single sensor’s readings to aggregate
queries as in [3], [7].

Fig. 2 also shows an architectural schematic for
the BS. The cache manager manages all cached
objects. The object 3 ) represents a data source
sensed by sensor t) . Each object 3 ) is associated
with a consistency requirement *P'�)bub&?)2- determined
by user requirements. (Converting user requirements
to object consistency requirements is an orthogonal
concern we do not address. An example can be
found in [7].)

An object’s consistency requirement is also avail-
able at the corresponding source sensor, which
determines when a cache update must be sam-
pled and delivered. A cache update takes the form*v(�)1*2,.-eu�wx)1*�,.-.- , where (�)+*�,.- is the sampled value at
time , , and wy)1*�,.- is the current drift parameter
estimated at the source. The drift parameter is
a Brownian motion parameter and represents the
current linear trend of 3 ) . It helps to provide a more
accurate cache value at the BS (see Section V-A).
The next update time z{,1| is adaptively evaluated



under the stochastic consistency model, and in-
cluded with each update so that each relaying node
en route can sleep for time z{,1| . The BS responds
to queries by retrieving the current values from the
cache, calculating query results, and returning them
to users.

The RN manager maintains a view of the rout-
ing network (RN), which is a collection of routes
through which sensors may reach the BS. Based
on this information, the BS can determine a power-
efficient route for each newly cached object source
(see Section III-A).

A. Routing

In principle, our dynamic duty cycling scheme
is independent of the routing protocol, as long as
routes are persistent, that is, the route for each
source remains unchanged for a certain time. This
property allows nodes on each route to obtain the
wake-up time for the next update from each update
message (see Section V-C). Many ad hoc routing
protocols for sensor networks generate persistent
routes [3], [4], [24], [25]. In our work, we use
a energy-aware routing scheme similar to [24]
and [26], to avoid bottleneck nodes that would
otherwise dissipate their power much faster than
the others. First, we build a routing network (RN)
through which sensor nodes can communicate with
the BS. Typically, the RN includes good-quality
wireless links to ensure reliable transmissions. Be-
sides, as power is our major concern, it is desirable
that each route in the RN be the shortest path from
the source to the BS.

A common approach to building a RN is to
assign a level number to each sensor node depending
on its distance to the BS [3], [6], [26]. The BS
is at level 0; Those nodes 1-hop away from the
BS are at level 1, and so on. Initially, the BS
broadcasts a query message containing its ID and
level number. Upon receiving this message from
its neighbours, each node determines its level and
parents, and rebroadcasts the query message with its
own ID and level number. After the query messages
have flooded the entire network, a RN is formed
where each node has one or more parents through
which it can send packets towards the BS. Any path
is the shortest one in the resulting RN. A more
detailed description of constructing the RN can be

found in [26]. The above algorithm must be run
periodically to accommodate topology changes. To
allow the BS maintain a view of the RN, each node
must send a message containing its level number
and parents to the BS.

After the RN is set up, the RN manager is respon-
sible for determining a route for each newly cached
object source. To balance power consumption, we
choose routes with the maximum remaining power.
A route’s remaining power is defined as the mini-
mum remaining power on its en-route nodes. Each
node periodically determines its remaining power
level and piggybacks the value on regular update
messages destined for the BS. The RN manager
periodically re-evaluates the remaining power on
each route and chooses the one with the maximum
power left.

IV. MODELING SENSOR DATA

Sensor data are often numerical values, and
change continuously. Modeling their behavior is
central to our dynamic duty cycling scheme.

A. Standard and Drifting Brownian Motion Models
The Brownian motion model [27] is a continuous-

time stochastic process widely used to characterize
highly fluctuating data, and has been successfully
used to model stock prices [28] and other erratic
data sources [12] such as temperature and computer
system loads. A Standard Brownian motion (SBM)} *�,.- satisfies:

1) ~B�p������� ,
2) ~B�[�v�=��~B�p��� is normally distributed with mean � and

variance ���{� ( �y��� ),
3) ~B�[�v����~B����� is independent of ~B�G�t����~B�G��� if �����v�v�

and �[���P��� are non-overlapping time intervals.

Condition (2) requires changes in data values in
an interval to be normally distributed, with variance
proportional to the interval length. Intuitively, the
longer the increment interval, the harder it is to
predict data values. Condition (3) indicates that no-
overlapping increments are independent.

A variant of the SBM is the drifting Brownian
motion (DBM) ��*�,.- , which includes a secular drift
in the expectation of the process. The increment of��*�,.- is modeled as:z���*�,.-���w6*�,.-mz�,�����*�,.-.z } *�,.-0u (2)

where w�*�,.- and �6*2,.- are the drift and diffusion
parameters for ��*�,.- , respectively.

} *�,.- is a SBM



time temp traces (Depth) salinity traces (Long./Lat.) humd traces (Long./Lat.) slp traces (Long./Lat.)
interval 36M 47M 5N/180W 2N/180W 0N/155W 2N/140W 2N/110W 2S/95W
10 min 75.21% 72.96% 77.44% 76.65% 80.14% 81.13% 76.54% 80.12%
15 min 72.38% 75.90% 76.26% 76.60% 79.47% 79.79% 75.88% 79.17%
20 min 73.45% 73.55% 76.10% 75.15% 76.45% 77.31% 75.45% 76.92%
30 min 71.47% 66.13% 75.00% 74.84% 72.60% 75.14% 74.38% 73.04%

TABLE I. AVERAGE � -VALUES FROM THE W-S TEST FOR VARIOUS SENSOR TRACES AND TIME INTERVALS, CONFIDENCE INTERVAL:

95%, ALL TRACES OBTAINED FROM TAO PROJECT.

process. The drift parameter models a secular up-
ward or downward trend in the random data, while
the diffusion parameter models the randomness of
the data. Hence, the DBM is a combination of
a predictable linear trend and a Brownian mo-
tion process. It is easy to see that the incrementz���*�,.- also follows a Normal distribution: z���*�,.-6 ¡ *vw6*2,.-.z{,0u�� � *�,.-mz�,.- . In Section IV-B, we show
that the DBM model is applicable to many real-life
sensor data.

B. Verifying DBM on Sensor Data

In [12], we have already shown that real-life data
sources such as stock traces, ocean temperatures,
and system load data can be successfully modeled as
DBM. In this work, we further verify that this model
is appropriate for a wider variety of sensor genearted
data, using the same methodology as in [12]. Since
data increments are normally distributed in the
DBM model, we will perform normality tests [29]
on increments of sensed data. Various methods
for normality testing have been proposed, and, as
explained in [12], the Wilk-Shapiro (W-S) test [29]
is the most appropriate in our case.

Our sensor data traces were taken from the TAO
project [30] at the Pacific Marine Environmental
Laboratory (PMEL). We tested four categories of
data generated by ocean sensors: ocean temperature
(temp), relative humidity (humd), salinity (salt), and
sea level pressure (slp). Each category included data
traces generated at different geographical locations
(Longitude/Latitude) or ocean depths (Depth). Each
data trace comprised about a year’s data sampled at
every 1 minute. Table I shows the results of the W-S
test on these traces.

Each value in Table I represents the average & -
value [16] evaluated on increment samples over a
certain time interval. The W-S test calculates a test
statistic for each data series. The & -value measures

the probability that the test statistic will take on a
value that is at least as extreme as the calculated
value when the samples are normal. The & -value
measures the probability that the tested data are
drawn from a normal distribution. The significance
level ( ¢ ) of our test is set to 0.05. The larger the& -value, the stronger the confidence with which we
may accept the samples as normal [29]. As shown in
Table I, The & -values for our data are far higher than¢ , indicating that we can believe the increments are
normal with high confidence. For longer intervals,
the & -value drops somewhat, suggesting the model
may evolve in the long run.

The W-S test strongly supports our hypothesis
that the sensor data are DBMs. On the other hand,
since the model may evolve along with time, it is
important to periodically estimate the model param-
eters w6*2,.- and �6*2,.- to accurately characterize the
underlying data. We will discuss how to estimate
the two parameters in Section V-B.

V. DYNAMIC DUTY CYCLING

We achieve power efficiency by operating sensors
in low duty cycles, while guaranteeing that cache
updates will arrive on time at the BS. The update
intervals change dynamically due to the erratic
nature of data sources. An approach to maintaining
cache consistency similar to that of [7] would be
for each source to constantly sample the underlying
data. If it finds that the sampled value deviates from
the last update by more than ' , it forwards the value
as a cache update. This approach forces the relaying
nodes to be awake all the time since update times are
unpredictable. We need a more intelligent approach
that can predict the due time of the next update, and
let the relaying nodes sleep safely until that time.

Our approach models erratic sensor sources as
Brownian motions, estimates the times when the
cache-source deviation is expected to exceed the



error bound, and schedules the next cache update
at that time. When a source is ready to deliver an
update, it also determines the time interval z{,m| until
the next update, based on the DBM model. The
source then sends the update along with z{,m| , so that
each relaying node can obtain z{,m| . Since it knows
that the next update from the source will arrive after
time z{,+| , it can safely turn off its radio and sleep for
time z{,+| . Our approach allows the relaying nodes to
dynamically synchronize with each other and form
a connected path whenever an update is ready to be
sent.

We discuss how to adaptively derive z{,m| in Sec-
tion V-A. The drift and diffusion parameters must
be estimated regularly from the underlying data.
The issue of parameter estimation is discussed in
Section V-B. Our scheme to perform dynamic duty
cycling is presented in Section V-C. In Section V-D,
we analyze the power cost of our scheme.

A. Determining Cache Update Times

The drift and diffusion parameters characterize
the current linear trend and randomness, respec-
tively, of the sensor data. Each sensor source can
use these parameters to adaptively determine z{,.| ,
the time till the next update. Let ,.£ be the last time
an update was delivered for object 3 ) , and (�)1*2,.- and/�)1*2,.- be the true and cached values of 3 ) at time, , respectively. Stochastic consistency requires the
next update to be delivered before our confidence
that the cache-source deviation is within ' drops
below & . We must solve z{,1| from the following
equation:465�7�8 (�)1*2,1£¤��z{,+|!-:9;/0)+*�,1£:�%z{,+|!- 8¥< '?>x�;&DC (3)

Based on the DBM, we have (!)1*2,1£¦�§z{,.-6�¨(�)1*�,1£e-¥�wx)1*�,1£�-.z{,����?).*�,1£�-.z } *�,.- , if wy)+*�,1£0- and �?)1*�,1£e- are the
drift and diffusion parameters estimated at time ,.£ ,
and

} *�,.- is the SBM (see Equation 2). Clearly, the
expected value of (!)+*�,1£6�©z{,.- is (�)m*2,1£0-ª�%wy)1*2,1£e-.z{, ,
which is also the best estimate the cache can make
at time ,1£«�¬z{, , given that the last cache update
is *v(�)m*�,1£0-0u�wy)+*�,1£0-.- . Therefore, /0)1*2,1£D�z{,.-6�¨(�)1*�,1£e-��wx)1*�,1£�-.z{, . We can easily derive that the cache-source
deviation is normally distributed:(�)1*2,1£¤��z�,.-¤9®/�)1*2,1£¤��z{,.-¯  ¡ *P��u�� �) *�,1£0-mz{,.-eC (4)

From Equations 3 and 4, we can obtain:z{,+|�� �� ° '�?)m*2,1£e-�± 5m²0³ � *G&´-�µ � u (5)

where ± 5m²e³ � *G&´- is the well-known inverse error
function [31]. The detailed derivation of Equation 5
can be found in the Appendix.z{,+| must be recomputed on-line at sensor
sources, based on the current ��)m*2,.- . Since ± 5.² ³ � *G&´-
can be precomputed and stored for the required & ,
computing z{,1| requires only some simple arith-
metic operations, and is easily affordable for sen-
sors.

B. Estimating Model Parameters

Obtaining accurate estimates for wD)1*2,.- and �?)m*�,.-
is critical to the success of our approach. According
to the DBM model, increments follow the normal
distribution

¡ *vwy)m*�,.-mz�,0u¶� �) *�,.-mz{,.- . Assuming bothwy)+*�,.- and �?) remain relatively constant over small
time intervals, we may estimate w�)1*�,.- and �?)m*�,.-
by estimating the mean and variance of increment
samples over a small time interval. The simplest
unbiased estimators [16] of the mean and variance
of a sample ·t¸D�eu�C�C¹C¹u¶¸¦º¥» are ¼¸½� *b¾¿¸¦)2-¶À!Á and¼� � �Â¾Ã*�¸¦)�9Ä¼¸x- � À?*vÁÅ9©��- .

Let ¼wy)1*2,.- and ¼�?)m*2,.- be the estimated values ofwy)+*�,.- and �?)m*�,.- , respectively. Our estimation scheme
works as follows: Let ,�� be the time of the next
update. Starting at time ,��Æ9ÈÇ , we sample the
underlying data every É time units, where É�ÊÇ . Thus, at time ,�� , we collect Á data samples:(�) 7 �¹>bu¶(�) 7 ��>Pu�ËtËtË�u¶(�) 7 Á´> , where Á � Ç!À	É;�¿� . The
obtained ÁB9Ì� increments (!) 7 Í �Î��>¤9Â(�) 7 Í > ( � <Í ÊÏÁ ) are independent normal samples, and sinceÇ is small, these samples are identically distributed.
Thus, we calculate ¼w�)+*�,��.- as follows:¼wy)1*2,��¶-�� *v(�) 7 Áx>�9(�) 7 �¹>�-Ç C (6)

We can also estimate obtain ¼��)m*2,��¶- from:¼�?) � *2,��¶-�� �*vÁÅ9��	-.É º ³ �Ð Ñ.Ò � *v(�) 7 Í �Ó�¹>?9B(�) 7 Í >¦9Ô¼wy)^*�,��¶-.- � C
(7)

In typical sensors, such as those for light, tempera-
ture, or magnetic fields, the sampling time is on the
order of ��C[�� � [2].



As explained above, a relatively small Ç ensures
accurate estimation of w�)1*�,.- and �¦)+*�,.- , since these
parameters remain constant during small intervals
with high probability. On the other hand, a smaller É
leads to more samples but may increase power con-
sumption. A larger É saves power but may result in
inaccurate estimates due to too few samples. Thus,
we must choose both Ç and É carefully to balance
estimation accuracy and power consumption. In our
experiments (see Section VI), we set ÇÕ� �t��É .
Our results show that the resulting sample size is
appropriate for our purpose.

C. Our Scheme

Each node can be in the active or idle state,
depending on whether or not it is actively deliv-
ering/relaying update packets. Initially, all nodes
are idle. During the RN setup phase, each node is
assigned a wakeup interval ,mÖ . It wakes up every,+Ö time units to check for pending caching requests
from the BS. Upon receiving a request ×Æ*P�)2- , an idle
node switches to the active state, since it knows it
will participate in relaying updates for source t) .
The choice of ,1Ö must balance power consumption
against response time (how long the BS must wait
until receiving the first cache update). Larger ,.Ö
values let nodes sleep longer, but increase response
times. We chose a moderate value for ,mÖ in our
experiments.

When the BS must query sensor t) , it first con-
sults the RN manager to find a route to t) (see
Section III-A). It then sends the request ×Æ*P�)2- and
the consistency requirement to t) . If a node  Ñ �
along the route finds the next node  Ñ � to be still
asleep,  Ñ � will poll  Ñ � until it wakes up. Node  Ñ �
records the sending node  Ñ � , so that it knows where
to deliver �) ’s updates. Each en-route node remains
in listening mode until it receives the first update
from ¹) , and lets the z{,1| supplied by �) drive its
duty cycles after that point.

At the source �) , z�,+| is evaluated on a regular
basis according to Equation 5. A series of samples
must be collected for parameter estimation before
delivering the update message. Each update message
contains the most recent sample (x*�,1|.Ø0Ù1Ú1ÛGÜ�- , the drift
parameter w�*�,1|mØ0Ù1ÚmÛGÜ�- , and the next z{,1| .

Each node on the return route to the BS obtainsz{,+| from the message containing the sensor update,

and schedules to wake up at ,mº�ÜvÝ�Ûy�Ó,1Þ2|eßbß	�àz{,+|á9�,1Ü ,
where ,1Þ�|0ß^ß is the current system time, and ,.Ü is
a small time offset to accommodate variations in
wireless transmission delays. In our simulations,
we set ,1ÜÓ� �t�� � with moderate traffic in the
network. Since a node may relay messages for
several sources, it maintains a list to hold the future
wakeup times. After relaying an update message,
the node can safely turn off its radio and sleep until
the next time entry in the list is due. Since the BS
may make data requests while the node is asleep,
the node must check for such requests to avoid poor
response times. If the time interval until the next
wakeup time entry is larger than ,mÖ , the node must
wake up at ,1Ö to perform this check. More details
on our scheme can be found in [32].

Every time a user requests 3 ) ’s value from the
cache at the BS, the cache manager returns (�)1*2,1âp-?�wy)+*�,1âp-¹*2,1Þ�|0ß^ß¥9�,1â�- , where ,mÞ2|0ß^ß is the current time, and,1â is the last time an update message was received.
As discussed in Section V-A, the returned value is
the best estimate the cache is able to make at time,1Þ2|0ß^ß .

Strict clock synchronization among sensor nodes
is not necessary in our scheme since z�,m| is a
time interval rather than an absolute time. Clock
synchronization may be performed as dictated by
considerations not related to our approach. We could
use the same synchronization technique as in [21].

D. Analysis of Power Consumption

Power is charged for communication, computa-
tion, and data sampling on sensor nodes. We ignore
the power consumed by computation in our analysis
since it is orders of magnitude lower than that by
communication [2]. A sensor’s radio may be in one
of the following modes: transmitting (T), receiving
(R), idle(I), or sleeping (S). In the idle mode, it
listens to the wireless channel, waiting for incoming
packets. In the sleeping mode, it turns off its radio,
so the consumed power is negligible compared with
other modes. Let the power consumed in transmit-
ting, receiving, and idle mode be ãåä , ã:æ , and ãåç ,
respectively, and let ã¤è be the power consumed by
sampling the underlying data. The total consumed
power is simply ã¬�Óãªä��%ãåæÆ�%ãåç:�%ãåè .

Our approach enables each node to remain in
the sleeping mode most of the time and wake up



only when an update is expected to arrive. Ideally,
the idle time on each node is zero. Thus, ã �ãDä%�Èã:æ%�éã:è . Let ãªÛGê and ãªßPê be the power
consumed for transmitting and receiving one bit
of data, respectively, and let ã¤ë ê be the power
consumed by sampling one piece of data from the
environment (we assume each sensor has only one
sensing module). Node t) ’s power consumption rate
at time , isãá)1*�,.-�� ° Ðëpì�í�æ�î�ï Ñ *�,.- µ�ð *PãáÛGê¤��ãªßPê�-¶�ñ *b¹)2- ï )+*�,.- ° ð ãªÛGê:�Â* ÇÉ �ò��-.ãåëPê µ u (8)

where ð is the size of the update message, ×�) is
the set of sources whose updates are relayed by �) ,ï Ñ *2,.- is the rate of updates generated by source  Ñ
at time , , and

ñ *b�)2- is an indicator function which is
1 if ¹) is also a source, and 0 otherwise. Equation 8
suggests that a relaying node’s power consumption
is proportional to the aggregate amount of update
traffic it relays, and a source’s power consumption
is also governed its updating frequency.

Combining Equations 5 and 8, we can further
obtain:ãá)1*�,.-6� ° Ðë�ì�í�æ�î *vó Ñ � �Ñ *�,.-.- µ ð *PãáÛGê¤��ãªßPê0-¶�ñ *b¹)�-1ó?)�� �) *2,.- ° ð ãªÛGê:�Â* ÇÉ �Ó�t-.ã:ëvê µ (9)

where ó Ñ �Ä��*0ô�õpö�÷�ø+ù Ømì.úû ì - � . In Equation 9, a relaying
node’s power consumption ã:)+*�,.- is a function of
its upstream sources’ consistency requirements ( ' Ñ
and & Ñ ) and their current data variance ( � �Ñ *2,.- ). Not
surprisingly, the higher the variance, the greater the
number of updates to be delivered to maintain a cer-
tain level of consistency, and the greater the power
consumption. On the other hand, a more stringent
consistency requirement (small ' Ñ and large & Ñ )
also results in higher power consumption, which is
illustrated in Fig. 6.

If ¹) is a source, its power consumption is also
governed by its own consistency requirement ( '�)
and &?) ) and data variance ( � �) *2,.- ). Every time an
update is required, additional Ç�À�É samples must be
collected for parameter estimation (see Equation 9).

Parameters Default Values
Transport/MAC protocol UDP/802.11
Sensor’s outgoing queue size 50
Payload size for each sensor reading 16 bytes
Radio propagation model Shadowing
Communication/interference range ü¶ýmþ.ÿ��.ý¶ýmþ.ÿ
Transmit/receive power 31.2 mW/22.2 mW

TABLE II. SOME SIMULATION PARAMETERS

Since the power required for sampling ( ã�ëPê ) is
very low for many typical sensors such as light,
temperature, and accelerometer [2] (on the order of��C[�6w�� ), such sampling overhead is affordable.

VI. EXPERIMENTS

We conducted extensive experiments to demon-
strate the correctness and efficiency of our dynamic
duty cycling scheme using the ns-2 simulation pack-
age [33]. We first introduce our simulation setup
in Section VI-A. Then, we show how well we can
satisfy the cache consistency requirements under our
scheme in Section VI-B. Finally, we present the
results of power consumption in Section VI-C.

A. Simulation Setup

We uniformly deployed 100 sensor nodes in a��������" �t���	�� � region with the BS at the center.
We chose UDP as the transport layer protocol and
802.11 [34] as the MAC layer protocol. The ns-
2 simulator currently supports three propagation
models, among which the shadowing model [35] is
the most realistic and widely-used. This model has
two parts: a path loss model, and a statistical model
for the variation of reception at certain distances.
We set the value of the path loss exponent as 2.0,
and the value of the shadowing deviation as 4.0,
representing a typical outdoor environment. We set
the radio communication range to �	���! and chose
0.95 as the rate of correct reception. Some parameter
settings are shown in Table II.

A subset of sensor nodes were chosen as sources.
We used various categories of real-life sensor data
as the source traces such as the ocean temperature
traces (temp), the relative humidity traces (humd),
and the ocean salinity traces (salt), all obtained
from the TAO project [30] (see Section IV-B). Each
source was associated with one data trace every
time. In each experiment, we used 5 different traces
from each category and demonstrated the average



results. We purposely selected sources from the
most distant nodes from the BS, since it is more
challenging to maintain cache consistency for the
distant sources. We chose a fixed payload size of
16 bytes for each update message including the data
value, the drift parameter, and the z{,m| value.

To measure power, we adopted the power param-
eters from the Chipcon CC1000 RF transceiver [10],
which is used as the radio module in MICA2
and MICA2DOT sensor models. When operated
at ��$	$ ð ���

, its receiving power is �	��CI�! } , and
the transmitting power is $��	CI�! } , with the output
power of �	��
  . In the ns-2 power model, each
node was set to the same power level initially,
and we measured the remaining power after the
simulation ran for some time.

B. Measuring the Fidelity

We define the fidelity ï * 3 )�- as the percentage of
time that the object 3 ) ’s source-cache deviation is
within the error bound, that is,

ï * 3 )2-�� the time cache-source error
< '

the total simulation time
C (10)

Fidelity measures how well our scheme meets
the consistency requirements. The higher the ï * 3 )2-value, the more confidence we have to achieve
stochastic consistency. Ideally, the fidelity value
must match the user-provided confidence probabil-
ity & , indicating the drifting Brownian motion model
is accurate in characterizing source data.

Fig. 3 shows the fidelity values for the salt and
humd traces under absolute error bounds ( ' ) and rel-
ative error bounds ( '¶ß�
 ), respectively. We randomly
generated a topology of 100 nodes and picked a
source � at the highest level. We associated differ-
ent data traces to �� one at a time, and measured
its fidelity. Each data point in Fig. 3 represents an
average fidelity value over five traces from the same
category. To generate a certain amount of traffic
in the network, we chose ten other sources in the
topology, each associated with the same data trace,
with a randomly chosen error bound.

Our scheme clearly achieves high fidelity for ��
under both categories of traces. The obtained fidelity
value is very close to the corresponding confidence
level & . For example, under the confidence level����
 , the average fidelity for the salt trace is �	��CI�	
 ,
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Fig. 3. The fidelity

while it is �	��CI�	
 for the humd trace. This is
strong evidence for the accuracy of our DBM-based
approach.

In Fig. 4, we show the impact of different network
traffic loads on the fidelity. We used the same 100-
node topology and chose a source  � , associated
with the temp trace with the error bound 0.1, at
the highest level. We also chose a certain number
of other nodes as sources, each associated with
the same temp trace and the same error bound.
We varied the number of sources from 10–65 and
observed �� ’s fidelity. The amount of traffic in
the network increases as the number of sources
increases. Our scheme achieves a high and stable
fidelity at confidence levels of ����
 and ���	
 .

We also compared our scheme with GAF [1], an
adaptive scheme that maintains a routing backbone
in the wireless network, and puts other nodes to
sleep as much as possible. We simulated GAF on
the top of AODV [36]. With the same topology and
input traces, GAF achieves the same fidelity as our
scheme under light traffic loads, but much lower
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fidelity under heavy traffic loads.

This behavior is explained by Fig. 5, which shows
the percentage of �� ’s update packets received by
the BS, under various traffic loads. Starting from
45 sources, the percentage of received packets be-
gins to drop rapidly under GAF, while it remains
stable under our scheme. Since GAF ensures that
a connected routing backbone is always available,
heavy traffic loads will lead to severe contention in
the wireless channel. Our scheme, however, is more
flexible in adjusting each node’s duty cycle. Traf-
fic is also more balanced using our load-balanced
routing scheme, causing less channel contention and
increasing throughput under heavy traffic loads.
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C. Power Consumption

In Fig. 6, we show the average power consump-
tion per node in the 100-node sensor network, under
our scheme and under GAF. Let �«) ê and ��)�� be
node ¹) ’s intial energy level and remaining energy

after simulation, respectively. The average power
consumption per node is

� î ù � î ê ³ � î � ú�v£+£ . To ensure that
no node runs out of power during our simulation,
we set a high initial energy level (100 J). We chose
15 sources located as far from the BS as possible,
each associated with the same temp trace and the
same consistency requirement. We increased the
error bound from 0.1 to 0.45 and measured the
power consumption for a simulation time of 1000�t/¹ .

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

absolute error bound (ε)
po

w
er

 c
on

su
m

pt
io

n 
(J

ou
le

)

our scheme, p=0.90
our scheme, p=0.95
GAF, p=0.90
GAF, p=0.95

Fig. 6. The average power consumption per node (temp trace, 1000�! !"!� )
In general, our approach consumes far less power

than GAF. As the error bound increases, the differ-
ence is more significant, since fewer updates are
generated, and our approach allows the nodes to
sleep more often. More power is consumed for
a higher confidence level (&Î� ��Cf��� ) since more
updates must be generated and delivered to the BS.
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To compare sensor network lifetimes under our



scheme and under GAF, we show the fraction of
nodes surviving after a given simulation time in
Fig. 7. The initial energy level was set to 15 J. For
simulation time less than 600 ��t/� , all the nodes
survive under our scheme as well as under GAF.
However, beyond 600 �t/¹ , the survivor fraction
drops rapidly under GAF, while it still remains���	��
 under our scheme. With &Õ� ��Cf� , we can
achieve $&%	
 longer network lifetime than GAF,
while with &à�¨��Cf��� , our lifetime is ����
 longer.

VII. CONCLUSIONS

We have proposed a novel approach to maintain
stochastic consistency for erratic sensor sources. We
achieve power efficiency by dynamically adjusting
sensor nodes’ duty cycles. A node is guaranteed to
be awake when an update message needs to be de-
livered/relayed, and asleep at other times. We model
erratic sensor sources as drifting Brownian motions,
and adpatively evaluate the model parameters at the
sources. We have verified on various categories of
real-life sensor traces that the DBM model faithfully
captures the erratic data characteristics in the short
term, and helps the source to adaptively evaluate
when the next cache update is due, and notify the
relaying nodes to wake up before this time.

Our scheme achieves high fidelity under the
stochastic consistency model. Our fidelity is higher
than that of GAF, which maintains a connected
routing backbone and puts the other nodes to sleep,
under heavy traffic loads and stringent consistency
requirements, suggesting that we can attain higher
throughput than GAF. Our approach also consumes
significantly less power than GAF, since it is more
flexible in adjusting each node’s duty cycles, thus
saving more power.

As our future work, we plan to implement our
approach on real sensors such as MICA nodes to
evaluate its performance.

APPENDIX

Derivation of z{,1|
We must solve z{,1| from Equation 3. Since the

cache-source deviation is normally distributed in the
DBM model, we have(�)1*2,1£e��z�,+|!-09 /�)m*2,1£e� z{,+|!-6  ¡ *v��u�� �) *�,1£e-.z{,+|!-0C (11)

Combining Equations 3 and 11, we further obtain:&Å� �' ��( )+*³�* ±�,.- ° 9 ¸ �� µ �	¸áu (12)

where / � û0 î ù ÛGê1ú21 3xÛ54 . We can rewrite Equation 12
as: ± 5.² * /' � -¯�®&Du (13)

where ± 5.² * � - is the well-known error function [37].
The value of z�,+| can be obtained using the inverse
error function denoted by ± 5m² ³ � , which can be
calculated using standard methods.z{,+|�� �� ° '�?)m*2,1£e-�± 5m² ³ � *G&´-�µ � C (14)
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