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Cognitive Barriers During Monitoring-Based Commissioning of Buildings 
 

Abstract: Monitoring-based commissioning (MBCx) is a continuous building energy 

management process used to optimize energy performance in buildings. Although monitoring-

based commissioning (MBCx) can reduce energy waste by up to 20%, many buildings still 

underperform due to issues such as unnoticed system faults and inefficient operational 

procedures. While there are technical barriers that impede the MBCx process, such as data 

quality, the focuses of this paper are the non-technical, behavioral and organizational, barriers 

that contribute to issues initiating and implementing MBCx. In particular, this paper discusses 

cognitive biases, which can lead to suboptimal outcomes in energy efficiency decisions, resulting 

in missed opportunities for energy savings. This paper provides evidence of cognitive biases in 

decisions during the MBCx process using qualitative data from over 40 public and private sector 

organizations. The results describe barriers resulting from cognitive biases, listed in descending 

order of occurrence, including: risk aversion, social norms, choice overload, status quo bias, 

information overload, professional bias, and temporal discounting. Building practitioners can use 

these results to better understand potential cognitive biases, in turn allowing them to establish 

best practices and make more informed decisions. Researchers can use these results to 

empirically test specific decision interventions and facilitate more energy efficient decisions.  

 

Keywords: Monitoring-based Commissioning; Energy Management and Information Systems; 

Cognitive Biases; Behavioral Decision Science; Risk Aversion  

 

1.0 Introduction 

Buildings are one of the biggest contributing factors to energy use in cities, making them a target 

for urban energy reduction (Barnes & Parrish, 2016; Deetjen et al., 2018).  Existing commercial 

buildings make up a large portion of the building stock in cities and can habitually underperform 

due to issues such as unnoticed system faults and inefficient operational procedures resulting in 

preventable energy waste (Mills, 2011). Monitoring-based commissioning (MBCx) is a 

continuous building energy management process that allows for the identification and resolution 

of this energy waste. MBCx leverages energy management and information systems (EMIS) 

technologies such as building automation systems (BAS), fault detection and diagnostic (FDD) 



tools, and energy information systems (EIS) that collect and analyze energy data to facilitate 

targeted and persistent energy savings measures (Brown, Anderson, & Harris, 2006; Kramer, 

Crowe, & Granderson, 2017; Mills & Mathew, 2014). MBCx can be described as a continuous 

decision support system for energy demand reduction (Hutchins, 2016; Mills & Mathew, 2014). 

On a large scale, MBCx contributes to smart cities through the continuous monitoring process, 

real-time data, and improved energy performance (Brown et al., 2006).  

 

The MBCx process has been shown to reduce up to 20% of a building’s energy use (Granderson 

and Lin 2016). Additional studies demonstrate nearly 10-30% in gas savings (Granderson, Piette, 

& Ghatikar, 2011; Motegi et al., 2003). However, an energy efficiency gap, that is, a gap 

between savings potential and observed savings, still exists for many commercial buildings 

despite the availability of technologies to support MBCx, and documented case studies of their 

effective use (Fernandes, et al., In Press; Granderson & Lin, 2016; Granderson, Piette, & 

Ghatikar, 2011; Mills & Mathew, 2014; Motegi, et al., 2003). This gap in savings in largely due 

to social and behavioral challenges in MBCx implementation and can be attributed to 

irrationalities in human decision-making (Wilson & Dowlatabadi, 2007).  

 

To help address the energy efficiency gap, this research uses a behavioral decision science 

perspective to better understand organizational decision making that often slows or halts the 

implementation of MBCx. Prior research investigates MBCx from a technological point of view 

(Granderson, Piette, & Ghatikar, 2011; Harris et al., 2018; Smith et al., 2011) and more broadly 

energy reduction from a normative perspective (e.g. optimization, utility theory) (Henderson & 

Waltner, 2013). Applying a behavioral science framework, helps to understand how cognitive 

biases inform judgement, and can explain the irrationalities that contribute to energy waste in 

buildings. For example, temporal discounting is a cognitive bias that leads to decision-makers 

placing more value on immediate consequences and discounting future rewards (Frederick et al., 

2002; Green et al., 1994). Facility managers refraining from energy efficient investments even 

when payback periods are certain is an occurrence of temporal discounting where the focus is 

only on upfront cost (DeCanio, 1993; Delgado, 2017).  Using a descriptive approach can account 

for these irrationalities and contribute to theoretical and practical advances that not only improve 



understanding about how and why certain decisions are made but offer solutions to overcome 

these biases to enhance energy efficiency in buildings.  

 

The goal of the paper is to provide building stakeholders (e.g., building owners, building 

engineers, facility mangers) with knowledge of specific cognitive biases that influence similar 

decision makers under comparable conditions and could impact their future decisions; in turn, 

helping these stakeholders predict cognitive obstacles and overcome them to further maximize 

energy efficiency. By better understanding the full range of cognitive biases, behavioral science 

and energy efficiency researchers can use this paper to begin developing empirical studies to test 

specific decision interventions for cognitive biases identified in the results of this study. The 

results presented in this paper open a new avenue of inter-disciplinary research for those who 

study the energy efficiency gap in buildings and offer a new application of research for those 

who study behavioral decision science (Delgado & Shealy, 2018).  

 

The background section describes previous research that reveals barriers to MBCx and how 

some of these barriers can be explained by understanding the link between behavioral decision 

science research and energy efficiency decisions. The research objective and methodology 

follow, with a presentation of the resulting cognitive biases that emerged from the qualitative 

data. The results demonstrate that many cognitive biases impact decisions during MBCx, 

highlighting that barriers to energy savings are not only technical, but also behavioral. Potential 

behavioral interventions to help overcome the defined cognitive biases are discussed, and 

suggestions for future research are provided.  

 

2.0 Background and Theory 

Previous research describes some commonly experienced technical barriers faced by 

organizations during the monitoring-based commissioning (MBCx) process such as data 

configuration and quality. In a study of over 40 organizations using MBCx, Harris et al. (2018) 

found data configuration to be the top barrier. Organizations frequently experienced issues 

integrating data from hardware, such as submeters, into energy management and information 

systems (EMIS) due to things like legacy building automation systems (BAS) or information 

technology (IT) issues such as data security. Energy management and information systems 



(EMIS) offer the capability to collect, analyze, and sometimes control, building energy use 

through hardware and software (Consortium for Energy Efficiency, 2012; King & Perry, 2017). 

Some type of EMIS technology is needed to conduct monitoring-based commissioning. That 

may be a building automation system (BAS) to manually analyze operational trend log data, an 

energy information system (EIS) to analyze and visualize whole building and sub-metered 

energy use, or an automated fault detection and diagnostic (FDD) tool.  In a case study, 

University of California, Merced reported one of the biggest issues with using BAS as their 

EMIS analysis tool had to do with data quality; network and connectivity problems led to false 

alarms, which then required “significant resources” to validate the data (Granderson et al., 2011).   

 

Although it is important for practitioners to understand technical barriers, there is less focus on 

the challenges that are caused by human behavior and decision making. For example, a case 

study about Wal-Mart noted that the EMIS did not include some desired features, such as 

benchmarking, which required exporting the data from the EMIS, for external analysis 

(Granderson et al., 2011). This begs the question, could the issue have been avoided? Was there 

a decision earlier in the process that led to improper selection of EMIS? 

 

An energy management initiative for three multi-tenant office buildings in Washington, DC 

employed consulting and advisory services for configuration of their EMIS, including meter 

installation, web interface development, and HVAC monitoring and alert services (Henderson & 

Waltner, 2013). However, the authors pointed out that there was “little evidence” that the 

building engineers used the web interface set up by the consultants. Why would building 

engineers not use the EMIS that was intended to provide data for more informed decisions? The 

technology was in place, and seemingly the most capital-intensive phase was complete, yet 

decisions to take corrective action towards energy savings still did not occur.  

 

Behavioral decision science can provide insight into why such inaction among building 

engineers would persist even after installing EMIS and going through the MBCx process. Issues 

in the decision-making process, likely inhibit more pervasive uptake of MBCx processes in 

commercial building energy management. This paper examines these barriers to MBCx using a 



behavioral decision science perspective to better understand the origins of these seemingly 

irrational decisions, or inaction to decide.  

 

2.1 Behavioral models of decision making 

According to traditional economic models of decision making, individuals are expected to 

choose the option that maximizes utility, or leads to the outcome that has the most benefit. 

However, behavioral decision science research demonstrates that individuals routinely make 

irrational decisions, especially when faced with uncertainties, leading to outcomes that do not 

maximize utility (Camerer, Loewenstein, & Rabin, 2011; Khaneman & Tversky, 1979). For 

example, sustainable operations and maintenance practices, such as MBCx, can reduce operating 

costs over time and provide additional benefits such as improved occupant comfort and 

productivity. Still, organizations often undervalue these practices due to a focus on first cost and 

failure to consider life cycle cost and long-term payback (Hodges, 2005).  

 

Behavioral models of decision making, such as bounded rationality, can help explain irrational 

decisions. Bounded rationality accounts for limitations of human cognition such as thinking 

capacity, information, and time, leading individuals to attempt to simplify the decision 

environment through the use of heuristics, which serve as mental short cuts (Simon, 1982). 

Although heuristics do not always lead to negative outcomes and can help accelerate decisions 

(Gigerenzer et al., 1999), they can make the decision maker more susceptible to cognitive biases 

(Tversky & Kahneman, 1975). Cognitive biases are a systematic deviation in judgment from 

formal logic, often leading to irrational decisions (Ariely, 2008). The decision environment or 

context can determine the particular cognitive bias or heuristic that will impact the judgment of 

the individual (Hilbert, 2012).   

 

Figure 1 explains the relationship between the major concepts of behavioral models of decision 

making, behavioral decision science concepts (cognitive biases), energy efficiency (specifically 

MBCx), and decision interventions.  The current process outlined in black in Figure 1 

emphasizes that bounded rationality leads to cognitive short cuts, or heuristics, and, just like 

other decision makers, these heuristics can influence building managers judgement. By 

understanding what heuristics are frequently used during the decision making process for 



building energy performance, researchers can begin to test interventions for corrective models of 

decision making that lead to more optimal outcomes.  

 

 
Figure 1.  Application of behavioral decision science to monitoring based commissioning can 

lead to more optimal and energy efficient decisions 

 

2.2 Examples of cognitive biases in energy decisions 

This section offers definitions and examples of cognitive biases from previous behavioral 

decision science research focusing on decisions involving energy efficiency. The purpose here is 

to provide concrete evidence of the relationship between cognitive biases and decisions about 

energy. The expectation is that cognitive biases similarly impact MBCx decision making. While 

issues of cost and time are certainly barriers to MBCx these issues can often represent symptoms 

to underlying root problems in cognitive processing capabilities. For instance, the future utility 

of financial savings of MBCx can be upwards of 20% annually (Granderson and Lin 2016), but 

this requires an upfront investment. In this scenario cost can be expressed as a barrier through a 

myopic point of view. In other words, future gains from energy performance are often implicitly 

discounted compared to the immediate losses from the initial investment. Behavioral decision 

science refers to this type of thinking as temporal discounting, where future benefit is 

undervalued for immediate reward (Caney, 2014; S. Frederick, Loewenstein, & O’donoghue, 

2002; Gattig & Hendrickx, 2007). 

 

This is just one example of how cognitive biases can influence energy decisions. Other cognitive 

biases that emerged in the results include: choice overload, information overload, risk aversion, 



social norms, professional bias, and status quo bias. These particular biases and their theoretical 

understanding are highlighted in the section below.  

 

2.2.1 Choice overload  

Choice overload occurs when an individual is presented with a wide array of options that vary 

along multiple attributes. Choice overload makes it difficult for an individual to evaluate 

alternatives due to increased cognitive effort, which can lead to dissatisfaction when a decision is 

made (Iyengar & Lepper, 2000) or not making a choice at all (Dhar, 1997). Muthulingam et al. 

(Muthulingam, Corbett, Benartzi, & Oppenheim, 2013) found that adding more options to a list 

of energy saving recommendations does not necessarily impact the number of recommendations 

pursued; rather, they found a modest negative impact on the overall energy savings.  

 

2.2.2 Information overload 

Similar to choice overload, information overload can negatively impact decision-making 

(Edmunds & Morris, 2000) and occurs when an individual is presented with excessive 

information, leading to inability to process the information due to cognitive limitations, or time 

constraints (Eppler & Mengis, 2004). With the advent of smart-meters technologies that can 

provide private households with detailed energy consumption information, information overload 

is a concern for the design of the energy display (Dalén & Krämer, 2017; Dalén, Krämer, & 

Weinhardt, 2013). Energy displays can encourage residents to reduce or shift the time of their 

energy use (Darby, 2008), but too much information on a display can potentially reduce its 

effectiveness by unnecessarily increasing complexity.  

 

2.2.3 Risk aversion 

Risk aversion explains why a decision maker is less likely to accept risk when the outcome is 

framed as a gain in value, but more likely to accept risk when the outcome is framed as a 

potential loss in value (Khaneman & Tversky, 1979; Tversky & Kahneman, 1992). Risk aversion 

can predict how homeowners selling in a down market may insist on a higher asking price 

(Genesove & Mayer, 2001), why investors sell profitable stocks too soon and retain losing stocks 

too long (Odean, 1998), and why consumers generally hold failing assets longer than winning 

assets (Carmon & Ariely, 2000; Cummings, Brookshire, Bishop, & Arrow, 1986; Knetsch, 



1989). Related to energy, risk aversion has been suggested as an explanation for the slow 

adoption of new energy efficient technologies. For example, Farsi (Farsi, 2010) found that 

residents showed a greater degree of risk aversion when considering energy efficient insulation 

and ventilation systems, in comparison to traditional products, suggesting the potential energy 

savings and resulting increase in comfort are undervalued. 

 

2.2.4 Temporal discounting 

Temporal discounting examines the value individuals place on rewards over time and reveals 

that to a certain extent, individuals place more value on immediate rewards than future rewards 

(Shane Frederick et al., 2002; Green et al., 1994). Temporal discounting surfaces in energy 

decisions when management refrains from energy efficient investments even when payback 

periods are certain because they focus on the upfront cost (DeCanio, 1993; L. A. Delgado, 2017). 

Bounded rationality can explain this shortsightedness in management decisions about energy-

efficiency (DeCanio, 1993).  

 

2.2.5 Social norms  

Social norms are generally accepted expectations of behaviors or attitudes that are approved or 

disapproved of within a group or society (Elster, 1989). An individual’s behavior and decisions 

can be influenced by their perceptions of social norms and can be dependent on the specific 

situation (Samson, 2017). For example, an energy conservation program through the company 

OPOWER encouraged households to reduce their energy use by comparing them to their 

neighbors, effectively influencing their perception of social norms (Allcott, 2011).  

 

2.2.6 Professional bias 

Professional bias occurs when an individual has a narrowed perspective based on the 

conventions of one’s profession (Linder, 1987). Similar to social norms, professional bias can 

influence an individual’s behavior based on their perceptions of what is generally accepted in a 

particular field of practice. For example, mechanical engineers are typically tasked with 

designing a system to meet cooling needs in building design and commonly oversize HVAC 

systems, leading to a greater amount of energy use than necessary (Reddy & Claridge, 1993; 

Woradechjumroen, Yu, Li, Yu, & Yang, 2014).   



 

2.2.7 Status quo bias 

Status quo bias is the tendency of decision makers to prefer maintaining previous decisions, 

circumstances, or processes even if an alternative decision could potentially increase utility or 

benefit (Samuelson & Zeckhauser, 1988). The “default” option for a decision could be 

considered the status quo.  Changes to the default can significantly influence the outcome of 

decisions, meaning, decision makers are likely to maintain the default suggestion (Johnson & 

Goldstein, 2004). When electricity suppliers that use renewable energy sources were presented as 

the default option, consumers were more likely to choose renewable energy sources as opposed 

to ‘grey’ electricity sources like coal (Pichert & Katsikopoulos, 2008).  

 

3.0 Research objective 

The objective of this research was to identify how cognitive biases impede the MBCx process 

throughout its planning, configuration, implementation, and continued use through the analysis 

of a unique dataset of direct responses from organizations using MBCx and reporting issues in 

real time. By identifying which cognitive biases exist, practitioners can become more aware of 

their own, and their colleagues’ biases and begin to address these explicitly, in turn supporting 

more energy efficient decisions. For example, facility managers might understand that MBCx 

offers long term benefits, but their management team might exhibit temporal discounting, 

focusing exclusively on short-term costs. Recognizing this bias ahead of time, facility managers 

can focus their business case on long-term gains and encourage management to make a more 

energy-efficient and cost-effective decision. This research promotes awareness of these cognitive 

biases throughout the MBCx process in order to create a more holistic picture of the potential 

barriers to MBCx, as well as provide potential solutions and encourage interdisciplinary research 

to find solutions that interlink technical and nontechnical barriers. 

 

4.0 Research methodology 

This section details the research population, qualitative data, and the steps followed to identify 

the cognitive biases in the MBCx process.  

 

4.1 Research population 



The data for this paper comes from the Smart Energy Analytics Campaign (“About the Smart 

Energy Analytics Campaign,” 2017), an initiative with aims to increase the adoption of energy 

management practices that leverage EMIS technologies by providing participants with technical 

assistance, best practices, case studies, and providing an outlet for success stories. At the time of 

data collection for this paper, there were 42 organizations participating in the campaign, 

including higher education (31%), office (36%), laboratory (10%), hospital (10%), retail (5%), 

grocery (3%), healthcare (3%), and hospitality (3%). 

 

4.2 Original qualitative dataset  

The specific data used in this study came from interview and survey responses from 

organizations that participated in the Campaign. Interview data was recorded by a Lawrence 

Berkeley National Laboratory (LBNL) researcher during phone interviews with participants. 

Surveys were completed via self-report by participants through a web-based form. This paper 

uses both the interview data and open-response survey questions, resulting in a purely qualitative 

data set. All data was anonymized prior to analysis and was not identifiable to specific 

participants. The select questions used in this study, the reporting method, and number of 

responses are shown in Table 1.  

 

Table 1. Interview and survey questions used for data analysis 

Reporting Method Specific Question 
# 

Responses  

Phone interview; researcher 

recorded organization’s 

responses  

What are your biggest challenges in meeting your 

plans? 
41 

Please give us an overview of your current data 

collection, any software you use, and your process 

for using data to support facility operation (data 

source, data frequency, which type of software). 

42 

Organization request for 

technical assistance; 

researcher recorded 

organization’s request  

Documentation of technical assistance identified. 90 



Web survey: organization 

self -reports 
Please describe how you used your EMIS.  22 

Web survey: organization 

self -reports 

Describe your EMIS installation: Indicate the 

types of data points included, the automated 

analysis included, and any other characteristics 

you’d like to share 

9 

Web survey: organization 

self -reports 

Planning for EMIS: How did you decide what 

EMIS features were critical? How did you create 

the business case for funding EMIS? 

9 

Web survey: organization 

self -reports 

Ongoing energy management: Describe the 

energy management process you used to analyze 

information from the EMIS, identify 

opportunities, and take corrective actions. 

9 

 

4.3 Qualitative data narrowed to elements classified as barriers 

The qualitative data outlined in Table 1, was decomposed into 395 elements, with each element 

containing one principal concept. Each element was then classified as a barrier, enabler, or 

neutral. For example, the following element “There is no structured engagement or process to 

manage the energy information system (EIS),” was marked as a barrier because it was a response 

to the question “What are your biggest challenges in meeting your plans?” The elements 

classified as barriers, neutral, and enablers were completed independently by two coders. 

Discrepancies in the classification were then discussed between coders and classifications were 

chosen based on a mutually agreed decision. This paper uses the 185 elements that were 

classified as barriers. These 185 elements were then reviewed by three coders to identify 

emergent cognitive biases as detailed in the next steps. The approach to classify concepts into 

elements is similar to other prior approaches in qualitative data analysis (e.g. Blizzard & Klotz, 

2012; Harris et al., 2018) 

 

4.4 Specific cognitive biases selected to create a codebook   

The process of developing a codebook was modeled after a qualitative data coding method from 

Bailey (2017). Three coders, referred to as coder 1, coder 2, and coder 3, collaborated on the 



qualitative data coding. The coders were all familiar with energy management and behavioral 

decision science concepts and each have previous publications bridging these disciplines. To 

determine the specific cognitive biases used for the data analysis, coder 1 reviewed an in-depth 

list of behavioral decision science concepts, listed in the Behavioral Economics Guide 2017 

(Samson, 2017). More than fifty possible cognitive biases were available for reference. Using the 

185 elements classified as barriers, coder 1 then completed an initial scan of the elements to 

determine which cognitive biases were manifested in the data and found evidence of the 

following: choice overload, risk aversion, temporal discounting, status quo bias, and social 

norms. After discussion with coder 2 and 3, and initial attempts at coding, professional bias and 

information overload were added. The coders also added the option of none for those elements 

that did not have any evidence of cognitive biases and the option other for elements that did not 

fit clearly within one of the predetermined barriers and needed to be discussed between all 

coders. The finalized codebook contained 7 cognitive biases, none, and other as options for 

coding the elements.  

 

4.5 Elements were coded with the codebook by the three coders 

The three coders coded all 185 elements with the finalized list of cognitive biases based on the 

previous step. They were instructed to review the elements and refer to the definitions for each of 

the specified biases. The 3 coders then discussed those elements with discrepancies, or marked as 

other, and agreed upon a final code for the respective elements. Coding examples and rationale 

are listed in Table 2. This process of using a codebook by multiple coders is based on prior 

methods in qualitative research (e.g. see Saldana, 2015). 

 

Table 2. Examples of cognitive bias coding 

Element 
Cognitive 

Bias 
Rationale  

"2-year simple payback threshold for 

management funding of projects" 

temporal 

discounting  

Requirement upholds a short-term 

view, which leads to discounting of 

future returns from energy-efficient 

decisions 



"Should the RFP specify the back end 

or allow for multiple back-ends; should 

the RFP request their rules, so that 

owner can know if applicable?" 

choice 

overload 

Participant was confronted with a 

flood of choices when attempting to 

develop a request for proposal (RFP) 

for an EMIS leading to many 

questions 

“[It is challenging] getting people to use 

the systems. The operators just put the 

BAS into manual or override.”  

professional 

bias 

Operators were resisting using the 

new EMIS as it is not a technology 

that is conventionally used in their 

profession 

“We don't have insights into what 

others owners are doing with their 

EMIS and how they stack up. Would be 

helpful to get more information for their 

business case” 

social norms 

Participant wants to better understand 

what others are doing, i.e. what 

behavior is accepted when using 

EMIS 

"Keeping up with things that break" 
none 

Lack of evidence of context for 

cognitive bias 

 

5.0 Results 

The results of the qualitative data coding process provide evidence of cognitive biases acting as 

barriers to the MBCx process. Table 3 summarizes the number of times each of the emergent 

cognitive biases occurred within the data, in descending order. There was evidence of cognitive 

bias in 30% of the elements. For a summary of the barriers without cognitive biases, see Harris et 

al., (2018). In the next section, examples of practical solutions to overcome these biases are 

suggested.  

 

Table 3. Cognitive biases exhibited in qualitative data 

Cognitive biases # Elements 
Risk Aversion 13 
Social Norms 10 

Choice Overload 10 
Status Quo Bias 8 

Information Overload 8 



Professional Bias 4 
Temporal Discounting 3 

# of Elements with evidence of cognitive bias 56 
Total # of Elements 185 

% of Elements with evidence of cognitive bias 30%  
 

The results are outlined in descending order of occurrence for clarity, but it is important to note 

the synergies between the cognitive biases. Risk aversion and temporal discounting both describe 

difficulty gaining buy-in due to skewed investment perspectives. Social norms, status quo bias, 

and professional bias are all related to the resistance of change. Choice overload and information 

overload are both caused by a decision makers inability to completely process information. 

These synergies also lead to the nuances between the cognitive biases that are discussed further 

in the limitations.  

 

The highest occurring cognitive bias was risk aversion (occurring 13 times). Participants had 

issues gaining buy-in from management and receiving approval to pursue MBCx or specific 

energy conservation measures identified through the MBCx process, specifically when there was 

uncertainty related to the monetary savings. In one case, a participant was solely interested in 

EMIS vendors/services providers that offer guaranteed savings, meaning, the participant was 

aiming to reduce any potential risk. Although previous case studies have validated the savings 

offered through MBCx, participants (or their management) were still hesitant.  

 

The second-most common cognitive bias was social norms, which emerged 10 times. As MBCx 

is a somewhat new process, social norms can help explain why participants were having 

difficultly institutionalizing the process. For example, an organization felt that their “client [was] 

behind the curve on energy and sustainability culture,” showing how social norms related to 

MBCx are perceived as being in transition. Organizations are still unsure of what is expected of 

them regarding energy efficiency decisions, asking specifically for “insights on what other 

owners are doing with their EMIS and how [they] stack up… that what [they] are doing is 

appropriate.” Evidence of social norms was also found in relation to occupant behavior. Two 

participants were interested in developing publicly facing EMIS dashboards in hopes to engage 

occupants in energy saving behavior; essentially using the dashboard as a tool to change the 



social norms of occupants. The participant asked questions like, “What’s most persuasive to non-

energy people?” and “What might change their behavior?” Instead of the generally accepted 

attitude of unaffectedness towards building energy use, participants hoped occupants would 

visually see how their behavior is having an impact and lead to a sense of responsibility.  

 

Choice overload emerged 10 times. The most common issue was mainly related to participants 

selecting an EMIS that would best fit their needs. With an abundance of EMIS vendors and 

varying features, participants were overwhelmed by EMIS options. In one case a participant 

asked, “Should the RFP specify the back-end or allow for multiple back-ends? Should the RFP 

request specific rules to know if the EMIS is applicable?” Another participant was looking 

specifically for “small retail options for EMIS.” These participants requested technical assistance 

to develop specifications for RFPs and review submittals to make an informed decision. 

 

Information overload appeared 8 times. Responses related to information overload were always 

related to the data made available by EMIS. Participants struggled to manage the volume of data 

and get value out of the information. The ability, or inability to synthesize information led to 

issues such as difficulty “prioritizing faults” that were identified by EMIS.  

 

With status quo bias occurring 8 times, participants were failing to get the full value out of their 

EMIS, by simply relying on existing processes, or having difficulty establishing new processes 

to engage with the EMIS. In one case, a participant had successfully installed EMIS, allowing 

them the capability to access “daily or monthly energy consumption”, but “people [were not] 

doing anything with the data”, essentially rendering the EMIS useless. 

 

Professional bias appeared 4 times, when participants reported that some of their specific team 

members, such as operations staff, resisted buying into the use of EMIS as it was not 

conventionally expected as a part of their role.  

 

Temporal discounting emerged 3 times. It is similar to risk aversion, where participants had 

difficulty gaining buy-in due to shortsightedness demonstrated by management with simple 

payback thresholds or return on investments of 2 years or less. The next section makes 



suggestions on how to use decision interventions to help overcome these cognitive biases with 

aims to translate into future research. 

 

6.0 Discussion  

Although there are many technical barriers to MBCx, the results show that nearly one third 

(30%) of the barriers faced by the cohort are due to cognitive processing capabilities. One way to 

mitigate these cognitive biases, or barriers, is through the use of decision interventions. Choice 

architecture is a type of decision intervention used to shape the decision environment. When 

designing a decision, there is no neutral choice architecture, meaning, some options must be first, 

attributes are or are not presented, and these factors are likely to influence decisions about MBCx 

(Thaler & Sunstein, 2008). This section provides examples of specific interventions that can be 

used to overcome or reduce the effects of the emergent cognitive biases from the results. For a 

more in-depth list of choice architecture tools, see Johnson et al. (2012) or Thaler and Sunstein 

(2008).  

 

Risk aversion, the cognitive barrier that appeared most, is caused by risk and uncertainty of 

decision outcomes. Framing is a form of choice architecture where the decision is framed 

intentionally as a loss or gain. Framing can significantly influence choice and is replicated in 

domains such infrastructure design (Shealy et al.,, 2016), healthcare (Malenka, et al., 1993; 

Marteau, 1989), and climate change  (Gifford & Comeau, 2011; Morton et al., 2011). Since 

decision makers are more likely to take action in order to avoid potential losses (as opposed to 

qualifying for potential gains), instead of framing the business case for MBCx as the potential to 

save 20% on energy costs, the choice architect, often a facility staff member or energy 

management team staff member, should frame the decision to show how the organization is 

currently overspending on energy by 20% (Todd & Houde, 2011).  Simply reframing the choice 

requires no additional technological or monetary investment and can have a big effect. When 

decision makers are already losing they are more likely to become risk seeking (Farsi, 2010; 

Shealy & Klotz, 2015).  

 

Influencing social norms is another way to encourage the adoption and use of MBCx. If 

organizations see that their peers have been successful in saving energy using MBCx, they may 



likely be motivated to uphold that social norm and save energy themselves. Simply comparing 

energy use between neighbors (Laskey & Kavazovic, 2010), and telling residents that their 

neighbors were conserving energy (Nolan et el., 2008), led to a 2% and 9% reduction in energy 

use, respectively. Another way to influence social norms is through the use of a social reference, 

such as a role model. Professional engineers given a “role model” project that reached high 

levels of sustainability, increased engineers’ consideration for sustainability in their own designs  

by more than 30% (Harris, Shealy, & Klotz, 2016). Related to MBCx, the choice architect could 

change perceived social norms through peer groups from different organization types that focus 

on successes and strategies for using MBCx. The Smart Energy Analytics campaign encourages 

this through peer-to-peer exchange (“About the Smart Energy Analytics Campaign,” 2017). 

Successful peers can motivate others to reach similar high achieving energy saving goals. This 

type of peer-to-peer network requires little technological or financial investment and the Smart 

Energy Analytics campaign is readily available for practitioners to participate.  

 

Choice overload, experienced by organizations when choosing an energy management 

information system (EMIS), can be reduced by “collaborative filtering” (Thaler & Sunstein, 

2008). Collaborative filtering takes advantage of choices made by individuals with similar 

interests (Thaler & Sunstein, 2008). So, the choice architect helping organizations unsure of the 

best EMIS selection could use information about which EMIS worked well for peer 

organizations with similar size, type, and goals to improve decision making.   

 

Information overload is cognitively similar to choice overload in that information, like choices, 

can exceed processing capacity among decision makers and lead to neglecting critical attributes 

or options. Information related to EMIS data was a particular issue that emerged from the results. 

Participants mentioned struggling to manage the volume of data and how to get value out of this 

information. An approach to help decision makers reduce information overload is through 

prioritization, or weighting, what information is most critical to help them take action. Filters 

imbedded in EMIS to hide non-essential data is one approach. Another, less technical approach 

is through checklists. Checklists can be helpful in promoting consideration of latent values that 

otherwise can get lost in the amount of data being collected (Gawande, 2011).  

 



These are just some examples of decision interventions that can help overcome cognitive biases 

experienced during MBCx. Future research can empirically test these examples to determine 

their impact on the MBCx process, whether or not they are sustained over time, and their impact 

on different organization types. Necessary to note, choice architecture is not fail proof and can 

have varying degrees of impact depending on individual differences (Johnson et al., 2012). 

Therefore, future research can also focus on determining which roles in organizations are more 

likely to be affected by these biases and designing more targeted decision interventions.  

 

Future research can also continue to evaluate the MBCx process for the existence of cognitive 

biases. As mentioned, the researchers attempted to determine the most relevant cognitive biases, 

but these interpretations are not infallible. Cognitive biases may also impact other stakeholders in 

the MBCx process such as vendors or professional organizations. A deeper understanding of 

these cognitive biases allows for the design of more effective interventions for a wider variety of 

MBCx stakeholders. These interventions can be empirically tested by researchers and compared 

across various stakeholder groups. For example, vendors can focus on ways to make it easier for 

organizations to overcome choice overload when selecting an EMIS technology by creating 

standard ways to compare between features. The point of this research is not to downplay purely 

technical barriers to MBCx, but to promote awareness that nontechnical barriers, especially 

limitations in cognitive processing capabilities and the resulting biases, can prevent MBCx from 

being pursued altogether.  

 

6.1 Limitations  

The organizations from the data were at different phases in the MBCx process, meaning, the data 

captured may not represent the phases of the process equally. For example, although the 

organizations that elected to participate in the Smart Energy Analytics Campaign have some type 

of EMIS, some were not yet carrying out an intentional MBCx process. Since qualitative data 

coding for cognitive biases is somewhat subjective, this paper aimed to reduce subjectivity with 

3 different coders that discussed any discrepancies. However, there was still potential for 

misinterpretation, even though an agreement was reached between coders. For example, both 

status quo bias and professional bias are related to resistance to change, therefore the nuances 

between the two were difficult to discern in some of the data without specific organizational 



context. Furthermore, this data was reviewed post data collection, therefore the context was 

difficult to determine, leading many elements to be classified as “none”.  

 

7.0 Conclusion 

This paper extends the current understanding about the monitoring-based commissioning 

(MBCx) process by making connections between behavioral models of decision making, choice 

architecture, and energy efficiency decisions. This paper identifies specific cognitive biases 

during the decision-making processes related to the implementation and use of MBCx. The 

results can be used by practitioners, such as facility managers, building engineers, or energy 

managers, to prepare for the negative impact cognitive biases can have on decisions for energy 

efficiency. Practitioners can then incorporate choice architecture tools or other decision 

interventions when constructing how to present the business case or when soliciting and 

selecting the energy management information system (EMIS).  

 

Researchers can use these results as justification for specific cognitive biases and decision 

interventions to improve energy performance in buildings. For example, development of choice 

architecture tools to help overcome risk aversion is a logical priority for making the business 

case for MBCx because risk aversion was the highest occurring barrier for organizations. Being 

aware of the tendency to be risk averse can help practitioners and researchers assess whether this 

aversion is intentional and necessary. Ultimately, this research intends to promote awareness of 

cognitive biases in MBCx. Future research at the intersection of behavioral decision science and 

energy efficiency can lead to more empirically tested decision interventions and choice 

architecture tools producing more energy efficient buildings. By better understanding the full 

range of judgment and decisions that must be made by MBCx users, future research can search 

for ways to turn cognitive obstacles into opportunities.  

 

The research presented in this paper offers a more complete understanding of the types of 

decisions being made by building managers and offers intentional changes to decision 

environments, which are relatively low-cost interventions compared with new technologies or 

incentives (Benartzi et al., 2017; National Academies of Sciences and Engineering, 2017). 

Intentionally setting up decision environments is well studied and improving practice in fields 



from medicine (Johnson & Goldstein, 2003) to finance (Fox & Langer, 2005), to insurance 

(Johnson, 1993). Similar advances are now possible to improve energy performance in buildings.  
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