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dI.G.M., Université de Marne la Vallée

Abstract

We investigate the physical consequences of imposing symmetry requirements to
the Cramer-Rao inequality, and investigate in particular translation, inversion, and
rotation.
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1 Introduction

Fisher’s information measure is much in vogue nowadays in the physics world
and many authors are engaged in Projects that revolve around it [1]. The
most complete exposition of Fisher’s measure and its scientific applications
can be found in the the books by Frieden [1]. However, not much attention is
paid therein to the ordinary Lie symmetries that are very common throughout
Physics. We start addressing the issue in this effort, by studying the effects of
the most common symmetries on the Cramer-Rao (CR) inequality, a corner-
stone of the subject, fundamentally based in measurement theory.
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Why should this be of interest? Because the CR is regarded as reflecting
experimental laboratory scenarios. The ensuing empirical results referring to
the statistical dispersion (variance) of results can not depend upon say, a
rotation of our instruments. Thus, the CR must be invariant under elementary
transformations. This simple issue acquire momentous importance when we
realize that most physical theories can be derived from a spacial variational
principle, called the extreme physical (i.e., Fisher’s) information one (EPI) [1]
that is precisely based upon the CR relations [1].

Our results should be of interest to the many Fisher practitioners of the
physics-community. Let us insist in that our motivation is simple enough:
using a given coordinate system involves always a choice. In a physical rela-
tionship like the Cramer-Rao inequality [1], actual numerical physical results
should not depend on it.

2 Shift-invariant Fisher measure

2.1 One dimensional instance

Sir R.A. Fisher advanced in the 1920s an extraordinarily important scientific
tool: the measure of information that bears his name (for details and discus-
sions refer to [1–3]). Fisher information (FI) arises as a measure of the expected
error in a measurement [1]. A particular FI-case of great practical importance
is that of translation families [1,4], i.e., distribution functions whose form does
not change under displacements of a shift parameter θ. The ensuing distribu-
tions are shift-invariant –à la Mach, with no absolute origin for θ– and where
the ensuing FI obeys Galilean invariance [1]. The next Section clarifies the
concept in a somewhat more elaborate fashion.

Using a more precise notation than ordinarily employed, our interest will al-
ways lie in the random variable X that takes values η in the range [a, b] with
probability

∫ b
a dηfX(η). As a consequence, the classical Fisher information as-

sociated with translations of a one-dimensional observable x with probability
density f(x) becomes [5]

IX =
∫

dx fX(x)

[
∂ ln fX(x)

∂x

]2

, (1)

and the associated Cramer–Rao inequality [1,5] satisfies the relation

IX ∆X2 ≥ 1 (2)
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where ∆X2 is the variance of the stochastic variable X [5]

∆X2 =
∫

dx fX(x)x2 −
(∫

dx fX(x)x
)2

, (3)

and represents the mean-square error associated to the pertinent measurement.

We will address the issue of the Lie symmetries of the Cramer Rao rela-
tion (CR), beginning with those most common in Physics: The Galilean sym-
metries of scale and translation, Inversion, and Rotation. We prove below that
the CR relation is invariant under the concomitant transformations, with a
surprising non-trivial caveat. We give a particular illustration for the Harmonic
Oscillator.

2.2 The multivariate case

Let us consider now the multivariate instances [5]. We deal of course with

X ∈ Rn. (4)

It is known that the n× n−Fisher matrix becomes [5]

IX =
∫

dx fX(x) [∇ ln fX(x)][∇ ln fX(x)]>, (5)

where ∇ is the n−gradient operator and > denotes transposition [5].The co-
variance matrix of X is

Cov(X) ≡ KX = 〈XX>〉 − 〈X〉〈X>〉. (6)

Then, the Cramer–Rao inequality that generalizes to an inequality (2) that
has the following aspect [5] (In is the identity matrix)

IX Cov(X) = IX KX ≥ In. (7)

3 General result

If A is a scaling matrix of determinant det(A) 6= 0 one has [6]

IAX = [(A)−1]>IX(A)−1, (8)
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KAX = AKX(A)>, (9)

where this scaling matrix could well be a rotation matrix of determinant
det(Ã) = 1 [8]. Now,

IAXKAX = [(A)−1]>IX(A)−1AKX(A)> =

= [(A)−1]>IXKX(A)> ≥ [(A)−1]>(A)> ≥ In. (10)

entailing, from a physicist viewpoint, that the CR keeps its form after the
transformation. Of course, a mathematician would observe that, since the two
members of such transformation are themselves random vectors, the Cramer-
Rao inequality holds for both of them. Most physicists would probably prefer
the less abstract proof that we also provided. Notice that no invariance can be
claimed according to the result (10). However, if the CR-bound is saturated,
in the sense that the equality holds

IXKX = In, (11)

then, since it is an elementary matrix property that [(A)−1]> = [(A)>]−1, (10)
immediately yields

IAXKAX = IXKX = In. (12)

If the lower bound is actually attained, the situation persists under the change
X → AX.

Note that the CR bound is saturated in the Gaussian case (actually, only
in this situation). Since in this instance AX is Gaussian too (provided A is
invertible), this makes the result straightforward. In the quantum realm this
”Gaussianity” is associated to coherent states (Gaussian wave packets), which
actually represent those vectors in Hilbert’s space that most closely resemble
classical states [9]. They ”saturate” the uncertainty principle, closely related
to the CR [1]. We conjecture that CR-saturation is somehow an indicator of
classicity (except for the ground state of the harmonic oscillator, the only
exception to the above remark).

4 Elementary symmetries

(1) Scaling
We consider here the most common symmetries. For a very interest-

ing treatment of this subject in relation to other information measures,
although made in a different, nonphysical context, the reader is referred
to [7].
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If a change of units is performed so that X → aX, a a non-null real
parameter. With Z = aX,∫ b

a
duFZ(u) =

∫ b

a
dvFX(v) = 1, (13)

entailing

fZ(u) =
fX(u/a)

|a|
.

Therefore, the Fisher measure changes as follows

IaX =
∫

du fZ(u)

[
∂ ln fZ(u)

∂u

]2

, (14)

and the variance is

∆(aX)2 = a2∆X2. (15)

Since
∂ ln fZ

∂u
=

1

a

f ′X(u/a)

fX(u/a)
, (16)

one immediately ascertains that

IaX =
IX
|a|2

(17)

then, the Cramer-Rao inequality has the form

IaX ∆(aX)2 = IX∆X2 ≥ 1, (18)

using the inequality (2). Cramer-Rao is scale invariant, as it should be,
since it cannot be affected by a change in units, say, from centimeters to
meters. Note also that taking traces in Eq. (10) one finds

Tr[IAXKAX ] = Tr[IXKX ] ≥ n, (19)

i.e., a degenerate trace version of the CR inequality, obviously invariant
for any linear transformation generated by A. As far as we know this is
a new result. In one dimension it trivially entails invariance of the CR
under scaling.

(2) Inversion: We need to effect the change X → −X and fX(x) → f−X(x).
Using (15-17) with a = −1 yields then

IX = I−X ; and ∆(−X)2 = ∆X2, (20)

so that the CR remains invariant under inversion.

(3) Translation: we change X → Z = X + ε, with ε a real parameter. In this
case, the prevailing scenario, with normalization according to (13), leads
to
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fZ(z) = fX(z − ε); z = x+ ε; dz = dx.

and the Fisher measure is

IZ=X+ε =
∫

dz fZ(z − ε)

[
∂ ln fZ(z − ε)

∂z

]2

, (21)

which clearly implies IZ = IX , while the variance is

∆(X + ε)2 = ∆X2, (22)

so that

IX+ε = IX (23)

and the Cramer-Rao relation is

IX+ε ∆(X + ε)2 = IX ∆X2 ≥ 1. (24)

The above invariance properties clearly reflect just what the expression shift-
invariance, invoked in defining shape invariant families of probability distri-
butions, actually means.

4.1 Odd situations

The linear and Hermitian parity operator Π has eigenvalues ±1. Let ψ± be
eigenfunctions of Π. Thus, within Hilbert’s space H, any ψ(x) ∈ H writes

ψ(x) = a+ψ+(x)+a−ψ−(x) ; ψ∗(x) = a∗+ψ
∗
+(x)+a∗−ψ

∗
−(x) ; a∗+a+ +a∗−a− = 1,

(25)
and the probability density

P (x) = (ψ∗ψ)(x) = |a+|2|ψ+|2 + |a−|2|ψ−|2 + a∗+a−ψ
∗
+ψ− + C.C., (26)

has both even and odd parity-components, so that it can be cast in the form

P (x) = C+P+(x) + C−P−(x). (27)

We wonder what happens to the odd-part, which should be ’smaller’ than
the even part so as not to lead to a negative PDF under sign inversion of
the argument. Since 1, x, x2, x3, . . . is a basis, any function f(x) ∈ H has
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〈Mij〉 =
∫

dΓ ρ(z)Mij. (31)

We appreciate the fact that I(f) is a 3N × 3N−dimensional matrix.

We shall here consider a simpler classical system governed by a time-independent
HamiltonianH with just two degrees of freedom (one “generalized coordinate”
x and one “generalized momentum” p). In this case the “state-vector” will be
z ≡ (x, p).

We presuppose that the system is in thermal equilibrium at temperature T ,
and that it is appropriately described by Gibbs’ canonical probability distri-
bution. All our results below depend upon this assumption. At point z, this
canonical ensemble probability density ρ(z) reads

ρ(z) =
e−βH(z)

Z
(32)

with β = 1/kT and k Boltzmann’s constant. If h denotes an elementary cell
in phase-space, we write, with some abuse of notation [10], dΓ = dx dp/2π~
for the pertinent integration-measure. Notice that the only role of ~ here is
that of balancing dimensions. Our calculations are entirely classical ones and
we start with the partition function whose form is [10]

Z =
∫

dΓ e−βH(z). (33)

It is easy to see that (for details and discussions, see please Ref. [11])

∇p ln ρ(z) = −β∇pH(z) (34a)

∇x ln ρ(z) = −β∇xH(z). (34b)

The 2× 2−matrix (29) has then the form

Mij = β2

 (∇xH)2 ∇xH∇pH

∇xH∇pH (∇pH)2

 (35)

and the Fisher information matrix adopts the appearance

I(f) = β2

 〈(∇xH)2〉 〈∇xH∇pH〉

〈∇xH∇pH〉 〈(∇pH)2〉

 . (36)
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We can compute explicitly the determinant of the matrix I(f) arriving at

|I(f)| = β2 {〈(∇xH)2〉〈(∇pH)2〉 − 〈∇xH∇pH〉2}. (37)

Eqs. (36)-(37) are quite general expressions for the classical Fisher information.

5.1 Harmonic oscillator

For a concrete example we turn to the very important (and usual test case) of
the the harmonic oscillator. Its classical Hamiltonian is given by H = p2/2m+
mω2x2/2. Given that in such an instance the canonical ensemble probability
distribution becomes Gaussian, the CR-relation is saturated and rotational
invariance automatically ensues. Notice that we are here speaking of rotational
invariance in the x− p phase-space plane, of obvious relevance for the theory
of canonical transformations.

6 Conclusions

After a rather general study of the invariance-properties associated to the
Cramer-Rao bound, our results can be summarized as follows

• We have verified that the Cramer-Rao relation is invariant under translation,
inversion, and scaling.

• This adds new meaning to the expression shift-invariant Fisher measure.
• If the CR-bound is saturated, it remains so under any transformation repre-

sented by a square matrix, representative of a (physical) Unitary operator.
• Such is the situation, for example, in the special case of the statistical treat-

ment of the classical harmonic oscillator.
• Quite general expressions for the classical Fisher information in phase-space

are given.

Acknowledgment F. Pennini would like to thank partial financial support
by FONDECYT, grant 1080487.
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