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TIlE RENORMALIZED TIlEORY OF BEAM-BEAM INTERACTION' 

Y. H. Chin 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

A new approach to calculate analytically the particle 
distribution in presence of beam-beam interaction and synchrotron 
radiation effects for an electron-positron colliding beam storage 
ring is presented. The method is based on correct calculation of 
the Green's function which includes the full effect of the beam­
beam force on the distortion of particle orbits, borrowing the 
renormalization technique of quantum field theory. By this way, 
the theory is applicable to any level of beam-beam interact ion, no 
mailer whether chaos ensues in phase space or not. This paper is 
devoted mostly to verification of the theory by comparison with 
the results of computer simulations. Fairly good agreements are 
obtained. 

Introduction 

The beam-beam interaction in a colliding beam storage ring has 
been eilttensively studied ever since the colliding beam rings were 
invented, Most of the works have been done in tenns of the 
Hamiltonian analysis of single particle dynamics associated with 
the theory of nonlinear resonances excited by the beam-beam 
force. Some crilerions (e.g., Chirikov, Green, ... ) are proposed 
as me thods for estimating the onset of chaotic behavior of particle 
orbi ts. Despite its widely acknowledged success , the Hamiltonian 
ana lysis has the following drawbacks due to its nature of 
approach: (1) It breaks down when the panicle motion becomes 
chaotic (unpredictable); (2) It does not explain the emittance 
growth or the particle loss which have been observed i~ re~l 
machines, since it says no thing about the beam population In 
resonances or chaotic regions in phase space; (3) It can be applied 
only to proton machines where the effects of synchrotron radiation 
are negligible. In order to overcome these drawbacks of 
Hamiltonian analysis and to have a more direct tool to es timate the 
emittance blow-up in an electron-positron collider, a few attempts 
[1,2,3] have been made to formulate a theory fo r analytica l 
calcu lation of the particle distribution in presence of beam-beam 
interaction and the e ffec ts of synchrotron radiation. They use the 
Fokker-Planck equation for the evolution of the particle 
distribution. In spite of their restriction to the one-dimensional 
strong beam-weak beam interaction picture (except Kheifets), no 
theory has succeeded in calculating the particle distribution in the 
ent ire region of the beam-beam parameter or in agreeing with 
results of experiments or computer simulations. This is mainly 
due to improper truncation of the perturbation expansion series at 
the low order andlor due to use of incomplete Green's function for 
particle propagation which does not include full effects of particle 
orbit distortion by the beam-beam force. The problem, after all, 
hinges on obtaining the correct Green's function which gives ~he 
true transition probability of particle trajectories at any preced10g 
moment, no matter whether particle motion is chaotic or not. Even 
chaotic behavior of particle motion can be described stati stically 
and quantitatively with thi s correc t Green's function. Then, one 
can calculate the particle distribution at any moment, once one 
knows the initial distribution. The author has proposed a new 
approach[4], called "the renormalized the~ry .of bea~-beam 
interaction," in which he borrows the renormahzauon techmque of 
quantum field theory to evaluate the correct Green's function with 
the perturbation method. The essence of the theory may be 
summarized as fo llows. The particle distribution is decomposed 
into a set of modes or resonances. Their motion may not be 
independent of the existence of others. Actually they perturb each 
other mutually through the mode-coupling effect. In thi s 
interaction between resonances, there is the so-called "the self­
interaction teon," namely, the effect in which the change in other 
resonances induced by the change in a particular resonance by the 

mode-coupling effect ac ts back to the initial resonance by the 
mode-coupling effect to c hange it. There are also higher-order 
self-interaction processes going through many intennediate 
resonances before coming back to the initial resonance. If one 
"renormaIi zes" the equation for eva luation of a resonance by 
moving those self-interaction terms from the mode-coupling 
terms, the resonance as a solution of this equation will behave 
independent of others, s ince its change does not influence itself at 
any mean, and other resonances act only as incoherent noise 
sources. Now the system is diagonalized by a new set of almost 
orthogonal eigenfunctions. With this renonnalizati on technique of 
the Green's function, the theory can always predict the correct 
transition probability of the particle orbit for any level of chaos to a 
good appromixation. This is the most significant advantage of the 
present theory. \Ve can derive a new cri terion for the onset of the 
chaotic motion from consideration of the strength of interaction 
between resonances. When this criterion is sati sfied, the sel f­
interaction term (renonnalization correction) provides a fast 
diffusion of orbits, which simulates the random motion of a 
chaotic particle. The diffusion regions and their rates can be also 
calculated by the theory. The formulation of the theory and the 
interpretation of its physics are found in Ref. 4. In this note, we 
limit the explanation of the theory only to a brief summary of the 
final results. We rather would like to concentrate on the 
verification of the theory by comparison with the results of 
computer simulations. 

Summary of the Theory 

We concentrate our study on the evaluation of the averaged 

particle di stribution (P) (averaged over the azimuthal angle $ in 
phase space) instead of that of tot al distribution P, and 
approximate the latter by the former. This is a good 
approximation in an experimental sense, since the microscopic 
flu ctuating parts are usually averaged ou t in the measuring 
processes. An approximate equilibrium averaged distribution can 
be calculated by the following algorithm. The deri vation is given 
in Ref. 4. 

1. For all (k,v) resonances (k = even) which satisfy 

(I) 

where vp is the betatron tune and ~ is the beam-beam 
parameter, judge whether stochas ticity has ensued in their 
vicinity, by applying the criterion [4] 

(2) 

to all the poss ible pairs with (k - L, v - n) resonances (1. = 
even). Here U 1. is the Fourier component of o rder 1. of the 
beam-beam potential, Av' is the derivative of the nonlinear 
detuning term Av with respect to the nominal action variable I, 
and Jkv is the resonant amplitude of (k,v) resonance. 

2. Computer the additional diffusion coefficient D(O according to 
the following procedure: 

+: This was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics 
Division, U.S. Depl. of Energy, under Contrac, No. DE-AC-3·76SF0098. 
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Ljl)= L L (~)2 U~(I)ReIGkv(I)I, 
bO v 27t 

(3) 

where v are integers, 

(4) 

in the stochastic regions in which the criterion (2) is satisfied, 
and 

(5) 

in the stable regions. Here 

written for comparison. The simulation technique is based on that 
of Ref. 5. At first, we show a nonchaotic example in which 
particle m~tion is regul.ar in ~ntire phase space, and then show 
three chaotic examples IR which chaos develops amply in phase 
space. In all examples, 1 is set to be 0.001. 

Figure l(a) shows one quarter of the phase space trajectories 
calculated by TRACK for vp = 0.22 with ~ = 0.04 when the 
synchrotron radiation effects are turned off to see clearly that 
particle motion is regular. This plot is taken just in the middle of 
beam-beam kick so that the phase space trajectories become 
mirror-symmetric with respect to each coordinate. One can see the 
fourth-order resonance at amplitude of about one standard 
deviation. Figure l(b) shows the particle distributions as a 
function of amplitude in polar coordinate in unit of one standard 
deviation cr. The solid line denotes the analytical result computed 
by REBECCA, while the open triangles represent the results of 
computer simulations. The broken line indicates the Gaussian 
distribution in the absence of the beam·beam force except its linear 
part. ~t is plotted as a measure to see the deviation of (P) from a 
Gaussian shape. .A good agreement can be seen in the figure 
between the analybc results and those of the computer simulations. 

• .,GUII " .J l.a 
_ . O.UG 

•• • 0.0<0 

is the orbit decorrelation time, and 1 is defined by 1 = 21"'000 

where 1y is the linear radiation damping rate and 000 is the 
angular revolution frequency. II> 

3. Carry out the following integration with D(I) to obtain the ~ ···F==="",::-,::--
solution (P(!): 

(Pili) = K·exp [-II o 2 
I + LjtY(rcr I) 

. dl] 2 ' 
<J 

(7) 

where K is a normalization factor and cr is the standard 
deviation of the transverse beam size. 

From Eq. (7), one can see that (P) will be flattened around 
resonances or fast diffusion regions due to chaos where 0(1) ~ 
yo2I. One should notice that these flattened regions are confined 
to the band-shape regions given by Eq. (4). This reflects the fact 
that chaotic particle can wander only in limited space as will be 
seen in the next section from computer simulations. 

We would like to make two remarks. The Green's function 
(4) gives the uniform transition probability for chaotic particles 
inside of the chaotic region. This is apparently not true. Note that 
the expression (4) is only the approximated solution after some 
simplifications and rough assumptions. However, this may 
provide a good estimate of the Green's function for computing 
(P), since the fine structures of the true Green's function will be 
washed out when D is integrated in Eq. (7). In fact, the results of 
computer simulations confrrms this statement in the next section. 
The second point is that the transition from regular motion to 
chaotic motion is treated in the fmal result as a rather sudden jump, 
whose border is separated by the criterion (2). In reality, there 
should be smooth transition regime. This intennediate regime is 
apparently mishandled in the present approximation. This defect 
may be removed by improving the approximation method of the 
Green's function . 

Comparison with Computer Simulations 

The computer program REBECCA (REnonnaliz.ed theory of 
Beam-beam interaction in an Electron-positron Colliding Circular 
Accelerator) has been develo{led for computing the particle 
distribution (P) according to thiS theory. The tracking program 
TRACK to simulate the beam-beam interaction has been also 
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Fig. I(a) One quarter of phase-space trajectories for vp = 0.22 
and ~ = 0.04. 
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Fig. l(b) Particle distributions as a function of amplitude. The 
s~lid line denotes the analytical result, while the open 
t~13nglc:s represent the results of the computer 
Simulatlon. The broken line indicates the Gaussian 
distribution in the absence of the beam-beam force 
except its linear part. 
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Comparisons for other sets of v p and ~ show also good 
agreements, unless the effect of nonchaotic resonance is so strong 
that particle trajectories are distorted too much to be described by 
the perturbation theory. But once chaos ensues, we can obtain 
again good agreements between the analytical resulls and computer 
simulations as seen later, since the renonnalization correction to 
the Green's function improves the accuracy of the perturbation 
calculation. 

Figure 2(a) shows an example of the very chaotic phase~space 
trajectories when the synchrotron radiation effects are turned off in 
order to see clearly chaotic behavior of particle. The parameters 
used are: vp = 0.15. and ~ = 0.17. The computation with 
REBECCA Including up to the 16~th resonances says that the 
phase space should be chaotic al amplitude between 1.20' and 40'. 
The particle distributions are plotted in Fig. 2(b) where the same 
notations of lines as in Fig.1(b) are used. One can observe the 
reasonably good agreement between the two results except at 
amplitude of around 2.50'. The hard edge of analytical distribution 
around there originates from the approximation of the Green's 
Function by the rectangle shape, although the true Green's 
function should have a smoother shape. This problem may be 
removed by improving the approximation method. Figure 3(a) 
shows another example of chaotic particle trajectories for vB = 
0.08 and ~ = 0.16. The particle distributions are plotted in Fig. 
3(b) in log scale, since no significant deviation from the Gaussian 
distribution can be seen in linear scale. The excellent agreement 
can be recognized. 

Fig. 2(a) One quarter of phase~space trajectories for vp = 0.15 
and ~ = 0.17. 

0.8 

0 .• 

( P) 

O.~ 

0.2 

0 
0 

........ 
... ~. 

lip ",. 0.16 
( - 0. 17 

II Computer .1muteUon 
-- AnltvUc le.un 

.... Gaulttan dt.trlbuUon 

2 3 4 , 
Amplitude! a 

Fig. 2(b) Particle distributions for vp = 0.15 and ~ = 0.17. 
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Fig. 3(a) One quarter of phase-space trajectories for vp = 0.08 
and ~ = 0.16. 
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Fig. 3(b) Particle distributions for vp = 0.08 and ~ = 0.16. 

Conclusion 

We have seen that the theory shows fairly good agreements 
with the results of computer simulations. The present theory. ~an 
predict (approximately), not only for what parameter the transItion 
from regular motion to chaotic motion happens, but also in which 
region of phase space the resulting diffusion of particle orbits 
occurs and how large the diffusion rate is. Unlike other theories 
which seek only the change in r.m.S. beam size, the present theory 
can calculate the particle distribution as a function of amplitude. 
This is particularly important when one wants to estimate th~ beam 
lifetime due to boundaries such as vacuum chamber, whlie the 
computer simulation is irrelevant to such a long term process. 
However, the present one-dimensional strong bea~-weak beam 
picture is still impractical for application to real machmes. Further 
research should be made to extend the method to either the two­
dimensional case or the strong-strong beams case, and eventually 
to both. 
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