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Temperature as a potent driver of regional forest
drought stress and tree mortality
A. ParkWilliams1*, Craig D. Allen2, Alison K. Macalady3,4, Daniel Griffin3,4, Connie A. Woodhouse3,4,
David M. Meko4, ThomasW. Swetnam4, Sara A. Rauscher5, Richard Seager6,
Henri D. Grissino-Mayer7, Jeffrey S. Dean4, Edward R. Cook6, Chandana Gangodagamage1,
Michael Cai8 and Nate G. McDowell1

As the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the

relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress

index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000–2007. The

FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and

cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures

of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the

vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will

exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century

changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps

water-limited forests globally, towards distributions unfamiliar to modern civilization.

Recent declines in forest productivity and tree survival have
been documented at many sites globally and attributed to
water limitation1,2. Forest declines may be accelerating in

many regions because warming has amplified water limitation3–10.
We describe forest declines due to water limitation as drought-
induced declines, whether by lack of precipitation or by increased
evaporative demand. In the southwestern United States (SWUS;
Supplementary Fig. S1), drought impacts on forests have been
relatively severe since the late 1990s (refs 5,11). This period has
been punctuated by the highest temperatures in the observed
record, positively influencing atmospheric moisture demand12. The
ongoing heat-driven drought, in combination with a multitude of
ecophysiological data documenting regional forest processes,makes
the SWUS an ideal natural experimental target13 for examining
the influence of heat-induced drought on productivity and tree
mortality in drought-sensitive forests.

Climate modelling experiments collectively project the SWUS to
become warmer and more arid as greenhouse-gas concentrations
rise and the sub-tropical high-pressure zones expand and shift
polewards14,15. Water balance has long been known to substantially
limit tree growth and influence forest disturbances in the SWUS;
however, the relative importance of temperature and precipitation
requires clarification16. Temperature should be expected to influ-
ence water balance because it exponentially influences atmospheric
evaporative demand (Supplementary Fig. S2). Uncertainty regard-
ing the relative roles of evaporative demand versus precipitation in
dictating forest drought-stress and tree mortality has limited our
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ability to anticipate future impacts to forests, whichmight otherwise
be estimated through global climate model output. Here we de-
velop a tree-ring-based index of forest drought-stress that explicitly
resolves the contributions of the vapour-pressure deficit (VPD;
difference between the actual- and saturation-vapour pressure,
largely controlled by temperature) and precipitation. We link this
index to the most comprehensive set of regional forest productivity
and disturbance records assembled so far. We use an ensemble
of climate-model projections of VPD and precipitation to project
future levels of forest drought-stress and place them in the context
of historic events known to have causedwidespread treemortality.

Forest drought-stress and climate
Annual tree-ring widths reflect variability in the environmental
stressors that limit growth17. We used tree-ring records to develop
an index of annual forest stress for dominant southwestern tree
species, ad 1000–2007. The index is based on 335 collections of site-
specific tree-ring width measurements (13,147 specimens) from
throughout the SWUS and surrounding regions (Supplementary
Fig. S1; see Supplementary Information for all methods and data
sources). Nearly all chronologies represent the threemost abundant
conifer species in the SWUS: piñon (Pinus edulis), ponderosa pine
(P. ponderosa) and Douglas-fir (Pseudotsuga menziesii). Sites reflect
a range of elevations along landscapemoisture gradients.

We call the first-principal-component time series of ring-width
chronologies the SWUS FDSI (Fig. 1a) because it is highly
representative of interannual variability in ring width across
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Figure 1 | Correlation between the FDSI and climate. a, The annual FDSI
derived from tree ring-width index records (red, 1896–2007) and
estimated with climate data using equation (1) (black, 1896–2012). See
Supplementary Fig. S3 for estimated confidence ranges in the FDSI values.
b, Curves show correlation between the estimated and the actual FDSI,
allowing predictive contributions of the warm-season VPD and cold-season
precipitation to vary from 0 to 100% and 100 to 0%, respectively. The
straight lines connect optimal correlations with axes. Grey areas represent
95% confidence intervals.

space and species (Supplementary Fig. S1) and because the index
correlates well with observed drought-related climate variables.
See Supplementary Fig. S3 for sample size and error. The FDSI
is unique because it explicitly represents regionally coherent
tree-growth variability calculated from all available ring-width
records from the three main conifer species in the SWUS. In
contrast, climate-reconstruction approaches (for example, ref. 18)
are tuned to represent a specific drought variable during a specific
season, using only ring-width records that correlate well with the
drought variable of interest.

Considering observed climate data during 1896–2007, the FDSI
most strongly correlates with the log of cold-season precipitation
(positive relationship) and the warm-season VPD (a combination
of the previous August–October and growing-season May–July
VPD, negative relationship). The FDSI can be estimated using the
following formula:

Estimated FDSI = 0.44[zscore(ln(Pndjfm))]

− 0.56[zscore((VPDaso +VPDmjj)/2)] (1)

where the subscripts are the initials of months, underlined initials
indicate months of the previous year, and zscore indicates time-
series standardization so values during 1896–2007 have a mean of
zero and a standard deviation of one (Supplementary Information).
Coefficients in equation (1) indicate that the warm-season VPD
and cold-season precipitation (P) account for 56% and 44% of the
predictive power, respectively (derived visually in Fig. 1b). Com-
bined, these variables account for 82%of the tree-ring-derived FDSI
variability (p< 0.0001, 95% confidence: 0.74≤R2 ≤ 0.88). Relative
contributions of the warm-season VPD and cold-season precipita-
tionwere stable throughout the instrumental period (Fig. 1b).

The seasons when precipitation and the VPD are best
correlated with the FDSI are consistent with our knowledge
of plant physiology. Stemwood growth in the SWUS is most

strongly dependent on soil–water recharge from cold-season
precipitation13,19,20.Warming in spring and summer causes theVPD
to increase exponentially (Supplementary Fig. S2) and soil moisture
decreases through evapotranspiration. Increased VPD coupled with
limited soil moisture increases the potential for hydraulic failure
(collapse of water columns within xylem cells) and can force
prolonged stomatal closure, decreasing photosynthesis, growth rate
and carbohydrate reserves16,21,22. Correlation between growth and
the VPD does not extend into August, consistent with observations
of a mid- to late-summer shutdown of radial growth among SWUS
trees (for example, refs 17,19). Instead, the FDSI is negatively
correlated with the August–October VPD of the previous year.
Although thesemonths are not entirely within the warm season, the
mechanisms by which the previous autumn VPD limits tree growth
are similar to those of the warm season. When conditions allow,
photosynthesis continues during August–October after cambial
shutdown, allowing allocation of carbohydrates to reserves that
influence radial growth during the following growing season17. The
VPD during this period can also influence soil-moisture recharge
by subsequent cold-season precipitation17.

The FDSI reflects variability in regional-scale vegetation growth,
as supported by the strong correlation between the FDSI and
the satellite-derived regional normalized difference vegetation
index (NDVI) during 1981–2012 (Fig. 2a). The FDSI and NDVI
both capture ongoing decline in productivity following the mid-
1990s as well as a minimum in 2002. Turn-of-the-century
drought conditions reduced productivity and ecosystem uptake of
atmospheric carbon throughout westernNorth America10.

Tree mortality
Ongoing drought-driven decline in regional productivity is associ-
ated with widespread tree mortality in the SWUS. Considering the
three focal species in this study, FDSI and NDVI minima in 2002
were followed by an approximate doubling of the proportion of
dead individuals in the SWUS (Fig. 2b). Other studies5,23,24 docu-
ment widespread post-2002mortality for piñon, which occupies the
most arid habitat of the three focal species, but the same is true for
ponderosa pine and Douglas-fir.

Much of the conifer mortality in the 2000s was caused by
factors influenced by bark-beetle attack and wildfire9,11,13,25–28.
Bark-beetle populations seem to grow during relatively warm
periods and specifically target drought-stressed trees with weakened
defences9,25. Considering aerial survey data for 1997–2011, we find
a negative temporal correspondence between the 2-year running
FDSI and the SWUS area that experienced bark-beetle-induced
mortality of at least 10 trees per acre (Fig. 2c). Although a longer
record is needed to confirm the relationship between the FDSI and
beetle-induced tree mortality, the multi-year relationship between
the area impacted by bark beetles and the FDSI makes sense
because bark-beetle populations grow and decline over multiple
seasons25. Importantly, the logarithmic scale of the left-hand y axis
in Fig. 2c suggests that incremental increases in drought conditions
promote exponential increases in the potential for beetle-induced
tree mortality. SWUS bark-beetle outbreaks may also be influenced
by forest-stand density, which has generally increased in the past
century owing to forest management practices13,29–32.

Our results also indicate a strong exponential correspondence
between forest drought-stress and satellite measurements of
forest and woodland area burned by wildfire (Fig. 2d). This
is consistent with regional analyses of fire scars left on tree
rings before observed records (for example, refs 13,26,33).
Using SWUS fire-scar data from a network of sites more than
four times as dense as those used by previous studies (for
example, ref. 13), we find that the probability of an extensive
wildfire year in the SWUS was exponentially related to the FDSI
during ad 1650–1899 (Fig. 2d inset). These analyses indicate that
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Figure 2 |Measurements of forest productivity and mortality overlaid on
the FDSI (red, right y axis). a, The annual average late-June to
early-August NDVI calculated from satellite (1981–1999: AVHRR,
2000–2012: MODIS) imagery. b, Annual forest inventory and analysis
measurements of the percentage of standing dead trees in the SWUS for
the three most common conifer species. Error bars represent standard
deviation of the percentage dead when each year’s forest inventory and
analysis measurements are randomly resampled 1,000 times
(Supplementary Information). c, Aerial-survey-derived estimates of the
area where ≥ 10 trees per acre were killed by bark-beetle attack.
d, Satellite-derived moderately and severely burned forest and woodland
area in the SWUS. See Supplementary Information and Supplementary
Fig. S4 for methods to calculate burned area. The inset shows the
percentage of years within a given FDSI class that were top-10% fire-scar
years during AD 1650–1899 (the horizontal line is at the expected
frequency of 10%, bins are 0.25 FDSI units wide). In all panels, the FDSI
values for 2008–2012 (open red squares) were estimated by applying
climate data to equation (1). Note the inverted y axes for the FDSI in b–d.

drought has been, and remains, a primary driver of widespread
wildfires in the SWUS.

Given the exponential relationships established between the
FDSI and tree mortality, severe drought events before the observed
record probably coincided with widespread tree mortality. As
observed climate and mortality data are unavailable for much of
the past millennium, we use the FDSI record to identify other
severe drought events likely to have caused widespread mortality
since ad 1000 (Fig. 3). A drought event is defined as any period
greater than three years when the mean FDSI is negative, the FDSI
is not positive for two consecutive years34, and the FDSI is less
than two standard deviation units below the 1896–2007 mean for
at least one year. Drought-event strength is the sum of the FDSI
values during the event. Updating the FDSI for 2008–2012 with
the FDSI values estimated from equation (1), three drought events
have occurred within the observed climate record: the present
drought (2000–2012, the fifth strongest since ad 1000), 1945–1964
(the sixth strongest) and 1899–1904 (the seventeenth strongest;
Fig. 3). The prolonged 1945–1964 event was indeed associated with
extensive treemortality in the SWUS as indicated by documentation
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Figure 3 | Eleven-year smoothed FDSI for AD 1000–2012. Black area: 95%
confidence range of the FDSI, representing the range of FDSI values
expected if all 335 chronologies were available. Vertical grey areas highlight
drought events.

of bark-beetle outbreaks30,35, anomalously large wildfires31,32 and
widespread die-off of conifers30,31,35. The 1899–1904 drought was
also associatedwith forest declines36, although little documented.

Before the 1900s, the 1572–1587 event was the most recent
event exceeding the severity of the present event (Fig. 3). This
megadrought event37,38 ranks as the fourth most severe since
ad 1000 and the most severe since 1300. Although direct mortality
observations are not available for the 1500s event, studies of forest
age structure document a scarcity of trees on today’s landscape
that began growing before the late 1500s (refs 13,31). As lifespans
of SWUS conifers often greatly exceed 400 years, the scarcity of
trees preceding the 1500s event indicates that intense drought
conditions probably led to deaths of a large proportion of trees
living at the time. Before the late 1500s, the correspondence between
records of conifer pollen buried at archaeological sites and tree-ring
widths39 suggests that widespread tree mortality (indicated by
pollen) co-occurred with massive droughts in the 1200s (indicated
by tree rings). Notably, ancient Puebloan populations and land-use
practices were in great flux during this time, confounding the
attribution of a dominant cause of the 1200s forest decline40.

Future forest drought-stress
The ongoing VPD-dominated drought event (Fig. 4a) is consistent
with climate-model projections (phase 3 of the Coupled Model
Intercomparison Project (CMIP3)) of increasing warm-season
VPD (∼3.6%decade−1) throughout the rest of the twenty-first
century in response to business-as-usual greenhouse-gas emissions
scenarios41 (SRES A2; Fig. 4a and Supplementary Fig. S6 for
alternative emissions scenarios: SRES A1B and B1). Dynamically
downscaled (0.5◦ geographic resolution)model projections indicate
similar increases in the VPD (Fig. 4a and Supplementary Infor-
mation). Furthermore, most models project a slight decrease in
cold-season precipitation during the second half of this century
(∼ − 1.25%decade−1, Fig. 4c). Applying model projections to
equation (1), all models indicate negative FDSI trends throughout
the twenty-first century (Fig. 4d). By 2050, the ensemblemean FDSI
is consistently more severe than that of any megadrought since at
least ad 1000 (megadrought conditions are surpassed by 2070 in the
most optimistic B1 emissions scenario, Supplementary Fig. S6d).
Notably, projections of the FDSI are more severe than projections
of gross water balance (precipitation–evaporation) because water-
balance projections are influenced more by decreased cold-season
precipitation than by increasedwarm-seasonVPD (ref. 15).

FDSI projections suggest that SWUS forest drought-stress is
entering a new era where natural oscillations such as those apparent
in Fig. 3 are superimposed on, and overwhelmed by, a trend
towards more intense drought stress. As the VPD diverges from the
range of observed variability, nonlinear effects may alter drought
impacts on forests (for example, Fig. 5 in ref. 42). During the
observed record, equation (1) was a better predictor of the FDSI
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Figure 4 |Observed and modelled climate and forest drought-stress.
a–d, The warm-season VPD (a), warm-season Tmax (b), cold-season
precipitation (c) and the FDSI (d). Black: observed records. Coloured bold
lines: CMIP3 ensemble mean values. Shading around time series: inner
50% of CMIP3 values. Green time series: 2042–2069 dynamically
downscaled NARCCAP ensemble mean values. Horizontal brown line and
shading in d show the mean and 95% confidence FDSI values of the most
severe 50% of years during the 1572–1587 megadrought. The horizontal
grey lines show the anomaly in standard deviations from the observed
1896–2007 mean (right y axis). See Supplementary Figs S5 and S6 for
individual model projections and alternative emissions scenarios.

in years of relatively high drought-stress (Supplementary Fig. S7).
This may indicate that forest sensitivity intensifies as drought
intensifies, consistent with exponential relationships between the
FDSI and tree mortality (Fig. 2c,d). Interestingly, the observed
intensification of drought sensitivity during high drought-stress
years was mainly due to heightened sensitivity to variability in
cold-season precipitation (Supplementary Fig. S7a,b,g). This may
mean that cold-season precipitation will gain relative importance as
drought intensifies in the coming decades. To account for this and
other possible nonlinear effects, we estimated the future FDSIwhere
the relative predictive contributions of cold-season precipitation
and the warm-season VPD are forced to vary. Reducing the future
predictive contribution of the warm-season VPD to 25%—less than
half the observed contribution—and increasing the contribution
of cold-season precipitation to 75%, the ensemble mean FDSI is
still estimated to equal or exceed 1500s megadrought levels by the
2060s in a business-as-usual emissions scenario (Supplementary
Fig. S8a). In the hypothetical case that climate models have over-
predicted VPD trends by a factor of two, possibly influenced
by model misrepresentation of SWUS monsoon characteristics,
megadrought levels are still surpassed during the late twenty-first
century (Supplementary Fig. S8d).

Importantly, forest-decline events are particularly sensitive to
extreme conditions (Fig. 2c,d). As widespread forest decline seems
to have occurred during the 1572–1587 megadrought, we treat the
mean FDSI during the most extreme half of the years during this
period as a forest-stress benchmark signifying a level of extreme
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Figure 5 | Extreme drought stress. a, Cumulative distribution functions of
tree-ring derived FDSI during AD 1000–2007 (black) and model-projected
FDSI during AD 2000–2100 for the A2 (red), A1B (green) and B1 (blue)
emissions scenarios. Brown line: mean FDSI during the most extreme half
of the 1572–1587 megadrought. b, Fifty-year running frequency of annual
FDSI values more negative than the mean FDSI during the most negative
half of the years during the 1572–1587 megadrought. The colours in b
represent the same as in a. Shaded areas: 95% confidence ranges for
tree-ring-derived values and inner-quartile values for model ensemble
projections.

drought-stress likely to correspond with widespread forest decline
(benchmark FDSI = −1.41). Although the 1200s megadrought
was longer, the 1500s megadrought was more extreme. During
ad 1000–2007, 4.8% of the FDSI values weremore negative than the
1500s benchmark, and the highest 50-year frequency of benchmark
years was 18% during 1247–1296. During the present drought
event, 4 of the 13 years (31%) qualify as benchmark years. On the
basis of ensemblemean projections, 59%of years will be benchmark
years during 2000–2100 assuming the A2 emissions scenario
(Fig. 5a), and the frequency of benchmark years is projected to reach
approximately 80% during the second half of this century (Fig. 5b).
Assuming the most optimistic emissions scenario (B1), this value
is 53%. Very extreme FDSI values of less then −3 (unprecedented
during 1000–2012) are projected to occur with a frequency of ap-
proximately 20% in the twenty-first century (A2 scenario, Fig. 5b).

Projections of increased forest drought-stress and tree mortality
are relevant throughout the SWUS, not only to the most drought-
prone sites. Recent bark-beetle- and wildfire-induced tree mortality
has occurred approximately uniformly among a wide variety of
SWUS sites ranging from very drought prone to less drought prone
than average (Fig. 6a,b; see Supplementary Methods). Mortality
has been less common within the ∼20% of forest area least
prone to drought (high cold-season precipitation, low warm-
season VPD). Observed exponential relationships between the
FDSI and forest-decline processes suggest that less drought-prone
SWUS forests may become progressively more vulnerable to forest
decline processes and mortality as the warm-season VPD increases.
Furthermore, regeneration of common conifer species in the SWUS
generally occurs in pulses linked to wet/cool conditions13, and
often requires the presence of parent tree sources32. Loss of mature
trees across increasingly large areas due to high-severity fires
and bark-beetle-induced mortality (Fig. 2c,d and Supplementary
Fig. S9b), coupled with ongoing and projected increases in drought
stress due to climate change (Fig. 4), means that species-specific
tree regeneration needs are increasingly less likely to be met after
disturbance43. This increases the risks of long-term forest structural
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Figure 6 |Where have trees died? The x axis represents a long-term
drought-stress gradient among SWUS forest grid cells. The grid cells with
the most severe long-term drought-stress are on the left side of plots.
a, The percentage of grid cells in each drought-stress class with ≥ 10 trees
per acre killed by bark beetles during 1997–2011. b,The percentage of grid
cells in each drought-stress class where moderate or severe wildfire
occurred during 1984–2011. Horizontal dotted black lines in a and b

indicate expected percentages if these mortality processes were spatially
uniform. c, Probability distribution function of the average FDSI during
1896–2007 among SWUS forest grid cells. The site-specific FDSI (x axis)
estimated using equation (1). The methods are described in the
Supplementary Information. Grey and white shading is intended to assist
with interpretation.

and compositional changes and type conversions from forests to
shrublands or grasslands (for example, refs 32,44).

Conclusions
The warm-season VPD was at least as important as cold-season
precipitation in dictating SWUS forest drought-stress during
1896–2007. The warm-season VPD has been particularly high since
2000 and is the primary driver of an ongoing drought-stress event
that ismore severe than any event since the late 1500smegadrought.
The present event has been associatedwith regional-scale declines in
canopy greenness and tree survival, due in part to large bark-beetle
outbreaks and increasingly large wildfires. On the basis of an
ensemble of climate-model projections, continued increases in the
warm-season VPD will by the mid-twenty-first century force mean
annual SWUS forest drought-stress levels to exceed the severity of
the strongest megadroughts since at least ad 1000. Importantly,
the warm-season VPD is largely driven by the maximum daily
temperature (Tmax) in the SWUS. As such, warm-season Tmax
is nearly as effective as the warm-season VPD at predicting the
FDSI (Supplementary Fig. S10). The importance of the VPD and
temperature in dictating the FDSI, combined with the relatively
high confidence in the projections of continued warming in the
SWUS (ref. 45), translates into a high confidence in projections
of intensified forest drought-stress. The strong correspondence
between forest drought-stress and tree mortality suggests that
intensified drought-stress will be accompanied by increased forest
decline. Importantly, human forest-management practices have
profoundly influenced the regional wildfire regime over the past
century46 and future practices will continue to influence the impacts

of drought on wildfire behaviour. Furthermore, there are many
complex interactions not accounted for in this study, including in-
teractions between disturbance processes29. We therefore constrain
our quantitative projections to the FDSI and do not forecast abso-
lutemagnitudes of forest area impacted by bark beetles orwildfire.

The implications of this study extend beyond the well-studied
SWUS region. Given that the ongoing SWUS drought event is prob-
ably a product of both natural and anthropogenic forcing47, it serves
as a natural experiment where the recent forest response to drought
may serve as a harbinger of how drought-sensitive forests globally
may respond to warming1, with implications regarding terrestrial
carbon budgets10. Model projections48,49 and observations50 of a
poleward expansion of the subtropics indicate that forests near the
poleward edges of the subtropics may be particularly vulnerable
to enhanced drought-induced tree mortality. This study indicates
that if warming continues, increasing VPD and drought stress will
continue to cause twenty-first-century readjustments to the SWUS
forest structure, composition and distribution through amplified
disturbance processes that have become increasingly evident
regionally in recent decades (for example, Supplementary Fig. S9).
Given the reproductive and dispersal limitations of dominant native
tree species, climate-driven amplification of forest drought-stress
and associated disturbance processes can be expected to force
many landscapes in the SWUS and probably elsewhere towards
vegetation-type conversions, with species distributions quite
different from those familiar tomodern civilization.
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Temperature as a potent driver of regional forest drought stress and tree mortality 
 
Calculation of a regional ring-width index (RWI) for CE 1000–2007. We utilized publically 
available records of raw tree-ring widths from (1). We also utilized unpublished records of raw 
tree-ring widths provided by several co-authors of this article. We initially considered all 
publically available and unpublished datasets that satisfied 3 conditions: (1) species is piñon 
(Pinus edulis; PIED), ponderosa pine (P. ponderosa; PIPO), or Douglas-fir (Pseudotsuga 
menzesii; PSME); (2) collected within the region we define as the Southwestern United States 
(SWUS: Arizona, New Mexico, Utah, and Colorado south of 38°N latitude; see Supplementary 
Fig. S1 for map); and (3) at least 5 raw ring-width specimens overlap with the entire period from 
CE 1800–1960. Within each raw ring-width dataset, we considered only individual records with 
at least 100 years of ring widths to help preserve low-frequency variability (decades to 
centuries). These criteria were met by 256 ring-width datasets, each representing a unique 
combination of species and location. 
 
We used standard methods to remove long-term trends in ring widths caused by aging and 
increasing trunk diameter to calculate a standardized ring-width index (RWI) chronology for 
each dataset (2, 3). When possible, standardization was done conservatively (preserving a large 
amount of low-frequency variability) by fitting each sample’s ring-width time series with a 
negative linear or negative exponential curve because ring widths should generally decrease as a 
tree grows wider. An individual sample’s RWI is calculated by dividing each ring-width 
measurement by that expected from the fit of choice. Sometimes these conservative methods 
produce unrealistic RWI values (negative or very high) because of a tendency for rings to 
temporarily increase with age in young trees. In this case, we fit the measurements to a 
Hugershoff curve (4). If the problem persisted, we fit the raw ring-width record with a 100-year 
smoothing spline. If the smoothing spline was unsuccessful at removing the unrealistic outliers 
(as was occasionally the case for relatively short time series), the time series was removed from 
the analysis. Finally, each site’s RWI chronology was calculated by averaging all individual 
RWI records. Years were omitted that were not represented by at least 5 raw ring-width records. 
All chronologies were scaled to a standard mean and variance during the common period of 
1800–1960. 
 
We used seven unpublished ring-width chronologies that include data collected from 
archaeological ruins that represent growth during relatively brief periods at the early part of last 
millennium. Regular standardization could lead to inaccurate long-term mean values for these 
old records because they do not overlap with more modern records. We therefore used pre-
standardized chronologies calculated by Cook et al. (5) for these seven cases. Cook et al. (5) 
applied a regional curve standardization approach (6, 7) to deal with these issues. 
 
We reduced overrepresentation of geographic regions with a high number of chronologies by 
gridding the 256 RWI chronologies to 1° geographic resolution. Each of the resultant 52 gridded 
chronologies is the average of all chronologies within the grid square. 
 
We performed a principal components analysis (PCA, 8) on the gridded time series data during 
the common period of 1800–1960 to identify regionally coherent components of the ring-width 
time series. The first principal component (PC) time series, representing interannual variability 

©!2012!Macmillan Publishers Limited.  All rights reserved.!



! "!

of mean RWI across the whole region, accounted for 56% of interannual variability among 
gridded time series. A Scree plot indicated that the amount of variability explained by each of the 
subsequent PC time series did not begin leveling off until the third or fourth PC time series. We 
rotated the first two PCs, which explained 65% of variability together. The rotated PCs represent 
a dipole-like spatial pattern between the northwestern and southeastern portions of the SWUS 
(Supplementary Fig. S1c). We calculated rotated PC time series (9)!that represent interannual 
variability within each of these sub-regions (Supplementary Fig. S1c,d). These sub-regional time 
series were well correlated (R2 = 0.50, p < 0.0001) and are used only during the next step of data 
preparation. 
 
We added additional chronologies that did not meet the initial three selection criteria in order to 
increase sample depth before and after the common period of 1800–1960. All additional 
chronologies met the following criteria: (1) from Arizona, New Mexico, Utah, Colorado, Texas, 
California, Nevada, or Mexico; (2) conifer species, (3) at least five raw ring-width records 
overlap with at least 75 years during the common period of CE 1800–1960; and (4) the site’s 
standardized RWI chronology correlates positively and r > 0.5 with the first PC time series 
and/or at least one of the two rotated PC time series representing sub-regional variability. This 
process selected 81 additional chronologies, bringing the full sample size to N = 335 
chronologies (see Supplementary Fig. S1a,c for site locations). Most chronologies represent 
PIED (N = 103), PIPO (N = 102), or PSME (N = 109) and 21 additional chronologies represent 8 
other species: white fir (N = 3), subalpine fir (N = 1), Engelmann spruce (N = 2), Rocky 
Mountain bristlecone pine (N = 1), limber pine (N = 3), Jeffrey pine (N = 3), bristlecone pine (N 
= 5), and southwestern white pine (N = 3). All ring-width data were re-gridded, bringing the final 
number of gridded time series to 80. We recalculated the first PC time series for CE 1000–2007 
based upon the updated correlation matrix with reference to the common period of CE 1800–
1960.  
 
Supplementary Figure S3a shows how sample depth varies during CE 1000–2007. Despite 
deterioration of sample depth before and after the common period of 1800–1960, there is high 
coherence among time series throughout the region. A 95% confidence range was calculated to 
represent the expected error caused by decreased sample size (Supplementary Fig. S3b). For 
each year, an alternate RWI record was calculated using only the RWI records available during 
that year. This alternate record was compared to the actual record for the common period 1800–
1960 when nearly all RWI chronologies contributed in all years. The lowest 95% of absolute 
errors during 1800–1960 are treated as the 95% confidence range. Error is highest during CE 
1283–1294 (the middle of the strongest drought event since at least CE 1000), equaling 0.34 
standard deviation units during the common period. 
 
The tree-ring database from which the vast majority of the tree-ring data came (1) does not 
contain information about tree age. We have made general approximations of the age structure of 
trees used in our analysis by examining the number of rings present in each individual specimen. 
Notably, the number of rings in a specimen often leads to an underestimate of tree age because 
(1) not all specimens contain the central pith ring and immediately surrounding rings, (2) trees 
are generally already several years old before they reach typical sampling height, meaning the 
tree rings that were grown during a tree’s very first years of life are generally only present at the 
base of the tree, and/or (3) occasionally tree cores snap and only a portion of the core is retained 
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and analyzed. Among the 13,147 specimens evaluated in this study, 95% have 108–629 rings, 
mean and median number of rings present are 282 and 256, respectively, and inner-quartile 
values are 179 and 341. For PIED, 95% of specimens have 112–586 rings, mean and median are 
287 and 265, and inner quartiles are 191 and 353. For PIPO, 95% of specimens have 109–448 
rings, mean and median are 246 and 237, and inner quartiles are 175 and 304. For PSME, 95% of 
specimens have 107–623 rings, mean and median are 286 and 237, and inner quartiles are 175 
and 356. 
 
Forest Drought-Stress Index (FDSI). An important result in this study is that during 1896–
2007, warm-season VPD contributed 56% of the predictability of regional RWI and cold-season 
P contributed 44%. To conceptualize this result in the equation that uses these two variables in a 
multiple regression to predict RWI, we standardized the predictors relative to the 1896–2007 
mean and standard deviation and assigned 0.56 and 0.44 as the regression coefficients. We re-
scaled the RWI record to match the time series calculated with the predictive equation. This 
causes the new RWI record to have a mean of zero during 1896–2007. Because the climate 
variables corresponding to RWI are clearly associated with drought, and because these drought 
variables account for so much variability in the RWI record, we refer to the adjusted RWI record 
as a forest drought-stress index (FDSI).  
 
Many studies have shown SWUS tree-ring indices to be particularly reflective of drought 
variability (e.g., 10-12), and this relationship has been exploited to develop reconstructions of 
climate records in the SWUS. As explained in the article, FDSI is unique because it represents 
regionally coherent ring-width variability calculated from all available ring-width records from 
the three main conifer species in the SWUS. FDSI is therefore an explicit reflection of regional 
PIED, PIPO, and PSME growth. In contrast, drought-reconstruction efforts (e.g., 5) aim to reflect 
a specific climatic drought variable during a specific season. This is done by preserving only the 
component of ring-width records, regardless of species, that optimally reflects the climate 
variable of interest by excluding tree-ring chronologies that do not reflect the chosen drought 
variable. Additionally, the chronologies that correlate most strongly with the chosen drought 
variable are preferentially weighted. 
 
Unavoidably, FDSI still probably contains a drought bias because many SWUS populations were 
sampled specifically for drought reconstruction. The results of this analysis may be less 
applicable for populations growing in perennially moist locations such as high-elevation, interior 
forests with deep-soil drainage. While this analysis may be less representative of the least 
drought-prone forests, high regional and cross-species coherence among ring-width records 
(Supplementary Fig. S1), as well as strong agreement between FDSI and regional NDVI (Fig. 
2a), demonstrates a spatially and temporally consistent growth response to regional drought 
variability among broadly drought-sensitive forest regions in the SWUS. Further, the spatial 
analysis presented in Fig. 6 indicates that bark-beetle- and wildfire-induced tree mortality has 
occurred approximately uniformly among SWUS sites that vary in long-term average drought 
status from extremely drought prone to less drought prone than average. These mortality 
mechanisms were less common only at the very least-drought prone sites. Results of this spatial 
analysis support the conclusion that FDSI is representative of forest growth and susceptibility to 
mortality processes across a broad range of SWUS forests beyond those that have historically 
been the most drought prone. 
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Observed climate data. Observed climate data were obtained from the PRISM climate group at 
Oregon State University (13). PRISM data are monthly gridded interpolations of station 
measurements of total precipitation (P), average daily maximum temperature (Tmax), average 
daily minimum temperature (Tmin), and average dew point. Temporal coverage is January 1895 – 
July 2012. Geographic resolution is 0.0417° (~4 km). 
 
To estimate monthly VPD, we first estimated average monthly temperature (Tave). Average 
monthly temperature is estimated using a mixture of Tmax and Tmin. We determined the optimal 
mixture coefficients for Tmax and Tmin for each month using reanalysis temperature data from the 
National Center for Atmospheric Research (NCAR) North American Regional Reanalysis 
(NARR, 14). Considering the geographic region within the portion of the SWUS populated by 
PIED, PIPO, or PSME (Supplementary Fig. S1, hereon referred to as the SWUS forest and 
woodland region), three-hourly NARR data indicate that the mixture coefficient for Tmax varies 
from 43.5% in December to 52.7% in June (mixture coefficient for Tmin is 100% minus that of 
Tmax). 
 
VPD is the difference between saturation vapor pressure (SVP) and actual vapor pressure. 
Saturation vapor pressure is temperature dependent and can be approximated using the following 
formula:  
 
SVP = a0+T(a1 + T (a2 + T (a3 + T (a4 + T (a5 + T a6)))))     (eqn. S1), 
 
where T is air temperature in degrees Celsius, a0=6.107799961, a1=4.436518521x10-1, 
a2=1.428945805x10-2, a3=2.650648471x10-4, a4=3.031240396x10-6, a5=2.034080948x10-8, and 
a6=6.136820929x10-11 (15). Actual vapor pressure is calculated by solving equation S1 for dew-
point temperature rather than Tave.  
 
Using monthly Tave and dew point data to calculate monthly average VPD introduces error 
because the influence of temperature on saturation vapor pressure is exponential. By averaging 
temperature and dew point over a month before calculating saturation vapor pressure and actual 
vapor pressure, SVP and actual vapor pressure are underestimated. This leads to underestimation 
of monthly VPD. To account for the underestimation, we used NARR to determine the statistical 
relationship between actual VPD and VPD estimated from monthly average Tmax, Tmin, and dew 
point. Throughout the SWUS forest and woodland region, the relationship is linear and spatially 
consistent. The equation derived to adjust the gridded monthly VPD estimates (VPDm) is: 
 
VPD = 0.2358 + 1.0694(VPDm)                                                                   (eqn. S2), 
 
where pressure units are hectopascals (hPa). Finally, we calculated single monthly time series of 
P and VPD to represent the SWUS forest and woodland region. Shapefiles of the distributions of 
the three focal species were obtained from (16). 15,552 PRISM grid cells fall within this region. 
For each month and each variable, we standardized each grid cell’s annual time series to have a 
mean of zero and standard deviation of one. We averaged all standardized time series to create 
one regional time series. We multiplied this regional time series by the average long-term 
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standard deviation of all grid cells and then added back the average long-term mean of all grid 
cells. 
 
Using observed climate data to predict FDSI. We used stepwise linear regression to isolate 
seasonal log(P) and VPD data as the optimal predictors FDSI for 1896–2007. Seasons were 3 
months long and overlapped with conventional season definitions (e.g., summer: May–Jul; fall: 
Aug–Oct; winter: Nov–Jan; spring: Feb–Apr). We chose unconventional seasonal definitions 
because exploratory analysis showed RWI to be negatively correlated with drought beginning in 
August of the previous year. So, the fall season begins in August in this analysis. Due to the 
apparent influence of previous year’s climate, we included six seasons beginning with summer of 
the previous year and extending through fall of the current year. This means the stepwise linear 
regression was carried out with 12 potential predictors (2 climate variables x 6 seasons). 
 
Stepwise linear regression was performed by correlating FDSI with all 12 potential predictors for 
1896–2007s. If any predictors correlated significantly (p < 0.01) with FDSI, the predictor with 
the highest correlation was selected. Residual FDSI values were then calculated and a search was 
conducted for another potential predictor that correlates significantly with the residual FDSI time 
series and improves to the fraction of variance explained (R2) by at least 0.05. This procedure 
was repeated until the residual FDSI time series no longer correlated significantly with any 
potential predictors or no potential predictor improved R2 by at least 0.05. Once all qualifying 
predictors were selected, the predictor time series were used in a multiple regression to estimate 
FDSI and correlation between estimated FDSI and actual FDSI was calculated. 
 
In the stepwise model-building process, the first variable chosen was VPD during current year 
May–July (r = -0.65, p < 0.0001). Correlating seasonal climate with residuals, the next variable 
selected was log(P) during November–January (correlation with residuals: r = 0.31, p = 0.0009). 
Again correlating seasonal climate with residuals, the final variable selected was VPD during 
previous year August–October (correlation with residuals: r = -0.26, p = 0.0056). Using these 
three variables in a multivariate regression to predict FDSI, correlation between predicted and 
actual FDSI was r = 0.87 (R2 = 0.75, p < 0.0001). 
 
While we used seasonal, as opposed to monthly, climate data as predictors in order to avoid 
overfitting the predictive model, there is no reason why a tree’s response to climate should be 
confined to 3-month seasons. We therefore allowed the three-month seasons of the predictors the 
opportunity to expand or shrink. Each predictor time series was re-calculated four times, each 
time with one of its ends shortened by one month or extended by one month. For each case, a 
new multiple-regression was performed and a new correlation between estimated and actual 
FDSI was calculated. If any expansions or shrinkages of seasons caused correlation to increase 
by more than 0.01, the expansion or shrinkage that caused the largest increase in correlation was 
applied to the set of predictor time series. This process was repeated until correlation was no 
longer improved by more than 0.01. 
 
During this process, the first adjustment was the addition of February log(P) to the November–
January log(P) season, increasing the correlation between estimated and actual FDSI from 0.87 
to 0.89. The second and final adjustment was the addition of March log(P) to the November–
February log(P) season, increasing correlation from 0.89 to 0.91. Finally, we chose to average 
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VPD during the VPD seasons into one variable to simplify the predictive equation. This did not 
impact correlation between estimated and measured FDSI, but it does result in more conservative 
projections of future FDSI because using three predictors (May–July VPD, November–March 
log(P), and August–October VPD) causes the two VPD variables, which are projected to 
increase substantially this century, to combine to contribute quite a bit more predictive power 
than the one log(P) variable, which is not projected to change substantially. Giving the two VPD 
variables equal predictive power also results in slightly more conservative estimates of future 
FDSI. Considering the two VPD predictors independently, May–July VPD would contribute 
56% of the VPD predictive power and August–October would contribute the other 44%. 
Considering the predictive contributions of these two terms to be equal results in more 
conservative estimates of future FDSI because May–July VPD is generally projected to increase 
more than August–October VPD. Finally, we refer throughout the article and throughout the rest 
of the Supplementary Information section to November–March as “cold season” and the average 
of August–October and May–July as “warm–season”.  
 
We are confident that the equation-building process led to an accurate predictive equation 
because the seasons selected as important for log(P) and VPD make logical sense for the 
following reasons: (1) they are consistent with our understanding of SWUS forest-drought 
relations (see article text), (2) the relative contributions of VPD and log(P) as predictors of FDSI 
were stable throughout the 1896–2007 period (Fig. 1b), and (3) a cross-validation test led to only 
a minimal decrease in correlation between estimated and actual FDSI values (cross-validated r = 
0.90, p < 0.0001). Cross-validation involves sequentially removing one year of data at a time, 
calculating new regression coefficients using the climate and FDSI from all other years, and then 
predicting the missing FDSI value (17). Because the equation-building process allowed for more 
than one opportunity to incorporate a false but statistically significant relationship, cross-
validation can underestimate the probability of a false relationship between estimated and actual 
FDSI. Correlation is so strong in this analysis that this is exceptionally unlikely to be a problem. 
 
Future FDSI. We estimate future FDSI based upon an ensemble of model projections of future 
monthly P and VPD in the SWUS. The climate projections were made for the third phase of the 
Coupled Model Intercomparison Project (CMIP3) and assume the Intergovernmental Panel on 
Climate Change (IPCC) A2 scenario (business-as-usual greenhouse gas emissions throughout the 
21st century (18)). We accessed all CMIP3 data from (19). We derived projections of VPD using 
projections of average monthly temperature, specific humidity, and atmospheric pressure. 
Modeled monthly VPD values were adjusted using equation S2 above. 
 
For each modeled realization of future climate, we created a single time series of SWUS cold-
season log(P) and a single time series of warm-season VPD. Because geographic resolution of 
model climate is much lower than that of the PRISM observational data, we identified the model 
grid cells representing the SWUS and calculated area-weighted averages over the SWUS forest 
and woodland region. 
 
Model projections of SWUS climate vary not only in terms of magnitude of future change, but 
also in terms of baseline (pre-21st century) mean and variability. To normalize all model 
projections to have uniform baseline mean and variance we accessed simulations produced for 
the CMIP3 20th century experiment (20cm3). We converted each model’s 21st century time series 
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into standard deviation units relative to that model’s 20th-century mean and standard deviation. 
We multiplied these values by the PRISM-derived observed 20th century standard deviation and 
added back in the observed 20th century mean.  
 
Model data are not available for both the 20cm3 and the A2 scenarios for all variables. For P, 
20cm3 and A2 data are available for 23 and 19 CMIP3 models, respectively. For VPD (which 
requires temperature, specific humidity, and atmospheric pressure data), 20cm3 and A2 data are 
available for 16 and 10 models, respectively. Modeled estimates of FDSI are derived from 16 
models for the 20th century and 10 models for the 21st century. The change in sample size from 
20th to 21st century does not influence projected values for the 21st century because of the 
procedure described above that normalizes all time series to the same 20th century mean and 
variance. 
 
Additionally, we utilized seven high-resolution (50 km grid spacing) climate simulations 
produced by forcing different regional climate models with initial and lateral boundary 
conditions derived from coupled atmosphere-ocean general circulation models (AOGCMs) over 
a domain covering most of North America. These simulations were produced as part of the North 
American Regional Climate Change Assessment Program (NARCCAP) (20, 21). NARCCAP 
data cover two 29-year periods: 1971–1999 and 2041–2069. For the future period, the AOGCMs 
were forced with the A2 emissions scenario. The inclusion of these dynamically downscaled 
simulations adds value to our study since a limitation of the global models is their relatively 
coarse resolution and poor representation of the complex terrain over the western United States. 
Regional climate modeling studies performed over domains covering the western United States 
have demonstrated enhanced skill in simulating precipitation over this region compared to 
coarse-resolution GCMs (e.g. 22, 23). 
 
The 19 models used to simulate climate and FDSI according to the IPCC A2 emissions scenario 
are listed in Supplementary Figure S5. Additionally, we considered two more moderate 
emissions scenarios (SRES scenarios A1B and B1, 18). Ensemble projections of warm-season 
VPD, warm-season Tmax, cold-season P, and FDSI for each of the A2, A1B, and B1 scenarios are 
shown in Supplementary Figure S6. 
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High-frequency bias due to PCA. Recall that FDSI was calculated using PCA, which preserved 
the component of variability most common among the original RWI records. It is possible that 
this method led to a bias toward under-representation of variability at low frequencies because 
high-frequency (interannual) variability contributes to substantially more of the overall 
variability than low-frequency (decadal to centennial) variability. 
 
To test whether the PCA led to a bias toward preservation of high-frequency variability, we 
compared smoothed time series of regional FDSI to smoothed time series of site-specific ring-
width index (RWI) records. We smoothed the regional FDSI record and the 335 original ring-
width index (RWI) records by various smoothing periods and observed how correlation 
coefficients changed based upon smoothing period. If correlation decreases substantially as 
smoothing period grows longer, a bias toward preservation of high-frequency variability would 
be indicated. Supplementary Figure S3c shows how the regional FDSI record correlates with the 
335 original ring-width index records. When no smoothing is performed (left edge of panel), the 
median of the 335 correlation coefficients is r = 0.66 (inner quartiles 0.58 ! r ! 0.73). When 
smoothing is performed, correlation coefficients remain nearly identical out to a smoothing 
period of approximately 40 years (median r = 0.65). This indicates that the regional FDSI record 
accurately preserves variability occurring on time scales of up to 40 years. Beyond the 40-year 
smoothing period, correlation reduces slightly until reaching a minimum at a smoothing period 
of approximately 70 years (median r = 0.58). Beyond a smoothing period of 70 years, median 
correlation rebounds back to r = 0.67 at a 100 year smoothing period, where we stopped the 
analysis. The minimum at 70 years may indicate that the PCA led to slight bias toward exclusion 
of variability occurring at the ~70-year timescale. 
 
Supplementary Figure S3d demonstrates how this bias was ultimately reflected in the FDSI 
record. The black time series represents the original FDSI record with a 70-year smooth. The red 
time series is an FDSI record that was re-calculated from a PCA of 70-year smoothed RWI 
records. This recalculated FDSI record does not contain any bias toward higher-frequency 
variability because the higher-frequency variability was removed from the individual RWI 
records before the PCA was conducted. The original and recalculated FDSI records are very 
similar (r = 0.98), but they have some important differences. In general, historic drought-stress 
events tend to be slightly more severe in the recalculated time series. During the late 1200s 
drough-stress event, which was the strongest drought-stress event in the last millennium, 
recalculated FDSI was ~15% more severe than the originally calculated FDSI.  
 
Importantly, the ultimate conclusions of our study are unaffected by the revelation that severity 
of historic drought-stress events may be underestimated by ~15%. First, the result that warm-
season VPD explains at least as much variability in FDSI as cold-season P is unaffected. To test 
this, we first calculated a new unsmoothed FDSI record that does not contain bias against 70-
year variability. This was done by subtracting the original 70-year smoothed FDSI record from 
the original unsmoothed record (to isolate variability with a higher frequency than 70 years) and 
then adding in the recalculated 70-year smoothed FDSI record. The new record is virtually 
identical to the original record during the calibration period of 1896–2007 (r = 0.9997). 
Considering the new FDSI record, multiple regression reveals that warm-season VPD contributes 
53.4% of the predictive power and cold-season precipitation reveals 46.6% of predictive power, 
very similar to the result reported in the main text. 
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Second, assuming true megadrought severity was 15% greater, our conclusion that mean 
drought-stress conditions will reach megadrought conditions by the 2050s under business-as-
usual emissions remains unchanged. A 15% increase in the severity of the most severe half of 
years in the 1500s megadrought means average FDSI was -1.62 during that period. The first year 
when ensemble mean FDSI < -1.62 is 2043. Ensemble mean FDSI is always < -1.62 after 2057. 
These results are identical even if true 1500s megadrought severity was 25% greater than is 
indicated by the tree-ring record. Even if we assume we have underestimated the severity of 
historical megadroughts by a factor of two, ensemble-mean FDSI still exceeds megadrought 
severity by the 2070s. 
 
Satellite-derived Normalized Difference Vegetation Index (NDVI). We accessed twice-
monthly global grids of NDVI derived from the Advanced Very High Resolution Radiometer 
(AVHRR) satellite for July 1981 – December 2008 (26). AVHRR data are gridded at 0.072° 
geographic resolution. We extracted all data from the 5,226 grid cells within the portion of the 
SWUS populated by PIED, PIPO, or PSME (Supplementary Fig. S1a,c). We calculated a twice-
monthly regionally representative NDVI record using the same methods used to calculate 
regional climate records from PRISM data. 
 
Considering 1982–2008, we identified the annual group of consecutive twice-monthly 
measurements during which average NDVI correlates most positively with FDSI (extended with 
2008 FDSI estimated using eqn. 1). The period of optimal agreement between FDSI and twice-
monthly measurements of NDVI is the second half of June through the first half of August 
(average of four twice-monthly NDVI values). We estimated an NDVI value for 1981 by 
averaging the first three measurements in 1981 (early July through early August) because June 
1981 data were not available. 
 
We updated the regional NDVI record through 2012 using the MOD13Q1 16-day NDVI product 
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery at 
gridded 250 m spatial resolution (27). The MOD13Q1 record was accessed from (28) and covers 
years 2000–2012. Mean annual late-June through early-August NDVI for the SWUS was 
calculated for MOD13Q1 using the same methodology used for AVHRR. During the nine years 
of overlap (2000–2008), MOD13Q1 and AVHRR NDVI records are very well correlated (r = 
0.98, p < 0.0001). We replaced the AVHRR record from 2000–2008 with the MOD13Q1 values 
because MOD13Q1 NDVI has been shown to have higher accuracy than AVHRR-based NDVI 
(27) and because the MOD13Q1 product has a much higher spatial resolution. There was a 
systematic offset between the two products where AVHRR-based NDVI was consistently lower 
than MOD13Q1 NDIV by approximately 0.03. The following linear conversion was applied to 
the 1981–1999 AVHRR data to scale to MOD13Q1:  
 
MOD13Q1 = 0.9748(AVHRR) + 0.0365                                                                  (eqn. S3), 
 
Forest Inventory and Analysis (FIA) data. We accessed FIA data from (29). FIA data are 
collected annually in most states and enough plots are sampled each year so that, on the spatial 
scale of a state (in the western US), patterns in the FIA data (e.g. % dead trees) are regionally 
representative (30). We only considered FIA data collections made under the National Plot 
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Design. In New Mexico, forest inventory were only collected under the National Plot Design in 
the mid-1990s. National Plot Data are available through 2009 from Arizona, Utah, and Colorado. 
For Utah and Colorado, we only considered data from sample plots south of 38°N. Geographic 
coordinates representing plot locations are scrambled in the publically available FIA database to 
protect rights of private property holders, but 80% of listed plot locations are within 
approximately 1.6 km (1 mile) of actual locations and listed locations are always within the same 
county. Our analysis therefore probably includes some plot data from slightly north of 38°N and 
excludes some plot data from slightly south of 38°N. 
 
Our FIA analysis focused on three species: PIED, PIPO, and PSME. We only considered 
standing individuals with trunk diameter greater than 12.7 cm (5 inches) at breast height to be 
consistent with Shaw et al. (30). Each year, for each species, we tallied the proportion of 
standing individuals in the SWUS listed as dead. Annual species-specific error bars in Figure 2b 
of the article were calculated using randomized resampling of FIA plot data. For each year and 
species, N plots were sampled by FIA. We randomly selected from these N plots N times, each 
time recording the % of dead individuals at the plot, and then replacing the plot data back in the 
sample pool for potential reselection. After randomly selecting plots N times, we recorded the % 
of dead standing individuals among the N samples. We repeated this 1,000 times and calculated 
the standard deviation of the 1,000 calculations of % dead. These standard deviation values are 
used as annual error values in Figure 2b.  
 
Bark-beetle-induced mortality. To assess tree mortality caused by bark beetles we used 
shapefiles of aerial observations of tree mortality for 1997–2011 from the USFS Forest Health 
Technology Enterprise Team (FHTET, 31). Polygons were only included in the analysis if (1) 
the location is within the SWUS, (2) more than 10 trees per acre were killed, (3) damage code 
indicates mortality, (4) damaging agent code indicates the cause of mortality is bark beetles, and 
(5) host code indicates PIED, PIPO, or PSME. Polygons straddling the boundary of the SWUS 
were trimmed accordingly. Overlapping polygons in a given year were merged to avoid double 
counting. Annual area within remaining polygons was calculated. 
 
Wildfire-induced mortality. We accessed geotiff files of burn severity from the USFS 
Monitoring Trends in Burn Severity (MTBS) project (32). Burn-severity classifications are 
derived from LANDSAT satellite data with 30 m geographic resolution and are available for 
1984–2010. We considered only data within the SWUS forest and woodland region. 
 
MTBS burn-severity classifications are “low”, “moderate”, and “severe”. As in (10), we 
excluded classifications of low severity from this analysis to reduce chances of considering 
burned area where nearly all trees survived. For each year, we merged overlapping grid cells 
classified as moderate or severe to avoid double-counting. We tallied the annual area burned for 
1984–2010. 
 
We updated the burned-area time series through 2011 using the burned area product derived 
from MODIS satellite imagery (33). The MODIS burned-area product has 1 km geographic 
resolution, begins in 2000, and extends through 2011. MODIS burned-area grid cells are 
classified in terms of confidence rather than burn severity. Four classifications of confidence are 
assigned. The MODIS-derived record matches best with the MTBS record when we consider all 
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MODIS grid cells regardless of confidence classification. MTBS- and MODIS-derived records 
of annual burned area are shown in Supplementary Figure S4. 
 
Historical fire-scar analysis. Surface fires that burn along forest floor often burn through tree 
bark and leave burn scars on cross-sections of trees. By determining the location of the burn scar 
on the cross-section relative to tree rings of known date, dendrochronologists can determine the 
year of the fire. Fire-scar data from a network of 284 sites in the SWUS have been compiled by 
the Laboratory for Tree-Ring Research at the University of Arizona as part of the Joint Fire 
Sciences, Fire and Climate Synthesis (FACS) project (34). Previous studies using fire-scar data 
from far fewer sites (refs. 35-38) have found regional synchrony in terms of when fire scars 
occur in the SWUS, and that SWUS-wide fire years tend to be drought years. We test whether 
this result is still valid with fire-scar data from an updated network of sites more than 4.5 times 
as dense as the network utilized by Swetnam and Betancourt (38). 
 
We considered CE 1650–1899 because this is the period of highest data availability prior to the 
modern era of land use and fire suppression. For each site, only considering years with at least 
five trees recording presence or absence of a fire scar, we defined a “fire year” as a year when 
more than one tree recorded a fire scar. We then gridded the fire-year data to 1° geographic 
resolution by calculating the fraction of sites within each 1°grid cell that recorded a fire year. For 
each year we then averaged this value across all grid cells to calculate the average fraction of 
sites recording a fire year. We identified the 25 years (top 10%) with the largest fraction of sites 
recording a fire year (as was done by 38). For simplicity, we define these 25 years as “SWUS-
wide fire years.” We evaluated the relationship between the probability of a SWUS-wide fire 
year and FDSI. Results are shown in the inset of Figure 2d of the article. 
 
Site-specific FDSI and spatial analysis of forest decline. Site-specific long-term mean FDSI 
was estimated with PRISM climate data for the spatial analysis presented in Figure 6. For this 
analysis, mean FDSI was estimated for each PRISM grid cell in the SWUS for the period 1896–
2007. The same methods were used as were used to estimate the regional FDSI record, but each 
site-specific cold-season log(P) and warm-season VPD record was normalized to the regional 
mean and standard deviation rather than the site-specific mean and standard deviation. This 
causes site-specific FDSI records to have variable long-term means because long-term mean 
cold-season log(P) and warm-season VPD vary spatially. As in the temporal record of regional 
FDSI, sites with the most negative long-term mean FDSI values are the most drought-prone. 
 
In the spatial analysis, we determined whether recent bark-beetle- or wildfire-induced tree 
mortality has been uniformly distributed throughout the SWUS regardless of spatial differences 
in long-term drought status, or if these mortality processes have been clustered only among the 
most drought-prone sites. For this analysis, we linearly interpolated the ~4 km grid of long-term 
mean estimated FDSI to 250 m resolution. We masked out grid cells that do not fall within the 
species distributions of PIED, PIPO, or PSME. To further avoid considering grid cells that are 
unlikely to be occupied by at least one of these three species, we masked out grid cells not 
defined as conifer or mixed forest in the 1992 National Land Cover Dataset (NLCD, 39). NLCD 
data are provided at 30 m spatial resolution and we interpolated to 250 m resolution using 
nearest-neighbor interpolation. Finally, as in (10), we unmasked previously masked grid cells 
that were identified by the FHTET aerial survey dataset as having been part of a region where " 
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10 trees per acre (PIED, PIPO, or PSME) were killed by bark beetles. For the spatial analysis of 
bark-beetle-induced tree mortality, we identified all unmasked grid cells where the bark-beetle 
analysis described above documented " 10 trees per acre killed during 1997–2011. For the 
spatial analysis of wildfire-induced tree mortality, we identified all unmasked grid cells where 
the wildfire analysis described above documented moderate or severe wildfire. We binned all 
unmasked grid cells based upon long-term average estimated FDSI and plotted the percent of 
grid cells that were impacted by each of these forest-decline processes in Figure 6. 
 
Data analysis 
All data analysis was performed using the statistical programming software MATLAB R2011a 
and MATLAB R2011b. Any use of trade, firm, or product names is for descriptive purposes only 
and does not imply endorsement by the U.S. Government. 
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Supplementary Figures 

 
Supplementary Figure S1. Coherence of ring-width patterns across space and species. (a) Spatial distribution of 
sample locations representing piñon (PIED, red dots), ponderosa pine (PIPO, blue dots), Douglas-fir (PSME, grey 
dots), and 8 other species (white dots). (b) First principal component time series independently calculated for PIED, 
PIPO, and PSME. (c) Locations of chronologies that correlate best with the first (dark red dots) and second (dark 
blue dots) rotated principal component time series. (d) The first two rotated principal component time series. Yellow 
area in maps represents the Southwest US region (Arizona, New Mexico, and the portions of Utah and Colorado 
south of 38°N). Dark green areas in maps represent species distributions of PIPO and PSME. Bright green areas in 
maps represent distribution of PIED that do not overlap with PIPO or PSME distributions. 
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Supplementary Figure S2. Exponential relationship between monthly average daily maximum temperature (Tmax) 
and average monthly vapor pressure deficit (VPD) in the southwestern US from January 1895 through July 2012. 
Dot color indicates month. 
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Supplementary Figure S3. Sample size, error, and test for high-frequency bias in FDSI. (a) Time series of number 
of individual site chronologies (black) and gridded chronologies (red) incorporated in the regional RWI record. (b) 
Time series of the 95% ± confidence range of RWI (left axis) and FDSI (right axis). 95% confidence range for a 
given year represents the range of 95% of absolute errors when 1800–1960 values are calculated with only the 
chronologies available that year and compared to the actual 1800–1960 values. (c) Correlation between smoothed 
regional FDSI and smoothed time series of the 335 individual tree-ring width-index (RWI) records. Width of 
smoothing window was adjusted in 1-year increments from 0–100 years (x-axis). (d) Time series of 70-year 
smoothed FDSI (black) and FDSI recalculated (red) by applying a 70-year smooth to all individual RWI records and 
then using principal components analysis to calculate regional FDSI. 
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Supplementary Figure S4. Annual burned area within distributions of piñon, ponderosa pine, and Douglas-fir 
within the SWUS. Burned areas estimated by satellite-derived MTBS (dark red) and MODIS (blue) imagery. 
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Supplementary Figure S5. Individual model projections of climate change, comparing mean values during 2041–
2069 to those of 1971–2000. (a) Warm-season VPD, (b), warm-season Tmax, (c) cold-season P, and (d) FDSI. For 
models with multiple realizations of 2041–2069 conditions, brackets bound all values and bars indicate average 
values. Asterisks indicate significant (p < 0.05) differences between 2041–2069 and 1971–2000 values. Projections 
of some variables are not available for some models. In these cases, a projected value of zero is shown. 
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Supplementary Figure S6. Model projections of climate and forest-drought stress considering 3 future SRES 
emissions scenarios (18): red A2, green A1B, and blue B1. (a) Warm-season VPD, (b) warm-season Tmax, (c) cold-
season P, and (d) forest drought-stress index. Colored bold lines are CMIP3 ensemble mean values. Shading around 
time series represents inner 50% of CMIP3 values. Standard deviation anomalies from the 1897-2007 mean are 
indicated by the grey lines and y-axis scale at right. Brown line and shading in (d) represent mean and 95% 
confidence FDSI values of the most severe 50% of years during the 1572–1587 megadrought.  
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Supplementary Figure S7. Relationships between drought-related climate variables and FDSI for years when FDSI 
was among the lowest 50% (red; more drought stress) and highest 50% (blue; less drought stress) of annual values 
during 1896–2007. Scatter plots: FDSI vs. cold-season P (a), FDSI vs. warm-season VPD (c), and FDSI vs. 
estimated FDSI calculated in eqn. 1. Panels (b, d, and f) show slopes of regression lines in (a, c, e) with 95% 
confidence intervals. (g) A replica of Fig. 1 from the article, but red and blue curves represent the years with the 
lowest 50% (red) and highest 50% (blue) FDSI values rather than the first and second halves of the record. 
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Supplementary Figure S8. What do FDSI projections look like if forest responses to drought change? Panels (a–c) 
show 5-year running mean FDSI estimated for various hypothetical scenarios where the relative predictive 
contributions of cold-season P and warm-season VPD vary between 0–100% rather than being stable at 44% and 
56%, respectively, as in eqn. 1 of the article. Legend in (a) refers to panels (a–c). Panels (a–c) each represent a 
unique SRES emissions scenarios where (a) is most extreme and (c) is most moderate. Panel (d) assumes relative 
predictive contributions of cold-season P and warm-season VPD remain stable at 44% and 56%, respectively, but 
that only cold-season P totals (blue) and warm-season VPD (red) are allowed to vary from the 1896–2007 means. 
These are simulations of cases where one variable loses all predictive power in the future but predictive power of the 
other variable does not increase to compensate. Line styles represent various emissions scenarios as indicated in the 
legend in panel (d). Brown line and shading in all panels represent mean and 95% confidence FDSI values of the 
most severe 50% of years during the 1572–1587 megadrought.  
 
 
 
 
 
 
 
 
 

©!2012!Macmillan Publishers Limited.  All rights reserved.!



! "#!

 
Supplementary Figure S9. Recent drought-related forest declines the SWUS. (a) Ponderosa pine killed by drought 
stress and bark beetles during 2002–2004 in the Jemez Mountains, New Mexico. Photo: C.D. Allen, July 2006. (b) 
Extensive contiguous mortality of piñon, ponderosa pine, and Douglas-fir trees, killed in the first afternoon and 
evening of the Las Conchas Fire of 2011 in the Jemez Mountains, New Mexico. At the time, this was the largest fire 
in New Mexico history (63,370 ha). Given the total or near-total mortality of all conifer tree species in very large 
patches, such as ponderosa pine and piñon pine which lack evolutionary traits that promote regeneration in large 
canopy openings (such as serotinous cones, re-sprouting ability, or small winged seeds), it is likely that substantial 
portions of these former forests and woodlands will convert to other vegetation types, such as grasslands or 
shrublands (40-44).  Photo: C.D. Allen, August 2011. (c) Smoke rising over the Whitewater-Baldy Complex Fire in 
the Gila Mountains, New Mexico, which recently set a new record as the largest wildfire in New Mexico history 
(120,534 ha). This photo juxtaposes the burning ponderosa-pine dominated dense forest in the background against 
the more open piñon-juniper forest in the foreground. Photo: D. Griffin, June 2012. 
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Supplementary Figure S10. Correlation between forest drought-stress index (FDSI) and climate when warm-
season Tmax is used as a predictor instead of warm-season VPD. (a) Annual FDSI derived from tree-ring-width index 
records (red, 1896–2007) and estimated with climate data (black, 1896–2012). (b) Curves: correlation between 
estimated and actual FDSI as the predictive contributions of warm-season Tmax and cold-season P vary from 0–100% 
and 100–0%, respectively. Straight lines connect optimal correlations with axes. Grey areas: 95% confidence 
intervals. 
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