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Moving Beyond Description
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Highlights
After a number of years, systems biology
and networks are being transitioned
from generating hypotheses to being
used to directly test hypotheses.

Numerous statistical methods are now
available to create predictive and testable
hypotheses from a wide array of omics
and systems data.

Eigengenes allows the use, measuring,
and testing of networks directly as any
physiological, developmental trait.

Community solutions surrounding shar-
Biology relies on the central thesis that the genes in an organism encode molec-
ular mechanisms that combine with stimuli and raw materials from the environ-
ment to create a final phenotypic expression representative of the genomic
programming. While conceptually simple, the genotype-to-phenotype linkage
in a eukaryotic organism relies on the interactions of thousands of genes and
an environment with a potentially unknowable level of complexity. Modern biol-
ogy has moved to the use of networks in systems biology to try to simplify this
complexity to decode how an organism’s genome works. Previously, biological
networks were basic ways to organize, simplify, and analyze data. However, re-
cent advances are allowing networks to move beyond description and become
phenotypes or hypotheses in their own right. This review discusses these efforts,
like mapping responses across biological scales, including relationships among
cellular entities, and the direct use of networks as traits or hypotheses.
ing and visualizing networks are essential
to allow the broader utilization of these
approaches.
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Biological Networks
The modern molecular synthesis proposes that the genes in an organism encode molecular
mechanisms that combine with signals and raw materials from the environment to create the
final phenotypic expression. This genotype-to-phenotype linkage is conceptually simple, but in
reality a eukaryotic organism has thousands of genes and the environment has an unknown
and potentially unknowable level of complexity. This complexity has led to current efforts to utilize
systems analysis to decode how an organism’s genome works to create the optimal phenotype
for a given environment. One simplification in the systems biology toolkit is to use biological net-
works to organize, simplify, and analyze data. These networks can be used to map responses
across biological scales, including relationships among cellular entities, such as protein–protein
interactions, gene–gene coexpression, and protein:DNA binding. The description of biological
processes with networks has uncovered regulatory factors that exert control over many biological
processes [1–3], regulatory motifs that shed light on signal transduction [4–7], and putative roles
for genes of unknown function [8–10]. The construction of gene regulatory networks (GRNs)
provides insight about the regulation – direct, indirect, or hierarchical – in a network by layering
DNA-binding data (predicted or observed) onto coexpression networks. However, the predomi-
nant use of biological networks has been to describe relationships among molecules at a
snapshot in time or to focus on the potential role of hub genes, yielding important insights but
with significant limitations [4]. For example, downstream functional analysis of hub genes identi-
fied by network analysis can result in no obvious physiological phenotype, potentially due to func-
tional redundancy, or the network may not translate to another experiment [11]. While some of
this difficulty is caused by the available data being limiting for complete network inference, there
is a key need to improve our ability to derive functional and predictive information from any
given network. The role of data limitation is covered extensively in all of the citations in this review.
Here, we cover recent advances in deriving novel predictive insight from networks across different
scales and the use of networks as direct measures of traits to quantify complex processes.
Trends in Plant Science, Month 2019, Vol. xx, No. xx https://doi.org/10.1016/j.tplants.2019.06.003 1
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Time Course and Dynamics
The first biological networks were derived from one or a few conditions with little or no temporal anal-
ysis. This discord with the temporal nature of any response in an organism led researchers to pro-
pose that extensive time-course datasets would provide more informative/predictive networks
(Figure 1). The increasing availability and decreasing cost of new experimental technologies are ex-
pediting this shift. While the process of generating time-series omics data is straightforward, the con-
struction of time-resolved networks presents new analytical and computational challenges.
Statistics, machine learning (ML), and calculus-based computational strategies have all been used
to build temporal biological networks. Many of these strategies can successfully be applied to devel-
opmental and chronological time-series data [12–15]. In this section, we explore different computa-
tional strategies used by the community to generate and interpret time-resolved biological networks.

Statistical Approaches
Temporal regulatory networks are often built on simple correlation methodologies due to simplic-
ity in implementation and interpretation. Correlation methods are used to cluster temporal gene
expression patterns and identify network modules of coexpressed and coregulated genes [10,
16,17]. A GRN of the jasmonic acid (JA) signaling network was built by connecting transcription
factors (TFs) to gene clusters based on the temporal phase when they are first differentially
expressed (DE) [10]. Network analysis revealed temporal phases of activation and repression,
where biological processes associated with methyl jasmonate response were initiated at different
times after the signal was perceived. While simple correlation is informative and useful for hypoth-
esis generation, the goal of time-series network analysis is to identify causal relationships. Time-
lag Pearson correlation is a statistical approach that utilizes the time lag between cause and effect
to identify potential causality. A study of temporal nitrogen (N) deprivation in Chlamydomonas
used the time-lag Pearson approach to identify potential TFs or other regulators that control
the expression of target genes and/or metabolites in response to N deprivation [12].

Sometimes correlation-based methods are a first step in an analysis pipeline to create causal hy-
potheses about gene relationships [18,19]. WIGWAMS is a computational method based on
TrendsTrends inin PlantPlant ScienceScience

Figure 1. Plant Publications Involving Time-Resolved Networks of Omics-Scale Data. Data were derived by
searching PubMed using the following search terms: “((("time series" OR "time course" OR temporal) AND (network OR
model) AND (apple OR arabidopsis OR crop OR maize OR soybean OR wheat OR rice OR corn OR poplar OR sorghum
OR brassica OR tobacco OR tomato OR petunia OR nicotiana) AND (transcriptome OR "RNA-seq" OR eQTL OR
"high throughput" OR "metabolome" OR metabolomics OR transcriptomics OR genomics OR proteomics OR
proteome OR genome))) NOT "review"[Publication Type]” on 1 October 2019. Pruning of the results was done by manua
curation.
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Pearson correlation that takes advantage of time-series data to find gene modules that are de-
pendently coexpressed (Table 1) [19]. WIGWAMS investigates DE genes by searching for time
lags to identify genes that regulate entire modules and was used to identify biologically relevant
modules across six time-series datasets. Another method, Causal structure identification (CSI),
was used to infer a regulatory network of the arabidopsis response to Botrytis cinerea infection
[18]. First, temporal gene expression clusters were identified using correlation, then a GRN was
inferred by correlating cluster means with B. cinerea growth. This identified a temporal pattern
of transcriptional response to B. cinerea infection, where most gene clusters are ‘turned on’
downstream of B. cinerea growth while one gene cluster was upstream of the B. cinerea growth
curve. Exploration of TFs in each of these network modules uncovered their predicted roles in
plant response to infection, such as TGA3 directly regulating the expression of 193 genes.

Integrating the direct measurement of pathogen growth into the plant response network analysis
greatly increased the information obtained from the network. Similarly, Greenham et al. integrated
gene networks with physiological data to investigate temporal changes in the arabidopsis tran-
scriptome in response to drought [17]. Weighted gene correlation network analysis (WGCNA)
was used to create gene modules and eigengenes (Box 1 and Figure 2) to link with physiological
measurements over a drought time course. Modules linked to perturbed circadian expression
had positive or negative correlations with Fv′/Fm′ (maximum efficiency of photosystem II), gs (sto-
matal conductance), and nonstructural carbohydrate (NSC) measurements. The drought-related
eigengenes contained drought-responsive genes involved in the abiotic stress response, photo-
synthesis, the light response, glucosinolate biosynthesis, amino acid biosynthesis, phosphatase
activity, and nitrogen metabolism. In both cases, temporal resolution aided the ability to infer the
link between the dynamic transcriptome and the physiological responses.

A dynamic Bayesian network (DBN) canmodelmultivariate time series that are often too complex for
other types of gene network modeling and can detect time-series anomalies and hidden patterns. A
DBN approach called Metropolis variational Bayesian state space modeling (M-VBSSM) was used
to identify hub genes involved in the gradual drought response in arabidopsis [20]. Changes to the
transcriptome, metabolome, and physiology were measured in response to the onset of drought,
and the GRN identified regulatory genes involved in the perception and signaling of drought stress.
Table 1. Mathematical Approaches for Building Biological Networks

Model type Description Refs

Statistics Correlation Dependencies between expression patterns are found by correlating variables using methods like
Pearson’s correlation coefficient, Spearman’s rank correlation, and partial correlations; these methods are
often used to build coexpression networks based on hard thresholding

[4]

WGCNA WGCNA uses unsupervised correlation analysis and soft thresholding to convert coexpression measures
in adjacency matrices to a connection weight; key features of WGCNA networks are modules that can be
used as module eigengenes (Box 1)

[17,89]

Bayesian inference A probabilistic and conditional method that statistically addresses direct and indirect causal effects in a
network; conditional dependencies are represented as directed acyclic graphs

[102,103]

ML Neural networks Algorithmic approach designed to recognize patterns through unsupervised clustering followed by
supervised classification

[28,29,104]

State-space
models (i.e., DFG)

Model the joint probabilities between hidden and observed variables, where the state at a given time
depends on the states and observations over many past time steps

[23,24,105]

Algebra and
calculus

Boolean Algebraic method that uses logic operators such as (and, or, not) as rules that govern node states in a
network, resulting in a directed graph

[106]

ODEs Calculus-based method to model time-varying or continuous interactions in nonlinear systems; this
method is powerful by being mechanistic and predictive, but is limited to small networks

[107,108]

Trends in Plant Science, Month 2019, Vol. xx, No. xx 3



Box 1. Eigengenes: Creation and Use

One method to translate a network into a tool to quantitatively measure phenotypes is the eigengene. The eigengene con-
cept has been popularized as an extension of the WGCNA where it aids in the summarization of highly correlated clusters
of genes. An eigengene is a vector that comprises a series of transcripts and associated constants by which those tran-
scripts’ accumulation values are multiplied. It is possible to obtain a single estimate of how these genes behave by taking
the transcripts in an eigengene, multiplying their accumulation by the associated constants, and adding up these values.
This creates an eigenvalue for the compilation of genes in an eigengene that can then be used as any other quantitative
measurement. For example, eigenvalues associated with module eigengenes can be correlated with non-gene expression
data such as phenotypic data to identify links between transcript networks and possible outputs.

TrendsTrends inin PlantPlant ScienceScience

Figure 2. Using Eigengenes to Link Networks and Traits. The ellipses define specific networks of genes whose
transcripts are correlated with each other and share a common function as listed by the ellipse. By combining the
expression values across these genes into single eigengene descriptions, it is possible to test how the networks correlate
with each other and with a specific output trait, in this case the virulence of a specific pathogen. The lines between
networks or traits show whether the eigengenes or traits were positively (blue) or negatively (red) correlated. The
phytoalexin network comprises the biosynthetic and regulatory genes to make camalexin, photosystem I is the structura
and enzyme genes for photosystem I, cell division is genes regulating foliar cell division, and the plastid/Ycf2 network is
plastid-encoded genes that coexpress with the Ycf2/AtCg00860 gene.

Trends in Plant Science
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Models of subsets of genes were compared and the best model (high marginal likelihood) for
interacting genes was chosen for downstream analysis. This led to the identification of AGL22, a
unique hub TF involved in the regulation of drought perception and signaling [20].
l
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Other approaches for modeling causal relationships in a time-resolved GRN rely on probability al-
gorithms that are closer to ML than classic statistical models. The Signaling and Dynamic Regu-
latory Events Miner (SDREM) uses condition-specific time-series transcriptome data to
reconstruct activated regulatory networks in response to a stress using temporal data to provide
causal information [21]. The SDREM incorporates information about static protein–protein and
protein–DNA interactions with time-series expression data to find condition-specific signaling
pathways that activate known interactions. Regulatory bifurcation events in a time series,
where two previously coexpressed genes diverge in expression pattern, are annotated with
TFs predicted to commonly regulate those genes. This associates temporal information (time
splits) with static protein–DNA interaction data, even if the predicted TF is not consistent with
known signaling pathways. SDREM was used to model the arabidopsis temporal immune re-
sponse to Hpa infection and predicted 83 interactions between signaling proteins and TFs with
known biological relevance to Hpa infection response [21].

ML Approaches
ML algorithms are an alternative approach to infer causal relationships in temporal GRNs [22].
However, ML algorithms require high-quality training and testing data for effective learning.
State-space models (SSMs) are one type of ML algorithm that can use both noisy-observed and
noiseless-latent values of gene expression, where the objective is to solve for unobserved gene ex-
pression values at future time points based on previously observed gene expression values. A SSM
was applied to learn the interactions between TFs and target genes over a nitrogen-response time
course [23]. The SSM predicted the correct direction of change in gene expression values for
numerous genes not included in the training set. This revealed the TF SPL9 as a regulatory hub
for N-responsive genes that played a role in attenuating the response to nitrate. A dynamic factor
graph (DFG), a type of state-space model, was used to prune this GRN of the nitrogen response in
whole plants by providing a measure of influence for each TF. This lead to a more refined GRN that
retained the top 10% of DFG-predicted interactions with high confidence [24]. The final dynamic
GRN revealed new hub genes involved in the regulation of the nitrogen response, including
CRF4, which was experimentally validated to directly regulate N uptake and assimilation.

ML algorithms can also incorporate multiple layers of information to generate dynamic GRNs [25].
Genome-scale measurements (RNA-seq, ATAC-seq, and TF binding motifs) and physiological data
were used to learn GRNs associated with rice responses to environmental perturbations via environ-
mental gene regulatory influence networks (EGRINs) [26]. The EGRIN was used to explore key regu-
lators involved in rice responses to either high temperature or water deficit. Network inference was
based on the inferelator algorithm [27] to construct a GRN based on TF activity and not based on
coexpression. The network identified novel roles for heat shock factor (HSF) family TFs in regulating
the abiotic stress response and circadian clock in rice. Similarly, an artificial neural network (ANN) ap-
proach was used to predict relationships among transcripts and metabolites in crops harboring
introgressed exotic alleles [28]. The software omeSOM was developed to generate neural models
called self-organizing maps (SOMs) used for the unsupervised clustering of metabolite profiles and
gene expression in a population of introgression lines (ILs) from a cross between two domesticated
tomato species. The SOMs were used to compare patterns of gene and/or metabolite expression
across 21 ILs and group them based on molecular similarities. An ANN was recently used to build
a GRN of the maize nitrogen response [29]. The stepwise screening approach identified a reduced
network in which bZIP108 and WRKY36 were two key TFs influencing the N response.

Calculus and Algebra-Based Approaches
Once GRNs are developed, the goal is to move toward amechanistic analysis. This often requires
a shift to models based in calculus and algebra whose computational intensity limits the size of the
Trends in Plant Science, Month 2019, Vol. xx, No. xx 5
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GRN. A dynamic GRN of the floral transition time in maize using ordinary differential equations
(ODEs) was built for just four genes [30]. Network topology was derived from a review of the
literature on flowering time in maize and the dynamic GRN was parameterized using expression
data from different maize genotypes taken during the transition from vegetative to floral stages.
The resulting model predicted mutant phenotypes with a high correlation (R2 = 0.87). Another
ODE-based dynamic GRN modeled nine genes regulated by the CHE TF in response to
B. cinerea infection in arabidopsis [31]. To determine the directional influence of CHE on target
genes, a dynamic linear ‘gray box’ model (one that includes a priori biological information) was
built using a series of ODEs. Treating the GRN as a circuit revealed a number of possible network
rewiring strategies that could be implemented using a synthetic biology approach to protect CHE
from being downregulated on B. cinerea infection [31].

Boolean modeling is a mathematical approach that can somewhat overcome the restricted size
of ODEmodels. A Booleanmodel of 29 regulatory interactions involved in cell cycle progression in
arabidopsis uncovered novel regulatory interactions in the cell cycle that were experimentally
validated using gene loss- and gain-of-function lines [32]. Modeling and experimental validation
revealed a role for anaphase-promoting complex/cyclosome (APC/C), part of the cell cycle ma-
chinery, in mediating hormonal control of cell cycle dynamics. Likewise, Boolean modeling was
used to build a 31-interaction hormonal regulatory network controlling cell differentiation in the
root apical meristem of arabidopsis [33]. Another common strategy is to combine approaches
to build dynamic GRNs, as was done to identify the GRN at the onset of leaf senescence in
arabidopsis by combining Boolean and ODE models [34].

Identifying Networks across Molecular Scales
Time-course networks are often built by investigating one molecular class of traits, either tran-
scriptomics or metabolomics. However, there is extensive interest in combining across molecular
scales to better develop predictive phenotypic models. Multiscale models can more accurately
simulate biological processes by representing the flow of information across biological levels. Net-
workmodels are ideal for representing predicted relationships between cellular entities like genes,
small RNAs, proteins, and metabolites that can be represented as nodes, while the edges math-
ematically define their relationship. Example relationships include known or predicted protein–
protein interactions, gene coexpression, and regulatory binding information [35,36]. Multiscale
modeling can be performed using a correlation approach [17,20], by designing a model that
uses the output of one biological process as input for the next [37–39], or by using information
across scales to constrain model parameters [40,41].

One area where integrative models have been widely utilized is in natural variation studies that
move across molecular scales to identify loci that are causal for metabolic or other phenotypes.
eQuantitative trait loci (eQTLs), mQTLs, and pQTLs are loci where genetic variation influences
levels of transcripts, metabolites, and proteins, respectively. Blending them can identify causal
loci that control variation across all of these levels [42–46]. GWA of six tocochromanol com-
pounds revealed association signals between α-tocopherol and the biosynthetic pathway gene
ZmVTE4 and between the compound tocotrienol and the tocochromanol biosynthetic pathway
gene ZmVTE1 [47]. This showed that favorable alleles of themQTLsmay increase levels of vitamin
E in maize. While a number of eQTL and mQTL studies have been performed in plants, pQTL
analyses are less common but are a target for future studies. A recent pQTL analysis revealed
chromosomal hotspots for quality traits for starch content and cold sweetening in potatoes [42].

Network analysis has also been used with genome-wide association studies (GWASs) to en-
hance the biological interpretation and prioritize candidate GWAS loci [48–57]. This approach is
6 Trends in Plant Science, Month 2019, Vol. xx, No. xx
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gaining in popularity because GWAS results on their own do not provide the necessary context to
interpret findings, as pathways affected by a genetic locus are often not immediately apparent. To
aid in filtering this onslaught of information, metanetworks are generated by considering pairwise
relationships between nodes representing cellular entities such as genes, proteins, and metabo-
lites [48,49,53]. These networks are used to test for enrichments in the GWAS loci that may de-
scribe the overall mechanistic basis of the trait [55,56]. For example, in an analysis of quantitative
resistance toB. cinerea in arabidopsis, it was shown that the vast majority of likely causal loci were
in downstream physical andmetabolic defenses rather than in the upstream signaling events [56].
Moving beyond these broader descriptions requires a rapid and efficient ability to identify true
causal loci in GWASs. An efficient way to do this is to take the GWAS candidates and utilize pre-
vious network descriptions to identify genes that both associate with the phenotype and have a
mutual network association. This can identify true causal loci with a N60% validation rate for
plant metabolic, growth, and defense traits [55–57]. This has recently been implemented in a for-
malized architecture via coanalysis of molecular components (Camoco). This was developed to
integrate gene coexpression networks with GWAS results to identify causal genes contributing
to phenotypes of interest. Camoco was applied to maize to identify genes underlying the grain
ionome [54]. The web application Arabidopsis Genome-Wide Association Boosting (araGWAB)
overcomes weak phenotype-association signals from GWASs by integrating cofunctional gene
network information [51].

Testing Network Structure Requires Factorial Genetic Perturbation
Time courses andmultiscale integration will create theoretical maps of a network that then require
validation. However, biological networks are assumed to be buffered against perturbations. This
buffering is a characteristic of biological networks compared with random networks that can be
generated by functional redundancy of genes and the presence of feedforward and feedback
regulatory loops. Random networks often have an evenly distributed topology with an equal num-
ber of degrees across nodes. Biological networks display scale-free topology in which there are
many nodes of low degree and few nodes of high degree [58]. While this may have a beneficial
fitness effect, buffering makes the interior structure of a network difficult to ascertain using single
perturbation, chemical, biotic, or mutational approaches. A solution to bypass this buffering is to
incorporate combinatorial perturbations.

Combinatorial perturbation has been applied to map plant defense regulatory networks by
conducting transcriptomics across combinatorial mutants that abolish one, two, or more disease
signaling pathways [59–62]. Phenotyping factorial mutant combinations showed how the plant
response to effectors like flagellin-22 is buffered by extensive interactions between all of the un-
derlying regulatory mechanisms of jasmonate (JA), ethylene (ET), phytoalexin-deficient 4
(PAD4), and salicylate (SA) [59]. Buffering by these interactions prevented their identification by
traditional single- or even double-mutant approaches [59]. Proper identification of them required
all of the single, double-, and triple-mutant combinations. The use of virulent and avirulent
Pseudomonas syringae identified a similar connectivity pattern between the subnetworks [62].
The use of the stepwise mutants identified a new aspect of the defense signaling network. The
coexpression networks’ responses to the pathogen were identical in the wild type (WT) and mu-
tants that abolished the JA, ET, PAD4, and SA signaling pathways, but the magnitude was dimin-
ished [62–64]. The use of combinatorial perturbations revealed that two types of network are
needed to describe the system: one that describes the magnitude of the transcriptome response
and one that describes the coexpression network structure. The known genes controlled the
magnitude network, while it remains an open question about which genes pattern the defense
coexpression structure. Further, as these observations required factorial perturbations to remove
Trends in Plant Science, Month 2019, Vol. xx, No. xx 7
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the buffering veil, what would factorial mutations identify in other critical responses that have
largely been studied by single-mutant analysis?

Using Networks to Generate and Directly Test Hypotheses
The identification of networks and testing of their potential validity is often the end point for numer-
ous network and systems biology studies. However, the ultimate goal of a network is to create a
new view of biology that can be used to measure or test biology. In conjunction with this, there
has been a wave of research wherein either the networks are used to make new predictions
that are then tested or the network itself has been utilized to create a new way to phenotype dy-
namic systems to get at their underpinning causality. The following examples highlight the efforts
to move networks beyond description and into actual implementation to show and identify
causality.

Environmental sensing and signaling by plants has been a major target of predictive network
modeling. A number of studies have explored plant physiological and molecular responses to a
change in nitrogen supply and have uncovered important transcriptional regulators [4,24,
65–67]. Recently, a GRN of root and shoot architectural changes in response to nitrogen identi-
fied TFs regulating N-associated genes [65]. Yeast one-hybrid assays were used to screen TFs
and refine the network to describe the hierarchical regulation of TFs in N signaling and assimila-
tion. Functional validation using mutant screens confirmed model-predicted relationships and re-
vealed a specific regulatory network that contributes to root and shoot architectural changes in
response to external nitrogen availability [65]. Biological network modeling has led to the identifi-
cation of a number of genes and regulatory factors involved in plant susceptibility and resistance
to disease through analysis of hubbiness and other measures of node importance [68–72].

Another area of complexity that is rapidly being addressed via the use of predictive networks is
plant specialized or secondary metabolism. These compounds are critical for a plant’s ability to
defend against and interact with other organisms in its environment [73]. However, these com-
pounds are highly diverse and frequently lineage specific, with individuals and species often hav-
ing different compounds compared with their closest relatives [74]. The enzyme families for the
production of these compounds are relatively easy to predict on homology but because their ac-
tivity can be dramatically shifted by single amino acid changes there is little ability to predict a spe-
cific enzyme’s activity. Previous work had shown that it was possible to identify the genes in a
pathway one by one using coexpression, but this was a long process to identify and validate all
of the steps in a pathway [75–79]. This stepwise functionality has recently been shown to be
extendable to identify entire pathways in a single-network approach. Use of a catalog of
transcriptomics data and mapping of coexpression networks showed that these networks
frequently partition into discrete specialized metabolic pathways [80].

Recently, this concept that plants’ specialized metabolic pathways are coordinate transcriptional
units has been used to predict entire biosynthetic pathways for new metabolites [81–86]. By
using coexpression to find enzyme genes that coexpress in response to pathogen attack in
arabidopsis and Brassica, it was possible to identify potential complete theoretical pathways
for new phytoalexins that could be preliminarily validated in tobacco [83,84]. Interestingly, the
transcriptome does not have to be structured by pathogen treatment, and simple coexpression
networks across any dataset can often identify pathways for specializedmetabolites that can play
other biotic or abiotic roles [87]. Coexpression can be rapidly applied to the identification and
cloning of nearly completely unstudied pathways in unstudied plant species. De novo transcripto-
mics in mayapple followed by factorial testing in tobacco identified a six-enzyme pathway for the
therapeutic etoposide aglycone [85]. However, there is a critical need to accelerate the rate of
8 Trends in Plant Science, Month 2019, Vol. xx, No. xx
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testing of these predictions in the native system to assess the biological function of these rapidly
accumulating new pathways.

It is also possible to directly apply networks as a trait. One of the most common ways is to utilize
an eigengene whose value can be used as any other phenotype (Box 1) [88–90]. For example,
eigengenes have been used to identify quantitative trait loci that control the expression of biosyn-
thetic networks [90]. This approach enabled the direct comparison of how different networks be-
have in response to the same stress, such as comparing abiotic stress networks across a range
of common stresses [91] and further allowed the direct comparison of phenotypic trait variation to
specific transcriptomic networks in cotton, maize and Medicago [92–94]. Using a network as a
direct measurement of the transcriptome has the benefit of decreasing the number of tests and
hence decreases the multiple testing difficulty. The network value may be a better measurement
of how the system is behaving versus individual genes and thus may be a more direct
comparison.

Using a network to create a quantitative estimate also enables novel analysis of complex systems.
Time courses are difficult experimental systems because, while time courses are possible in one
or a few genotypes, larger experimental perturbations such as time × environment or time × ge-
notype rapidly grow too large to be feasible. A solution is to take data from a fine-scale time
course to partition genes into networks that respond at specific times with specific patterns [7,
17,18,69,95]. These networks then represent discrete time-dependent outputs that reflect the
system. Eigengenes can then be derived to test whether the temporal system has been altered
in a single time point. For example, using this approach with the circadian clock showed that it
was possible to map and validate clock QTLs that alter the circadian clock using single-timepoint
transcriptomics [96]. This direct use of networks to measure time-dependent processes at a sin-
gle time could be applied to any system and would greatly expand the potential experimental
space that could be tested.

Limitations on Network Implementation
Technological advances in sequencing and phenotyping suggest that the use of networks will
only increase in biology. These advances also mean that each network is summarizing
more and more data and investment. To maximize the ability to use networks to accelerate dis-
covery, we must maximize the ability to use and reuse networks. However, this has several
limitations.

A key difficulty is the lack of standardized methods for network construction. This is an advantage
in that it allows great creativity in the generation of new networks, but it complicates their use by
other groups. As demonstrated in this review, there is no one-size-fits-all method for building or
analyzing biological networks, as the methodology must match the question being asked and
the structure of the data. For some studies, pre-network clustering will have an advantage,
while for others post-network clustering will be more informative. Likewise, a simple coexpression
network based on correlations will be adequate to address some biological questions surround-
ing omics data while more mathematically complex network edges will be preferable for others. It
is most important that the networks are built using soundmathematical approaches and are thor-
oughly tested experimentally. Strong, validated coremodules can then be translated between ap-
proaches. Likewise, there is room for improvement in methods for comparing networks with
more readily identify commonalities and divergences. While some methods exist in defined
workflows and packages, like the consensus network analysis in WGCNA [89], it is a computa-
tionally challenging problem due to difficulties in alignment and semantic reconciliation. Solving
Trends in Plant Science, Month 2019, Vol. xx, No. xx 9



Table 2. Online Tools and Software for Network Construction, Analysis, and Visualization

Tool or software Description Refs

Cytoscape Free tool for network construction and analysis https://cytoscape.org/ [98]

Gephi Free tool for network construction and analysis https://gephi.org/ [100]

BioTapestry Tool for building and annotating
developmental models and/or models of
increasing complexity over time

http://www.biotapestry.org/ [99]

Stanford Network Analysis
Platform (SNAP)

For the analysis and manipulation of large
networks and dynamic graphs

https://snap.stanford.edu/snap/
[109]

Network science tutorials Network tutorials in R, Gephi, and igraph by
Dr Katherine Ognyanova

http://kateto.net/tutorials/

VisANT Network and pathway construction for multiple
species

http://visant.bu.edu/ [110]

VirtualPlant One-stop shop for gene expression analysis
and network construction with layered
information; easy-to-build GRNs in a number
of plant species

http://virtualplant.bio.nyu.
edu/cgi-bin/vpweb/ [36]

FunctionalNet Network building for many different taxa
including plants

http://www.functionalnet.org/

Outstanding Questions
How often do factorial mutants illumi-
nate new network observations not
found in single-mutant analysis?

How does evolution change/destroy/
create networks between or within
species?

How does causality permeate through
a molecular network?

What are the best approaches to cre-
ate conditional networks?

Are networks better measures of mo-
lecular traits than individual transcripts,
metabolites, or proteins?
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this problem will allow us to leverage across diversity networks and attain new insights about
common regulatory drivers and system-wide responses to perturbations.

Another significant difficulty in biological networks is data visualization that describes information in
a way that is rapidly perceived by the human brain [97]. Scientific visualization has the potential to
make multivariate data easier to understand and enable networks to be used by others. Online
tools and software have been created to facilitate network construction and visualization
(Table 2). Cytoscape is a commonly used tool with built-in network analysis algorithms and dozens
of plugins available to analyze and visualize networks [98]. Network graphs, in theory, organize
omics data and ease the interpretation of significant relationships defined in the network. However,
large coexpression networks are often incomprehensible as static images. Interactive visualizations
that can be created using applications like BioTapestry [99] and Gephi [100] make large networks
tangible and more intelligible. A possibility in the future is to visualize network graphs using
immersive visualization like virtual reality (VR) [97]. It was shown that network graph exploration
using VR improved user interpretation of network relationships and helped in identifying meaningful
patterns in the data [101]. Broader development of new visualization tools for factorial networks is
essential to allow their wider use by the community.

Concluding Remarks and Future Perspectives
Networks have been a core of the genomic revolution but we are only just beginning to understand
their true strength in creating new testable hypotheses, identifying causal loci in polygenic traits,
and being direct phenotypes in their own right. This shift in the community from a focus on creating
networks to using them for new biology can potentially free us to develop new thoughts and obser-
vations on biology that move dramatically beyond the descriptive. To achieve this goal will require
the development of new datasets from which to generate and test networks in addition to new
methods for creating, sharing, and visualizing these networks. Given that the smallest plant ge-
nomes have over 20 000 genes that all function and coordinate to create any given phenotype, it
will only be via these large-scale integrative and factorial approaches that we can truly generate
any predictive nature in translating from genotype to phenotype (see Outstanding Questions).
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