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Abstract
The judgments that people make are not independent –
initial decisions can bias later perception. This has been
shown in tasks in which participants first decide whether
the direction of moving dots is to one side or the other
of a reference line: their subsequent estimates are biased
away from this reference line. This interesting bias has been
explained in past work as either a consequence of weighting
sensory neurons, or as a consequence of participants adjusting
their estimate to match their decision. We propose a
new explanation: that people sequentially sample evidence
to make their decision, and reuse these samples to make
their estimate (i.e., amortised inference). Because optimal
stopping leads to samples that strongly favor one or another
decision alternative, the subsequent estimates are also biased
away from the reference line. We introduce a sequential
sampling model for posterior samples that does not assume
constant thresholds, and provide evidence for our explanation
in a new experiment that generalizes the perceptual bias to a
new domain.

Keywords: decision biases, adaptive sampling, amortised
inference.

Introduction
Experiments in motion perception show that making
a perceptual decision biases subsequent perception.
As illustrated in Figure 1A, participants in these
random-dot-motion experiments are first asked whether
the motion was clockwise (CW) or counter-clockwise
(CCW) of a decision boundary. After making this decision,
participants are then asked to estimate the direction of
motion. While participants’ estimates are unsurprisingly
consistent with their decision, these estimates also show
a surprising perceptual bias: estimates are biased away
from the decision boundary (Jazayeri & Movshon, 2007;
Luu & Stocker, 2018; Zamboni, Ledgeway, McGraw, &
Schluppeck, 2016).

Two main theories have been proposed to explain this
perceptual bias: (a) the optimal weighting of outputs of
orientation-tuned neurons used in the decision task is also
used in the estimation task (Jazayeri & Movshon, 2007),
or (b) people employ self-consistent reasoning by only
considering hypotheses consistent with their initial decision
when making an estimate (Luu & Stocker, 2018). Existing

Did you see 25 or 
fewer dots?

F=25 or fewer
J=26 or more

How many dots 
did you see?

Did you see 25 or 
fewer dots?

F=25 or fewer
J=26 or more

Distribute 100 tokens 
according to how 
likely you think the 
number of dots is

21 22 …… 29

B1
Did you see 25 or 

fewer dots?

F=25 or fewer
J=26 or more

Correct

B2

B3

A

CW or CCW?
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Figure 1: Illustration of experimental tasks. (A)
Decision-estimation (D-E) task for random-dot-motion. (B)
Numerosity experiment. (B1) Decision with feedback (D-F)
task. (B2) D-E task. (B3) Decision-histogram (D-H) task.

comparisons favor the self-consistency account (Luu &
Stocker, 2018; Zamboni et al., 2016).

However, it may be that self-consistency is unnecessary to
explain the perceptual bias. We take a sequential sampling
approach to modelling this task, following a long history
of models in human decision making that sequentially draw
perceptual or posterior samples and optimally accumulate
evidence (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Vul, Goodman, Griffiths, & Tenenbaum, 2014). We introduce
a sequential sampling model that optimally accumulates
posterior samples, and then demonstrate that the perceptual
bias in estimation is produced by simply averaging samples
that were optimally accumulated for the initial decision. The
intuition for why the bias is produced is simple: because
sequential sampling models stop when the samples favor one
of the alternatives, the estimate (i.e., the average) also favors
one of the alternative. Interestingly, similar Bayesian analysis
have arisen in a different experimental domain: the studies
of probability estimation from sequential samples, where
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optimal stopping has shown to predict a distorting effects on
subsequent judgments (Coenen & Gureckis, 2016). However,
when the sampling process is external, such distortion did not
receive empirical supports (Coenen & Gureckis, 2016).

To discriminate between these accounts, we first show that
weighted decoding, self-consistency, and sequential sampling
make qualitatively different predictions about the perceptual
beliefs that people will have about individual stimuli. We then
test these predictions in a new experiment which generalizes
the perceptual bias from a simple random-dot-motion task
to a perceptually more complex numerosity task (see
Figure 1B), finding that the perceptual bias is best explained
by sequential sampling.

Computational Models
In this section, we introduce and compare computational
models of the perceptual bias.

Weighted Decoding
The Weighted Decoding (WD) model argues that
post-decision bias is a result of optimally tuning
the sensory representation to boost responses for the
initial decision (Jazayeri & Movshon, 2007; Zamboni
et al., 2016). For example, to discriminate whether
a random-dot-motion stimulus is coherently moving
clock-wise or counter-clockwise of a reference line, the
neurons that respond maximally to motion directions that
are slightly different from the reference line are the most
informative. This leads to a optimal weighting profile that is
bimodal: emphasizing directions that are slightly away from
the reference line.

WD assumes this weighting profile is also used in the
estimation task, and that the mode of the weighted sensory
distribution is taken as the estimate. As a result, a
post-decision bias naturally emerges (Figure 2A).

Self-Consistency
To predict the post-decision bias, WD must assume that the
selective read-out of sensory information in the decision task
is carried over to the subsequent estimation task. However,
more recent work has demonstrated that the perceptual bias
is actually a late decision-related bias, rather than a sensory
bias (Luu & Stocker, 2018; Zamboni et al., 2016).

The Self-Consistency (SC) model is a Bayesian model
that makes the initial decision according to which option has
highest posterior probability, given noisy sensory evidence.
However, because the estimate is made after the decision,
this model assumes that the quality of the sensory evidence
has decayed by the time participants are asked to make
an estimate. Instead of relying on the low-quality sensory
evidence alone, SC assumes that the participant treats their
initial decision (which was made with high-quality sensory
evidence) as information as well (cf. Fleming & Daw,
2017), only considering hypotheses that are consistent with
the initial decision. SC’s estimate is then the mean of the
posterior distribution over hypotheses consistent with the

initial choice. As shown in Figure 2B1, SC also produces
estimates that are biased away from the decision boundary.

Our implementation of SC also predicts a bias toward the
decision boundary for true stimuli that are far away from the
boundary. This is for an uninteresting reason: in the task we
will describe below the response range was restricted, and so
we also truncated the posterior at the edges of the allowable
response range – this leads presentations of extreme values to
be biased toward the center of the range.

Simple Amortised Sampling
Because perfectly storing and representing probability
distributions can easily become computationally daunting,
sample-based approximations have been proposed as a way
for the brain to approximate Bayesian inference (Sanborn &
Chater, 2016; Zhu, Sanborn, & Chater, 2018). On each trial,
the Simple Amortised Sampling (SAS) model generates a set
of N samples from the posterior distribution:

xi
i.i.d∼ P(X |S), i = 1,2, ...,N (1)

where P(X |S) is the posterior sensory representation of
number of dots given the stimulus. For the decision task,
SAS chooses the alternative that attracts the larger number
of samples, which introduces a natural stochasticity into the
decision.

In the later estimation task, it makes little sense to
draw a new set of samples, as an average of the samples
drawn to make the decision can serve as the estimate.
This effort-saving strategy is a form of amortised inference
(Gershman & Goodman, 2014). Reusing samples in this way
ensures a high degree of consistency between the decision
and the estimate SAS make. However, SAS will not produce
a perceptual bias away from the decision boundary – the
average of a fixed number of samples is unbiased (Figure
2C3), and it only shows a bias toward the center for extreme
stimuli. Thus, this model is not actually a candidate for
explaining the perceptual bias, but instead serves to illustrate
why the following model does.

Bayesian Amortised Sequential Sampling
If samples are drawn sequentially and require effort to
generate, it often makes no sense to continue sampling until a
fixed number are obtained. Instead, it is more efficient to stop
sampling when it is no longer worthwhile.

Many different kinds of sequential sampling models have
been proposed, including those that accumulate sensory
information (Bogacz et al., 2006), and those that accumulate
the kind of posterior samples similar to SAS (Vul et al., 2014).
We take as a starting point the sequential model introduced
in Vul et al. (2014), which accumulates samples until there
are a threshold T more in favor of one alternative than the
other. This scheme has the advantages of producing a fixed
probability of choosing the better alternative regardless of
the number of samples, and it is possible to find the optimal
threshold for maximizing utility.
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Figure 2: A comparison of model mechanisms and predictions for the numerosity task. For illustrative purposes, we assume
a Gaussian likelihood of dot numbers. Then, the posterior distribution combines this likelihood with the prior (i.e., a uniform
distribution from 21 to 30). A posterior distribution with its mean at 24 dots (dashed blue line) is shown for each model. (A)
Schematic illustration of the WD model (Jazayeri & Movshon, 2007). The sensory representation is reweighted according to
the optimal bimodal weighting profile. The initial decision is based on the relative probability above and below the decision
boundary. The estimate is then the mode of this same reweighted sensory representation. (B) Schematic illustration of the SC
model (Luu & Stocker, 2018). The initial decision is based on whether there is more probability above or below the decision
boundary. The estimate is the mean of the portion of the posterior distribution that is consistent with the initial decision.
(C) Schematic illustration of the SAS model. A fixed number of posterior samples are drawn and the alternative that attracts
the larger number of samples is chosen in the initial decision. The average of these samples is the estimate. (D) Schematic
illustration of the BASS model. Samples are sequentially drawn from the posterior distribution until it is no longer worthwhile
to continue. The alternative that attracts the larger number of samples is chosen in the initial decision. The average of these
samples is the estimate.

However, it is possible to sequentially draw samples from
a posterior distribution even more efficiently by allowing a

non-constant threshold and determining before every sample
whether it is better to continue or stop sampling. We term this
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scheme Bayesian Amortised Sequential Sampling (BASS).
The problem of finding for the optimal changing threshold
was solved by Wald (1950) for deciding when to stop drawing
binomial samples from an external source, and a similar
approach to external samples was investigated empirically
by Coenen and Gureckis (2016). We simply adopt Walds
approach to optimally drawing internal posterior samples.

The posterior probability p that one decision alternative is
true is assumed to be unknown, but we assume that binomial
samples can be sequentially drawn with probability p. We
perform Bayesian inference using the obtained samples, by
first placing a prior distribution over p and assume a fixed cost
c of drawing a sample, reflecting the time and effort of doing
so. After drawing j samples in favor of a decision alternative
and i against, we denote pi j as the posterior probability of
a decision alternative given those samples, with p00 being
the prior probability. The binary decision task essentially
becomes a sequential test on whether pi j < 1/2 and the
optimal stopping rule for this test can then be derived from
the following using dynamic programming:

F(i, j) = min

{
F0(i, j),
c+ pi jF(i, j+1)+(1− pi j)F(i+1, j).

(2)
where F(i, j) and F0(i, j) are respectively the expected cost

of sampling and expected cost of termination after i samples
against and j in favor have been observed. The sampling
process should terminate whenever F(i, j)≥ F0(i, j).

Because F0(i, j) represents the expected cost of stopping
the sampling process when the posterior probability of an
alternative is pi j, if the punishment for an incorrect decision
is one unit of utility and thus,

F0(i, j) = min

{
i/(i+ j),
j/(i+ j).

(3)

This is the expected cost of incorrectly choosing an
alternative when the posterior probability of that alternative
is pi j = Beta(i, j).

The expected cost of drawing another sample is the sum of
(a) the cost of generating one sample c, (b) the expected cost
if the new sample turns out to be in favor pi jF(i, j+ 1), and
(c) the expected cost if the new sample turns out to be against
(1− pi j)F(i+1, j).

While the exact solution of the Bayesian optimal stopping
problem is difficult to obtain, once computed it can also
be reused across different cognitive tasks. For illustrative
purpose, we set cost of collecting one sample c = 0.006 and
prior probability to Beta(1,1). This leads to the termination
conditions for sequential sampling in Figure 2D1, which
shows a collapsing threshold.

We assume that BASS is performing amortised inference,
and because the decision and estimation tasks are so similar,
the samples drawn for decision are simply averaged to
produce the estimate. Like SAS, BASS produces a high

Table 1: Summary of model predictions on empirical effects

Effects WD SC
Decision bias yes yes
Self consistency low high
Belief distribution bimodal one-sided

SAS BASS
Decision bias no yes
Self consistency high high
Belief distribution undistorted favors one side

Note. WD=Weighted Decoding, SC=Self-Consistency,
SAS=Simple Amortised Sampling, BASS=Bayesian
Amortised Sequential Sampling.

degree of consistency between decision and estimate and a
biased toward the decision boundary for extreme stimuli.
However, unlike SAS, BASS produces estimates that are
biased away from the decision boundary for central stimuli
(Figure 2D3). The reason for the model’s behavior can be
seen in the termination conditions shown in Figure 2D1. The
sampling process is very unlikely to stop when there are an
equal number of samples in favor of the two alternatives,
instead waiting until there are more samples in favor of one of
the alternatives. Then, after averaging the resulting samples
to produce an estimate, these estimates are unlikely to be
close to the decision boundary.

Comparing the Models

As seen across Figure 2, qualitatively similar patterns of
decision and estimation bias are predicted by the WD, SC,
and BASS models. What distinguishes the models are the
beliefs about the probability of each possible response in the
estimation task. WD predicts that the optimal weighting will
result in a bimodal belief distribution. SC predicts a one-sided
belief distribution: that only estimates consistent with the
decision will be considered. In contrast, BASS predicts
that people will believe that several estimates are possible,
including a low probability of those that are not consistent
with the decision (see Table 1 for a summary).

We now test these predictions in a new experiment that
includes a new type of trial that is used to elicit participants’
belief distributions over possible estimates. We use a
numerosity task in this experiment both to generalize the
results, and because the discrete responses required in a
numerosity experiment make it easier to elicit a belief
distribution.

Experiment

Participants

Twenty-four participants (12 Males, ages between 18 and
35) were recruited through SONA system, University of
Warwick. They received £4 for completing the experiment.
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Materials
Participants were shown a briefly appearing number of dots
(0.5 sec) on computer screen in a series of trials. The true
number of dots was uniformly distributed between 21 and 30,
and participants were explicitly told this at the beginning of
the experiment. To generate a stimulus, dots were randomly
positioned within a circular field subject to a minimum
spacing between any two dots of four times the dot size.
To encourage reliance on numerosity, rather than low-level
visual features, the dot sizes varied uniformly between 3 and
9 pixels, and the radius of the dot field also varies uniformly
between 150 and 450 pixels.

There were three different trial types (Figure 1B). For
all trial types, participants made an initial decision as to
whether there were 25 or fewer or 26 or more dots, so that
the trials were identical until after this point. Following the
decision, participants either immediately received feedback
(D-F trials), were immediately asked to estimate the number
of dots (D-E trials), or were immediately asked to state their
beliefs about the number of dots using a histogram (D-H
trials). When given a histogram, participants were asked to
distribute 100 tokens among all of the possible numbers of
dots according to how likely they believed these numbers
were on that particular trial.

Procedure
Before the main experiment, participants received one
practice example for each of the D-F, D-E, and D-H trials
(Figure 1B). Participants additionally received feedback
during practice, to introduce them to the point system used
in the experiment that was used to encourage them to engage
with the more demanding histogram trials. Correct decisions
and estimates were both worth one point, while the number
of points assigned to a histograms was R = 100× [(1−
Ti/100)2], where Ti was the number of tokens placed on the
correct response. This formula is based on the Brier score,
which incentivizes accurately reporting a belief distribution.
Participants were also told, “If you had placed all the tokens
on the correct number of dots, you would have scored 100
points. But if you had placed no tokens on the correct
number of dots, you would have scored 0 points.” Points were
tallied throughout the experiment, but were only displayed to
participants at the end of the experiment.

Results and Discussion
Decisions As shown in Figure 3A, participants were more
likely than not to pick the correct answer for each true number
of dots, but were never perfect.

Estimates Figure 3B shows the results of the estimates
from the D-E trials for each true number of dots. True
numbers that were close to the edge of the range showed an
average bias towards the decision boundary, as participants
tended not to respond outside the allowable range, and these
responses outside the allowable range were excluded from
further analysis (7.32%).
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Figure 3: Behavioural data from the decision-estimation
trials. (A) The psychometric curve describing the relationship
between the true number of dots displayed and the average
proportions of times participants judged the number of dots
to be 26 or more. (B) The estimated number of dots (solid
white line) systematically deviates from the true number of
dots (dashed white line), constituting a perceptual bias.

For true numbers of dots near the decision boundary,
particularly for numbers 25 and 26, participants were biased
away from the decision boundary, in line with past work
on the perceptual bias. When true number of dots was
25, estimates were on average smaller than 25, t(23) =
−14.97, p < .001. When true number of dots was 26,
estimates were on average larger than 26, t(23) = 6.37, p <
.001. This estimation bias is, as expected, further qualitative
evidence against the SAS model.

Histograms Figure 4A shows the average belief histogram
following a decision of 25 or fewer, and the average belief
histogram following a decision of 26 or more. These
average histograms show greater mass on the side of the
boundary consistent with the decision, indicating that overall
participants engaged with these trials. They also show no
evidence of bimodality as WD predicts, nor is the mass
completely on one side of the boundary as SC predicts.
Instead qualitatively these average histograms are most
consistent with BASS.

To quantitatively test for whether there were the kind
of bimodal histograms that WD predicts, we computed the
average proportions, for each participant, that the mean token
mass on the boundary numbers (i.e., 25 and 26) would be
lower than either the mean token mass on 21-24 or the mean
token mass on 27-30 (Figure 4B). If responses were random,
we expect a 1/3 chance that the mean token mass on 25
and 26 would be smallest. However, there were very few
histograms that were bimodal, fewer than would be predicted
by random responding, t(23) =−7.68, p < .001.

We then quantitatively tested whether all of the belief
mass was on one side of the boundary, as SC predicts.
We first estimated how much true responding there was, by
calculating the proportion of trials on which a participant’s
histogram was consistent with their decision. Per participant,
we calculated the proportion of trials on which the majority
of token mass matched the decision. Next, we calculated,
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Figure 4: Results from the belief distributions reported in
decision-histogram trials. (A) Average histograms when
people chose “25 or fewer” (left) and when people chose
“26 or more” (right). (B) The proportion of times when
the token mass on central boundary numbers (25 and 26)
is smallest. Error bar indicates 95% confidence interval
across participants. (C) The proportion of times when
preponderance of tokens matches the choice (left) and
the percentages of token mass consistent with the choice
(right). Error bars indicate 95% confidence interval across
participants.

per participant, the proportion of tokens on the same side
of boundary as the decision, as a measure of whether
inconsistent estimates were considered. These two quantities,
shown in Figure 4C, were different, t(23) = 3.46, p = .002,
showing that tokens were certainly placed on numbers that
disagreed with the decision, a number that exceeded what was
expected from our estimate of noisy responding.

The results of the histogram trials are in line with the
predictions of BASS, in which samples from both sides of
the boundary are expected to be reused for the estimate.
According to BASS, the amount of tokens placed on the
opposite side of choice is a consequence of stochastic samples
from the posterior distribution. Due to the termination
conditions, there are always more samples that match the
decision than those that mismatch the decision, but there are
often samples on both sides of the boundary.

Conclusions
We proposed a new explanation for the decision bias in
perception. To make a decision, we assume that participants
sequentially sample hypotheses about the true nature of
the environment, and stop when they have strong enough
evidence in favor of one alternative over the other. As
an application of amortised inference, we assumed that
participants then reuse the samples to save cognitive effort,

averaging them to produce their estimate. The bias in the
estimate occurs because the samples that were sequentially
obtained are never balanced between the options, and so
estimates tend to be biased away from the decision boundary.

We generalized the bias from orientation tasks to a
numerosity task, showing that it also occurs when participants
give discrete responses to these perceptually complex stimuli.
Using a novel type of trial in which we elicited participants’
beliefs about which numbers were likely on a single trial,
we found evidence for sequential sampling over other
explanations of the decision bias in perception.

The sequential sampling model we evaluated here, BASS,
is a novel application of the work of Wald (1950) for
optimally deciding when to stop sampling from a binomial
distribution with unknown probability. Of course it is almost
certain that other sequential sampling approaches, such as
those by Vul et al. (2014) and Bogacz et al. (2006), would
predict the same qualitative results. Discriminating between
these sequential sampling approaches will likely require
quantitative comparisons, which is an interesting avenue for
future work.

Additionally, a soft version of the self-consistency model,
which relaxes the assumption that self-consistent estimates
are made by every participant on every trial, could
reproduce the qualitative results here. To distinguish the
BASS model from a soft self-consistency account, we
could test whether the belief distributions are a mixture
of self-consistent sensory representations and unmodified
sensory representations. However, to properly answer this
question, we will need a further experiment that characterizes
unmodified sensory representations for comparison.

Another avenue for future work is to explore the extent
to which amortised inference and sequential sampling
can explain other psychological biases. One interesting
possibility is the anchoring bias (Tversky & Kahneman,
1974). In anchoring, participants are first asked to make
a decision about whether a number, such as the percentage
African countries in the UN, is smaller or larger than an often
transparently irrelevant number, such as a number that results
from the spin of wheel of fortune. Then participants are asked
to make their estimate. While the task participants engage in
is almost identical to the one that we used here, the effect
that is found is the opposite: participants estimates are biased
toward the anchor (Tversky & Kahneman, 1974). A unified
explanation of these similar perceptual and cognitive biases
will need to account for both the push and pull that decisions
can exert on subsequent estimates.
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