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The Mortgage-Cash Premium Puzzle

Michael Reher and Rossen Valkanov *

ABSTRACT

All-cash homebuyers account for one-third of U.S. home purchases between 1980 and 2017.

We use multiple data sets and research designs to robustly estimate that mortgaged buyers

pay an 11% premium over all-cash buyers to compensate home sellers for mortgage trans-

action frictions. A dynamic, representative-seller model implies only a 3% premium, which

would suggest an 8% puzzle. Accounting for heterogeneity in selling conditions explains

half of this difference, but a puzzle holds in conditions with high transaction risk. An

experimental survey of U.S. homeowners replicates these patterns and suggests that belief

distortions can explain the puzzle in these high-risk states.
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Consider a home seller with offers from two competing buyers: one is mortgage-financed, and

the other is all-cash. Define the mortgage-cash premium as the expected difference in log prices

between the two offers. In the absence of frictions, the mortgage-cash premium should be zero

(Modigliani and Miller (1958)). More realistically, the premium should be positive to compensate

sellers for frictions in the mortgage origination process, namely, the risk of transaction failure and

a longer time to close. We find that the mortgage-cash premium averages 11% over the past 40

years. In dollar terms, a seller would be indifferent between a $500,000 all-cash offer, the average

in our sample, and a mortgaged offer that is $55,000 larger. The magnitude of this premium is

puzzlingly large relative to the degree of friction in the typical home purchase. In policy terms,

U.S. taxpayers subsidize $8 trillion of mortgages to promote homeownership (Federal Reserve

(2019)); reducing the mortgage-cash premium would enable a smaller subsidy to accomplish the

same goal.

To make things more concrete, consider the following example. A risk-neutral home seller

decides whether to accept a riskless, cash-financed purchase offer versus a mortgage-financed

offer that fails with 6% probability (National Association of Realtors (2020)). If the transaction

fails, the seller relists the home in one month after reducing the price by 10%, the average price

cut during the 2008 crisis (Trulia (2009)). Supposing the seller is indifferent and has a discount

rate of zero over this short horizon, the mortgaged offer should require a price premium that

solves

0 = 94%︸︷︷︸
Success Rate

× Premium − 6%︸︷︷︸
Failure Rate

× 10%︸︷︷︸
Cost of Failure

. (1)

The resulting premium equals 0.6%, far below what we estimate empirically.

While this back-of-envelope calculation omits many important considerations of real-life

home sellers, in Section I we employ a more serious model that features a risk-averse seller with

a short position in her current home (i.e., outstanding mortgage) and a down payment on her next

one, a dynamic tradeoff between accepting a given buyer’s offer versus waiting for another buyer

to make an offer, option value from the possibility that buyers engage in an endogenous “bidding

war,” carrying costs from maintaining the home on the market, and many other realistic details

regarding the micro-structure of home sales, including home-sale contingencies. We calibrate
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this model to match the conditions of a representative (i.e., average) U.S. home seller, using a

rich collection of data sets. This exercise yields a 3% premium, which we take as a starting point

going into our empirical analysis.

We begin the empirical analysis in Section II by documenting that cash-financed purchases

account for one-third of all U.S. home purchases over the past 40 years. This fact is surprising

given that most research focuses on mortgage-financed purchases. We then document that the

average price of an all-cash purchase is 30% lower than the average price of a mortgaged purchase.

At a descriptive level, these facts suggest that sellers prefer cash financing and, accordingly,

require that mortgage-financed buyers pay a premium. Of course, we cannot reach this conclusion

on the basis of summary statistics alone. For example, cheap properties may attract all-cash

buyers, which would be the opposite of the causal chain we seek to estimate.

Using our model as a guide, in Section III we estimate the premium that a buyer with

mortgage financing must pay to purchase the same home relative to using cash financing: the

mortgage-cash premium. This exercise is challenging because we do not observe a property’s

counterfactual sales price under the alternative method of financing. We take a transparent

approach to this challenge in our baseline estimation. Using a large data set on U.S. home pur-

chases, we estimate a joint repeat sales and hedonic pricing equation. This approach effectively

compares the same property sold at different times under different methods of financing. Its

validity depends on the ability of the controls and fixed effects to absorb enough variation that

any two purchases are as good as equal, up to the method of financing. Our data’s breadth allows

us to include such a large set of controls and fixed effects that they together explain over 90%

of the variation in sales prices. Consequently, there is little scope for bias based on unobserved

features of the purchase.

We estimate a mortgage-cash premium of 11.7% using this repeat sales and hedonic pricing

estimator. We obtain similar estimates when we exclude homes that are subsequently flipped,

when we exclude transactions involving an institution, non-U.S. party, or underwater seller, or

when we restrict the sample to newly built homes. This last filter implies that the estimated

premium does not confound a premium for adverse selection, since almost all new construction is

high-quality housing (e.g., Rosenthal (2014)). Consistent with the result’s external validity, we

estimate a similar premium of 12.2% based on a purchase-level data set from an entirely different
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provider (CoreLogic) than our baseline provider (Zillow).

Next, in Section IV we take a systematic approach to selection bias. Such bias can take four

forms. The first three forms concern internal validity. They stem from correlation between the

method of financing and price-relevant characteristics of the buyer, the seller, or the property’s

condition. The fourth form of bias concerns external validity. Using five different data sets and

10 different estimators designed to assess selection bias, we consistently estimate a mortgage-cash

premium between 8.6% and 16.9%, straddling our baseline of around 11%.

To address bias from buyer characteristics, we use novel data on nonaccepted offers from a

large real estate brokerage to construct a counterfactual. An offer-level research design allows

us to include two important controls related to strategic interaction between buyers and sellers.

First, we can control for differences in the offer price of mortgaged versus all-cash buyers. This

control addresses concerns that mortgaged buyers have a higher private valuation, possibly due

to optimistic expectations about the housing market, or that all-cash buyers target properties

with low quality or a “motivated” seller. Second, we can control for the price discount of winning

offers. This control addresses concerns that all-cash buyers possess bargaining power, in the form

of negotiation skill, that enables them to win at a lower price. We estimate an 8.6% premium

using this offer-level approach, which, given its minimal identification assumptions, provides a

credible lower bound.

We address bias from seller characteristics using three exercises. First, we return to our

baseline data set and control for a battery of variables that govern the seller’s joint motivation

to list at a low price and to prioritize all-cash offers (e.g., moving propensity) and the buyer’s

ability to identify such sellers (e.g., institutional status, financing in other transactions). Second,

we instrument for the method of financing using a regulatory discontinuity around the price at

which bank-originated mortgages must come with an appraisal, which makes them much less

attractive from the seller’s perspective. We construct this instrument using information about

past sales prices. Thus, it is plausibly uncorrelated with temporary urgency on the part of home

sellers that could affect both the current sales price and the method of financing. Third, we use

listing-level data from a major state realtor association to control for the seller’s list price. These

exercises result in an estimated premium between 12% and 14%.

The exercises described in the previous two paragraphs already address many issues related
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to time-varying property characteristics, such as the propensity of all-cash buyers to purchase

properties in poor condition. We further investigate the scope for such bias through the Bajari

et al. (2012) semi-structural estimator, which reduces bias by introducing a Markov structure for

property condition. We then apply propensity score matching (e.g., Abadie and Imbens (2006)),

which allows for a nonlinear functional form. These exercises yield premiums of 14.9% to 16.9%.

Lastly, we assess whether the sampling restrictions required for internal validity jeopardize

the results’ external validity. We estimate a premium of 16.1% when including properties that

do not experience a repeat sale, consistent with the property fixed effects reducing bias in our

baseline sample. We estimate a premium of 10.3% when weighting transactions by their inverse

probability of appearing in our baseline repeat-sales sample, according to observed characteristics

(e.g., Solon, Haider, and Wooldridge (2015)). Along with the previous exercises, these findings

support the internal and external validity of a premium around 11%.

Recalling the 3% premium implied by our representative-seller model, the 11% premium

obtained from our exhaustive empirical analysis would seem to suggest a large 8% price puzzle.

The model-implied premium is a function of parameters that capture selling conditions – such as

seller net total wealth, seller down payment, likelihood of transaction failure, and number of offers

– calibrated from the data. These parameters vary considerably in the data, indicating significant

heterogeneity in selling conditions. Our analysis up to this point overlooks how this heterogeneity

might impact the theoretical premium. Accordingly, in Section V we revisit our model by

recalibrating the theoretical mortgage-cash premium across the full distribution of the underlying

parameters, again disciplined by the data. Here, we recover the average premium across sellers,

versus the premium for the average seller. The two differ insofar as the premium depends

nonlinearly on home-selling conditions. We obtain a 7% premium based on this methodology,

which explains half of the apparent puzzle. Similar results obtain when we employ increasingly

rich versions of the model with, for example, nonfinancial contingencies.

The previous results highlight the importance of heterogeneity in selling conditions, which

we examine further in Section VI. We semi-structurally estimate the empirical mortgage-cash

premium across the distribution of the model’s parameters and compare it pointwise with its

theoretical analogue. This allows us to identify conditions under which a puzzle actually exists.

In terms of slope, both the empirical and theoretical premiums increase monotonically in the
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probability of mortgage transaction failure. In terms of level, however, the empirical premium

far exceeds the theoretical premium in states with moderate or high risk. Consistent with a

role for risk-bearing capacity, both the empirical and theoretical premiums decrease nonlinearly

in the seller’s net total wealth. We find no evidence of a price puzzle in conditions favorable

to sellers, such as in markets with loose loan approval standards and thus low risk of mortgage

transaction failure or in thick markets with multiple offers.

Since we rely only on fairly canonical economics this far, in Section VII we ask whether

belief distortions may help explain the puzzlingly large premium that obtains under high trans-

action risk. We do so by posing our motivating thought experiment to a survey of 3,400 U.S.

homeowners, administered in three waves over two years. We recruit respondents through a

well-established crowdsourcing platform (Prolific). This helps us obtain a sample that represents

the overall distribution of homeowners well in terms of geography and income, although we over-

sample the college-educated. We compensate respondents at three times the minimum wage to

incentivize effort and minimize response bias.

The survey replicates our main results, in terms of both the average mortgage-cash premium

and its distribution across the model’s parameters. Following the standard in the experimental

literature, we infer the premium through a multiple price list presented in dollars and percent.

The average premium equals 10.6%, 10.4%, and 10.7% across respondents in the three waves of

the survey, respectively. This finding jointly supports the validity of the baseline estimates and

the relevance of the survey. Also consistent with our main results, survey respondents who are

randomized into experiments with greater mortgage transaction risk require a higher premium.

A key advantage of conducting a survey relative to studying observational data is the ability

to perform randomizations that evaluate specific belief distortions. We find the strongest evi-

dence in favor of ambiguity-aversion, which refers to the idea that investors prefer to know the

distribution of outcomes than to face an unknown distribution, even when they hold the same

prior as the known distribution. Specifically, survey respondents require a much higher premium

when the probability of transaction failure is ambiguous, as in reality, relative to when it is

clearly stated, as in our model. In fact, respondents in the more realistic experiment with am-

biguity exhibit strikingly similar behavior to our main results: their required premium matches

their model-implied premium at low levels of risk, but they require a much higher premium as
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the probability of failure increases. By contrast, respondents facing a clearly stated distribution

require a premium that is indistinguishable from the model’s prediction. Since selling a home in

real life can be both a risky and ambiguous process, this finding supports ambiguity-aversion as

a relevant amplification mechanism in explaining the large empirical premium.

From a policy perspective, our results suggest that a seemingly modest easing of transaction

frictions can have outsized effects in reducing the premium paid by mortgaged buyers. This

conclusion implies that an easing of such frictions may be a more cost-effective route to promoting

homeownership than subsidizing mortgages for first-time homebuyers.

Related Literature. We contribute to three literatures. First, our work relates broadly

to research on how canonical models struggle to explain large risk premia across a variety of

settings. For example, viewing the mortgage-cash premium as analogous to a “credit spread,”

we parallel papers on large credit spreads in bond markets (e.g., Huang and Huang (2012), Chen

(2010), Chen, Collin-Dufresne, and Goldstein (2009), Almeida and Philippon (2007)). In our

setting, the transaction failure rate plays the role of the default rate. Just as the credit spread

puzzle is largest in periods of crisis, so too the mortgage-cash premium puzzle is largest when

the probability of transaction failure (“default”) is high, home sellers (“investors”) have limited

risk-bearing capacity, and the expected number of home purchase offers (“market liquidity”) is

low. Unlike these papers, however, we show that belief distortions also play a role. In particular,

the evidence supports ambiguity-aversion as the most relevant distortion.1

Second, we contribute to the overall mortgage and housing literatures by quantifying an

alternative channel through which credit markets affect house prices. This channel operates

through frictions in the microstructure of real estate transactions and therefore complements

channels that operate through the overall demand for housing, on which there is much research,

as summarized by Glaeser and Sinai (2013) and Piazzesi and Schneider (2016). We find, however,

1There are various ways to model ambiguity-aversion, including robust control theory (e.g., Cagetti et al.

(2002), Hansen et al. (2002), Anderson, Hansen, and Sargent (2003), Maenhout (2004), Hansen and Sargent

(2011), Strzalecki (2011), Barnett, Buchak, and Yannelis (2021)), maxmin optimization (e.g., Gilboa and Schmei-

dler (1989)), smooth decision making (e.g., Klibanoff, Marinacci, and Mukerji (2005), Caskey (2008)), and others

summarized by Machina and Siniscalchi (2014). We do not attempt to distinguish between these different setups.

At the end of the paper, we propose a model in the tradition of robust control theory to explain the mortgage-cash

premium and back out the implied degree of ambiguity-aversion.
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that these frictions are “overpriced,” which offers a novel example of mispricing in real estate.2

By quantifying the importance of such frictions, we also support a literature on the behavior of

real estate agents who, in principle, help mitigate them.3 Lastly, our focus on sellers’ behavior

after listing their home complements the Guren (2018) model of how sellers determine list prices.

Third, we contribute to an emerging literature on the role of all-cash buyers in real estate.4

In this vein, we relate to contemporaneous and independent work by Han and Hong (2023), Seo,

Holmes, and Lee (2021), and Buchak et al. (2020), who respectively document price discounts

for all-cash buyers in Los Angeles, in Tallahassee, and for a specific type of all-cash buyer,

iBuyers. Hansz and Hayunga (2016) instead find a negative all-cash discount over 2002 to 2004

in Pinehurst, North Carolina. We differ from these papers by forcefully estimating this price

discount over broader samples of all-cash buyers, but our main distinction lies in quantifying

the theoretical mechanisms that drive the discount and experimentally testing the role of belief

distortions. After accounting for differences in sample, our estimates agrees with the estimates

in these papers, as we show in Section II.E.4 of the Internet Appendix.5

The most closely related paper within this set is Han and Hong (2023). Relative to our

model, these authors adopt a more stylized approach that does not feature (i) seller utility over

total wealth, (ii) an endogenous problem for buyers, including buyers’ choice of leverage, (iii) a

full dynamic problem for sellers that includes an endogenous choice of whether to decline an offer

and the possibility of receiving multiple offers of different methods of financing, and (iv) other

realistic features, like nonfinancial contingencies.6 Empirically, Han and Hong (2023) estimate

2Optimistic growth is another example (e.g., Kaplan, Mitman, and Violante (2020), Foote, Loewenstein, and

Willen (2020), Glaeser and Nathanson (2017), Chinco and Mayer (2016), Cheng, Raina, and Xiong (2014), Shiller

(2014)).

3See Barwick and Pathak (2015), Han and Hong (2011), Hsieh and Moretti (2003), Levitt and Syverson

(2008), and Gilbukh and Goldsmith-Pinkham (2023) for examples.

4Early work by Asabere, Huffman, and Mehdian (1992) and Lusht and Hansz (1994) find premiums of 13%

and 16%, respectively, based on small samples of 300 purchases in two townships in Pennsylvania.

5The Internet Appendix is available in the online version of this article on the Journal of Finance website.

6Features (i) and (ii) are critical for semi-structurally tracing out the distribution of the premium across the

model’s parameter space. Feature (iii) is critical for generating the seller’s option value from waiting; in Han and

Hong (2023), the seller’s continuation value after a failed mortgaged transaction is equal to receiving a price of

zero, which is counterfactual and inflates the calibrated mortgage-cash premium as we show in Section II.E.4 of
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the premium using geographically limited data, while we do so using transaction-level data that

span most of the United States, using offer-level data, and using an experimental survey. Lastly,

our calibration differs from Han and Hong (2023), who parameterize the failure rate using the

average difference in time-to-close between mortgaged and all-cash transactions (16%), while we

use the mortgage application denial rate. Parameterizing the failure rate using the median denial

rate lowers the mortgage-cash premium in the model of Han and Hong (2023) from 7.9% to 2.2%,

as also described in the appendix.

I. Model of the Mortgage-Cash Premium

We anchor our empirical analysis on a tractable model of the mortgage-cash premium. The

model consists of households with preferences over housing services and numeraire consumption.

Time is discrete, and t indexes the month. Housing services are produced by homes (i). Home

sellers (s) are endowed with a home that produces a stream of housing services worth vi units

of numeraire. Home buyers (b) purchase homes from sellers, paying all-cash or with mortgage

financing. To reduce notation, we suppress the subscripts (i, t, s, b) when possible.

A. Home Sale Process

Home sales involve a high degree of execution risk. We describe the key institutional details

here and how we model them. Broadly, there are three sources of risk for home sellers: whether

and when they receive an offer; for accepted mortgaged offers, whether and when the lender

approves the loan application; and, for any offer, whether the buyer terminates the transaction

for reasons unrelated to mortgage financing.

A.1. Offer Arrival Risk

There is substantial empirical variation in the number of offers received by home sellers and

hence in the time it takes to sell their home. For example, in 2018 60% of homes sold within

the Internet Appendix. Our calibration also differs from Han and Hong (2023) in that we calculate the average

premium across the full parameter distribution, as distinct from the premium evaluated at the average parameter

values, which accounts for nonlinearities.

8



one month, while in 2011 only 24% sold that quickly and 32% required over six months to sell

(see Internet Appendix Figure IA.1). Accordingly, home sellers in our model wait for offers to

arrive at the monthly Poisson arrival rate λ. This implies that a seller receives no offers in

a given month with probability φ0 ≡ e−λ, exactly one offer with probability φ1 ≡ λe−λ, and

multiple offers with complement probability.7 Sellers must also account for whether a given offer

is mortgage-financed, which occurs with probability m, versus all-cash.

In our model, offers arrive during a specific window in month t. At the end of this window,

sellers who have received an offer decide whether to accept it, to decline it, or, in the case of

multiple offers, to invite a tie-breaking bid as we describe in Section I.C. This simplification

matches the industry’s convention that courteous sellers decide upon offers within three days.

Sellers who do not receive offers or decline them must wait until the next arrival window in t+1.

A.2. Mortgage Financing Risk

Sellers who accept a mortgage-financed offer face additional risks surrounding the outcome

and the timing of loan underwriting. Fundamentally, these risks stem from agency frictions

between the buyer and an unmodeled lender. These frictions incentivize the lender to conduct a

thorough screening process to verify (i) the home’s value as collateral, as performed through an

appraisal, (ii) the legality of the transaction (“title”), and (iii) the buyer’s income, assets, and

credit. This process lasts ∆ months. The lender then issues its decision.

The lender denies the buyer’s loan application with probability q, usually for one of the

three reasons mentioned in the previous paragraph. In this case, the transaction fails and the

seller must find another buyer.8 Otherwise, the lender approves the applicant. As in reality, the

lender then deposits the origination balance into an escrow account. From this account, which

7We abstract from the role of the list price in directing buyer search, consistent with the fact that only 30%

of offers come in at the list price in our offer-level data set. This assumption can be motivated by the Han and

Strange (2016) result that the list price has little signalling value outside of busts.

8This outcome obtains for mortgaged offers with a financing or appraisal contingency, which describe 80%

of mortgaged offers in our offer-level data set. For noncontingent offers, the seller can still recover the buyer’s

earnest money, typically around 5% of the offer price. Corroborating the importance of loan denial in triggering

transaction failure, 83% of home sellers with a failure cite appraisal, title, hazard insurance, buyer job loss,

contingencies, or other issues associated with mortgage financing as a reason (National Association of Realtors

(2018, 2020)).
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already includes the down payment, the buyer pays for the home.

Lenders typically take one month to issue their decision, but delays occur a quarter of the

time (National Association of Realtors (2018)). Conditional on delay, the average time to close

equals around two months, as we describe in Section III.D.2 of the Internet Appendix. Therefore,

we approximate ∆ as a Bernoulli variable that equals two with probability qd (“d” for “delay”)

and equals one otherwise.

Given our focus on the approval process, we model the mortgage contract itself rather simply.

Briefly, the loan amount equals ℓP , where P denotes the offer price and ℓ denotes the requested

loan-to-value (LTV) ratio. Let DℓP denote the present discounted cost of the loan from the

borrower’s perspective, after adjusting for embedded options (e.g., prepayment, default). The

borrower therefore values the loan at less than par if D < 1. We refer to D as the “disutility of

borrowing.”

A.3. Other Transaction Risk

Both all-cash and mortgaged offers may have contingencies unrelated to mortgage financing.

The two most common nonfinancial contingencies require a satisfactory home inspection and the

buyer selling his current home (National Association of Realtors (2018)). According to our

offer-level data set, described shortly, the home inspection contingency appears in 83% of both

all-cash and mortgage-financed offers. In our model, therefore, both offer types fail at the same

rate, qc, due to a failed home inspection. None of our data sources reports the distribution of

the home-sale contingency across buyer types. We obtain an upper bound on the theoretical

mortgage-cash premium by assuming that this contingency accompanies a share h of mortgaged

offers and never for an all-cash offer.

Incorporating nonfinancial contingencies improves the model’s realism, but it significantly

complicates our final expressions. Given this section’s emphasis on analytic intuition, we present

our main results for the case qc = h = 0. We relax this assumption in Section V.
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B. Seller Problem

Sellers have preferences over numeraire consumption and housing. They begin to consume

the numeraire once they have sold their home, using their wealth at the time of sale. Until that

time, they incur monthly housing disutility δ maintaining their home. Since δ has units of utils,

let δ̃ denote the equivalent maintenance cost expressed as a share of the home’s fundamental

value.

At the completion of her home sale, a seller’s wealth equals vω + P , where P denotes the

home’s sale price and

ω ≡ w − ℓs − ξ, (2)

denotes the seller’s remaining net wealth, where w equals her financial wealth entering the home

sale process (e.g., checking account), ℓs equals her current LTV ratio, and ξ equals the down

payment that she has already made on a subsequent home purchase, normalized by the value

of her current home. Sellers have constant relative risk-aversion (CRRA) indirect utility over

wealth at sale described by

u (vω + P ) =
(vω + P )1−γ

1− γ
. (3)

Combining equations (2 and (3) implies that the seller’s short position, ℓs + ξ, will amplify the

effect of her baseline risk-aversion, γ. We focus primarily on risk-aversion γ > 1.

Sellers choose whether to accept or decline any offers they receive during the offer arrival

window. They optimally decide by comparing the values of an all-cash offer at price P , denoted

V S(C,P ), a mortgaged offer, denoted V S(M,P ), and no offer, denoted V S(∅). Mor explicitly,

V S(C,P ) = u (vω + P ) , (4)

V S(M,P ) = −δ
(
e−α + qd

)
+ e−α−ρ

[
(1− q)u(vω + P ) + qV S(∅)

]
, (5)

V S(∅) = −δ + φ0e
−ρV S(∅) + (1− φ0)E

[
max
n∈N

{
V S(Fn, Pn)

}
|N ̸= {∅}

]
, (6)

where ρ is the seller’s subjective rate of time preference and α ≡ − log(1− qd(1− e−ρ)) adjusts
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this rate to account for the possibility of a late approval decision.

Equations (4) to (6) have a straightforward interpretation. First, consider the value of

accepting an all-cash offer, V S(C,P ). Our setup implies that an all-cash buyer will deliver his

contract price P without delay or risk. Thus, V S(C,P ) simply equals indirect utility over total

wealth: u (vω + P ). In reality, all-cash offers are neither risk-free nor immediate. However, per

the previous subsection, this simplification approximates the actual institutional details rather

well. We allow for risky all-cash offers in Section V.

Second, consider the value of accepting a mortgaged offer, V S(M,P ). The seller waits for

the approval decision, meanwhile incurring the maintenance disutility associated with listing her

home, δ. With probability qd, the decision arrives with a delay and the seller must maintain the

home for another month, and hence the coefficient e−α+ qd. Once the lender makes its decision,

the seller receives the buyer’s contract price with probability 1− q, which yields indirect utility

u (vω + P ) discounted by e−α−ρ to account for delays. If the buyer is denied credit, she receives

the discounted value of having no offer, e−α−ρV S(∅). Importantly, V S(C,P ) > V S(M,P ) for

any given price P and realistic parameter values. Thus, sellers strictly prefer all-cash offers to

mortgaged offers unless the latter comes with a price premium.

Third, a seller with no offer incurs the disutility δ as she waits for offers to arrive. With

probability φ0 ≡ e−λ, she receives no offers and thus enters next month with discounted value

e−ρV S(∅). Otherwise, she receives offers from the nondegenerate set N , where N ≡ |N | is the

total number of offers. She chooses the best offer n ∈ N . She could also decline all offers. Finally,

sellers take the expectation in equation (6) over all combinations of all-cash and mortgaged offers

that may arrive. Indeed, the possibility that multiple buyers competitively bid up the home’s

price raises the seller’s option value of waiting. Going forward, it will be convenient to define the

certainty-equivalent price of having no offer, expressed as a discount, κ, relative to the home’s

fundamental value,

V S(∅) = u
(
vω + ve−κ

)
. (7)

The discount κ plays an important role in the seller’s decision. Anticipating some of the analytic

results, it depends endogenously on other parameters (e.g., λ), to be shown in Lemma 1.
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C. Buyer Problem

Buyers commit to a quality segment v ∈ V and method of financing F ∈ {C,M}, interpreted

as pre-approval.They then search for homes with the help of a real estate agent who knows the

home’s fundamental value, v, and the seller’s resources, ω. This timing implies that buyers

conduct a specific, or “narrow” Piazzesi, Schneider, and Stroebel (2020) home search. Upon

finding a home, they choose an offer price P , and, for mortgaged buyers, a loan amount ℓP . We

focus on a simplified case in which buyers search for only one period and always find a home, but

this simplification does not materially impact the resulting mortgage-cash premium.9 Neither

buyers nor their agents know the number of competing offers that the seller receives during the

arrival window, and thus whether they will win the home.

Buyers maximize an indirect utility function of the same form as equation (3), evaluated

over total wealth at the end of their home search. Explicitly, they solve

V B(Y ) = max
F,v,P,ℓ

{Win(F, P )(1− q(F ))u ((Y + v − P [1− ℓ [1−D]])) + ... (8)

... (Win(F, P )q(F ) + (1−Win(F, P )))u (Y )}

s.t. (9)

ℓ ≤ ℓ̄ · 1 [F =M ] , (10)

Y ≥ P [1− ℓ] , (11)

where Y denotes the buyer’s liquid assets and q(F ) ≡ q · 1 [F =M ]. The function Win(F, P )

describes the probability that a buyer offering P under financing F wins. The seller value

functions (4) to (6) imply that Win(C,P ) > Win(M,P ) for any P and ∂Win
∂P

> 0. For buyers

who choose to pay in cash, constraints (10) and (11) simply require enough money to pay for

the home. For mortgaged buyers, these equations impose two standard constraints. First, ℓ ≤ ℓ̄

requires the buyer to put down equity to, say, overcome agency frictions. To match the bunching

in the LTV ratio in Figure 1, we consider the case D ≤ 1, which implies buyers have sufficient

credit demand as to choose ℓ = ℓ̄. Second, Y ≥ P [1− ℓ] ensures buyers can cover the down

9The case in which buyers find homes at rate σ <∞ would affect the mortgage-cash premium through their

willingness-to-pay, p̄b. Perturbing p̄b has little impact on the calibrated premium, as Internet Appendix Table

IA.V shows.
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payment.

C.1. Optimal Choice of Financing and Empirical Implications

Our setup delivers two empirically useful predictions about the buyer’s choice of financing,

F . First, less-wealthy buyers use mortgage financing. Second, buyers use mortgage financing

to purchase higher-quality homes. We formally state and prove these predictions in Internet

Appendix Lemma IA.1, and Section II.A below provides empirical support for them. Thus, our

model recommends two important regression controls: location-by-time fixed effects, to hold Y

fixed, and property fixed effects, to hold v fixed. Numerous robustness exercises in Section IV

address instances of within-neighborhood variation in Y and within-property variation in v.

C.2. Optimal Offer Price

The choice of offer price requires that we account for strategic interactions. We use P̃ to

distinguish the offer price from the sales price, P . As a first step, let p̄b(F ) denote the maximum

price that buyer b using method of financing F is willing to pay, normalized by v. In particular,

Internet Appendix Lemma IA.2 shows that

p̄b(C) = min{y, 1}, (12)

p̄b(M) = min{ y

1− ℓ̄︸ ︷︷ ︸
≡L

,
1

1− ℓ̄ [1−D]
}, (13)

where y ≡ Y
v
. We often refer to L as the “leverage capacity” of mortgaged buyers, since it

defines the most they can afford given their liquid assets (yv) and financial constraints (ℓ̄). In

particular, relaxing these constraints raises their willingness-to-pay, p̄b(M). For all-cash buyers,

we focus on the empirically relevant case in which pb(C) = 1 because they have ample cash-on-

hand (e.g., Table III). Raising a buyer’s willingness-to-pay will not directly affect the mortgage-

cash premium, as it does not appear in the difference between V S(C, ·) and V S(M, ·). It will,

however, lower the mortgage-cash premium indirectly through V S(∅): raising p̄b lowers sellers’

cost of failure, κ.

While p̄b provides a useful upper bound, the actual offer price solves a complicated game
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between the seller, the buyer, and an unknown number of all-cash or mortgaged competitors.

We simplify this game by approximating the home purchase as a sealed-bid, first-price auction.

This setup has three advantages: it captures strategic interaction among anonymous bidders, it

accords with how homebuyers pay their offer price in reality, and it allows us to borrow insights

from auction theory.

Under this setup, which we describe in Section III.B of the Internet Appendix, buyers

optimally bid

P̃C =

 min {ṽ(C)e−κ, vp̄b(C)} , if N = 1

vp̄b(C), if N > 1
, (14)

P̃M =

 min {ṽ(M)e−κ, vp̄b(M)} , if N = 1

vp̄b(M), if N > 1
, (15)

where ṽ denotes an offer price with certainty equivalence v, from the seller’s perspective.10 The

case N = 1 reflects the basic concept that buyers in a first-price auction optimally bid less than

their true willingness-to-pay, p̄b. However, they raise their offer up to p̄b when necessary to win

the home, shown in the case N > 1.

The auction setup is a useful modelling device, but other setups would deliver the same

basic insights. For example, one can interpret prices in our setting as determined through Nash

bargaining, whereby the buyer has full bargaining power when N = 1 while the seller has full

bargaining power when N > 1. In particular, equations (14) and (15) imply the sales price

P = vp̄b︸︷︷︸
Buyer

Willingness-to-Pay

− (1− η)︸ ︷︷ ︸
Buyer

Bargaining Power

×
(
vp̄b − ṽe−κ

)︸ ︷︷ ︸
Total

Surplus

, (16)

where η ≡ 1 [N > 1] indicates the presence of multiple offers. Equation (16) implies that the

buyer’s effective bargaining power in our model depends on the presence of a competitor, and

10Equations (14) and (15) constitute a Nash equilibrium (Internet Appendix Lemma IA.3). The certainty

equivalence of an all-cash offer at v is simply the offer price itself: ṽ(C) = v. The value of a mortgaged offer with

certainty equivalence v requires scaling according to the mortgage-cash premium: ṽ(M) = veµ. Thus, we use

“certainty equivalence” in a slightly loose sense that includes compensation for frictions unrelated to risk (e.g.,

δ).
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thus does not differ by the method of financing. More generally, however, all-cash buyers may

have greater bargaining power insofar as they possess negotiation skill. Our offer-level research

design in Section IV.A will account for this possibility.

D. The Mortgage-Cash Premium: Definition and Analytics

Our goal is to understand the price premium that makes a seller indifferent between a

mortgaged offer and an all-cash offer, the mortgage-cash premium.

DEFINITION 1 (Mortgage-Cash Premium): Consider the sale of property i by home seller s to

home buyer b. Let ≻S denote the seller’s preference relation. Let PC
i,s,b and P

M
i,s,b denote the price

when the buyer pays all-cash or with mortgage financing, respectively. Define the mortgage-cash

premium, µi,s,b such that

Ci,s,b ≻S Mi,s,b, if PM
i,s,b < eµi,s,bPC

i,s,b, (17)

Mi,s,b ≻S Ci,s,b, if PM
i,s,b > eµi,s,bPC

i,s,b. (18)

The mortgage-cash premium is distinct from the average difference in log prices between

mortgaged and all-cash purchases. This distinction requires a careful empirical analysis that

holds fixed the characteristics of the home, the seller, or the buyer in question, as best we can.

By Definition 1, µ solves V S(C, vpC) = V S(M, vpCeµ), where pC ≡ PC

v
. The next proposition

summarizes the resulting closed-form expression for the mortgage-cash premium. For conve-

nience, we use the model’s homogeneity in v to normalize v = 1, unless otherwise stated.

PROPOSITION 1 (Deriving the Mortgage-Cash Premium): Holding the property (i), seller (s),

and buyer (b) fixed, the mortgage-cash premium equals

µ (Θ) = log

([
(1− γ)

(
(eα+ρ − 1)uC + Γδ + uC − uκ

1− q
+ uκ

)] 1
1−γ

− ω

)
− log(pC), (19)

where uC ≡ (ω+pC)
1−γ

1−γ , uκ ≡
(ω+e−κ(q,ω,λ,·))

1−γ

1−γ , Γ ≡ (1 + qdeα)eρ, and α ≡ − log(1− qd(1− e−ρ)).

The premium is a function of parameters Θ = {Θ1; Θ2}, where Θ1 = {q, λ, w, ξ, ls, y, l̄, qd,m, δ̃}

contains exogenous, measurable quantities and Θ2 = {γ, ρ,D} contains preference parameters.
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The continuation value, κ, is a function of the parameters in Θ, as expressed in Lemma 1.

Three frictions generate the mortgage-cash premium: transaction delay, risk of failure, and

the cost failure.11 First, sellers dislike the delay generated by the loan underwriting process be-

cause it requires an additional month of maintaining the home: Γδ. In addition, time discounting

implies that they simply like how all-cash transactions close more quickly: (eα+ρ − 1)uC .

Turning to the second friction, sellers dislike how mortgaged offers come with a higher

probability of failure, q. Once we turn toward quantitative implications, this friction will explain

a larger share of the premium than will transaction delay. In particular, equation (19) shows how

the effect of q on the premium interacts with the utility loss from failure: uC − uκ. The seller’s

net wealth, ω, plays an important role in amplifying this loss. Intuitively, poor sellers or those

with negative equity have a high marginal utility of wealth. Consequently, they exhibit high

effective risk-aversion and therefore require greater compensation for the risk of costly failure.

The third friction arises because the seller solves a dynamic problem and thus incurs a cost

of failure, κ. Recalling its definition in equation (7), κ parameterizes the continuation value

of a seller with no offer, V S(∅). Characterizing κ therefore requires that we first solve the

corresponding Bellman equation (6). Lemma 1 summarizes the solution.

LEMMA 1 (Deriving the Seller’s Cost of Failure): The continuation value, κ, equals

κ (Θ) = − log

[(1− γ)

(
E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
− δΞ

eρ − Pr [u = V S(∅)]

)] 1
1−γ

− ω

 . (20)

The magnitude of p̄b(M) determines the expressions for the terms in equation (20). There are

two cases. The first case obtains when p̄b(M) ≥ pM . In this case,

E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
= ΦCu(ω + p̄b(C)) + ΦM [1− q]e−α−ρu(ω + p̄b(M)), (21)

Pr
[
u = V S(∅)

]
= e−α−ρΦMq + e−λ(1 + λ), (22)

Ξ = eρ + ΦM(1 + qde−ρ). (23)

11The [·]1−γ functional contains the effects of these frictions. The other terms are mechanical: holding the

indirect utility of a successful mortgaged transaction fixed, a lower premium obtains when either ω or pC are high

simply because such sellers are already well-off and thus require a lower premium to meet that utility.
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The second case obtains when pM > p̄b(M). In this case,

E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
= ΦCu(ω + p̄b(C)), (24)

Pr
[
u = V S(∅)

]
= e−λ(1−m)[1− e−λm(1 + λm)] + e−λ(1 + λ), (25)

Ξ = eρ. (26)

The term ΦC equals the probability that the seller receives multiple offers and that she accepts

an all-cash offer, and ΦM equals the analogous probability of accepting a mortgaged offer. The

condition p̄b(M) < pM implies that the seller optimally declines all mortgaged offers. Internet

Appendix Lemma IA.4 derives the expressions for {ΦC ,ΦM , pM}.

Equation (20) inherits a similar form as the expression for µ. The numerator contains the

expected per-period payoffs from having no offer. The most basic payoff is the cost of maintaining

the home while waiting for offers: Ξδ. In addition, sellers have the option value of receiving

multiple competitive and ultimately successful offers: E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
. However,

that value may be small when the probability of receiving multiple offers is low, corresponding to

low values of the compound probabilities ΦC and ΦM that, in turn, depend on the fundamental

offer arrival rate, λ, and the share of mortgaged buyers in the economy, m.

The denominator of equation (20) amplifies the payoffs from having no offer by the proba-

bility of continuing to experience these payoffs in the future, Pr
[
u = V S(∅)

]
. This occurs when

the seller receives no offers, receives one offer from a buyer who holds her to her reservation

value per the optimal strategy in equations (14) and (15), accepts a competitive mortgaged offer

that subsequently fails, or, if p̄b(M) is low enough to trigger the lemma’s second case, receives

multiple mortgaged offers and optimally declines all of them.

At a high level, Lemma 1 distinguishes between parameters that (i) directly affect µ by

altering the static tradeoff between mortgaged and all-cash offers, such as q and ω, which directly

appear in Proposition 1, and (ii) indirectly affect µ through the seller’s continuation value, κ. For

example, parameters that raise buyers’ housing demand, such as p̄b, can lower the mortgage-cash

premium by reducing the cost of failure. By the same logic, liquid markets with a high λ will

also feature a lower premium. Section V verifies these statements numerically.
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D.1. Implications for Identification

From an empirical standpoint, Proposition 1 also sheds light on how we can identify the

mortgage-cash premium using observational data. In particular, we can recover the mortgage-

cash premium from a regression of log price on the method of financing, after carefully controlling

for the home’s quality, the seller’s cost of failure, and the buyer’s surplus. Corollary 1 presents

this result.

COROLLARY 1 (Identifying the Mortgage-Cash Premium): Consider the sale of property i by

home seller s to home buyer b. The log of the sales price, Pricei,b,s, has the form

log (Pricei,b,s) = µ̄×Mortgagedb + log(vi)︸ ︷︷ ︸
Property
Quality

+(1− η) [−κs]︸ ︷︷ ︸
Effect of Seller
Outside Value

+ η [log(p̄b)− log(ṽi)]︸ ︷︷ ︸
Effect of Buyer

Surplus

, (27)

where Mortgagedb ≡ 1 [Fb =Mb] indicates whether b uses mortgage financing, η ≡ 1 [N > 1]

indicates the presence of multiple offers, µ̄ is the average mortgage-cash premium, and ṽi is an

offer price with certainty equivalence vi = 1, from the seller’s perspective.

E. Calibrating the Theoretical Premium of a Representative Seller

We calibrate the theoretical mortgage-cash premium derived in Proposition 1, µ(Θ̂), using

values of Θ̂ in Table I. The elements of Θ̂ equal their average across the empirical distribution.

We find a model-implied premium of 3.3%, as shown in Table I. Thus, this is the magnitude of

the premium that a representative home seller requires for bearing mortgage transaction frictions.

As discussed above, these frictions can be decomposed into three components: transaction delay,

risk of failure, and the cost of failure. To eliminate one or more of these components, one can

set a subset of the parameters in Θ to zero. For example, we obtain a premium of only 0.9%

under a simplified setup in which: there is no loan approval delay, the seller has no existing debt

or down payment, transaction failure results in an almost-certain all-cash offer next month, and

there is little cost of maintaining the home on the market.12 Hence, 3.3% is the largest premium

12Under this low-friction parameterization, ξ = ℓs = qd = m = 0 while λ = 20, which implies that the seller

receives multiple offers with probability greater than 99.9%, δ̃ = 0.01, which is one fifth of its empirical value,

and the other parameters are as reported in Table I. This parameterization also gives κ = 0.9%.
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that our model can deliver in the context of a representative home seller.

Of course, considering a representative home seller may be inappropriate given the nonlin-

earities in equations (19) and (20). In particular, a representative-seller approach ignores how

extreme values of quantities in Θ can potentially drive the average mortgage-cash premium to

very high levels. Whether there is significant heterogeneity in the exogenous variables in Θ and

the extent to which that affects the empirical and theoretical premiums are important questions

we tackle in subsequent sections.

II. Data and Motivating Facts

Our empirical analysis relies on six observational data sets and one experimental data set.

Table II summarizes the two most important observational data sets, which we now describe.

The first data set is Zillow’s Transaction and Assessment Database (ZTRAX). The ZTRAX

data set contains information about home purchase transactions over 1980 to 2017. Zillow collects

the data from public records. To avoid misleading comparisons that could bias the estimates, we

impose a variety of filters to exclude properties in foreclosure, intrafamily transfers, purchases

with a very high or low sales price or leverage ratio, and various other extreme cases, leading to

a filtered ZTRAX universe of 11,367,195 transactions. For computational convenience, we draw

a 25% random sample of this universe and collapse the data into an unbalanced panel across

properties i and months t. The resulting data set spans 80% of U.S. counties on a population-

weighted basis (2,254,389 transactions). We prioritize internal validity and perform our baseline

analysis on the subsample of properties with repeat sales, for which we can include a property

fixed effect (426,256 transactions). We verify that this restriction leads to conservative estimates.

The most important variables in the ZTRAX data set are the sales price and LTV ratio

associated with the purchase. We also observe the name of the seller and buyer involved in

the transaction, which we use to perform several of the robustness exercises in Section IV and

to study heterogeneity in Section VI. Lastly, we observe various hedonic characteristics of the

property, which, along with time-varying geographic and property fixed effects, help us achieve

an R2 above 90% in our baseline regression.

The second data set contains information on both accepted and nonaccepted purchase offers
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made through a large U.S. online real estate brokerage, Redfin. We use this offer-level data set

to assess the internal validity of the results obtained from the ZTRAX data set in Section IV.A.

The raw data are reported by real estate agents affiliated with Redfin and date back as far as

2013. Until recently, Redfin’s real estate agent program had limited geographic coverage, and so

we begin our analysis when the program crossed the threshold of covering 50% of counties.

The offer-level data set includes information on the offer’s price and method of financing,

the geographic location of the property, the date on which the offer was made, the number

of competing offers, and other variables described in Section I of the Internet Appendix. Out

of concern for client privacy, we do not directly view the microdata and instead analyze the

offer-level data set by submitting a program with our desired calculations to Redfin.

Lastly, we use several additional data sets to assess selection bias and to calibrate our model.

These include a transaction-level data set from CoreLogic that is analogous to ZTRAX, mortgage

application data from the Home Mortgage Disclosure Act (HMDA), an aggregate time series of

characteristics of home purchase transactions from the National Association of Realtors’ Realtor

Confidence Index (RCI), a zip code panel of income from the IRS Statement of Income (SOI), a

highly detailed cross-section of household balance sheets from the Survey of Consumer Finances

(SCF), Zillow’s Observed Rent Index (ZORI), and a survey of California home sellers in 2019 by

the California Association of Realtors (CAR).

A. Motivating Facts

We motivate our empirical analysis with three facts about all-cash purchases: sizeable mar-

ket share; a price discount relative to mortgaged purchases; and correlation with characteristics

related to transaction risk and other model parameters.

First, Figure 1, Panel A, shows how such purchases account for 35% of all home purchases

over 1980 to 2017, based on the ZTRAX data set. More specifically, we plot the distribution of

LTV ratios, which features well-known bunching around various positive regulatory thresholds

(e.g., Greenwald (2018)). We focus on the less well-documented bunching that occurs at zero.

Second, Figure 1, Panel B, shows that the average all-cash purchase over 1980 to 2017 has a

lower real sales price relative to the average mortgage-financed purchase. The average difference
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equals 35 log points. When we restrict the sample to purchases in zip codes with bottom-quartile

real income, top-quartile real income, and purchases in time periods without extreme house price

fluctuations, we obtain a real price difference between 33 and 46 log points.

Third, Table III documents significant correlation between the probability that a purchase

is mortgaged and characteristics related to key parameters of the model. Columns (1) and

(2) predict the method of financing using time-varying market characteristics. Consistent with

the model, the probability of an all-cash purchase is higher in markets with a high mortgage

application denial rate (q), lower transaction volume, which plausibly maps to higher κ, and a

lower average price (v). These time-varying market characteristics explain a sizeable 30% of the

variation in the method of financing without any geographic fixed effects, supporting the model’s

relevance.

Column (3) includes zip code-by-month fixed effects, which allows us to focus on variation

within time-varying market conditions. The probability of an all-cash purchase is higher in sales

with institutional and foreign buyers, consistent with these buyers having higher liquid assets

(y), another sale within 12 months (“flips”), consistent with the industry’s common view that

flipping is most profitable on low-quality homes (v), foreign sellers, who have a greater cost

of transaction failure (κ), and individual sellers, who plausibly have less nonfinancial resources

than institutions (w). Finally, these relationships obtain after including property fixed effects

in column (4). This specification most closely matches that of our main empirical analysis, and

therefore provides a clear picture of the sources of identifying variation.

III. Empirical Mortgage-Cash Premium

We estimate the average mortgage cash premium using a repeat sales and hedonic pricing

approach. This approach has the advantage of transparency and a long tradition in the literature.

As its name implies, this approach requires controlling for property fixed effects (“repeat sales”)

and an exhaustive set of additional controls (“hedonic”). These ancillary parameters serve to

absorb as much variation as possible, such that purchases effectively differ only in their price and
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method of financing. The regression equation is

log (Pricei,t) = µMortgagedi,t + ψXi,t + ζz(i),t + αi + ϵi,t, (28)

where Mortgagedi,t indicates whether the loan amount is positive, Pricei,t is the sales price, αi is

a property fixed effect, ζz(i),t is a zip code-by-month fixed effect, and Xi,t is a vector of indicators

for whether i belongs to bins defined by month and various hedonic characteristics.

Equation (28) identifies the mortgage-cash premium, µ, under the following assumption,

E[Mortgagedi,t × ϵi,t|Xi,t] = 0, (29)

where we use abbreviated notation Xi,t = {αi, ζz(i),t, Xi,t}. Assumption (29) states that, condi-

tional on the fixed effects and controls (Xi,t), the method of financing (Mortgagedi,t) does not

correlate with unobserved, price-relevant characteristics of the transaction (ϵi,t). In particular,

applying assumption (29) to the theoretical regression equation from Corollary 1 implies

log (Pricei,t) = µMortgagedi,t + log(vi,t)− κs(i,t) (1− ηi,t) + ηi,t
[
log(p̄b(i,t))− log(ṽi,t)

]︸ ︷︷ ︸
ψXi,t+ζz(i),t+αi

+ϵi,t.

For example, it seems reasonable that the home’s fundamental value (vi,t) is described by the

property fixed effects (αi) and time-varying price of hedonic characteristics (ψXi,t). Moreover,

the zip code-by-month fixed effect (ζz(i),t) plausibly describes the effect of the seller’s outside value

(κs(i,t) (1− ηi,t)) which, per Lemma 1, depends on the liquidity of the local market (λ). Similarly,

the effect of the buyer’s surplus (ηi,t
[
log(p̄b(i,t))− ṽi,t

]
) also depends on market conditions, such

as credit constraints (ℓ̄). Of course, there may exist variation within Xi,t that correlates with

both the sales price and the method of financing. Therefore, we devote Section IV to a rigorous

assessment of assumption (29).

A. Results

We estimate equation (28) using the ZTRAX data set and report the results in Table IV.

The estimated mortgage-cash premium over 1980 to 2017 equals 11.7%, as shown in column (1).
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The regression features an R2 of 91%, due largely to the 187,000 property fixed effects. This high

R2 means that there is little remaining variation in unobserved characteristics to constitute a

violation of our identification assumption (29). Indeed, consistent with the property fixed effects

reducing bias, we estimate a larger premium of 16.1% when including properties without a repeat

sale, as shown in column (0).

The remaining columns of Table IV report the estimated premium within various subsam-

ples. In columns (2) through (5), we obtain a consistent premium after partitioning the sample

by time period. The higher premium over 2005 to 2010 corresponds to elevated transaction fric-

tions during that period. Indeed, Panel A of Figure 2 reveals a strong correlation between the

estimated premium and the mortgage application denial rate from HMDA, our key measure of

q. Panel B shows a positive correlation between the estimated premium and the all-cash share

of the market prior to 2010, suggesting movements in seller demand along the “supply curve”

for all-cash buyers. The elevated all-cash share after the Great Recession may reflect sustained

balance sheet impairment of households who would otherwise borrow.

Columns (6) and (7) restrict the sample to transactions with less asymmetric information

about the property’s condition. In column (6), we estimate a premium of 9.0% on properties

built within the previous three years, the condition of which is likely quite good. Such properties

are also less likely to possess antique features that appeal to a particular clientele, and so the

estimate does not reflect a discount for the illiquidity of the niche property market. In column

(7), we exclude transactions in which the buyer subsequently re-sells the property within 12

months. The remaining buyers in the sample are less likely to have uncovered a “lemon,” and

so the estimated premium of 8.8% does not suffer upward bias from an ex-ante informational

discount required by these buyers.

In columns (8) and (9), we consider transactions between noninstitutional and nonforeign

parties, respectively. The respective premiums equal 11.2% and 10.8%. These findings imply

that we do not confound how institutional investors tend to transact in illiquid submarkets

(e.g., Mills, Molloy, and Zarutskie (2019)) or how out-of-town buyers tend to have informational

disadvantages (e.g., Chinco and Mayer (2016)). Lastly, we estimate a premium of 9.9% after

restricting the sample to transactions in which the seller likely has positive equity, as shown in

column (10). As in columns (6) and (7), such transactions have less asymmetric information
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about the property’s condition.

Taken together, the stable estimates between 8% and 12% in columns (6) to (10) support

the internal validity of an 11% premium.

IV. Selection Bias

We take the question of selection bias seriously. Accordingly, we perform over 10 exercises

using five different data sets to assess internal and external validity. Table V summarizes the

resulting estimates of the mortgage-cash premium. The estimates range from 8.6% to 16.9%,

straddling our baseline estimate (11.7%) and hence supporting its validity.

We organize this section using Corollary 1, which states that the pricing error ϵi,t equals a

weighted average of three innovations: variation in the property’s condition that market partici-

pants observe but econometricians do not, the buyer’s offer price relative to this condition, and,

similarly, the seller’s reservation value. Importantly, these innovations are defined relative to the

value predicted by our rich set of conditioning variables, Xi,t,

ϵi,t = ∆X [log(vi,t)]︸ ︷︷ ︸
Shocks to Property

Quality

+∆X

[
(1− ηi,t) [−κs(i,t)]

]︸ ︷︷ ︸
Shocks to Seller
Outside Value

+ ∆X

[
ηi,t
[
log(p̄b(i,t))− log(ṽi,t)

]]︸ ︷︷ ︸
Shocks to Buyer

Surplus

, (30)

where ∆X [Ai,t] ≡ Ai,t − E[Ai,t|Xi,t]. Violations of internal validity occur when the average of

these innovations covaries with the method of financing. Columns (6) to (10) of Table IV already

account for several specific violations of internal validity. Sections IV.A to IV.D further assess

the scope for such bias. Section IV.E evaluates external validity.

A. Information on Nonaccepted Offers

An offer-level research design allows us to include two important controls related to strategic

interaction between buyers and sellers. First, we can control for differences in the offer price of

mortgaged versus all-cash buyers. This control addresses concerns that mortgaged buyers have

a higher private surplus (log(p̄b) − log(ṽi,t)), possibly due to optimistic expectations about the

housing market, and that all-cash buyers target properties with low quality or a “motivated” seller
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(low vi,t, high κs). Second, we can control for the price discount of winning offers. This control

addresses concerns that all-cash buyers possess bargaining power, in the form of negotiation skill,

that enables them to win at a lower price. While some of these concerns do not fit neatly within

our model, they could nevertheless be empirically relevant. Therefore, an offer-level research

design provides an important test of the magnitude of the premium.

The model provides useful structure that helps guide our offer-level research design. Let

P̃ F
i,t now denote the price associated with a nonaccepted offer to purchase property i in month t

under method of financing F . Let πMi,t and π
C
i,t denote the log price premium paid by an accepted

offer under mortgaged and all-cash financing, respectively. That is, log(P F
i,t) = πFi,t + log(P̃ F

i,t).

Using buyers’ optimal bidding equations (14) and (15) as a guide,

log(P F
i,t) = πFi,t + log(P̃ F

i,t) = πFi,t + log(vi,t) + log(p̄b(F )). (31)

Applying Definition 1 requires holding vi,t and p̄b(F ) fixed so that

µi,t = log(PM
i,t )− log(PC

i,t) = πMi,t − πCi,t. (32)

Equation (32) implies that the mortgage-cash premium equals the difference-in-difference be-

tween an accepted versus nonaccepted offer price between mortgaged versus all-cash financing.

Applying these ideas to our main empirical analysis, we can rewrite equation (28) as

log(Pricei,t) = µ̂Mortgagedi,t + ψXi,t + ζz(i),t + αi + ϵi,t, (33)

µ̂ = µ+ E[(vMi,t − vCi,t) + (log(p̄b(M))− log(p̄b(C)))|Xi,t]︸ ︷︷ ︸
E[log(P̃M

i,t )−log(P̃C
i,t)|Xi,t]

, (34)

where vFi,t ≡ E[log(vi,t)|F ]. To interpret, our baseline regression equation suffers bias if the

controls and fixed effects do not absorb differences in property quality v or private valuation p̄

between mortgaged and all-cash buyers. However, with an offer-level approach, we can correct

for this bias by controlling separately for the difference in offer prices: log(P̃M
i,t )− log(P̃C

i,t).
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Motivated by this concern, we use the offer-level data set to estimate

log(Pricei,j,t) = µ(Mortgagedi,j,t ×Winningi,j,t) + ... (35)

...+ ψ0Winningi,j,t + ψ1Mortgagedi,j,t + ζz(i) + τt + υi,j,t,

where i, j, and t index property, offer, and month, Mortgagedi,j,t indicates whether j is a

mortgage-financed offer, Winningi,j,t indicates whether j is the accepted offer, Pricei,j,t is the

price offered by j, and ζz(i) and τt are zip code and month fixed effects.13 Using equations (33)

and (34),

ψ1 = E[log(P̃M
i,t )− log(P̃C

i,t)|Xi,t]. (36)

Thus, conditioning on Mortgagedi,j,t allows us to identify the mortgage-cash premium even if

all-cash buyers make low offer prices because they target “low-ϵ” listings that, in our model,

correspond to listings with a low v or high κ. The coefficient ψ1 absorbs this effect.

Importantly, we condition on Winningi,j,t to allow for the possibility that all-cash buyers

negotiate better, and thus can win at a lower price even without mortgage transaction frictions.

While our model does not separately parameterize how certain skilled negotiators may win at a

lower (certainty-equivalent) price, equation (35) nonparametrically allows for this possibility. In

particular, the parameter ψ0 absorbs this effect.

Table VI reports the results. We estimate a premium of 8.1% in column (1). In column

(2), we estimate a premium of 8.6% after controlling nonparametrically for competitiveness, as

measured by the number of competing offers. These estimates are close to those in Table IV,

supporting the latter’s internal validity.

It is important to reiterate how little we have assumed in this offer-level research design.

For example, we can identify the mortgage-cash premium even if all-cash buyers select different

types of properties or have different private valuations (ψ1), or if they differentially win deals

due to bargaining power (ψ0). Thus, the smallest estimate of around 8% from Table VI provides

13We weight observations by the total number of offers on the listing to address the fact that we do not observe

all offers. The unweighted estimates are very similar to the weighted estimates. The limited sample size forces

us to restrict the set of fixed effects and controls relative to equation (28).
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a credible lower bound on the mortgage-cash premium.

B. Controlling for Buyer and Seller Characteristics

Since many sources of bias may be observed or have a close empirical proxy, we also follow

the more basic approach of simply controlling for buyer and seller characteristics that may jointly

affect equilibrium price and financing. Appendix II.A describes the methodology. We estimate

a premium between 10.0% and 12.9% as shown in Internet Appendix Table IA.II.

C. Instrumental Variables

An instrumental variables approach provides a clear and transparent source of identifying

variation. We propose two instruments; their respective details are in Sections II.B and II.C of

the Internet Appendix.

The first instrument exploits a regulatory discontinuity that determines whether a mortgaged

buyer would require an appraisal. Specifically, federal law requires an appraisal on all bank-

originated loans with a sales price above $250,000. Federal regulators introduced this requirement

in the wake of the savings and loan crises of the 1980s as part of the Financial Institutions

Reform, Recovery, and Enforcement Act of 1989. This federally mandated appraisal introduces

significant risk for home sellers, since it occurs after the seller has already accepted the buyer’s

offer. Moreover, lenders often cannot originate the loan if the LTV obtained from the appraisal

exceeds certain values. In the context of our model, transactions with a price just above $250,000

have a higher value of q relative to transactions with a price just below $250,000.

We implement this strategy similarly to Loutskina and Strahan (2015), who also construct

an instrument using bunching in house prices around a regulatory threshold. Briefly, we use

the previous sales price to forecast whether the price in the current sale exceeds the $250,000

threshold. This instrument correctly predicts a lower likelihood of mortgage financing, supporting

its first stage. Moreover, to support the exclusion restriction, we limit the sample to a narrow

bandwidth around the threshold. So, in effect, the instrument identifies the premium using

variation in q that is otherwise orthogonal to the sales price

The second instrument equals the share of homes sold by the seller over our sample period
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that are to cash buyers, excluding the sale in question (a “leave-one-out mean”). It reflects the

seller’s persistent preference for cash financing (e.g., belief about transaction risk), since it is

uncorrelated with idiosyncratic features of the transaction in question (e.g., urgency).

Using the first instrument, the regulatory discontinuity in appraisals, we estimate a pre-

mium of 13.6% (see Internet Appendix Table IA.III). Using the second instrument, the seller’s

propensity to accept all-cash offers, we estimate 13.9% (see Internet Appendix Table IA.IV).

Comparing the two instruments, the regulatory discontinuity provides a more transparent source

of variation, but we can construct the second instrument for a much larger share of the sample.

Importantly, the instruments draw on two fundamentally different sources of variation: exoge-

nous variation in q that comes from the buyer’s side, and the seller’s intrinsic preference for

all-cash offers. The very similar estimates obtained from the two instruments provides strong

cross-validation of our IV results.

D. Property Condition

Section IV.A already addresses many concerns related to bias from the property’s condition,

which buyers and sellers observe but we as econometricians do not. Section IV.D of the Internet

Appendix pursues three additional exercises that address these concerns. In particular, we use

the semi-structural hedonic estimator of Bajari et al. (2012), we use a nonparametric matching

estimator, and we control for list price and time on market using the CAR data set. The

estimated premiums range from 14% to 16%.

E. External Validity

Our emphasis on internal validity often requires us to restrict the variation used to identify

the mortgage-cash premium. Section IV.E of the Internet Appendix assesses the external validity

of our main results. We estimate a premium of 16.1% after including properties without a

repeat sale, 12.2% when applying our repeat sales and hedonic pricing approach to a nationally

representative, transaction-level data set from CoreLogic, and 10.3% when weighting purchases

by their inverse probability of appearing in the baseline sample. We further show that our results

agree with contemporaneous papers studying the price of cash-financed purchases.
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V. Calibrating the Theoretical Premium: Heterogeneity

Recalling the 3% theoretical premium obtained from the stylized calibration in Table I, the

robust empirical premium of around 11% would seem puzzlingly large. However, it is premature

to conclude that a puzzle exists without first pursuing a more serious calibration. In particular,

our stylized calibration simply calculated the premium at the average values of the parameter

space: µ (E[Θ]). Since the empirical premium obtains from variation in the data, a suitable

calibration should instead calculate the average of the premium across the parameter space:

E [µ(Θ)]. We describe our methodology in Section V.A and report results in Section V.B.

A. Calibration Procedure

We approximate the distribution of the parameter space, Θ, using tercile midpoints of the

empirical distribution of each parameter. More specifically, for each parameter in the vector

Θ1 =
(
q, λ, w, ξ, ℓs, y, ℓ̄, q

d,m, δ̃
)
, (37)

we approximate the parameter’s support using the 15th, 50th, and 85th percentiles of its empirical

distribution, with each value occurring one-third of the time.14

Table VII summarizes the resulting parameter distributions. Obtaining these distributions is

straightforward for parameters that have a clear empirical measure with ample cross-sectional and

time-series variation. For parameters that lack such variation, we prioritize empirical measures

with a clear conceptual connection to the target parameter. Since we cannot reliably calibrate

the joint distribution of the parameters in Θ, we instead work under the simplifying assumption

of statistical independence. Calibration details are in Section III.D.2 of the Internet Appendix.

Probability of Transaction Failure. We measure q using the mortgage application denial rate

among pre-approved, first-lien, mortgages for the purchase of an owner-occupied, single-family

home. The data come from the HMDA data set aggregated to the zip code-by-year level. The

14Internet Appendix Figure IA.3 replicates our main findings with quintile discretization, for robustness. Note

that our discretization is nonparametric, unlike more formal quadrature rules (e.g., Tauchen and Hussey (1991)),

which is appropriate as we lack reasonable priors for the distributions of some parameters.
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grid points in Table VII obtain from the distribution of q across zip codes and years. Section

III.D of the Internet Appendix describes potential sources of measurement error in the HMDA-

based measure and recalculates the theoretical premium using an alternative measure from the

NAR.

Offer Arrival Rate. We measure λ using the average number of offers received conditional

on receiving an offer, E[N |N > 0], and making use of the relationship for a Poisson random

variable, E[N |N > 0] = λ
1−e−λ . We obtain the distribution of E[N |N > 0] from the Offer-Level

data set, aggregated to the zip code by month level. Since λ is a relatively challenging parameter

to calibrate, we recalibrate it under various other data sources in Section III.D of the Internet

Appendix.

Seller Financial Wealth-to-Housing. We measure w using the ratio of financial wealth,

including retirement plans, to the value of the home. We obtain this ratio from the SCF data

set, which describes household balance sheets with a high degree of detail. We use the 2016

version of the SCF, restricting to homeowners who have sold at least one home.

Seller Loan-to-Value Ratio and Down Payment. We measure ℓs and ξ using the ZTRAX

data set. Specifically, ℓs is the ratio of mortgage balance outstanding, imputed by a straight-line

amortization using the loan’s initial term, to the sale price. We calibrate ξ as the difference in

price between the home to which the seller moves next and her mortgage on that home, either

of which may equal zero. We then normalize by the sale price on her current home.

Buyer Liquid Assets-to-Housing. We obtain y at the zip code by year level from the IRS

SOI data set to calculate the numerator, and the baseline ZTRAX data set to calculate the

denominator. The numerator equals the ratio of total adjusted gross income to total tax returns

in the zip code and year. The denominator equals the average sales price. We calculate the

distribution of the ratio across zip codes and years to obtain the grid points in Table VII.

Loan-to-Value Constraint. Given the bunching of LTV ratios at regulatory limits in Figure

1, we measure ℓ̄ using the LTV ratio conditional on lying between the GSE regulatory limit and

100%. We calculate the regulatory limit as the minimum of 80% and the ratio of the applicable

conforming loan limit to the average sales price.

Additional Parameters. Section III.D.2 of the Internet Appendix describes the calibration
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of the probability of transaction delay (qd), the mortgage offer share (m), and the maintenance

cost (δ̃). Our baseline calibration does not feature nonfinancial contingencies: qc = h = 0. We

only observe these parameters as short monthly time series of less than three years in the NAR

RCI data set. So, in the associated extensions, we simply use the average values. Accordingly,

qc = 1%. We set h = 7% to match the share of all offers that come with a home-sale contingency.15

Preferences. Unless otherwise specified, we work with the following values of preference

parameters in Θ2: coefficient of relative risk-aversion of γ = 5, an annualized subjective discount

rate of ρ = 0.04, and a disutility of borrowing of D = 1. The values of γ and ρ are standard when

using CRRA preferences. Since D is unique to our model, in Internet Appendix Table IA.V we

assess sensitivity to it.

B. Calibration Results

We obtain an average theoretical mortgage-cash premium of 6.9%, summarized in Figure

3. This value far exceeds the 3.3% premium obtained for a representative seller, shown in Table

I and reproduced in this figure. The difference points to an important role for heterogeneity.

In particular, risk-aversion introduces a nonlinear dependence of µ on the model’s parameters,

shown in Proposition 1. Consequently, sellers facing a high degree of transaction risk require far

more than one-for-one compensation.

Consistent with this view, the average premium across the parameter space equals 1.9%

under risk neutrality, shown in the second bar of Figure 3. A natural question, therefore, is

whether simply increasing γ could explain the empirical premium. However, the fifth bar shows

how explaining the most conservative estimate of 8.6% in Table V requires at least γ = 12, which

exceeds the typical ceiling of plausibility of around 10 (e.g., Mehra and Prescott (1985)).

Nonfinancial Contingencies. The question of risk leads us to revisit Section I.A.3 and

recalculate the theoretical premium with nonfinancial contingencies. Repeating the setup, both

all-cash and mortgaged offers fail with probability qc due to the inspection contingency. In

addition, a share h of offers from mortgaged buyers come with a home-sale contingency. These

15If we divide by the share of offers that are mortgaged to obtain a conditional probability, then h rises to

11.3% and the resulting premium rises from 7.9% to 8.1%.
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sale-contingent buyers will terminate the sale in question if the sale of their own home fails.

Section III.B of the Internet Appendix shows that sale-contingent offers fail with combined

probability

qh = q + qc +
mq + qc

1−mh
, (38)

up to an approximation for small probabilities. The sum of first two terms equals the probability

that the buyer himself does not obtain financing (q) or backs out because of the inspection

(qc). The third term reflects the probability of failure through the home-sale contingency. The

numerator equals the probability that the buyer’s sale falls through because of financing (mq)

or inspection (qc). This probability is amplified according to the prevalence of sale-contingent

offers in the economy (mh): the buyer of the buyer’s home may invoke a sale contingency, which

may have been triggered by another sale contingency, etc.16

In the presence of nonfinancial contingencies, the calibrated theoretical premium increases

from 6.9% to 7.9%, as shown in Figure 3. It is admittedly difficult to reliably estimate how

pervasive nonfinancial contingencies are. The best available data, the NAR RCI data set, implies

that only 7% of buyers come with a home-sale contingency (h = 0.07). Yet, even under this

low value, the 1% increase in the theoretical premium suggests that home-sale contingencies

introduce important amplification that could at least partially explain the magnitude of the

empirical premium.

VI. Heterogeneity in Selling Conditions

Connecting our empirical and theoretical results requires that we estimate the empirical

premium across the distribution of the model’s parameters and then test for a difference relative

to the theoretical premium at that point in the parameter space. This allows us to pursue the

aforementioned conjecture that heterogeneity drives the mortgage-cash premium, and a puzzle

16A seller must now separately consider the probability of receiving various combinations of offers that are

all-cash and mortgaged with and without the sale contingency in solving her dynamic problem. The resulting

expression for κ conveys the same basic intuition as in Lemma 1, but it contains many additional terms that

reflect these cases (Internet Appendix Proposition IA.1). Studying nonfinancial contingencies adds an important

degree of realism to the model, and we thank the Editor for encouraging us to do so.
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may exist only in certain states of the world.

We estimate the following regression equation using the ZTRAX data set,

log (Pricei,t) = µ0Mortgagedi,t +
∑
θ

∑
p

µθ,p

(
Mortgagedi,t × Tercile(θ̂, p)z,t

)
+ ... (39)

...+ ψXi,t + ζz(i),t + αi + ϵi,t,

where θ̂z,t is an empirical measure for model parameter θ at the zip code-by-year level, and

Tercile(θ̂, p)z,t indicates whether θ̂ lies in the pth tercile of the empirical distribution. For some

parameters, θ̂z,t corresponds exactly to the measure used to calibrate the model in Table VII.

Section III.D.4 of the Internet Appendix describes how we construct a suitable proxy to address

cases where the measure in Table VII lacks enough variation within the ZTRAX data set. Im-

portantly, it suffices for θ̂z,t to preserve the ranking of the parameter in question across zip codes

and years, even if it lacks the accuracy of magnitude of the measures in Table VII.

Estimating equation (39) allows us to construct confidence intervals for the empirical pre-

mium at each value of a given parameter, holding other parameters fixed at their average values.

Mirroring this approach within the model, we estimate a regression analogous to equation (39)

across the model’s parameter space (Internet Appendix Section III.D.3). We then calculate the

theoretical premium across the distribution of each parameter. We perform this exercise on the

subset of parameters with the most economic intuition: q, ω, λ, and L.

A. Heterogeneity Results

We find significant heterogeneity in the empirical and theoretical mortgage-cash premiums,

and this heterogeneity helps explain the apparent divergence between the two suggested by Figure

3. We report our results on heterogeneity in Figure 4. Internet Appendix Table IA.VI tabulates

the estimates of equation (39). We reason on the success rate, 1 − q, so that moving along the

horizontal axis in each figure corresponds to a more favorable market for sellers.
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A.1. Main Heterogeneity Results

Panel A of Figure 4 summarizes one of the paper’s key ideas: the mortgage-cash premium

puzzle arises primarily in markets with moderate or high transaction friction. Specifically, the

solid line shows the average empirical premium across terciles of the transaction success rate,

1−q, from estimating equation (39). The negative slope with respect to the success rate matches

the model’s predictions, shown by the red dashed line. Quantitatively, however, the steepness

of the empirical slope far exceeds that of the theoretical slope. Consequently, at low success

rates (i.e., high q), the empirical premium lies 9 percentage points (pps) above the theoretical

premium. This gap falls until the two premiums converge to around 6% within the highest tercile

of 1− q.

For reference, the light gray lines in Figure 4 show the premium obtained from more naive

calculations of the model that would overstate the magnitude of the puzzle. First, the dotted line

denoted by “Representative Agent” shows the premium when ignoring heterogeneity, as in Table

I. Even in low-friction markets with high success rates, a representative agent approach would

predict a puzzle because it ignores important variation in other model parameters, such as the

seller’s net wealth. Second, the solid line denoted by “Fixed κ” shows the premium when fixing

the cost of failure at its value from Table I, but allowing variation in parameters that directly

affect the premium shown in Proposition 1. This oversight would overstate the magnitude of

the puzzle by 1.5 pps (16%) in markets with a high degree of transaction risk. In such markets,

sellers particularly dislike failure because they must then wait for new offers, and the best such

offer may be another mortgaged buyer who, as with the first, fails to obtain financing. Thus,

dynamic amplification is especially important in high-friction markets.

Moving to Panel B of Figure 4, the slope of the empirical and theoretical premiums with

respect to the seller’s net wealth, ω, align quite well. The seller’s net wealth in our model

functions similarly to investor risk-bearing capacity in more general asset pricing models: low

net wealth raises the seller’s effective risk-aversion, and so she requires a high premium for

bearing transaction risk. Thus, leverage plays an important role in explaining the mortgage-cash

premium through sellers’ portfolio problem. By contrast, a naive model that focuses on housing

wealth and omits total wealth would overlook this channel. The buyer’s leverage also impacts the

mortgage-cash premium, as we shall see shortly, but through a more indirect and subtle channel.
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A.2. Key Heterogeneity Extensions

The first key extension recalculates the theoretical premium after incorporating nonfinancial

contingencies and a higher coefficient of risk-aversion. Panel A of Figure 5 shows how nonfinancial

contingencies reduce the puzzle’s magnitude in high-friction states. The intuition, discussed

previously in Section V.B, reflects how transaction failures elsewhere, which may be due to

either financial or nonfinancial contingencies, can trigger a chain of home-sale contingencies that

lead the transaction in question to fail. This channel reduces the puzzle by 1.7 pps (18%) in

markets with the highest friction. As before, home-sale contingencies cannot entirely explain the

empirical premium simply because they occur rather infrequently. Even so, incorporating them

has a similar impact as raising risk-aversion to γ = 12, per Panel B of Figure 5.

Second, Internet Appendix Figure IA.4 resembles Figure 4 in terms of the offer arrival

rate, λ, and the buyer’s leverage capacity, L. The empirical premium exhibits a negative slope

with respect to both parameters, consistent with the model. Like in Figure 4, it lies above the

theoretical premium in markets that are less favorable to sellers, namely illiquid markets (low λ)

and markets in which borrowers have limited ability to use leverage to increase their offer price

(low L).17

Overall, a proper treatment of heterogeneity reveals that the wedge between the empirical

and theoretical premiums obtains primarily under conditions that are unfavorable to sellers,

especially in states with high transaction risk. This finding motivates us to evaluate belief

distortions that may amplify the baseline effect of transaction risk in these states.

17The buyer’s leverage has a weaker impact on both the empirical and theoretical premium than does the

seller’s leverage. In the model, this occurs because the buyer’s leverage capacity only impacts the seller through

the possibility that the current transaction fails and the seller then receives multiple offers, the best of which

is a mortgaged buyer who levers to the maximum. However, this does not negate the importance of financial

constraints; rather, it shows that constraints affect the premium more through the extensive margin of credit (q)

than the intensive margin (L). Intuitively, the extensive margin, q, affects µ both directly through the seller’s

indifference condition, shown in Proposition 1, and indirectly through the continuation value, shown in Lemma 1.

By contrast, L works only indirectly. We thank the Associate Editor for encouraging us to examine how financial

constraints and leverage can explain the mortgage-cash premium.
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VII. Belief Distortions as an Amplification

We use an experimental survey to evaluate whether noncanonical preferences (“belief dis-

tortions”) can explain the mortgage-cash premium in states with high transaction risk. We have

two goals: first, to test whether our main results summarized in Section VI obtain in an ex-

perimental setting, and, second, to rank a set of candidate belief distortions by their ability to

explain the mortgage-cash premium. We consider four distortions known to affect behavior in

financial markets, in particular, ambiguity-aversion, realization utility, present focus, and prob-

ability weighting. This list is not exhaustive, and so our purpose is to simply provide a ranking

within this restricted set.

A. Survey Design

We administer the survey online to participants who have been pre-screened, compensated

for their participation, and recruited through a mainstream crowdsourcing platform. We would

like to simulate a lab experiment on representative homeowners as closely as possible, and,

reassuringly, Casler, Bickel, and Hackett (2013) finds that online experiments can produce data

of similar quality as those obtained in the lab. We recruit survey respondents through the

crowdsourcing platform Prolific, a competitor to Amazon’s commonly used MTurk platform.

Prolific has several advantages over MTurk, including the ability to exclusively recruit U.S.

homeowners and a stringent screening process that results in more honest responses. Section

VII.B.1 discusses these advantages. Section IV of the Internet Appendix describes the survey in

detail.

We administered the survey in three nonlongitudinal waves with a similar question structure.

At a high level, the survey consists of a thought experiment in which we ask respondents to

imagine that they are selling their current home. We specify a particular list price, chosen to

match the typical sales price in the respondent’s neighborhood. The conditions of the sale are

similar to the median values in Table VII. Specifically, we tell respondents that they have an

outstanding mortgage balance equal to 30% of this list price (ℓs = 30%). In addition, respondents

are under contract to purchase a new home, and the associated down payment equals 15% of the

current home’s list price (ξ = 15%). This down payment must be made within six weeks, which
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also equals the mortgage closing period. We state all quantities in both percents and dollars.

After describing the conditions of the sale, we ask respondents to imagine that they have

received offers from two buyers. The first buyer would pay all-cash, and the second buyer would

pay using mortgage financing. We specify that the all-cash transaction has “almost no risk” of

failing and will close “any time within two weeks.” The mortgaged transaction would take four

weeks longer than the all-cash transaction to close.

Importantly, we state in the survey that “there is a chance that the mortgaged buyer will

not be able to secure money from their lender,” in which case the respondent “will need to

relist your home in six weeks.” In the survey’s second and third waves, a random subsample of

participants are told that mortgaged transactions will fail q percent of the time, where q takes

values of 1%, 7%, and 13%, similar to the grid points of the empirical distribution in Table

VII. This randomization enables us to test for ambiguity-aversion. Finally, we specify that the

respondent would need to impose a 6% price cut to attract another offer, expressed in dollars

and percent. We use this price cut to approximate κ. Otherwise, describing all of the parameters

to calculate Lemma 1 would overwhelm survey respondents.

The remainder of the survey consists of three blocks of questions. In the first block, we tell

respondents that both the all-cash and the mortgaged buyer offer to pay their list price, $B, and

then we ask which offer they would prefer. We elicit the respondent’s mortgage-cash premium

through a sequence of pairwise comparisons (i.e., multiple price list), following standard practice.

We ask the respondent which offer she would prefer at gradually increasing spreads between the

mortgaged and the all-cash offer price. Each question takes the form: “Suppose the Mortgaged

Buyer offers to pay $[(1 + µ̃) × B]. That is [100 × µ̃]% more than the Cash Buyer. Which

offer would you accept now?” The spread µ̃ grows in increments of 4 pps until reaching 28%.

Most respondents switch from preferring the all-cash to the mortgaged offer once µ̃ exceeds some

threshold strictly between 0% and 28%. Define the mortgage-cash premium for respondent k,

denoted Premiumk, as the midpoint between the minimum value of µ̃ at which she prefers the

mortgaged offer and the maximum value of µ̃ at which she prefers the all-cash offer.

In the second block, we elicit respondents’ prior beliefs about mortgage transaction failure

(q) for the subsample facing ambiguity. Respondents select a value for q on a sliding scale with

an upper bound of 30%. The use of a sliding scale does not lead to bunching around the scale’s
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midpoint, since 43% of respondents select a value less than 10% or greater than 20%.

Finally, we elicit the respondent’s numeracy following the method of Lipkus, Samsa, and

Rimer (2001), and we collect information about the respondent’s annual household income, age,

state of residence, education, and risk-aversion, elicited using the method in Fuster and Zafar

(2021). Our resulting data set contains information on 1,019, 1,202, and 1,199 U.S. homeowners

from the survey’s first, second, and third waves. We administered the three waves in April 2021,

November 2021, and January 2023. These periods cover three out of four seasons and include

a range of conditions for home sellers, ranging from quite favorable due to strong demand and

limited supply in 2021 (Gascon and Haas (2020)) to a slowdown by early 2023.

B. Experimental Mortgage-Cash Premium

Table VIII summarizes the experimental mortgage-cash premium and other characteristics

of survey respondents. The top row of Panel A reports an average mortgage-cash premium of

10.5% in our pooled sample. Columns (2) to (4) show little variation across the three waves. The

next row weights respondents by 2020 Census weight to address concerns of representativeness,

discussed shortly. Next, following the literature’s convention, we restrict the sample to single-

switchers, who exhibit a single positive switch point strictly between zero and the maximum

value in the multiple price list (e.g., Bernheim and Sprenger (2020), Andreoni and Sprenger

(2012)). These two steps lower the average premium to 9.6%.

Panels B and C summarize variables that map to model parameters and demographic char-

acteristics, respectively. We note that survey respondents who face ambiguity believe that mort-

gaged transactions fail 13% of the time, which is higher than the empirical average of 7%. Since

we do not observe fine enough geographic information to cross-reference this probability against

HMDA data, we refrain from characterizing respondents as “pessimistic.” We next turn to de-

mographic characteristics and the question of representativeness.

B.1. Representativeness and Response Bias

Any survey must contend with response bias, which can work through observed or unob-

served characteristics. A growing body of evidence suggests that Prolific, the crowdsourcing
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platform we use, is the least susceptible to both margins of bias, as discussed below.

In terms of observed characteristics, Prolific allows researchers to exclusively recruit par-

ticipants with a particular demographic profile. Crucially, this restriction enables us to restrict

attention to individuals with knowledge of the home sale process, namely U.S. homeowners.

Relative to the population of U.S. homeowners, our respondents have similar average income

and somewhat higher levels of education.18 Geographically, our sample covers all U.S. states in

similar proportion to state population (see Internet Appendix Figure IA.7). Lastly, while our

sample appears representative, we nevertheless weight respondents by the share of all U.S. home-

owners in the same income-by-education-by-age-by-state of residence bin, using bins from the

2020 Census. Thus, our results up-weight respondents who appear more similar to the typical

U.S. homeowner.

Turning to unobserved characteristics, we seek to avoid both inattentive and manipulative

respondents. To motivate attentiveness, we compensate respondents for their participation at

three times the federal minimum wage. Prolific is known to filter out, to the extent possible,

manipulative respondents. For example, in an influential study, Peer et al. (2017) repeat a

set of common experiments that test for psychological biases across MTurk, Prolific, and other

mainstream crowdsourcing platforms. They find that respondents recruited by Prolific provided

both reproducible and internally consistent responses, but they were less likely to manipulate

the experiment and exhibited significantly higher rates of honesty.

C. Ambiguity-Aversion

Ambiguity-aversion describes a preference for risky investments with a known distribution

over those with an unknown, “ambiguous” distribution (Machina and Siniscalchi (2014)). More

precisely, an ambiguity-averse investor who forecasts that mortgaged transactions fail with prob-

ability q̂ will instead make decisions according to a distorted probability Q > q̂.

18Concerning income, Internet Appendix Figure IA.5 plots the share of respondents with income in bins

defined by the 2020 Census, along with the share of all U.S. homeowners in those bins. Our sample resembles

the overall distribution quite well within the center of the distribution. Concerning education, the 70.2% share of

respondents with a bachelor’s degree exceeds the 40.1% share among U.S. homeowners from the 2019 American

Housing Survey.
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In practice, selling a home can be a very ambiguous process. Home sales occur relatively

rarely, especially for owner occupants who comprise the majority of our sample. Consequently,

most home sellers have likely acquired little information about the true distribution of transaction

risk. Consistent with this view, Internet Appendix Table IA.XII estimates that sellers with prior

experience require a 2 pps lower mortgage-cash premium for each home they have already sold.19

Given the important role of heterogeneity in Figure 4, we take a similar approach and

estimate the effect of ambiguity on the mortgage-cash premium across the distribution of q.

Specifically, we pool our three survey waves and estimate

Premiumk =
∑
p

µq,pTercile(q̂, p)k +
∑
p

∆µAq,p (Tercile(q̂, p)k × Ambiguityk) + ... (40)

...+
∑
θ

∑
p

µθ,pTercile(θ̂, p)k + ϵk,

where k indexes survey respondent, Ambiguityk indicates whether the respondent is randomized

into the 62% of the sample in which we do not provide the distribution of q, and Tercile(q̂, p)k

indicates whether the respondent’s probability of failure, q̂, lies in the pth tercile of the empirical

distribution used in Figure 4. We measure q̂ using the value of q provided to the respondent or,

for those facing ambiguity, the respondent’s prior probability, elicited at the end of the survey.

The vector of indicators Tercile(θ̂, p)k has a similar interpretation as in equation (39), with details

in Section III.D.5 of the Internet Appendix. We always weight respondents using Census weights

to correct for response bias.

We build on Figure 4 and use the estimates from equation (40) to trace out the mortgage-cash

premium across the distribution of transaction risk, and now we do so separately for respondents

facing an ambiguous versus a known distribution of q. As before, this exercise constitutes the

empirical (i.e., experimental) portion of the figure. We then calculate the mortgage-cash premium

according to Proposition 1 across terciles of the parameter space. This theoretical premium will

vary by q, w, and κ, as implied by Panel B of Table VIII. Given practical constraints on survey

size, we preserve power by presenting all respondents with same values of ℓs and ξ, and we use

19It is possible that listing agents have an incentive to keep the process ambiguous for their client. For example,

doing so may shorten the time-to-close across transactions as ambiguity-averse sellers prioritize all-cash offers,

which tend to close more quickly (e.g., Levitt and Syverson (2008)).
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the average values of the remaining parameters in Table I to calculate the theoretical premium.

Figure 6 reports the results. Panel A plots the empirical premium across terciles of 1 −

q conditional on ambiguity, Ambiguityk = 1. As with the companion Figure 4 derived from

observational data, the slope of the empirical premium with respect to q significantly exceeds

the slope implied by the model. Consequently, there exists a significant 6.4 pps wedge between

the empirical and theoretical premiums at low success rates (high q), while the two premiums

converge at high success rates.

Essentially, Panel A of Figure 6 replicates our main finding using experimental data, which

allows us to analyze the effect of ambiguity about a key parameter on the premium. Panel B

evaluates ambiguity-aversion by plotting the empirical premium across terciles of q, conditional on

facing a known distribution, Ambiguityk = 0. Interestingly, the slope of the empirical premium

with respect to q becomes much more flat relative to the case of ambiguity (Panel A). This

flattening reduces the empirical premium by 4 pps at low success rates such that it becomes much

closer to the theoretical premium. Internet Appendix Figure IA.9 shows that removing ambiguity

also reduces the wedge between empirical and theoretical premiums across the distribution of

other model parameters, w and κ, through a level shift.

Overall, removing ambiguity significantly reduces the empirical premium in states with

high transaction risk and, by extension, the puzzle in those states. In reality, sellers do face

substantial ambiguity. Thus, our experimental evidence suggests that a more accurate model of

the sale process should allow for ambiguity-aversion of some form. We propose a brief extension

of our model that does so.

C.1. Modelling Ambiguity-Aversion

Most models of ambiguity-aversion would begin with the same basic idea outlined ear-

lier: home sellers fear that their approximation of the failure probability, q̂, understates the

true value, and so they instead act according to the distorted probability Q. The degree of

ambiguity-aversion determines how far Q lies from q̂. Models differ in how they would set up the

seller’s problem of choosing Q. We follow the setup in the literature on robust decision-making

(e.g., Hansen and Sargent (2011)), although many of the other options in footnote 1 also seem

appropriate.
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An ambiguity-averse (“robust”) home seller evaluates mortgaged offers according to a worst-

case failure rate that solves

Q = argmin
q̃
V S(M,P ; q̃) s.t. R (q̃; q̂) ≤ R, (41)

where

R (q̃; q̂) = q̃ log

(
q̃

q̂

)
+ (1− q̃) log

(
1− q̃

1− q̂

)
(42)

is the relative entropy between q̃ and q̂. The maximum permissible entropy, R, parameterizes

the seller’s ambiguity-aversion. Since V S(M,P ; q) is decreasing in q, the constraint in equation

(41) binds and so Q solves

R = Q log

(
Q

q̂

)
+ (1−Q) log

(
1−Q

1− q̂

)
. (43)

We can then calculate the mortgage-cash premium as in Proposition 1 after substituting Q for

q. Computationally, the methodology is the same as in Section V.

Generating an average theoretical premium of 11.1% to match the empirical premium in

Table IV would require ambiguity-aversion (i.e., an entropy bound) of R = 0.35. It is hard to

compare entropy bounds across settings, but a bound of 0.35 stands out as relatively large.20

Barnett, Brock, and Hansen (2020), for example, report entropies between 0.01 and 0.20. Even

so, reducing R to 0.15 still generates a theoretical premium of 9.5%, on par with the estimates in

Table V. Internet Appendix Figure IA.6 reports these results and also shows how both values of

R enable the model to fit the distribution of µ, not just the average. In particular, incorporating

ambiguity-aversion steepens the slope of µ with respect to q, so that the model comes much

20It is more common for papers to report the Lagrange multiplier associated with the constraint in equation

(41). The reason that multipliers are often reported is because the literature often works with a companion setup

to equation (41) that does not feature an entropy constraint, but instead adds a term of the form AR (q̃; q̄) to the

objective function, where A is a constant. Hansen and Sargent (2001) show that the two setups yield the same

solution, and, in particular, A may be interpreted as the Lagrange multiplier from the problem in equation (41).

Hansen and Sargent (2011) stress that the values of R or A should be context-specific, which makes cross-paper

comparisons difficult. Further complicating cross-paper comparisons of A is the fact that multipliers are not

scale-independent (Maenhout (2004)).
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closer to matching the empirical premium in high-friction states.

Putting these values into context, a representative home seller who approximates q̂ = 6.4%

as in Table I and has ambiguity-aversion of R = 0.35 would act according to Q = 35%. This

worst-case probability corresponds to the top 1.6% of the distribution of q summarized in Table

VII. With ambiguity-aversion of R = 0.15, she acts according to Q = 23%, which lies at the top

5% of the distribution. So, an empirical premium of 9% to 11% is consistent with an ambiguity-

averse home seller selecting a worst-case model from the top 1% to 5% of the distribution of q,

which in our sample occurred during the Great Recession. We cannot definitively say whether

this precise degree of ambiguity-aversion is reasonable.21 However, taken together with the

experimental evidence, a model in which home sellers have substantial ambiguity-aversion can

go a long way towards explaining the empirical premium.

D. Additional Belief Distortions

While ambiguity-aversion performs well in our setting, the analysis would be incomplete

without considering other belief distortions known to affect behavior in financial markets: refer-

ence dependence, and, in particular, realization utility, probability weighting, and present focus.

Reference Dependence through Realization Utility. A number of frameworks have applied the

basic principle of reference-dependent optimization (e.g., Tversky and Kahneman (1992)) to the

case of financial markets. Realization utility is one such framework that seems natural for our

setting because of its focus on the sale of an asset (e.g., Barberis and Xiong (2012), Ingersoll and

Jin (2013)). At a high level, realization utility leads investors (i.e., home sellers) to organize time

according to trading episodes (i.e., home sales), and they experience a burst of utility whenever

an episode ends in a realized capital gain.

Section III.E of the Internet Appendix provides an analytic approximation that conveys

three ideas about how the mortgage-cash premium for sellers with realization utility compares

21Anderson, Hansen, and Sargent (2003) propose evaluating the plausibility of a given R according to whether

the implied worst-case probability QR would be rejected above some reasonable Type-I error threshold using

data generated by q̂. Applying this criteria with a 5% error threshold, ambiguity-aversion of R = 0.15 seems

reasonable. We clarify that the precise Anderson, Hansen, and Sargent (2003) procedure is more involved and

would require several assumptions about the size of the sample from which a home seller can draw inference.
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with the baseline premium. First, sellers with realization utility may require a lower premium

if they place greater value on the option of waiting for a large capital gain from a bidding war

and thus have a lower cost of failure. Second, the existence of a positive mortgage-cash premium

makes sellers more willing to accept mortgaged offers because they come with the potential for a

higher capital gain. Third, factors that raise the overall level of the seller’s potential capital gain

(e.g., leverage) may have a small impact on the mortgage-cash premium unless they also affect

the relative utility burst from the gain on a mortgaged versus an all-cash offer.

Since it is theoretically unclear how realization utility affects the mortgage-cash premium,

on average, our experiment focuses on the specific case in which an all-cash offer results in zero

capital gain, which should imply a lower mortgage-cash premium. Section III.E of the Internet

Appendix describes the experiment and Internet Appendix Figure IA.8 summarizes the results.

We find no significant difference in the premium among respondents for whom realization utility

would predict a lower value. This finding comes with the caveat that realization utility likely

influences home sellers’ behavior in ways distinct from their preference for all-cash offers, as we

describe in Section III.E of the Internet Appendix.

Probability Weighting. Probability weighting refers to the tendency to perceive small prob-

abilities as larger than they actually are when making decisions. Section III.E of the Internet

Appendix shows that this tendency cannot explain the puzzle because it predicts an abnormally

large premium when transaction risk is low, whereas the opposite is true empirically.

Present Focus. Present focus refers to a preference for immediate gratification that leads

to dynamically inconsistent decisions. Section III.E of the Internet Appendix describes why,

theoretically, present focus does not affect problems like ours in which home sellers do not

immediately consume their sale proceeds and payoffs arrive over the course of weeks, rather than

instantaneously.

VIII. Conclusion

We find that the financing of home purchases affects transaction value to an extent that it

cannot be explained by transaction frictions alone. Based on a variety of subsamples, estimators,

data sets, and an experimental survey of U.S. homeowners, we consistently find that mortgage-
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financed home buyers must pay an 11% price premium relative to cash-financed buyers. By

contrast, a dynamic, quantitative model with a representative home seller implies a premium of

only 3%. Accounting for heterogeneity in selling conditions, especially transaction risk, raises

the model-implied premium and so reduces the 8 pps price puzzle by half. Our survey evidence

suggests that belief distortions, in particular ambiguity-aversion, can explain the remaining half

of the puzzle.

Our results have policy implications that derive from buyers’ and sellers’ perspectives. From

buyers’ point of view, the mortgage-cash premium represents an additional cost of becoming a

homeowner, since most first-time homebuyers rely on government-insured mortgages (e.g., Bai,

Zhu, and Goodman (2015)). Consequently, a government interested in promoting homeownership

must insure a large quantity of mortgage debt to accomplish this goal, relative to a frictionless

counterfactual in which the mortgage-cash premium equals zero. From sellers’ point of view, the

mortgage-cash premium represents a large “cash discount.” Therefore, a liquid housing market

with more all-cash buyers may erode the value of real estate as a savings vehicle.

A lower mortgage-cash premium can come from easing transaction frictions or from reducing

the ambiguity that amplifies them. The former route may have an outsized impact because of

amplification, but this needs to be verified in a general equilibrium setting. The latter route

requires more research on how ambiguity and aversion to ambiguity vary across home sellers, as

well as how best to model ambiguity-aversion. We leave these questions for future research.
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Figure 1. Facts about all-cash purchases. This figure documents two facts about cash-financed
home purchases. Panel A plots the distribution of LTV ratios across purchases over 1980 to 2017.
Panel B plots the average log sales price in hundreds of thousands of 2010 dollars for purchases
financed by a mortgage (Mortgaged) and exclusively with cash (Cash). The figure plots this average
for different subsamples: All denotes all observed purchases, Low Income and High Income denote
purchases in zip codes in the lowest and highest quartile by 2010 income, respectively, and 2010 to
2016 and 1994 to 2004 denote purchases over these two periods. Data are from ZTRAX.
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Figure 2. Empirical mortgage-cash premium over time. This figure plots the empirical
mortgage cash premium over various time periods. The empirical premium is the value of µ that
comes from estimating equation (28) on the subsample T consisting of months within the indicated
time period,

log (Pricei,t) = µMortgagedi,t + ψXi,t + ζz(i),t + αi + ϵi,t, t ∈ T

where subscripts i and t index property and month; and the remaining terms are defined in the
note to Table IV. Panel A plots the empirical premium with the mortgage application denial rate
for pre-approved home purchase loans, shown on the right axis. Data on the denial rate are from
HMDA and described in Section II and Section I of the Internet Appendix. Panel B plots the
empirical premium with the share of purchases that are all-cash based on the ZTRAX data set.
The remaining notes are the same as in Table IV.
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Figure 3. Summary of theoretical mortgage-cash premium. This figure summarizes cal-
culations of the mortgage-cash premium, µ, from Proposition 1. “Baseline” denotes the average
value of µ across the empirical distribution of parameters shown in Table VII and the preference
parameters shown in that table. “Risk Neutral” denotes the analogous calculation when setting the
coefficient of relative risk-aversion, γ, equal to zero. “Rep Agent” denotes the value of µ evaluated
at the average value of each parameter, not the average of µ across the parameter distribution, and
γ again equals its baseline value of 5. “Non-Fin Conting” denotes a similar calculation as in the
baseline case after setting the share of mortgaged transactions with a home-sale contingency, h,
equal to 7% and the probability of failure due to the home inspection contingency, qc, equal to 1%
(National Association of Realtors 2017, 2018). Equation (38) shows the combined failure rate with
contingencies. “High Gamma” denotes the calculation when γ = 12 and, as in the baseline, µ is
averaged across the parameter distribution. The rightmost bar marks 11%, corresponding to the
empirical premium. Additional details are in Sections V.A and V.B.
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Figure 4. Heterogeneity in the empirical and theoretical mortgage-cash premium. This figure
plots the empirical and theoretical premium across the model’s parameters. The empirical premium is
estimated as in equation (39),

log (Pricei,t) = µ̂0Mortgagedi,t +
∑
θ

∑
p

µ̂θ,p

(
Mortgagedi,t × Tercile(θ̂, p)z,t

)
+ ψXi,t + ζz(i),t + αi + ϵi,t,

where θ̂z,t is an empirical measure for model parameter θ at the zip code-by-year level, Tercile(θ̂, p)z,t
indicates whether θ̂ lies in the pth tercile of the empirical distribution, and the remaining notes and notation
are the same as in Table IV. The theoretical premium is calculated from the projection

µg = µ0 +
∑
θ

∑
p

µθ,pTercile(θ, p)g,

where g denotes grid points in the parameter distribution defined in Table VII. The coefficients {µθ,p} are
shown in Internet Appendix Table IA.VI. The red open circles show the theoretical premium under the
baseline model (Baseline Model). The gray open squares show the premium for a naive model that fixes
κ at its value from Table I (Fixed κ). The dashed lines shows the premium from the naive calibration in
Table I that ignores heterogeneity (Rep Agent). The figure plots the expected value of the empirical and
theoretical premium across terciles of θk, holding the other parameters θ−k at their average. The parameters
are one minus the probability of transaction failure (1− q), the seller’s total wealth net of current mortgage
debt and a simultaneous down payment (ω), the monthly Poisson offer arrival rate, which also equals the
expected number of offers (λ), and the ratio of the buyer’s maximally levered liquid assets to housing value
(L). Details on θ and θ̂ are in Sections V.A and VI. This figure shows the relationship between the premium
and the parameters 1 − q and ω. The relationship between the premium and the parameters λ and L are
shown in Internet Appendix Figure IA.4. Brackets are 95% confidence intervals clustering by grid of the
parameter distribution.
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Figure 5. Heterogeneity with nonfinancial contingencies and high risk aversion. This
figure is analogous to Figure 4 under two extensions of the baseline model. Panel A incorporates
nonfinancial contingencies: both all-cash and mortgaged offers come with a home inspection con-
tingency, and a share h of mortgaged offers also come with a home-sale contingency. The NAR
RCI data set implies h = 7%. The probability of failure due to the home inspection contingency
is qc = 1%, also based on the NAR RCI data set. The probability of failure for a mortgaged offer
with a home-sale contingency is shown in equation (38). Panel B uses a higher coefficient of relative
risk-aversion, γ = 12. The remaining notes are the same as in Figure 4.
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Figure 6. Heterogeneity in the experimental mortgage-cash premium. This figure plots
the empirical and theoretical premium using data from the experimental survey, and it is analogous
to Figure 4. The theoretical premium is calculated similarly to Figure 4. The empirical premium
is estimated as in equation (40),

Premiumk =
∑
p

µq,pTercile(q̂, p)k +
∑
p

∆µAq,p (Tercile(q̂, p)k × Ambiguityk) + ...

...+
∑
θ

∑
p

µθ,pTercile(θ̂, p)k + ϵk,

where k indexes survey respondent, Premiumk denotes the respondent’s mortgage-cash premium
elicited from the multiple price list, Ambiguityk indicates whether the respondent is randomized
into an experiment in which we do not provide the distribution of q, Tercile(q̂, p)k indicates whether
the respondent’s probability of failure, q̂ lies in the pth tercile of the empirical distribution used in
Figure 4, and we measure q̂ using the value of q provided to the respondent or, for those facing
ambiguity, the respondent’s prior probability, which we elicit at the end of the survey. The vector
of indicators Tercile(θ̂, p)k has a similar interpretation as in Figure 4. The left panel plots the
estimated premium by q when facing ambiguity: µq,p + ∆µAq,p. The right panel does so when not
facing ambiguity: µq,p. Respondents are weighted using Census weights to correct for response bias.
Standard errors are heteroskedasticity robust. The remaining notes are the same as in Figure 4 and
Table VIII. Additional details are in Section VII.C.
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Table I

Representative Seller Calibration of the Mortgage-Cash Premium

This table summarizes the notation of the baseline model in Section I and performs a stylized calibration of the
mortgage-cash premium for a representative home seller. The endogenous variables are the mortgage-cash premium,
µ, and the seller’s endogenous cost of failure, κ, implied by this stylized calibration. The expressions for µ and κ
are shown in Proposition 1 as a function of parameters Θ = {Θ1; Θ2}. The elements in Θ1 are exogenous and are
used to calculate the values of the endogenous variables. These values equal the averages across the distribution of
the empirical measures obtained from a more rigorous calibration, summarized in Table VII. The elements in Θ2 are
also exogenous and are externally calibrated. Under a low-friction parameterization in which ξ = ℓs = qd = m = 0,
λ = 20, δ̃ = 0.01, and the other parameters are as in the table, we obtain µ = 0.009 and κ = 0.009, as referenced in
Section I.E. The model’s setup and solution are in Section I.

Parameter Notation Value Reference

Endogenous:

Mortgage-Cash Premium µ 0.033 Equation (19)

Seller Cost of Failure κ 0.047 Equation (20)

Exogenous (Θ1):

Probability of Transaction Failure q 0.064 HMDA Denial

Offer Arrival Rate λ 2.162 Offer-Level Data

Seller Financial Wealth-to-Housing w 1.577 SCF Total Wealth

Seller Down Payment ξ 0.052 Zillow, ZTRAX

Seller Loan-to-Value Ratio ℓs 0.294 Zillow, ZTRAX

Buyer Liquid Assets-to-Housing y 0.162 IRS Income

Loan-to-Value Constraint ℓ̄ 0.864 Zillow, ZTRAX

Probability of Transaction Delay qd 0.30 NAR Index

Mortgaged Offer Share m 0.622 Offer-Level Data

Maintenance Cost-to-Value, Annualized δ̃ 0.056 Zillow, ZORI

Preferences (Θ2):

Coefficient of Relative Risk Aversion γ 5

Discount Rate, Annualized ρ 0.04

Borrower Loan Cost, Share of Par D 1
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Table II.

Summary of Variables in the Empirical Analysis

This table summarizes variables from our observational data sets. Panel A summarizes variables from our core
data set, the ZTRAX data set. Subscripts i and t index property and month. Each observation is a home pur-
chase transaction over 1980 to 2017. The variables are defined as follows: Real Pricei,t is the sales price in 2010
dollars, Mortgagedi,t indicates whether the loan amount is positive, Agei is the number of years from when the
property was built, Roomsi through Storiesi are the number of overall rooms, bathrooms, and stories, respectively,
Air Conditioningi and Detachedi indicate if i has air conditioning and is a detached single-family home, respectively,
Flipi,t indicates whether the property is subsequently sold within 12 months, Foreign Buyeri,t indicates whether
the buyer has a foreign address, Same-County Buyeri,t indicates whether the buyer’s address is in the same county
as the property, Institutional Buyeri,t indicates whether the buyer is an institution and the property is not to be
owner-occupied, Cash Propensityb(i,t) indicates whether the buyer of property i in month t, denoted b(i, t), buys
another home all-cash over our sample period, High Seller LTVi,t indicates whether the seller’s LTV ratio is above
50%, where the numerator is imputed using a straight-line amortization according to loan term and the denominator
is imputed using the median sales price in the buyer’s zip code, Same-Month Seller Purchasei,t indicates whether
the seller purchases another home in the same month, Foreign Selleri,t indicates whether the seller has a foreign
address, Cash Shares(i,t) is the share of homes sold to cash buyers over our sample period by the seller of property
i in month t, denoted s(i, t), after excluding the sale in question and assigning a value of zero to sellers who appear
only once in the data, and Number of Saless(i,t) equals the number of sales made by the seller as of month t in the
baseline ZTRAX data set. With the exception of Mortgagedi,t, all indicator variables are assigned a value of zero
when the raw variable is unobserved. Panel B summarizes variables from the offer-level data set. Each observation
is an offer to purchase a home over the period from January 2020 through June 2021 made through a real estate
agent affiliated with Redfin. The variables are defined as follows: Mortgagedi,j,t indicates whether j is an offer with
a positive loan amount, Winningi,j,t indicates whether j is the winning offer, Real Pricei,j,t is the price offered by
j in 2010 dollars, and Number of Offersi,j,t is the total number of offers, including j. The bottom rows show the
number of observations from each data set that can be used in Tables IV and VI, respectively. Section II and Internet
Appendix Section I contain additional details.

Variable Mean
Standard

Variable Mean
Standard

Deviation Deviation

Panel A: Transaction-Level Data Set

Real Pricei,t $416,813 $776,315 Mortgagedi,t 0.642 0.479

Agei 28.431 6.682 Roomsi 1.409 1.492

Bathroomsi 0.237 0.715 Storiesi 1.096 0.111

Air Conditioningi 0.217 0.239 Detachedi 0.405 0.491

Flipi,t 0.115 0.319 Foreign Buyeri,t 0.003 0.054

Same-County Buyeri,t 0.009 0.093 Institutional Buyeri,t 0.001 0.038

Cash Propensityb(i,t) 0.252 0.434 High Seller LTVi,t 0.068 0.252

Same-Month Seller Purchasei,t 0.015 0.122 Foreign Selleri,t 0.002 0.041

Cash Shares(i,t) 0.179 0.327 Number of Saless(i,t) 4.687 1.034

Panel B: Offer-Level Data Set

Real Pricei,j,t $512,662 $359,480 Mortgagedi,j,t 0.609 0.488

Winningi,j,t 0.166 0.372 Number of Offersi,j,t 5.787 5.120

Baseline Number of Transactions: 426,256

Baseline Number of Offers: 22,516
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Table III.

Characteristics of Mortgaged Transactions

P-values are in parentheses. This table correlates the probability that a transaction is mortgage-financed with market-
level and transaction-level characteristics. Subscripts i, z, and t index property, zip code, and month. Mortgagedi,t
indicates whether the loan amount is positive. Transaction-level variables are defined in Table II. Market-level
variables are observed at the zip code-by-year level: Mortgage Denial Ratez,t denotes the mortgage application
denial rate, using data from HMDA, Transaction Volumez,t is the total number of home purchase transactions in
the zip code and year in the ZTRAX data set, Average House Pricez,t is the FHFA All-Transactions house price
index, and Average Incomez,t comes from the IRS data set. Columns (3) and (4) include a zip code-by-month fixed
effect and so exclude market-level variables. Transaction-level variables are included in columns (1) and (2) but not
tabulated. The sample period is 1980 to 2017. Standard errors are clustered by property.

Outcome: Mortgagedi,t

Across Markets Within Markets

(1) (2) (3) (4)

Market Level:

Mortgage Denial Ratez,t -0.318 -0.156
(0.018) (0.017)

log (Transaction Volumez,t) 0.055 0.045
(0.001) (0.003)

log
(
Average House Pricez,t

)
0.097 0.046
(0.002) (0.004)

log
(
Average Incomez,t

)
0.003 0.008
(0.002) (0.004)

Transaction Level:

Institutional Buyeri,t -0.494 -0.656
(0.002) (0.003)

Foreign Buyeri,t -0.125 -0.148
(0.021) (0.044)

Flipi,t -0.080 -0.086
(0.002) (0.002)

High Seller LTVi,t 0.031 -0.134
(0.002) (0.002)

Foreign Selleri,t -0.050 -0.138
(0.031) (0.066)

Institutional Selleri,t 0.057 0.037
(0.002) (0.003)

Month FE Yes Yes No No
Zip Code FE No Yes No No
Zip Code-Month FE No No Yes Yes
Property FE No No No Yes
R2 0.300 0.461 0.628 0.873
Number of Observations 425,389 425,389 425,386 425,370
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Table IV.

Empirical Mortgage-Cash Premium

P-values are in parentheses. This table estimates equation (28), which calculates the price premium paid by mortgaged buyers relative to all-cash buyers (i.e.,
the mortgage-cash premium). Subscripts i and t index property and month. The regression equation is of the form

log (Pricei,t) = µMortgagedi,t + ψXi,t + ζz(i),t + αi + ϵi,t,

where observations are home purchases, Mortgagedi,t indicates whether the loan amount is positive, Pricei,t is the sales price, αi is a property fixed effect, ζz(i),t
is a zip code-by-month fixed effect, and Xi,t is a vector of indicators for whether i belongs to bins defined by month and the values of the following hedonic
characteristics: the number of years from when the property was built, the number of overall rooms, bathrooms, and stories, an indicator for whether i has
air conditioning, and an indicator for whether i is a detached single-family home. The sample period in columns (0) and (1) is 1980 to 2017. Columns (2) to
(5) restrict the sample to months within the indicated time periods. Column (6) restricts the sample to properties built within the previous three years (New
Homes). Column (7) restricts the sample to properties that were sold at least 12 months later (No Flips). Column (8) restricts the sample to properties in
which neither the buyer nor seller is an institution (Non Instit.). Column (9) restricts the sample to properties in which neither the buyer nor seller has an
address outside the U.S. (Non Foreign). Column (10) drops purchases in which the seller’s LTV ratio is above 100% (Positive Equity), where the numerator
is imputed using a straight-line amortization according to loan term and the denominator is imputed using the average sales price in the surrounding zip code
and month to avoid mechanical correlation with log (Pricei,t). Standard errors are clustered by property. Data are from the ZTRAX data set.

Outcome: log (Pricei,t)

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Mortgagedi,t 0.161 0.117 0.131 0.124 0.165 0.119 0.090 0.088 0.112 0.108 0.099
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Sample Restriction None None
1980- 1996- 2005- 2010- New No Non Non Positive
1996 2004 2010 2017 Homes Flips Instit. Foreign Equity

Zip Code-Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Hedonic-Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Property FE No Yes Yes Yes Yes Yes No Yes Yes Yes Yes
R2 0.582 0.907 0.969 0.842 0.797 0.826 0.647 0.963 0.895 0.904 0.923
Number of Observations 2,254,389 426,256 27,087 122,683 69,307 20,792 6,651 186,570 333,288 323,956 313,370
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Table V.

Summary of Estimates of the Mortgage-Cash Premium

This table summarizes various estimates of the mortgage-cash premium. Details on each methodology are provided
in the notes to the indicated table.

Empirical Mortgage-Cash Premium (µ̂)

Estimate Table

Repeat-Sales-Hedonic, Baseline 0.117 Table IV, Column (1)

Repeat-Sales-Hedonic, 1980-1996 0.131 Table IV, Column (2)

Repeat-Sales-Hedonic, 1996 to 2004 0.124 Table IV, Column (3)

Repeat-Sales-Hedonic, 2005 to 2010 0.165 Table IV, Column (4)

Repeat-Sales-Hedonic, 2010 to 2017 0.119 Table IV, Column (5)

Repeat-Sales-Hedonic, New Homes 0.090 Table IV, Column (6)

Repeat-Sales-Hedonic, No Flips 0.088 Table IV, Column (7)

Repeat-Sales-Hedonic, Non Institutional 0.112 Table IV, Column (8)

Repeat-Sales-Hedonic, Non Foreign 0.108 Table IV, Column (9)

Repeat-Sales-Hedonic, Positive Equity 0.099 Table IV, Column (10)

Nonaccepted Offers 0.086 Table VI, Column (2)

Homeowner Survey, Wave 1 0.106 Table VIII, Column (2)

Homeowner Survey, Wave 2 0.104 Table VIII, Column (3)

Homeowner Survey, Wave 3 0.107 Table VIII, Column (4)

Hedonic with Nonrepeat Sales 0.161 Internet Appendix Table IA.I, Column (5)

Buyer and Seller Characteristics 0.129 Internet Appendix Table IA.II, Column (3)

IV, Regulatory Appraisal Floor 0.136 Internet Appendix Table IA.III, Column (2)

IV, Propensity to Sell All-Cash 0.139 Internet Appendix Table IA.IV, Column (4)

CoreLogic Data Set 0.122 Internet Appendix Table IA.I, Column (8)

Listing Characteristics 0.143 Internet Appendix Table IA.VII, Column (2)

Semi-Structural (Bajari et al. (2012)) 0.149 Internet Appendix Table IA.VIII, Column (2)

Weighting by Representativeness 0.103 Internet Appendix Table IA.IX, Column (2)

Matching 0.169 Internet Appendix Table IA.XI, Column (3)
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Table VI.

Robustness to Using Data on Nonaccepted Offers

P-values are in parentheses. This table estimates equation (35), which assesses whether the baseline results are
robust to using data on nonaccepted offers to estimate the mortgage-cash premium. Subscripts i, j, and t index
property, offer, and month. The regression equation is of the form

log (Pricei,j,t) = µ
(
Mortgagedi,j,t ×Winningi,j,t

)
+ ψ0Winningi,j,t + ψ1Mortgagedi,j,t + ζz(i) + τt + υi,j,t,

where observations are home purchase offers, Mortgagedi,j,t indicates whether j is an offer with a mortgage,
Winningi,j,t indicates whether j is the offer that is accepted, Pricei,j,t is the price offered by j, and ζz(i) and τt
are zip code and month fixed effects, respectively. Column (2) includes a vector of fixed effects for the number of
offers on the property. The sample consists of purchase offers made through Redfin real estate agents over January
2020 through June 2021. Observations are weighted by the number offers on the property. Standard errors are
heteroskedasticity robust. Data are from the offer-level data set. The remaining notes are the same as in Table IV.

Outcome: log (Pricei,j,t)

(1) (2)

Mortgagedi,j,t ×Winningi,j,t 0.081 0.086
(0.008) (0.004)

Other Variables:

Mortgagedi,j,t -0.006 -0.006
(0.304) (0.279)

Winningi,j,t -0.044 -0.060
(0.098) (0.025)

Month FE Yes Yes
Zip FE Yes Yes
Offers-on-Property FE No Yes
R2 0.619 0.620
Number of Observations 22,516 22,516
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Table VII.

Distribution of Model Parameters

This table reports the distributions of the empirical measures of the model’s parameters. Panel A reports the data source
for directly calibrated parameters and the midpoint of each tercile. Probability of Failure (q) is measured as the mortgage
application denial rate among pre-approved, first-lien, mortgages for the purchase of an owner-occupied, single-family home,
based on the HMDA data set aggregated to the zip code-by-year level. Offer Arrival Rate (λ) is measured using the relationship
E[N |N > 0] = λ

1−e−λ . The number of offers received conditional on receiving an offer, E[N |N > 0], is measured using the
Offer-Level data set aggregated to the zip code level. Seller Wealth (w) is measured as the ratio of: the sum of checking
and savings accounts, certificates of deposit, cash, stocks, savings bonds, other bonds, mutual funds, annuities, trusts, IRAs,
employer-provided retirement plans, and total household income, divided by the value of the home. The unit of analysis is
a household in the SCF data set, excluding nonhomeowners and first-time homeowners. Seller LTV (ℓs) is measured as the
current LTV ratio, imputed from the ratio of mortgage balance implied by a straight-line amortization to the sale price. Seller
Down Payment (ξ) is measured as the ratio of next-home price minus next-home mortgage to current-home price for sellers who
purchase another home within 12 months. LTV Constraint (ℓ̄) is measured as the LTV ratio conditional on lying between the
GSE regulatory limit and 100%. The calibration of ℓs, ξ, and ℓ̄ rely on the ZTRAX data set aggregated to the zip code-by-year
level by taking the average. Buyer Liquid Assets (y) is measured as the average ratio of total adjusted gross income to total
tax returns across zip codes and years, based on the IRS SOI data set. Probability of Delay (qd) is measured as one minus
the share of home sales not settled on time across months, based on the NAR RCI data set. Mortgaged Offer Share (m) is
measured as the average share of offers that are mortgage-financed, based on the Offer-Level data set aggregated to the MSA
level. Maintenance Cost (δ̃) is measured as the average ratio of Zillow’s ZORI rent index to Zillow’s Home Value index across
zip codes and months. The table reports the annualized δ̃ that comes from multiplying by 12. Panel B reports the distribution
of the composite parameters ω and L implied by Panel A. Details are in Section V.A.

Parameter Source
Percentiles

15th 50th 85th

Panel A: Directly Calibrated

Probability of Failure (q) HMDA Denial 0.01 0.047 0.133

Offer Arrival Rate (λ) Offer-Level Data 0.871 2.232 3.383

Seller Financial Wealth (w) SCF Total Wealth 0.338 1.025 3.369

Down Payment (ξ) Zillow, ZTRAX 0 0.046 0.109

Seller LTV Ratio (ℓs) Zillow, ZTRAX 0.042 0.248 0.593

Buyer Liquid Assets (y) IRS Income 0.227 0.548 1.508

LTV Constraint (ℓ̄) Zillow, ZTRAX 0.8 0.88 0.913

Probability of Delay (qd) NAR Index 0.24 0.3 0.36

Mortgaged Offer Share (m) Offer-Level Data 0.354 0.639 0.872

Maintenance Cost (δ̃) Zillow, ZORI 0.035 0.054 0.079

Panel B: Composite Parameters

Seller Net Wealth (ω = w − ℓs − ξ) 0.044 0.731 3.075

Buyer Leverage Capacity (L = y/[1− ℓ̄]) 0.498 1.22 2.335

Panel C: Baseline Preferences

Coefficient of Relative Risk Aversion (γ): 5

Discount Rate, Annualized (ρ): 0.04

Borrower Loan Cost, Share of Par (D): 1
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Table VIII.

Summary of Survey Respondents

This table summarizes the mean of key variables from the experimental survey. Panel A reports the average mortgage-cash
premium, elicited through the multiple price list method. The average is calculated (i) without weighting respondents (Un-
weighted), (ii) weighting by the respondent’s representativeness in the 2020 Census according to age, income, home tenure,
education, and state of residence (Census Weighted), (iii) after applying Census weights and restricting the sample to respon-
dents with a single switch point between zero and the maximum price in list (Single Switchers), and (iv) after partitioning
the single-switch sample according to whether the respondent is told the probability of mortgage transaction failure (Known
q) or faces ambiguity (Ambiguous q). All respondents in the first wave face ambiguity. Panel B reports the average model
parameters used to calculate the theoretical premium. For respondents facing an ambiguous failure probability, the theoretical
premium is calculated using the respondent’s subjective probability, elicited at the end of the survey. Similarly, the cost of
failure for such respondents equals the subjective value elicited at the end of the survey, and otherwise equals 6%. The seller’s
financial wealth-to-housing is imputed using the respondent’s income and a projection of wealth onto log income estimated in
the 2016 SCF data set. Other model parameters are as in Table I. Panel (c) reports the average of demographic variables for
the unweighted sample. Section VII and Internet Appendix Section IV contain details.

Pooled Average by Wave
Average First Second Third

(1) (2) (3) (4)

Panel A: Mortgage-Cash Premium (µ)

Unweighted 0.105 0.106 0.104 0.107

Census Weighted 0.106 0.109 0.106 0.104

Single Switchers 0.096 0.109 0.092 0.087

Ambiguous q 0.103 0.109 0.096 0.096

Known q 0.084 . 0.087 0.081

Panel B: Model Parameters

Probability of Failure (q)

Subjective 0.13 0.135 0.121 0.13

Known 0.07 . 0.07 0.07

Seller Cost of Failure (κ) 0.051 0.036 0.056 0.06

Seller Wealth (w) 2.610 2.513 2.636 2.675

Seller LTV Ratio (ℓs) 0.3 0.3 0.3 0.3

Seller Down Payment (ξ) 0.15 0.15 0.15 0.15

Panel C: Additional Variables

Household Incomek $102,078 $101,887 $101,259 $103,032

Agek 42.33 40.37 40.99 45.24

College Educatedk 0.702 0.723 0.703 0.684

Number of Respondents in First Wave: 1,019

Number of Respondents in Second Wave: 1,202

Number of Respondents in Third Wave: 1,199
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“The Mortgage-Cash Premium Puzzle”

Michael Reher and Rossen Valkanov*

This document contains additional material referenced in the text. Section I elaborates on
our data description from Section II of the main article. Section II performs additional robustness
exercises mentioned in the text. Section III provides additional details related to the framework
from Section V of the main article. Section IV elaborates on the description of our survey in
Section VII of the main article.
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I. Data Appendix

We elaborate on the data description in Section I.II of the main article by providing addi-
tional details about the ZTRAX, offer-level, and additional data sets in Sections I.A, I.B, and
I.C, respectively. We conclude with a catalog of the variables used in our analysis in Section I.D.

A. ZTRAX Data Set

The ZTRAX data set is divided into a transactions data set (ZTrans) and an assessment
data set (ZAsmt). The former data set contains information on deed transfers, mortgages, and
other real estate transactions. The latter data set contains information on property character-
istics from tax assessments. The raw data derive from public records compiled by Zillow. In
Zillow’s words: “The Zillow Transaction and Assessment Data Set (ZTRAX) is the nation’s
largest real estate database made available free of charge to academic, nonprofit and government
researchers. ZTRAX is updated quarterly and is continually growing. Released data include
more than 400 million detailed public records across 2,750+ U.S. counties, more than 20 years of
deed transfers, mortgages, foreclosures, auctions, property tax delinquencies and more, for both
commercial and residential properties, and property characteristics, geographic information and
prior valuations for approximately 150 million parcels in 3,100+ counties nationwide” (Zillow
2020). As mentioned in this quotation, Zillow makes ZTRAX available to researchers at no cost,
but, in practice, obtaining the data can take between three and 12 months. We obtained the
ZTRAX data set in June 2018 as a single download. For computational convenience, we work
with a 25% random sample of the raw data set that we download. We shall simply refer to this
random sample as the “raw ZTRAX data set.”

The raw ZTRAX data set includes a separate record for each legal document associated with
a transaction on a property (e.g., deed transfer, loan document), where properties are identified
by parcel number. Therefore, we collapse the raw data to the property-month level. The resulting
unit of observation is a home purchase transaction. We then filter the raw data by retaining
purchases that satisfy all of the following characteristics:

(i) The property is not in foreclosure, based on the indicator variable used by Zillow to flag
such transactions.

(ii) The property is not an intra-family transfer, based on the indicator variable used by Zillow
to flag such transactions.

(iii) The LTV ratio is less than 125%, corresponding to the largest standardized loan product
over our sample period (i.e., “125 Loans”).

(iv) The real sales price exceeds 125% of the gift tax exemption of $35,000, in 2010 dollars.

(v) The real sales price is less than the 99th percentile across purchase transactions.

(vi) The transaction involves only a single property.

(vii) There is only a single vesting type.
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(viii) The property is residential, which includes one-to-four family, condominium, and multifam-
ily properties.

These filters improve the validity of our results because they rule out extreme comparisons
that could bias our estimate of the mortgage-cash premium. For example, to the extent that
properties in foreclosure or properties owned by a family member are more likely to be cash-
financed, we would obtain an upwardly biased estimate. Filters (i), (ii), and (iv) address these
specific cases. The remaining filters further rule out extreme cases or observations highly subject
to measurement error. We shall refer to the resulting data set as the “filtered ZTRAX data
set.” The filtered ZTRAX data set includes 3,528,981 transactions. In terms of coverage, the
filtered ZTRAX data set spans the 1980 to 2017 period and covers 80% of U.S. counties on a
population-weighted basis, or 70% on an unweighted basis. The data set does not cover the
following states: Nevada, Oklahoma, Ohio, North Carolina, New Jersey, or New York. The data
set is most rich over the 1994 to 2016 period, during which 96% of the purchase transactions in
our baseline analysis occur.

We perform our baseline analysis on the subset of transactions in the filtered ZTRAX data
set that can be used to estimate equation (28). Such transactions must satisfy the following
conditions: occur in a zip-code-by-month bin in which at least one other transaction occurs,
occur on a property that experiences at least one other sale over our sample period, and have
information about the hedonic characteristics described below. We refer to the resulting data set
as the “baseline ZTRAX data set.” The baseline ZTRAX data set includes 426,256 transactions.

We rely on three sets of variables in the ZTRAX data set. The first and most important set
includes the LTV ratio associated with the purchase and its sales price. We describe these two
variables in detail in Section I.D below.

The second set of variables includes information about the buyer and seller in the transaction.
We attach an identifier to each seller using the seller’s name, and we attach a similar identifier
to each buyer. For purchase transactions with multiple sellers or buyers, we define the seller
or buyer using the party whose name is listed first. Before creating this identifier, we remove
nonalphabetic characters from the name. So, a “seller” is defined as a unique string, and a
“buyer” is defined similarly.1 In particular, this methodology will under-classify unique sellers
and unique buyers who have common names, or who do not appear first in the deed (e.g., a
spouse). It will over classify unique sellers and unique buyers whose names are spelled differently
in the data. We create a separate identifier for whether the seller (buyer) thus-classified is also
a buyer (seller) thus-classified within a window around the sale (purchase). We also observe the
address of the buyer and indicators for whether the buyer has a foreign address or is institutional.
We observe the same information for sellers, although it is less well-populated than for buyers.
Lastly, Zillow defines institutions somewhat loosely, as it includes trusts in its definition.

The third set of variables are hedonic characteristics, which come from the ZAsmt com-
ponent of ZTRAX. We catalog these characteristics in Section I.D. The raw data come from
tax assessment records, and we assign the characteristics for the most recent assessment to each
transaction. We observe hedonic characteristics for 7% of the filtered ZTRAX data set. To

1Our approach follows the convention in the literature (e.g., Bayer, Mangum, and Roberts (2021)), although

papers may differ in precisely how they pre-process raw names. We are not aware of a technique that can

systematically correct measurement error due to common names or unusual name spelling.
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preserve our sample size, we impute unobserved hedonic characteristics using the average of the
characteristic within the same zip code-month bin or, when that is not feasible, within the same
county-month bin.

Note on Nonbanks. The ZTRAX data set does not inflate the share of cash-financed pur-
chases by underrepresenting mortgages originated by nonbanks. Explicitly, the share of mort-
gages originated by nonbanks in our baseline sample equals 40%, compared to 41% based on the
HMDA data set and the Gete and Reher (2021) definition of nonbanks. The share of mortgage-
financed purchases based on the CoreLogic data set equals 65%, consistent with ZTRAX.

B. Offer-Level Data Set

Our offer-level data set comes from a large U.S. online real estate brokerage, Redfin. We
use this data set in the robustness exercise from Section IV.A of the main article. The data set
contains information about offers made on purchase transactions, including both winning and
losing offers. The raw data are reported by real estate agents affiliated with Redfin as part of
Redfin’s Offer Insights program. The Offer Insights program was launched in 2013, but for a
number of years the program was limited to certain geographic markets. Therefore, we begin our
analysis when the Offer Insights program crossed the threshold of covering 50% of U.S. counties.
Correspondingly, the data used to estimate Table VI span January 2020 through June 2021.

The unit of observation in the offer-level data set is an offer for the purchase of a single-
family home. We filter the Redfin data set by retaining offers that satisfy all of the following
characteristics:

(i) The associated listing receives at least two total offers.

(ii) The zip code of the associated listing has an established Redfin presence, measured by
having at least four offers made through a Redfin real estate agent.

(iii) The offer comes with a contingency such that the seller cannot recoup the offer price, to
match the framework from Section V of the main article.

(iv) The offer price lies between 50% and 200% of the list price.

We cannot directly view the microdata out of concern for client privacy. Instead, we conduct
our analysis remotely by submitting a program to Redfin’s economic analysis division.

The information available in the Redfin data set includes the month in which the offer was
made, the list price of the associated listing, the zip code of the associated listing, a unique
property identifier for the associated listing, the size of the property, indicators for whether the
property is a detached single-family home, a condominium, or a different type of single-family
home (e.g., mobile home), the offer price, an indicator for whether the offer was accepted, the
total number of offers made on the property, and the method of financing associated with the
offer.
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C. Additional Data Sets

C.1. CoreLogic

We use transaction-level data from CoreLogic to assess the external validity of the baseline
results in Table IA.I. Like Zillow, CoreLogic compiles its data from public records. We use
data from CoreLogic’s Ownership Transfer data set. This data set is analogous to the ZTrans
component of the ZTRAX database, except that it only contains information on deed transfers,
not mortgages. However, CoreLogic includes an indicator variable in the Ownership Transfer
database for whether the transaction is mortgage-financed, which we use to constructMortgagedi,t
as used in Table IA.I. Consistent with the ZTRAX database, the associated share of mortgage-
financed transactions in the CoreLogic data set equals 65%. Thus, while we do not explicitly
observe the loan amount in the CoreLogic database, the financing indicator that we do observe
appears to be relatively accurate. We apply the same basic filters described in Section I.A to
the CoreLogic database. Since we the Ownership Transfer data set does not include information
from tax assessments, the only hedonic characteristic used to construct the hedonic-month fixed
effect in Table I.A is an indicator for whether the property is a detached single-family home,
which we do observe.

C.2. National Association of Realtors (NAR)

We use data from the National Association of Realtors (NAR) Realtor Confidence Index
Survey (RCI) in the calibration described in Section V.A of the main article. The NAR produces
its RCI at the monthly frequency, but it does not make archived issues readily available. The
earliest issue of the RCI that we have been able to locate dates back to September 2011. The
data are most consistently available over 2015 to 2021. Over that period, the average annual
share of contracts that are terminated equals 6.0%, with an average of 25% of contracts with
issues due to financing, 15% with issues due to appraisal, and 14% with issues due to inspection.

C.3. Home Mortgage Disclosure Act (HMDA)

We use data on mortgage application denial rates from the Home Mortgage Disclosure Act
(HMDA) to parameterize the probability of transaction failure (q) in Section V.A of the main
article. The denial rate is calculated conditional on applications for the purchase (i.e., not a
refinance, not a HELOC) of an owner-occupied, one-to-four family home that have been pre-
approved and that are for a first-lien. To avoid double-counting, we drop all applications for
which the action taken is “purchase by institution” (Gete and Reher (2018)). To preserve data
quality, we drop all applications with a nonempty edit status.

We can only calculate this denial rate over the 2004 to 2016 period because we only observe
pre-approval status and first-lien status over that period. In Figure 2, we do not condition on
pre-approval status or first-lien status so that we can parameterize the time-varying failure rate
(qT ) consistently over the indicated time periods.

The time frequency of the HMDA data is annual. We observe Census tracts but not zip
codes in HMDA, and so we aggregate the tract-level denial rate to the zip code level using the
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tract-to-zip code crosswalk from the Department of Housing and Urban Development, weighting
tracts by the number of applications. We access the raw HMDA data through Recursion Co.

Whenever using the denial rate in regressions (i.e., Table III, Figures 4, IA.4, and 5), we
first residualize it against the log of average applicant income and log of total credit requested in
the zip code and year. This residualization ensures that the denial rate captures credit supply,
not credit demand.

C.4. California Association of Realtors (CAR)

We use data from the California Association of Realtors (CAR) 2019 Seller Consumer Survey
in Table IA.VII. The CAR administered its survey by email to a random sample of consumers
throughout California from April 2019 through July 2019. The survey instrument was a ques-
tionnaire with both multiple choice and open-ended questions. There were 4,017 valid survey
responses, of which 993 had sold a home over the previous 18 months and thus are included in
our data.

We observe information about the seller’s most recent sale. Thus, the unit of observation
is the home sale, denoted h in Table IA.VII. In particular, we observe the following variables:
month of sale, county in which the property was sold, sales price, original listing price, days
from original listing to sale, number of offers received, whether the property is a single-family
detached home, and the age, square feet, and number of bedrooms in the property. We winsorize
the sale and listing prices at the 1% level. In estimating Table IA.VII, we only retain sales with
at least two offers and which are on the market for less than 365 days.

We also observe the following background information about the seller: age, gender, race,
ethnicity, whether the seller was buying a home at the same time, and whether this was the
seller’s first time selling a home.

C.5. Survey of Consumer Finances

We use the Survey of Consumer Finances (SCF) to calibrate various model parameters
related to wealth. The advantage of the SCF is that it contains a rich set of balance-sheet and
other variables for a representative cross-section of U.S. households. The disadvantage is that
the data are anonymized and consist of repeated cross-sections, not a panel. We use the 2016
SCF to calibrate the model. Bricker et al. (2017) provide a comprehensive review of the SCF
data set.

C.6. Inflation and Zip Code Income

We use data on average adjusted gross income in 2010 from the IRS SOI Tax Stats to
calculate real house price growth by zip code income in Figure 1. Average income is calculated
as the ratio of aggregate adjusted gross income to total number of tax returns. The IRS SOI
data set is observed at the zip code by year level. The data are not observed every year, and
they begin after the start of our main analysis in 1994. In the calibration from Section V.A of
the main article and the semi-structural estimation from Section VI.A of the main article, we
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interpolate missing years and we forward-fill and back-fill average income to obtain a balanced
panel across zip codes and years.

Real house prices are in 2010 dollars and are calculated using CPI excluding shelter.

D. Catalog of Variables

ZTRAX Data Set

� Mortgagedi,t: This variable indicates whether the loan amount associated with the purchase
of property i in month t is positive.

� Pricei,t: This variable is the sales price associated with the purchase of property i in month
t.

� Agei: This variable is the number of years from when property i was built.

� Roomsi: This variable is the number of overall rooms in property i.

� Bathroomsi: This variable is the number of overall bathrooms in property i.

� Storiesi: This variable is the number of overall stories in property i.

� Air Conditioningi: This variable indicates whether property i has air conditioning.

� Detachedi: This variable indicates whether property i is a detached single-family

� Flipi,t: This variable indicates whether property i is sold within 12 months of its purchase
in month t. We assign a value of zero to this indicator variable when the raw variable is
unobserved.

� Foreign Buyeri,t: This variable indicates whether the buyer of property i in month t has
a foreign address, based on the indicator variable used by Zillow to flag such transactions.
We assign a value of zero to this indicator variable when the raw variable is unobserved.

� Same-County Buyeri,t: This variable indicates whether the buyer of property i in month t
has an address in the same county as i. We assign a value of zero to this indicator variable
when the raw variable is unobserved.

� Institutional Buyeri,t: This variable indicates whether the buyer of property i in month t
is an institution and does not intend to occupy the property, based on the two associated
indicator variables used by Zillow to flag such transactions. We assign a value of zero to
this indicator variable when the raw variable is unobserved.

� Cash Propensityb(i,t): This variable indicates whether the buyer of property i in month
t, denoted b(i, t), makes another purchase over our sample period in which the home is
purchased all-cash.
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� High Seller LTVi,t: This variable indicates whether the seller of property i has a LTV ratio
above 50%. We impute the numerator of the LTV ratio using a straight-line amortization
according to loan term. We impute the denominator using the median sales price in the
buyer’s zip code, which avoids mechanical correlation with Pricei,t. We assign a value of
zero to this indicator variable when the raw variable is unobserved.

� Same-Month Purchasei,t: This variable indicates whether the seller of property i in month
t purchases another home in month t. We assign a value of zero to this indicator variable
when the raw variable is unobserved.

� Cash Shares(i,t): This variable is the share of homes sold to cash buyers over our sample
period by the seller of property i in month t, denoted s(i, t), after excluding the sale in
question and assigning a value of zero to sellers who appear only once in the data

� Foreign Selleri,t: This variable indicates whether the seller of property i in month t has a
foreign address, based on the indicator variable used by Zillow to flag such transactions.
We assign a value of zero to this indicator variable when the raw variable is unobserved.

� Number of Saless(i,t): This variable equals the number of sales made by the seller of property
i in month t, denoted s(i, t), as of month t in the baseline ZTRAX data set. We top-code
this variable at 5 sales.

Offer-Level Data Set

� Mortgagedi,j,t: This variable indicates whether offer j on property i in month t is an offer
with a positive loan amount, based on the offer-level data set.

� Winningi,j,t: This variable indicates whether offer j on property i in month t is the accepted
offer.

� Pricei,j,t: This variable is the price offered by offer j on property i in month t, based on
the offer-level data set. We do not observe the offer price directly, but we observe the list
price and the percent above or below price associated with the offer price. We use these
two variables to calculate Pricei,j,t.

� Number of Offersi,j,t: This variable is the number of offers made on property i in month t,
including offer j.
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II. Empirical Appendix

We perform additional robustness exercises referenced in Section IV of the main article.

A. Controlling for Buyer and Seller Characteristics

First, since the seller’s continuation value (κ) constitutes an omitted variable, we reestimate
equation (28) after controlling for observed characteristics of the seller that plausibly describe
her motivation to complete the transaction smoothly and quickly.2 The seller characteristics
include indicators for whether the seller has a LTV ratio that exceeds 50%, purchases another
home in the same month, and has a non-U.S. address.

Then, to account for the possibility that all-cash buyers can identify motivated sellers, we
also include indicators for whether the buyer flips the home within a year, has an address within
the same county as the property, has a non-U.S. address, is an institutional buyer, and purchases
another home all-cash over our sample period.

The results in Table IA.II imply a mortgage-cash premium between 10.0% and 12.9%. No-
tably, the buyer controls function similarly to the variable Mortgagedi,j,t from Table VI in that
they absorb price-relevant characteristics of mortgaged buyers, such as the propensity to overpay
in out-of-town markets (e.g., Chinco and Mayer (2016)).

B. Instrumental Variables: Appraisal Regulation

We construct an instrumental variable using the fact that federal law requires an appraisal
on all bank-originated loans with a sales price above $250,000 (U.S. Code, 12 CFR §323.3).
Federal regulators introduced this requirement in the wake of the savings and loan crises of the
1980s as part of the Financial Institutions Reform, Recovery, and Enforcement Act of 1989.
They raised the threshold to $400,000 in 2019 (Federal Deposit Insurance Corporation (2019)),
but this change will not affect our analysis because we use the ZTRAX data set for this exercise,
which ends in 2016.

For background, an appraisal is an independent evaluation of a home’s value, and it plays an
important role in the loan underwriting process. In particular, the appraised value is used as the
denominator of the LTV ratio. An appraisal is required in almost all mortgaged offers that exceed
the aforementioned threshold, but all-cash offers rarely require an appraisal. Importantly, the
appraisal occurs after the seller has already accepted the buyer’s offer, and the appraised value
does not necessarily equal the sales price. Since a loan often cannot be originated if the LTV
exceeds certain values (e.g., Figure 1), the appraisal process introduces significant risk for home
sellers. In fact, “appraisal issues” are the second most commonly cited reason for transaction
failure or delay, after the closely related reason of “issues obtaining financing” (e.g., National

2We identify sellers and buyers in the ZTRAX data set using unique names, as described in Section I. This

method has the advantage of parsimony, but it inevitably introduces measurement error that attenuates the

estimated coefficients on the controls towards zero. To reduce the impact of such measurement error, we specify

the controls as indicator variables.
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Association of Realtors (2016, 2018, 2020)).

In terms of our model, therefore, transactions with a price just above $250,000 have a higher
value of q relative to transactions with a price just below $250,000. We would like to exploit
this discontinuity by constructing an instrument equal to one if the sales price lies just above the
$250,000 threshold and zero otherwise. Of course, this naive approach would lead to inconsistent
results because the outcome variable, Pricei,t, mechanically defines the instrument. Therefore, we
adopt a strategy akin to Loutskina and Strahan (2015), who face a related econometric problem
in constructing an instrument related to bunching of house prices around a regulatory threshold.
In particular, we instrument for whether the predicted price in the current transaction exceeds
the $250,000 threshold using the previous transaction price on the property and growth in the
FHFA house price index over the intervening period to predict the current price.

Explicitly, define the predicted price as

Predicted Pricei,t = Last Pricei,t ×
FHFA Indexz(i),t

Last FHFA Indexz(i),t
(IA1)

where Last Pricei,t denotes the price at which the home sold for in its most recent transaction
before t, FHFA Indexi,t denotes the FHFA All-Transaction Price Index in the associated zip code
z(i) and month t, and Last FHFA Indexz(i),t denotes the analogous index in the month of the
most recent transaction. Measuring price growth using the FHFA index provides an additional
layer of orthogonality relative to, say, constructing a price index using the ZTRAX data set.

Next, define the instrumental variable Appraisal Requiredi,t as an indicator that equals one
if Predicted Pricei,t is greater than $250,000 and equals zero otherwise. Column (1) of Table
IA.III verifies the first stage by regressing Pricei,t on Appraisal Requiredi,t. Importantly, we
also control for the log of Predicted Pricei,t, which ensures that the instrument works through a
discontinuous jump in the predicted price, as desired, versus the almost-mechanical effect wherein
a higher predicted price covaries with a higher actual price.

We estimate a negative coefficient on Appraisal Requiredi,t, consistent with its theoretical
foundation: if mortgaged buyers likely require an appraisal, then sellers are less likely to accept
their offer. However, the relatively high p-value of 4% requires us to adjust our approach using
techniques from the literature on weak instruments. Murray (2006), for example, proposes
interacting the instrument with time fixed effects or other controls to improve its strength in the
first stage. Accordingly, our first-stage regression equation is

Mortgagedi,t =
∑
t

ψt
(
Appraisal Requiredi,t ×Xi,t

)
+ χ̃ log (Predicted Pricei,t) + ... (IA2)

...+ ζ̃z(i) + τ̃t + ϵ̃i,t,

where Xi,t consists of the hedonic characteristics in Table IV and a vector of quarter fixed effects.

The second-stage regression equation is

log (Pricei,t) = µ ̂Mortgagedi,t + χ log (Predicted Pricei,t) + ζz(i) + τt + ϵi,t, (IA3)

where ̂Mortgagedi,t denotes the fitted value from equation (IA2). We estimate equation (IA3)
using the subsample of home purchases with a predicted price within a fairly narrow bandwidth
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of $250,000. This restriction improves the validity of the instrument set, since comparing homes
with predicted prices of, say, $100,000 and $1,000,000 would likely confound channels apart from
the desired regulatory discontinuity. The resulting drop in sample size requires us to reduce the
granularity of the regression’s fixed effects, which we view as a worthy tradeoff given that we
now have a very transparent source of identifying variation.

Columns (2) to (4) of Table IA.III estimate a mortgage-cash premium of 13.6%, 13.7%, and
14.2% using a 5%, 10%, and 15% bandwidth, respectively. As the bandwidth and thus sample
size increases, the first stage F-statistic rises comfortably above the recommendations of Stock
and Yogo (2005).

Concerning internal validity, it is difficult to see how this instrument set would fail to satisfy
the exclusion restriction. The results are unlikely driven by mechanical correlation between the
sales price and the price index, since the FHFA index is constructed using proprietary information
held by the Government Sponsored Enterprises, not using deeds records like the ZTRAX data set.
Moreover, the results are unlikely to be driven by “motivated sellers” (i.e., high κ), who both list
at a low price to attract more offers and also only consider all-cash offers. In particular, the use of
the home’s previous price to construct the instrument implies that both motivated and ordinary
sellers should have similar predicted prices, and, thus the same values of Appraisal Requiredi,t. If
anything, motivated sellers would bias the estimates towards zero: by listing low, they make an
appraisal less likely and thus are actually more likely to sell to a mortgaged buyer. Lastly, the
statistical insignificance of Hansen’s J-statistic supports the internal validity of the instrument
set.

These instrumental variable estimates lie close to our baseline estimate of 11.7%, which
supports the internal validity of an average mortgage-cash premium around that value. In this
exercise, however, we have identified the premium using a highly transparent source of variation
with a clear theoretical foundation within our model (i.e., an increase in transaction risk, q).
Thus, these results support not only the validity of the empirical analysis but also the relevance
of the model.

C. Instrumental Variables: Seller Cash Preference

The second instrumental variable is Cash Shares(i,t), defined as the share of homes sold by
the seller over our sample period that are to cash buyers, excluding the sale in question. This
instrument is a “ leave-one-out-mean,” as commonly used in the labor and development litera-
tures (e.g., Townsend (1994)). Since Cash Shares(i,t) reflects the seller’s persistent preference for
cash financing, we can now identify the mortgage-cash premium even if the method of financing
covaries with temporary shocks that jointly affect the listing price and the seller’s preference for
cash. In particular, we identify the premium through structural characteristics of the seller, such
as aversion to ambiguity about the probability of mortgage transaction failure (Section VII of
the main article).

Columns (1) and (2) of Table IA.IV substantiate the previous paragraph. We verify the first
stage in column (1), which shows that sellers with a high value of Cash Shares(i,t) are less likely
to sell to mortgaged buyers. The first stage is strong by the Stock and Yogo (2005) criteria.
In column (2), we follow other papers in the literature (e.g., D’Acunto and Rossi (2020)) and
evaluate the instrument’s exclusion restriction by reestimating our baseline regression equation
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(28) after including Cash Shares(i,t) as a control. We obtain a highly insignificant coefficient on
Cash Shares(i,t). This finding supports the instrument’s validity by showing that it has no effect
on a transaction’s sales price once controlling for the method of financing.

Columns (3) and (4) of Table IA.IV summarize the second stage results. We estimate
a mortgage-cash premium of 13.9% in column (4). In fact, the estimate is so similar to its
counterpart in the baseline Table IV that the Durbin-Wu-Hausman (DWH) test fails to reject
the null hypothesis that our baseline identification assumption (29) is valid.

Combining Tables IA.II and IA.IV, we obtain a mortgage-cash premium between 10% and
15% after firmly shutting down variation in Mortgagedi,t that could covary with the seller’s
reservation value. This finding supports the internal validity of an 11% premium.

D. Property Condition

We pursue the three exercises referenced in Section IV.D of the main article.

D.1. Controlling for List Price and Time-on-Market

First, we use data from the California Association of Realtors (CAR) to control for a prop-
erty’s condition through two important characteristics of the listing: the number of days on the
market, and the listing price. Thus, the CAR data set helps address specific concerns about
property condition, but we cannot use it for our main analysis as it only covers a single state
and year. This exercise yields an estimated premium of 14.3% shown in Table IA.VII.

D.2. Semi-Structural Hedonic Estimator

Recall from Section III of the main article that the repeat sales and hedonic pricing method-
ology treats the method of financing as if it were a time-varying “hedonic characteristic.” This
approach leads to an unbiased estimate of the mortgage-cash premium as long as the associated
set of fixed effects and controls is sufficiently exhaustive. We relax this assumption by following
Bajari et al. (2012) and estimating the mortgage-cash premium semi-structurally.

Bajari et al. (2012) propose a semi-structural methodology for recovering the implicit price
of observed characteristics of a transaction (e.g., method of financing) in the presence of time-
varying, unobserved characteristics (e.g. a property’s corner appeal). The methodology hinges
on three assumptions: linearity of the pricing kernel, which we have already assumed in equation
(28), Markovian evolution of the unobserved attributes, and rational expectations of market
participants.

Building on equation (28), consider a property which transacts in months t and t+n. To
minimize notation and, more substantively, to avoid the incidental parameters problem, we first
residualize the variables log (Pricei,t) and Mortgagedi,t against the property and zip code-month
fixed effects in our repeat-sales methodology.3 This step is without loss of generality in terms of

3Explicitly, the residualized variables are log (Pricei,t) = log (Pricei,t) − ζPz(i),t + αP
i and Mortgagedi,t =

Mortgagedi,t − ζMz(i),t + αM
i . In words, log (Pricei,t) and Mortgagedi,t are the residuals from a regression of
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obtaining point estimates that are comparable to those in Table IV, per the Frisch-Waugh-Lovell
theorem. In particular, the associated pricing kernel is

log (Pricei,t) = µMortgagedi,t + α + ϵi,t. (IA4)

Next, suppose the error term ϵi,t evolves according to the following Markov process

ϵi,t+n = ϱt (n) ϵi,t + ωi,t+n. (IA5)

Importantly, market participants observe ϵi,t, but we as econometricians do not. For example, ϵi,t
may capture the property’s curb appeal or the seller’s urgency, both of which may correlate with
the method of financing but which may affect the transaction price through a separate channel.
Equation (IA5) introduces some structure in how these attributes evolve over time.

Finally, suppose market participants rely on rational expectations such that

Et [ωi,t+n] = 0, (IA6)

where the expectation is taken with respect to all information available as of month t, as reflected
by the month subscript on the expectations operator. In words, equation (IA6) states that market
participants correctly forecast the value of unobserved attributes of a property’s price at the time
of its next transaction.

Together, equations (IA5) and (IA6) provide a moment condition we can use to recover the
mortgage-cash premium, µ. Substituting equation (IA5) into equation (IA4) in month t+n gives

log (Pricei,t+n) = µMortgagedi,t+n + α + ... (IA7)

...+ ϱt (n)
[
log (Pricei,t)− µMortgagedi,t − α

]
+ ωi,t+n.

Based on the rational expectations assumption in equation (IA6), all regressors in equation (IA7)
are uncorrelated with ωi,t+n except for the contemporaneous method of financing, Mortgagedi,t+n.
We address this issue by instrumenting forMortgagedi,t+n using information available as of month
t. Explicitly, the first-stage equation is

Mortgagedi,t+n = φ̄+ φMt (n)Mortgagedi,t + φPt (n) log (Pricei,t) + νi,t+n, (IA8)

where, again making use of rational expectations, Et [νi,t+n] = 0. In practical terms, we estimate
equations (IA7) and (IA8) through a standard two-stage, nonlinear least-squares procedure. We
estimate ϱt (n), φ

P
t (n), and φMt (n) as nonparametric functions of the holding period k, rounded

to the nearest year.

Table IA.VIII reports the results. We estimate a mortgage-cash premium of 14.9% using this
semi-structural approach, per the result in column (2). Since the sample is necessarily restricted
to properties that transact more than twice, we facilitate comparison with the repeat sales and

log (Pricei,t) and Mortgagedi,t on a vector of zip code-month and property fixed effects. To minimize notation, we

continue to denote log (Pricei,t) and Mortgagedi,t as such, with the understanding that, within this subsection,

they are residualized variables.
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hedonic results in Table IV by reestimating equation (28) on this subsample.4 This results in a
similar mortgage-cash premium of 10.9%, shown in column (1).

Along with the instrumental variable results and the results based on nonaccepted offers
from Section IV.A of the main article, the semi-structural results from this subsection are quan-
titatively similar to the estimated mortgage-cash premium of 11% from Table IV. This similarity
again supports the validity of the repeat sales and hedonic pricing methodology.

D.3. Nonparametric Matching Estimator

Estimating the mortgage-cash premium through propensity score matching, a nonparametric
approach, avoids bias from the linear specification in equation (28). We note that this matching
estimator primarily assesses bias due to a nonlinear functional form, as its focus on observed
characteristics makes it ill-suited to assess bias due to property condition.

Our implementation follows Harding, Rosenblatt, and Yao (2012), who use this approach
to estimate the foreclosure discount. We construct pairs of home purchases within the same zip
code and year according to the probability that the buyer finances the purchase with a mortgage.
We calculate this probability, called the “propensity score,” through a logistic regression of
Mortgagedi,t on the hedonic characteristics from Table IV and the seller controls from Table
IA.IV. Then, we match each mortgaged transaction to a counterfactual all-cash transaction
within the same zip code and year.

Panels A and B of Table IA.XI summarize hedonic and seller characteristics of the matched
pairs. There are few statistically significant differences between mortgaged and matched all-cash
transactions, based on Abadie and Imbens (2006) standard errors, and none of these differences
appears economically significant. As noted by Harding, Rosenblatt, and Yao (2012), matching
within zip codes and years imposes a heavy demand on the data, and so the differences shown
in Panels A and B understate the quality of the match.

The estimated mortgage-cash premium equals 16.9%, per the top row of Table IA.XI. One
can interpret this estimate as an “average treatment effect on the treated,” as it equals the
average difference in log price between mortgage-financed purchases and their counterfactual
all-cash match. That we obtain a slightly larger estimate from this nonparametric methodology
implies that our baseline estimate does not suffer upward bias from linearity.

E. External Validity

We perform the three tests of external validity mentioned in the text. First, we estimate
the mortgage-cash premium on a broader sample of properties, including those without a repeat
sale. Second, we estimate the premium weighting by the inverse probability of appearing in the

4In more detail, the number of holding periods that we observe is equal to the number of transactions that we

observe minus one. Therefore, we can only include holding period fixed effects (i.e., φP
t (n), φM

t (n)) for properties

that transact at least three times. Otherwise, there is at most only one holding period observed per property,

which, given that we have residualized both log (Pricei,t) and Mortgagedi,t against property fixed effects, means

that there is not enough variation to estimate φP
t (n) and φM

t (n).
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baseline sample. Third, we cross-reference our results with contemporaneous papers studying
all-cash home purchases.

E.1. Properties without a Repeat Sale

In column (1) of Table IA.I, we estimate a premium of 18.6% using the 11,367,195 trans-
actions in the ZTRAX universe that satisfy the basic filters in Section I.A. In column (3), we
estimate a premium of 12.6%, using the 3,911,805 transactions in the subset of the ZTRAX
universe that occur in the zip code-by-month bins that appear in the 25% random sample of the
ZTRAX universe that we study in our main analysis, which we call the “filtered ZTRAX data
set” in Section I. In column (5), we estimate a premium 16.1%, using the 2,254,389 transactions
in the filtered ZTRAX data set without including a property fixed effect. In column (6), we
include a property fixed effect, so that we replicate the specification from column (1) of Table
IV. Note that the R2 equals 58% in column (5), versus 91% in column (6). This finding suggests
both that the property fixed effects in equation (28) reduce bias and that the accompanying
sample restriction does not jeopardize external validity.

E.2. CoreLogic Data Set

We estimate a premium of 12.2% in column (8) of Table IA.I after applying our repeat
sales and hedonic pricing estimator to the CoreLogic data set. As described in Section I.C, the
CoreLogic data set draws from public records, but it is compiled by an entirely separate vendor.
Thus, the similarity of the results in Table IA.I strongly supports the external validity of the
estimates obtained from our baseline ZTRAX data set.

E.3. Inverse Probability Weighting

In Table IA.IX, we reestimate equation (28) after weighting transactions by their inverse
probability of appearing in the baseline sample from Table IV, based on observed characteristics
(e.g., Solon, Haider, and Wooldridge (2015)). We obtain the weights through a logistic regression
estimated on the filtered ZTRAX data set, shown in column (1) of Table IA.IX. The weighted
point estimate equals 10.3%, shown in column (2).

E.4. Consistency with the Literature

Two contemporaneous papers have studied the price differential between mortgage-financed
and cash-financed home purchases. First, using data on purchases in the Los Angeles MSA
between 1999 to 2017, Han and Hong (2023) estimate a lower premium of 5%. In column (1) of
Table IA.X, we find a 4.7 pps lower premium when including an interaction term for whether a
purchase would fall in the sample studied in Han and Hong (2023).5 This finding is consistent
with their lower estimated premium, which lends external support to our results.

5This exercise is based on an earlier version of Han and Hong (2023) written before January 2023, which

only included microdata for Los Angeles. In the most recent version as of the time of this writing, Han and

Hong (2023) separately estimate the mortgage-cash premium using microdata from the largest 100 U.S. counties,
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Second, using data on purchases in the Phoenix, Las Vegas, Dallas, and Orlando MSAs and
in Gwinnet County, GA between 2013 to 2018, Buchak et al. (2020) study the price differential
between purchases without and with an iBuyer, a specific type of all-cash buyer. This differential
equals the difference between the weighted average log price of mortgaged and non-iBuyer all-
cash purchases minus the log price of iBuyer purchases. One can recover the mortgage-cash
premium implied by this differential by dividing it by the share of non-iBuyer purchases that are
mortgage-financed.6 Since mortgage-financed purchases account for 17% of all purchases in the
sample studied by Buchak et al. (2020), as shown in Table IA.X, their share of the non-iBuyer
market is between 17% and 100%. Accordingly, the 4% iBuyer discount estimated by Buchak
et al. (2020) maps to between a 4% and a 21% mortgage-cash premium.

In column (2) of Table IA.X, we include an interaction term for whether a purchase would
fall in the sample studied in Buchak et al. (2020) and find no evidence that the premium differs
for this subsample. Therefore, since our baseline estimate (11%) lies within the range implied by
the Buchak et al. (2020) estimate of the iBuyer discount, our two sets of results agree. As with
Han and Hong (2023), this similarity supports our results.

Lastly, we corroborate the remark in footnote 6 regarding the option value of waiting in Han
and Hong (2023). Preserving the notation of Han and Hong (2023) but with HH subscripts, a
mortgaged transaction succeeds with probability qHH . With probability ωHH , a mortgaged offer
arrives that the seller accepts. The value function for a seller with a mortgaged offer is

V S(M,PM) = qHHe
−rPM + (1− qHH)e

−r [ωHHV S(M,PM) + (1− ωHH)V
S(∅)

]
(IA9)

using the Han and Hong (2023) assumptions that: mortgaged buyers always offer the same
price PM , if the first offer that a seller accepts is mortgaged, she only accepts mortgaged offers
thereafter, and sellers have linear preferences over the price received. For convenience, we again
define κ such that V S(∅) = PMe

−κ. So, the value function becomes

V S(M,PM) = e−rPM
qHH + (1− ωHH)(1− qHH)e

−κ

1− ωHH(1− qHH)e−r
, (IA10)

which is the same as in Han and Hong (2023) if κ → ∞. An all-cash offer closes in one month,
so that the value function for a seller with an all-cash offer is

V S(C,PC) = PCe
−r. (IA11)

The mortgage-cash premium, δHH in the notation of Han and Hong (2023), solves

excluding Los Angeles, finding a larger premium of 12.4% in their most well-controlled specification.

6Explicitly, let ι denote the iBuyer premium, and let I and C denote whether a purchase is an iBuyer purchase

or a non-iBuyer all-cash purchase, respectively. Suppose that mortgaged purchases account for a share w of all

non-iBuyer purchases, and suppose that the mortgage-cash premium is the same for non-iBuyer purchases as for

iBuyer ones: PM
i,t = eµPC

i,t = eµP I
i,t. Then

ι = E
[
w log

(
PM
i,t

)
+ (1− w) log

(
PC
i,t

)]
− E

[
log
(
P I
i,t

)]
= wµ.

Therefore, the implied mortgage-cash premium is ι
w , as stated in the text.
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V S(C,PC) = V S(M,PM). Rearranging and solving for δHH gives

δHH = 1− PC
PM

= 1− qHH + (1− ωHH)(1− qHH)e
−κ

1− ωHH(1− qHH)e−r
. (IA12)

Notice that the mortgage-cash premium is decreasing in the term e−κ, which reflects the seller’s
option value from having no offer. This term equals zero in Han and Hong (2023), corroborating
the statement from footnote 6 that omitting it inflates the calibrated mortgage-cash premium.
Under the Han and Hong (2023) parameterization of qHH = 15.9%, ωHH = 55%, r = 0.05/12, and
e−κ = 0, the mortgage-cash premium from equation (IA12) equals 7.88%. When qHH = 4.7%,
the median in Table VII, the premium equals 2.18% as in the introduction.
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III. Model Appendix

Section III.A contains proofs of the paper’s main analytic results. Section III.B provides
details on model extensions and setup. Section III.C states and proves additional analytic results.
Section III.D provides details on the calibration of the model and the semi-structural estimation
of it. Section III.E contains details on the belief distortions analyzed in Sections VII.C and
VII.D.

A. Proofs of Main Analytic Results

This section proves the main analytic results stated in the text: Proposition 1, Lemma 1,
and Corollary 1.

A.1. Proof of Proposition 1 (Deriving the Mortgage-Cash Premium)

Using Definition 1, the mortgage-cash premium solves V S(C, vpC) = V S(M, vpCeµ). Ex-
plicitly(

ω + pC
)1−γ

1− γ
= −δ

(
e−α + qd

)
+ e−α−ρ

[
(1− q)

(
ω + pCeµ

)1−γ
1− γ

+ q
(ω + e−κ)

1−γ

1− γ

]
, (IA1)

following equations (4) to (5) and (7). Multiplying by (1−γ)eα+ρ

1−q and rearranging

(
ω + pCeµ

)1−γ
=

[
(1− γ)

(
(eα+ρ − 1)uC + Γδ + uC − uκ

1− q
+ uκ

)]
, (IA2)

with

uC ≡
(
ω + pC

)1−γ
1− γ

(IA3)

uκ ≡
(ω + e−κ)

1−γ

1− γ
(IA4)

Γ ≡ (1 + qdeα)eρ. (IA5)

Solving for µ gives

µ = log

([
(1− γ)

(
(eα+ρ − 1)uC + Γδ + uC − uκ

1− q
+ uκ

)] 1
1−γ

− ω

)
− log(pC), (IA6)

which is what needed to be shown.
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A.2. Proof of Lemma 1 (Deriving the Seller’s Cost of Failure)

Use Lemma IA.3, Lemma IA.4, and equation (7) to rewrite equation (6). Consider the case
p̄b(M) ≥ pM from Lemma IA.4. Equation (6) becomes

V S(∅) = −δ + ... (IA7)

... e−ρφ1(1−m)
[
u(ω + e−κ)

]
+ ...

... e−ρφ1me
−α−ρ [(1− q)u(ω + eµκ−κ)

]
+

... e−ρΦC [u(ω + p̄b(C))] + ...

... e−ρΦM(1− q)e−α−ρ [(1− q)u(ω + p̄b(M))] + ...

... e−ρ((ΦM + φ1m)(e−α + qd)) [−δ] + ...

... e−ρ((ΦM + φ1m)qe−α−ρ + φ0)
[
V S(∅)

]
.

Recognize that, by definition, µκ solves

u(ω + e−κ) = −δ(e−α + qd) + e−α−ρ[(1− q)u(ω + eµκ−κ) + qV S(∅)]. (IA8)

So, equation (IA7) becomes

V S(∅) = −δ + ...

... e−ρφ1

[
u(ω + e−κ)

]
+ ...

... e−ρΦC [u(ω + p̄b(C))] + ...

... e−ρΦM(1− q)e−α−ρ [u(ω + p̄b(M))] + ...

... e−ρ(ΦM(e−α + qd)) [−δ] + ...

... e−ρ(ΦMqe
−α−ρ + φ0)

[
V S(∅)

]
.

We now iterate the previous equation forward and solve the geometric sequence. Doing so yields

V S(∅) =
[
eρ − (ΦMqe

−α−ρ + φ0)
]−1 × ...

...
[
φ1

[
u(ω + e−κ)

]
+ ...

... ΦC [u(ω + p̄b(C))] + ...

... ΦM(1− q)e−α−ρ [u(ω + p̄b(M))] + ...

... (eρ + ΦM(e−α + qd)) [−δ]
]
.

Obtain κ by solving

u(ω + ve−κ) =
[
eρ − (ΦMqe

−α−ρ + φ0)
]−1 × ...

...
[
φ1

[
u(ω + e−κ)

]
+ ...

... ΦC [u(ω + p̄b(C))] + ...

... ΦM(1− q)e−α−ρ [u(ω + p̄b(M))] + ...

... (eρ + ΦM(e−α + qd)) [−δ]
]
.
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so that

u(ω + e−κ) =
[
eρ − (ΦMqe

−α−ρ + φ0 + φ1)
]−1 × ... (IA9)

... [ΦC [u(ω + p̄b(C))] + ...

... ΦM(1− q)e−α−ρ [u(ω + p̄b(M))] + ...

... (eρ + ΦM(e−α + qd)) [−δ]
]

and, given CRRA indirect utility,

κ = − log

([
ΦC(ω + p̄b(C))

1−γ +ΦM (1− q)e−α−ρ(ω + p̄b(M))1−γ + (γ − 1)δΞ

eρ − (ΦMqe−α−ρ + φ0 + φ1)

] 1
1−γ

− ω

)
, (IA10)

with

Ξ = eρ + ΦM(e−α + qd) (IA11)

= eρ + ΦM(1 + qde−ρ),

and, as in Lemma IA.4, φ0 + φ1 = e−λ(1 + λ). After substituting the terms Pr
[
u = V S(∅)

]
and

E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
defined in the statement of Lemma 1, equation (IA10) matches

equation (20). This is what needed to be shown for the case p̄b(M) ≥ pM

Next consider the case p̄b(M) < pM . Now equation (IA7) becomes

V S(∅) = −δ + ...

... e−ρφ1(1−m)
[
u(ω + e−κ)

]
+ ...

... e−ρΦC [u(ω + p̄b(C))] + ...

... e−ρ(φMM + φ1m) [−δ] + ...

... e−ρ(φMM + φ1m+ φ0)
[
V S(∅)

]
.

so that

κ = − log

([
ΦC(ω + p̄b(C))

1−γ + δeρ(γ − 1)

eρ − (φMM + φ0 + φ1)

] 1
1−γ

− ω

)
, (IA12)

which matches equation (20) after substituting the terms Ξ, E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
,

and Pr
[
u = V S(∅)

]
defined in the statement of Lemma 1. This is what needed to be shown for

the case p̄b(M) < pM , which completes the proof.
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A.3. Proof of Corollary 1 (Identifying the Mortgage-Cash Premium)

The proof relies on Lemma IA.3 from Section III.C. Using the notation of the corollary and
the results from Lemma IA.3,

Pricei,b,s =


ve−κ if η = 0,Mortgagedb = 0

veµκ−κ if η = 0,Mortgagedb = 1

vp̄b(C) if η = 1,Mortgagedb = 0

vp̄b(M) if η = 1,Mortgagedb = 1

, (IA13)

where µκ denotes the mortgage-cash premium when pC = e−κ. Therefore, if η = 0, then

log (Pricei,b,s) = log(vi) + µκ ×Mortgagedb − κs, (IA14)

If η = 1, then

log (Pricei,b,s) = log(vi) + log (p̄b) + µ1 ×Mortgagedb − log (ṽi/vi) (IA15)

where µ1 denotes the mortgage-cash premium when pC = 1, and ṽ denotes the price the buyer
must offer to make the seller indifferent with respect to a certain payment of v. For an all-cash
buyer, ṽ = v = vp̄b, where the second equality uses equation (12) and the assumption y ≥ 1 for
an all-cash buyer. For a mortgaged buyer, ṽ = veµ1 .

Combining equations (IA14) to (IA15) gives

log (Pricei,b,s) = µ̄×Mortgagedb + log(vi)− κs (1− η) + η [log(p̄b)− log(ṽi/vi)] (IA16)

with µ̄ = (1− η)µκ+ ηµ1. Under the normalization from Section I.D of the main article we have
ṽi = ṽi/vi, which gives the expression shown in equation (27). This is what needed to be shown.

B. Model Extensions

This section provides additional detail on the model’s setup and extensions. Section III.B.1
provides details on the extension with nonfinancial contingencies described in Sections I.A.3 and
V.B. Section III.B.2 elaborates on the modelling of the home sale process from Section I.C.2 of
the main article.

B.1. Extension with Home Sale Contingencies

Repeating the setup from Section I.A.3 of the main article, both all-cash and mortgaged
offers may have contingencies unrelated to mortgage financing. The two most common nonfinan-
cial contingencies require a satisfactory home inspection and that the buyer can sell his current
home (National Association of Realtors (2018)). The home inspection contingency appears in
83% of both all-cash and mortgage-financed offers in our offer-level data set. Therefore, we make
the simplifying assumption that both all-cash and mortgage-financed offers fail with probability
qc due to a failed inspection. We also assume that the home inspection occurs immediately after
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the offer is accepted, consistent with how real estate law in most states allow for a relatively
short inspection period of around 10 days.

None of our data sources reports the distribution of the home-sale contingency across buyer
types, but it seems reasonable that mortgaged buyers rely more heavily on this contingency
since less-wealthy buyers are more likely to use mortgage financing. We therefore assume that
the home-sale contingency accompanies a share h of mortgaged offers and never accompanies an
all-cash offer.

As mentioned in Section V.B of the main article, the home-sale contingency can trigger a
chain of events that amplifies the baseline probability of failure. To see this, let q0 denote the
probability that any given mortgaged offer fails to obtain financing, which is also the probability
of failure for a mortgaged offer without any nonfinancial contingency (“0” for “no contingency”).
Note that q0 is simply a re-labelling of the baseline mortgage failure rate, q. Let q1 denote
the probability that a mortgaged buyer with the home-sale contingency fails to either obtain
financing or fails to sell his home (“1” for “has contingency”). Lastly, let q1,h denote the specific
probability of failure due to not selling the home, which triggers the home-sale contingency.
Then,

q1 = q0 + (1− q0)q1,h (IA17)

≈ q0 + q1,h,

q1,h = qc + (1− qc)(mq0 +m(1− q0)hq1,h) (IA18)

≈ qc +mq0 +mhq1,h,

using the approximation that the product of two failure rates equals zero: q0q1,h ≈ 0, qcq0 ≈ 0,
and qcq1,h ≈ 0. Rearranging terms,

q1,h =
mq0 + qc

1−mh
, (IA19)

q1 = q0 +
mq0 + qc

1−mh
(IA20)

up to the aforementioned approximation for small probabilities. So, the combined probability of
failure for a home seller with the home-sale contingency is

qh = q0 + qc + q1,h (IA21)

= q0 + qc +
mq0 + qc

1−mh
,

as shown in equation (38).

The home-sale contingency can also influence the probability of delay. Analgously, let qd0
denote the probability that any given mortgaged offer experiences a delay. Let qd1 denote the
probability that a mortgaged buyer with the home-sale contingency either experiences a delay
himself or that his buyer experiences a delay. The derivation of qd1 is symmetric to that for q1,

qd1 = qd0 +
mqd0

1−mh
, (IA22)
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noting that we do not have a term concerning the inspection contingency because the inspection
occurs without delay.

Proposition IA.1 summarizes the resulting mortgage-cash premium and cost of failure. The
expressions inherit a similar form as their analogues from the baseline case in Proposition 1 and
Lemma 1. The main difference is that there are now three buyer types: all-cash, mortgaged
without a home-sale contingency, and mortgaged with a home-sale contingency. By contrast, the
baseline case featured only the first two of these buyer types.

The addition of another buyer type increases the dimension of the set of outcomes in the
next month by one, which substantially complicates the seller’s dynamic problem, and thus the
expression for κ in Proposition IA.1. The basic intuition is the same as in Lemma 1, how-
ever. In addition, calculating the mortgage-cash premium µ requires us to specify whether the
mortgaged buyer in question has a home-sale contingency. Figure 3 reports the average mortgage-
cash premium for the case of a mortgaged buyer without a home-sale contingency, 7.7%. The
mortgage-cash premium for a mortgaged buyer with a home-sale contingency equals 9.9%. Since
h = 7% of mortgaged offers come with a home-sale contingency, based on the calibration in Sec-
tion V.A of the main article, the average mortgage-cash premium for the case with nonfinancial
contingencies equals 7.9%.

B.2. Tie-Breaking Mechanisms

As mentioned in the text, we approximate the home purchase as a sealed-bid, first-price
auction. Our setting requires two modifications of the canonical setup. First, since buyers may
fail to deliver on their offer, the seller evaluates bids according to their certainty equivalence, not
offer price. Second, if the seller receives multiple offers during the arrival window, she invites
a tie-breaking round. In this round, candidate buyers simply offer their willingness-to-pay, p̄b,
and, for reputational reasons, buyers’ real estate agents enforce truth telling. We interpret
this mechanism as the activation of an escalation clause, which frequently accompany offers in
competitive markets (Redfin 2021).

We require a tie-breaking round because our setting features a discrete distribution of buyer
types, all-cash or mortgaged, and an equilibrium may not exist in such settings without a second-
round auction to break the tie (e.g., Maskin and Riley (2000), Lebrun (1996)). Intuitively, the
tie-breaking round eliminates the incentive to offer $ε more than the certainty-equivalent offer
of a symmetric buyer.

Exemplifying this point, suppose that the seller simply breaks ties in the first round by
selecting a bidder at random. If buyers play a symmetric strategy within their type (i.e., all-
cash or mortgaged), then the probability of winning, Win(·, P ) will exhibit discontinuities at the
price that would win when there are no competitors, only competitors of the same type, and
competitors of multiple types. Therefore, when ties are broken at-random, buyers can always
discontinuously raise their probability of winning by offering a price ε greater than one of these
jump points. Hence, equilibrium does not exist. The tie-breaker in our model avoids this issue
because buyers know ex-ante that any ties will be resolved in the second round.
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C. Additional Analytic Results

This section states and proves additional analytic results that are not explicitly stated in
the text. Lemma IA.1 states and proves the remarks about the model’s empirical implications
referenced in Section I.C.1 of the main article. Lemma IA.2 derives the buyers’ willingness-to-pay
described in Section I.C.2 of the main article, specifically equations (12) to (13). Lemma IA.3
derives buyers’ optimal offer price, also described in Section I.C.2 of the main article and specif-
ically in equations (14) to (15). Lemma IA.4 derives various useful features of the distribution
of prices within the model. Proposition IA.1 derives the mortgage-cash premium and seller cost
of failure for the extension with nonfinancial contingencies.

C.1. Statement and Proof of Lemma IA.1

LEMMA IA.1 (Buyer Financing): Consider a variant of the buyer’s problem defined in equations
(8) to (11) in which the only choice variable is F , so that v, P , ℓ, and Y are parameters. Define

WY ≡
(1− q)

(
u′(Y )− u′(Y + v − P

[
1− ℓ̄[1−D]

]
)
)
− (u′(Y )− u′(Y + v − P ))

u′(Y )− u′(Y + v − P )
, (IA23)

Wv ≡
u′(Y + v − P )− (1− q)u′(Y + v − P

[
1− ℓ̄[1−D]

]
u′(Y + v − P )

, (IA24)

where q is small enough such that WY is positive. If

Win(C,P )

Win(M,P )
< 1 + min

{
WY ,Wv

}
, (IA25)

then the following statements hold in the variant problem:

(i) There exists a wealth threshold Y ∗ such that buyers optimally pay all-cash for Y ≥ Y ∗ and
use mortgage financing otherwise.

(ii) There exists a housing quality threshold v∗ such that buyers optimally pay all-cash for v ≤ v∗

and use mortgage financing otherwise.

Proof. The proof involves an application of monotone comparative statics (e.g., Milgrom and
Shannon (1994)). Define F̃ ≡ 1 [F =M ]. It suffices to show that, under condition (IA25), the
objective function in the variant problem exhibits: (i) decreasing differences in F̃ and Y , and
(ii) increasing differences in F̃ and v. Then, by single crossing, the thresholds Y ∗ and v∗ exist
within the set of extended real numbers.

Let U(F ; v, P, ℓ̄, Y ) denote the objective function, where we have used the result that ℓ = ℓ̄.
Introduce the following simplifying notation and parameterization for this proof: A ≡ v−P > 0;
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and B ≡ P ℓ̄[1−D] > 0. The following derivatives obtain:

∂U
∂Y

∣∣∣∣
F̃=0

= −Win(C,P ) [u′(Y )− u′(Y + A)] + u′(Y ), (IA26)

∂U
∂Y

∣∣∣∣
F̃=1

= −Win(M,P )(1− q) [u′(Y )− u′(Y + A+B)] + u′(Y ), (IA27)

∂U
∂v

∣∣∣∣
F̃=0

= Win(C,P )u′(Y + A), (IA28)

∂U
∂v

∣∣∣∣
F̃=1

= Win(M,P )(1− q)u′(Y + A+B). (IA29)

Moreover,

ID(F̃ , Y ) ≡ ∂U
∂Y

∣∣∣∣
F̃=1

− ∂U
∂Y

∣∣∣∣
F̃=0

(IA30)

= (Win(C,P )−Win(M,P )) (u′(Y )− u′(Y + A)) + ... (IA31)

...−Win(M,P ) ((1− q) [u′(Y )− u′(Y + A+B)]− [u′(Y )− u′(Y + A)]) , (IA32)

which is negative if and only if

Win(C,P )

Win(M,P )
< 1 +WY . (IA33)

In addition

ID(F̃ , v) ≡ ∂U
∂v

∣∣∣∣
F̃=1

− ∂U
∂v

∣∣∣∣
F̃=0

(IA34)

= − (Win(C,P )−Win(M,P ))u′(Y + A) + ... (IA35)

...+Win(M,P ) (u′(Y + A)− (1− q)u′(Y + A+B)) , (IA36)

which is positive if and only if

Win(C,P )

Win(M,P )
< 1 +Wv. (IA37)

Collectively, ID(F̃ , Y ) < 0 and ID(F̃ , v) > 0 if and only if Win(C,P )
Win(M,P )

< 1+min
{
WY ,Wv

}
, which

is what needed to be shown.

C.2. Statement and Proof of Lemma IA.2

LEMMA IA.2 (Buyer Willingness-to-Pay): For a given v and y ≡ Y
v
, a buyer who chooses to

pay all-cash offers a price P̃ ≤ vp̄b(C), with

p̄b(C) ≡ min {y, 1} , (IA38)
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and a buyer who choose to use mortgage financing offers a price P̃ ≤ vp̄b(M), with

p̄b(M) ≡ min

{
y

1− ℓ̄
,

1

1− ℓ̄ [1−D]

}
. (IA39)

Proof. First, suppose an all-cash buyer offers price Pa,C > vmin {y, 1}. Substituting into equa-
tion (8), the buyer’s utility equals

Va,C = Win(C,Pa,C)
(yv + v − Pa,C)

1−γ

1− γ
+ (1−Win(C,Pa))

(yv)1−γ

1− γ

< Win(C,Pa,C)
(v [y + 1−min {y, 1}])1−γ

1− γ
+ (1−Win(C,Pa,C))

(yv)1−γ

1− γ

= Win(C,Pa,C)
(vmax {y, 1})1−γ

1− γ
+ (1−Win(C,Pa,C))

(yv)1−γ

1− γ
.

If the buyer chooses not to make an offer, then her utility equals

Vb =
(yv)1−γ

1− γ
.

When y ≥ 1, we have Vb > Va,C , so that the all-cash buyer strictly prefers not making an offer to
an offer with Pa,C > vmin {y, 1}. When y < 1, constraint (11) binds, so that Pa,C is infeasible.
Therefore, the buyer will never offer Pa,C , which implies he will offer P̃ ≤ vmin {y, 1} = vp̄b(C).

The logic for a mortgaged buyer is symmetric. Suppose a mortgaged buyer offers price

Pa,M > vmin
{

y
1−ℓ̄ ,

1
1−ℓ̄[1−D]

}
. When y

1−ℓ̄ < 1
1−ℓ̄[1−D]

, constraint (11) binds, so that Pa,M is

infeasible. In the opposite case, the buyer’s utility equals

Va,M = Win(M,Pa,M)

(
yv + v − Pa,M

[
1− ℓ̄ [1−D]

])1−γ
1− γ

+ (1−Win(M,Pa,M))
(yv)1−γ

1− γ

< Win(M,Pa,M)
(yv)1−γ

1− γ
+ (1−Win(M,Pa,M))

(yv)1−γ

1− γ

= Vb.

So, the buyer strictly prefers not making an offer to an offer with Pa,M > v 1
1−ℓ̄[1−D]

. Combining

cases, the buyer will never offer Pa,M , which implies that he will offer P ≤ vmin
{

y
1−ℓ̄ ,

1
1−ℓ̄[1−D]

}
=

vp̄b(M). This is what needed to be shown.

C.3. Statement and Proof of Lemma IA.3

LEMMA IA.3 (Offer Price): Consider a sealed-bid auction with a discrete number of offers, which
the seller observes but buyers do not. The auction has the following features:

(i) The seller evaluates offers according to the value functions shown in (4) to (6),
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(ii) Buyers submit an offer price P̃ and their willingness-to-pay vp̄b, which real estate agents
truthfully verify,

(iii) If the total number of offers is N = 1, then the buyer pays his offer price,

(iv) If N > 1, then the buyer’s offer price is escalated to his willingness-to-pay, and

(v) The seller can decline all offers.

There exists a Nash equilibrium in which

P̃C =

{
min {ṽ(C)e−κ, vp̄b(C)} , if N = 1
vp̄b(C), if N > 1

, (IA40)

P̃M =

{
min {ṽ(M)e−κ, vp̄b(M)} , if N = 1
vp̄b(M), if N > 1

, (IA41)

where ṽ denotes the price of an offer with certainty equivalence v. In particular, ṽ(C) = v and
ṽ(M) = veµκ, where µκ is the mortgage-cash premium when PC = ve−κ.

Proof. The proof requires us to show that strategy (IA40) is a best response by all-cash buyer bc to
the same strategy used by an unknown number of competing all-cash buyers −bc and to strategy
(IA41) used by an unknown number of competing mortgaged buyers bm, and, similarly, strategy
(IA41) is a best response by mortgaged buyer bm to the same strategy used by an unknown
number of competing mortgaged buyers −bm and to strategy (IA40) used by an unknown number
of all-cash buyers bc.

We focus on the case N = 1. The case N > 1 is trivial due to feature (iv) of the auction.
We establish the result for all-cash buyers bc, and then we do so for mortgaged buyers. Suppose
vp̄b(C) < ṽ(C)e−κ = ve−κ. Lemma IA.2 implies that bc will offer at most P̃C = vp̄b(C). The
definition of κ in equation (7) implies that the seller will decline any offer P̃C < ve−κ. Therefore,
bc is indifferent to any offer price P̃C ≤ vp̄b(C), since the seller will decline all such offer prices.
So, bc has no incentive to deviate from strategy (IA40) when vp̄b(C) < ṽ(C)e−κ.

Suppose, instead, that vp̄b(C) ≥ ṽ(C)e−κ. Since N = 1, the probability of winning is

Win(C, P̃C) =

{
0, if P̃C < ve−κ

1, if P̃C ≥ ve−κ
(IA42)

(IA43)

Using equation (8), the buyer’s utility equals

U(P̃C) =


(yv)1−γ

1−γ , if P̃C < ve−κ

(yv+v−P̃C)
1−γ

1−γ , if P̃C ≥ ve−κ
. (IA44)

By supposition, e−κ ≤ min {y, 1}, which implies that equation (IA44) is maximized at P̃C = ve−κ.
In particular, if y ≥ 1, then yv + v− ve−κ ≥ yv, and, if y < 1, then yv + v− ve−κ ≥ v > yv. So,
bc has no incentive to deviate from strategy (IA40) when vp̄b(C) ≥ ṽ(C)e−κ.
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We turn to the mortgaged buyer next. The argument is symmetric. Suppose vp̄b(M) <
ṽ(M)e−κ = veµκ−κ. From Lemma IA.2, bm will offer at most P̃M = vp̄b(M) Definition 1 implies
that such an offer is equivalent, from the perspective of the seller’s expected utility (“certainty
equivalence”) to an all-cash offer at price veµκ−κ. Equation (7), therefore, implies that the seller
declines any offer P̃M < veµκ−κ. Consequently, bm is indifferent with respect to any such offer.
So, bm has no incentive to deviate from strategy (IA41) when vp̄b(M) < ṽ(M)e−κ.

Suppose, instead, that vp̄b(M) ≥ ṽ(M)e−κ. The probability of winning takes a similar form
as equation (IA42)

Win(M, P̃M) =

{
0, if P̃M < veµκ−κ

1, if P̃M ≥ veµκ−κ
, (IA45)

(IA46)

and the buyer’s utility equals

U(P̃C) =


(yv)1−γ

1−γ , if P̃M < veµκ−κ

(yv+v−P̃M [1−ℓ̄[1−D]])
1−γ

1−γ , if P̃M ≥ veµκ−κ
. (IA47)

(IA48)

By supposition, eµκ−κ ≤ min
{

y
1−ℓ̄ ,

1
1−ℓ̄[1−D]

}
, which implies that equation (IA47) is maximized at

P̃C = veµκ−κ. So, bm has no incentive to deviate from strategy (IA41) when vp̄b(M) ≥ ṽ(M)e−κ.

Since neither bc nor bm have an incentive to deviate from strategies (IA40) to (IA41), these
strategies constitute a best-response for each buyer. This is what needed to be shown.

C.4. Statement and Proof of Lemma IA.4

LEMMA IA.4 (Distribution of Offers): The probabilities that the seller receives no offers, exactly
one offer, multiple offers consisting only of mortgaged offers, and multiple offers consisting only
of all-cash offers are, respectively:

φ0 = e−λ, (IA49)

φ1 = λe−λ, (IA50)

φMM = e−λ(1−m)[1− e−λm(1 + λm)], (IA51)

φCC = e−λm[1− e−λ(1−m)(1 + λ(1−m))]. (IA52)

The probability that the seller receives multiple offers and accepts a mortgaged offer is:

ΦM =

{
e−λ(1−m)[1− e−λm(1 + λm)] if p̄b(M) ≤ pC

1− e−λ(1 + λ)− e−λm[1− e−λ(1−m)(1 + λ(1−m))] if p̄b(M) > pC ,
(IA53)
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where log (pC) is the mortgage-cash premium from Proposition 1 evaluated at pC = p̄b(C). The
probability that the seller receives multiple offers and accepts an all-cash offer is:

ΦC =

{
1− e−λ(1 + λ)− e−λ(1−m)[1− e−λm(1 + λm)] if p̄b(M) ≤ pC

e−λm[1− e−λ(1−m)(1 + λ(1−m))] if p̄b(M) > pC .
(IA54)

Lastly, there exists pM such that if p̄b(M) ≥ pM , the seller accepts mortgaged offers with positive
probability, and otherwise she always declines mortgaged offers.

Proof. First, we derive {φj}. Since N ∼ Poisson(λ), we have Pr [N = x] = e−λ λ
x

x!
. Therefore,

φ0 = Pr [N = 0] = e−λ (IA55)

φ1 = Pr [N = 1] = λe−λ (IA56)

Moreover,

φMM = Pr
[
NC = 0, NM > 1

]
(IA57)

=
∞∑
k=2

e−λλk

k!

k!

0!k!
mk (IA58)

= e−λ(1−m)

∞∑
k=2

e−λm(λm)k

k!
(IA59)

= e−λ(1−m)[1− e−λm(1 + λm)] (IA60)

φCC = Pr
[
NM = 0, NC > 1

]
(IA61)

=
∞∑
k=2

e−λλk

k!

k!

0!k!
(1−m)k (IA62)

= e−λm
∞∑
k=2

e−λ(1−m)(λ(1−m))k

k!
(IA63)

= e−λm[1− e−λ(1−m)(1 + λ(1−m))] (IA64)

Next, we derive {Φj}. Suppose p̄b(M) > pC . Then a seller prefers an offer from a mortgaged
buyer at his willingness-to-pay, p̄b(M), over an offer from an all-cash buyer at the willingness-
to-pay of the latter, p̄b(C). Therefore, the probability that the seller receives multiple offers and
accepts a mortgaged offer is the complement probability of receiving: zero offers, exactly one
offer, or multiple offers consisting only of all-cash offers. Explicitly, this probability equals

1− e−λ(1 + λ)− e−λm[1− e−λ(1−m)(1 + λ(1−m))]. (IA65)

The probability that the seller receives multiple offers and accepts an all-cash offer is φCC .

Conversely, suppose p̄b(M) ≤ pC , so that a seller prefers an offer from an all-cash buyer at
his willingness-to-pay, p̄b(C), over an offer from a mortgaged buyer at the latter’s willingness-
to-pay, p̄b(M). The probability that the seller receives multiple offers and accepts an all-cash
offer is the complement probability of receiving: zero offers, exactly one offer, or multiple offers
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consisting only of mortgaged offers. Explicitly, this probability equals

1− e−λ(1 + λ)− e−λ(1−m)[1− e−λm(1 + λm)]. (IA66)

The probability that the seller receives multiple offers and accepts a mortgaged offer is φMM

Collecting the previous two paragraphs gives the expressions for ΦM and ΦC shown in
equations (IA53) to (IA54).

Lastly, define pM such that log (pM) equals the mortgage-cash premium when pC = e−κ. In
the notation from Lemma IA.3, pM = eµκ−κ. Then if p̄b(M) ≥ pM , the seller accepts a mortgaged
offer with positive probability mφ1 + ΦM . If p̄b(M) < pM , the seller always declines mortgaged
offers.

This completes what needed to be shown.

C.5. Statement and Proof of Proposition IA.1

PROPOSITION IA.1 (Deriving the Mortgage-Cash Premium with Contingencies): Consider the
extension described in Section III.B.1 with nonfinancial contingencies. The mortgage-cash pre-
mium equals

µ = log

[eαk+ρ(1− qc)
(
ω + pC

)1−γ − qk (ω + e−κ)
1−γ

+ (1− γ)Γkδ

1− qc − qk

] 1
1−γ

− ω

− log(pC),

(IA67)

where qk equals the combined probability that a mortgaged buyer fails to obtain financing or sell
his home, based on whether the buyer has a home-sale contingency (k = 1) or not (k = 0), and
analogously for the probability of transaction delay qdk. In particular,

q0 = q, (IA68)

qd0 = qd, (IA69)

q1 = q0

(
1 +m(1− h)

1−mh

)
+

qc

1−mh
, (IA70)

qd1 = qd0

(
1 +m(1− h)

1−mh

)
, (IA71)

up to the approximation that the product of two failure rates equals zero. The continuation value,
κ, equals

κ = − log

[(1− γ)
(
E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
− δΞ

)
eρ − Pr [u = V S(∅)]

] 1
1−γ

− ω

 . (IA72)

The magnitude of p̄b(M) determines the expressions for the terms in equation (IA72).
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The first case obtains when p̄b(M) ≥ pM,h. In this case,

E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
= ΦC [1− qc]

(ω + p̄b(C))
1−γ

1− γ
+ ... (IA73)

...+ ΦM0 [1− q0 − qc]e−α0−ρ (ω + p̄b(M))1−γ

1− γ
+ ... (IA74)

...+ ΦM1 [1− q1 − qc]e−α1−ρ (ω + p̄b(M))1−γ

1− γ
, (IA75)

Pr
[
u = V S(∅)

]
= e−α0−ρΦM0q0 + ... (IA76)

...+ e−α1−ρΦM1q1 + ... (IA77)

...+ φ0 + φ1 + qc(1− φ0 − φ1), (IA78)

Ξ = eρ + ΦM0(1 + qd0e
−ρ) + ΦM1(1 + qd1e

−ρ), (IA79)

The terms {φ} equal the probabilities of receiving no offers (φ0), one offer (φ1), multiple offers
consisting only of mortgaged offers with a home-sale contingency (φM1), multiple offers consisting
only of all-cash offers (φC), multiple offers with zero all-cash offers (φ-C), or multiple offers, none
of which are mortgaged offers without a home-sale contingency (φ-M0).

The second case obtains when pM,h > p̄b(M) ≥ pM,−h. In this case

E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
= ΦC [1− qc]

(ω + p̄b(C))
1−γ

1− γ
+ ... (IA80)

...+ ΦM0 [1− q0 − qc]e−α0−ρ (ω + p̄b(M))1−γ

1− γ
(IA81)

Pr
[
u = V S(∅)

]
= e−α0−ρΦM0q0 + ... (IA82)

...+ φM1 + φ0 + φ1 + qc(1− φM1 − φ0 − φ1), (IA83)

Ξ = eρ + ΦM0(1 + qd0e
−ρ). (IA84)

The third case obtains when pM,−h > p̄b(M). In this case

E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
= ΦC [1− qc]

(ω + p̄b(C))
1−γ

1− γ
, (IA85)

Pr
[
u = V S(∅)

]
= φ-C + φ0 + φ1 + qC(1− φ-C − φ0 − φ1), (IA86)

Ξ = eρ. (IA87)

Proof. The proof has a similar structure as that for Proposition 1 and Lemma 1. The difference is
that there are three buyer types, as opposed to two in the main results. This leads to only minor
changes in the expression for the premium, µ, but to more material changes in the expression
for the cost of failure, κ.

Deriving the premium again requires solving V S(C, vpC) = V S(M, vpCeµ). The value func-
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tions change slightly after incorporating nonfinancial contingencies,

V S(C, vpC) = (1− qc)

(
ω + pC

)1−γ
1− γ

+ qc
(ω + e−κ)

1−γ

1− γ
, (IA88)

V S(M, vpCeµ) = −δ
(
e−αk + qd

)
+ ... (IA89)

...+ e−αk−ρ

[
(1− qc − qk)

(
ω + pCeµ

)1−γ
1− γ

+ qk
(ω + e−κ)

1−γ

1− γ

]
+ ... (IA90)

...+ qc
(ω + e−κ)

1−γ

1− γ
(IA91)

Solving and rearranging gives

µ = log

[eαk+ρ(1− qc)
(
ω + pC

)1−γ − qk (ω + e−κ)
1−γ

+ (1− γ)Γkδ

1− qc − qk

] 1
1−γ

− ω

− log(pC),

(IA92)

using the same logic as in Proposition 1. The expressions for {qk, qdk} are in Section III.B.1.

Before deriving the cost of failure, we follow the same logic as in Lemma IA.4 to derive

φ0 = e−λ, (IA93)

φ1 = λe−λ, (IA94)

φC = e−λm[1− e−λ(1−m)(1 + λ(1−m))], (IA95)

φ-C = e−λ(1−m)[1− e−λm(1 + λm)], (IA96)

φ-M0 = e−λm(1−h)[1− e−λ(1−m(1−h))(1 + λ(1−m(1− h)))], (IA97)

φM1 = e−λ(1−mh)[1− e−λmh(1 + λmh)]. (IA98)

and, similarly,

ΦC =


1− φ0 − φ1 − φ-C if p̄b(M) ≤ eµ̄0 p̄b(C)

φ-M0 − φM1 if eµ̄0 p̄b(C) < p̄b(M) ≤ eµ̄1 p̄b(C)

φC if p̄b(M) > eµ̄1 p̄b(C)

, (IA99)

ΦM0 =


φ-C − φM1 if p̄b(M) ≤ eµ̄0 p̄b(C)

1− φ0 − φ1 − φ-M0 if eµ̄0 p̄b(C) < p̄b(M) ≤ eµ̄1 p̄b(C)

1− φ0 − φ1 − φ-M0 if p̄b(M) > eµ̄1 p̄b(C)

, (IA100)

ΦM1 =


φM1 if p̄b(M) ≤ eµ̄0 p̄b(C)

φM1 if eµ̄0 p̄b(C) < p̄b(M) ≤ eµ̄1 p̄b(C)

φ-M0 − φC if p̄b(M) > eµ̄1 p̄b(C)

(IA101)
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with

µ̄k = log

[eαk+ρ(1− qc) (ω + p̄b(C))
1−γ − qk (ω + e−κ)

1−γ
+ (1− γ)Γkδ

1− qc − qk

] 1
1−γ

− ω

 . (IA102)

for k ∈ {0, 1}. The three cases that define the {ΦF} have a similar interpretation as in Lemma
IA.4: (i) p̄b(M) > eµ̄1 p̄b(C) implies that the seller prefers an offer by any mortgaged buyer at
his willingness-to-pay over an offer from an all-cash buyer at the latter’s willingness-to-pay, (ii)
eµ̄0 p̄b(C) < p̄b(M) ≤ eµ̄1 p̄b(C) implies that the seller prefers an offer by a mortgaged buyer
without home-sale contingency at his willingness-to-pay over an offer from an all-cash buyer at
the latter’s willingness-to-pay, but the seller still prefers the all-cash offer over an offer from a
mortgaged buyer with home-sale contingency at his willingness-to-pay, and (iii) p̄b(M) ≤ eµ̄0 p̄b(C)
implies that the seller prefers an offer by an all-cash buyer at his willingness-to-pay over an offer
from any mortgaged buyer at the latter’s willingness-to-pay.

The derivation of the cost of failure follows a similar logic as in Lemma 1. We must account
for three cases. These cases depend on the thresholds pM,h and pM,−h, where: pM,h is defined
such that log (pM,h) equals the mortgage-cash premium for a buyer with home-sale contingencies
when pC = e−κ, denoted µ

1
, and pM,−h is defined such that log (pM,−h) is the mortgage-cash

premium for a buyer without home-sale contingencies when pC = e−κ, denoted µ
0
.

In the first case, p̄b(M) ≥ pM,h. The continuation value equals

V S(∅) = −δ + ...

...e−ρφ1(1−m)(1− qc)
[
u(ω + e−κ)

]
+ ...

...e−ρφ1m(1− h)e−α0−ρ
[
(1− q0 − qc)u(ω + eµ0−κ)

]
+ ...

...e−ρφ1mhe
−α1−ρ

[
(1− q1 − qc)u(ω + eµ1−κ)

]
+ ...

...e−ρΦC(1− qc) [u(ω + p̄b(C))] + ...

...e−ρΦM0(1− q0 − qc)e−α0−ρ [u(ω + p̄b(M))] + ...

...e−ρΦM1(1− q1 − qc)e−α1−ρ [u(ω + p̄b(M))] + ...

...e−ρ((ΦM0 + ΦM1 + φ1m)(1 + qd0e
−ρ) + [ΦM1 + φ1mh](q

d
1 − qd0)e

−ρ) [−δ] + ...

...e−ρ(e−α0−ρ(ΦM0 + φ1m(1− h))q0 + e−α1−ρ(ΦM1 + φ1mh)q1) + φ0(1− qc) + qc)
[
V S(∅)

]
.

Recognize that, by definition, µ solves V S(C, ve−κ) = V S(Mk, e
µ
k
−κ) for k ∈ {0, 1}. Therefore,

V S(∅) = −δ + ...

...e−ρφ1

[
(1− qc)u(ω + e−κ)

]
+ ...

...e−ρΦC(1− qc) [u(ω + p̄b(C))] + ...

...e−ρΦM0(1− q0 − qc)e−α0−ρ [(1− q0 − qc)u(ω + p̄b(M))] + ...

...e−ρΦM1(1− q1 − qc)e−α1−ρ [(1− q1 − qc)u(ω + p̄b(M))] + ...

...e−ρ((ΦM0 + ΦM1)(1 + qd0e
−ρ) + ΦM1(q

d
1 − qd0)e

−ρ) [−δ] + ...

...e−ρ(e−α0−ρΦMq0 + e−α1−ρΦM1q1) + φ0(1− qc) + qc)
[
V S(∅)

]
.
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Rearranging terms gives

e−κ = −ω +

[
ΦC(1− qc)(ω + p̄b(C))

1−γ + (γ − 1)δΞ

eρ − (e−α0−ρΦM0q0 + e−α1−ρΦM1q1 + (φ0 + φ1)(1− qc) + qc)
...

...+
[(ΦM0 + ΦM1e

α0−α1)(1− q0 − qc)− ΦM1e
α0−α1(q1 − q0)]e

−α0−ρ(ω + p̄b(M))1−γ

eρ − (e−α0−ρΦM0q0 + e−α1−ρΦM1q1) + (φ0 + φ1)(1− qc) + qc)

] 1
1−γ

with Ξ = (eρ+(ΦM0+ΦM1)(1+q
d
0e

−ρ)+ΦM1 [q
d
1−qd0 ]e−ρ). Taking the log transform and substitut-

ing E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
and Pr

[
u = V S(∅)

]
defined in the statement of Proposition

IA.1 gives the result, completing the proof for the case p̄b(M) ≥ pM,h.

In the second case, pM,−h ≤ p̄b(M) < pM,h. The logic is similar to the first case, except that
the seller optimally declines all mortgaged offers with a home-sale contingency. Accordingly, the
probability that the value function in the next period is V S(∅) equals

φM1 + φ0 + φ1 + qc[1− (φM1 + φ0 + φ1)].

Therefore,

e−κ = −ω +

[
ΦC(1− qc)(ω + p̄b(C))

1−γ + δ(γ − 1)(eρ + ΦM0(1 + qd0e
−ρ))

eρ − (e−α0−ρΦM0q0 + (φM1 + φ0 + φ1)(1− qc) + qc)
...

...+
ΦM0(1− q0 − qc)e−α0−ρ(ω + p̄b(M))1−γ

eρ − (e−α0−ρΦM0q0 + (φM1 + φ0 + φ1)(1− qc) + qc)

] 1
1−γ

Taking the log transform and substituting Ξ, E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
, and

Pr
[
u = V S(∅)

]
defined in the statement of Proposition IA.1 gives the result, completing the

proof for the case pM,−h ≤ p̄b(M) < pM,h.

In the third case, pM,−h > p̄b(M). The logic is similar to the first and second cases, except
that the seller optimally declines all mortgaged offers, regardless of whether they come with a
home-sale contingency. Accordingly, the probability of that the value function in the next period
is V S(∅) equals

φ-C + φ0 + φ1 + qc[1− (φ-C + φ0 + φ1)].

Therefore,

e−κ = −ω +

[
ΦC(1− qc)(ω + p̄b(C))

1−γ + δ(γ − 1)eρ

eρ − ((φ-C + φ0 + φ1)(1− qc) + qc)

] 1
1−γ

Taking the log transform and substituting Ξ, E
[
u|u > V S(∅)

]
Pr
[
u > V S(∅)

]
, and

Pr
[
u = V S(∅)

]
defined in the statement of Proposition IA.1 gives the result, completing the

proof for the case pM,−h > p̄b(M). Since this is the final case, the proof is now complete.
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D. Calibration and Numerical Methods

We describe the numerical methods used to calculate the theoretical mortgage-cash pre-
mium, details on measuring the distribution of the model’s parameters, details on calculating
heterogeneity in the theoretical premium, and details on estimating heterogeneity in the empirical
premium.

D.1. Numerical Methods

Since Proposition 1 delivers µ in closed form, there are relatively few numerical details of
note. The two relevant sets of details are accounting for various cases in the calculation of κ,
and accounting for regions of the parameter space in which µ does not exist. First, in calculating
κ, we first evaluate (20) as if the condition p̄b(M) ≥ pM holds. We perform this calculation at
each point in the parameter space. Then, we calculate the corresponding µ using equation (19),
again at each point in the parameter space. Since pM depends on µ, as shown explicitly in the
proof of Lemma 1, we then check whether the condition p̄b(M) ≥ pM indeed holds. If so, we
conclude the calculation at the given grid point. Otherwise, we recalculate µ and κ using the
values corresponding to the case p̄b(M) < pM . A similar procedure applies to the extension with
nonfinancial contingencies, except that there are now three cases (Appendix Proposition IA.1).

The second detail of note concerns regions of the parameter space in which a positive, real-
valued µ or κ does not exist. We drop such regions in our main analyses of Sections V.B and
VI.A. This reduces the size of the parameter space from 177,147 to 118,986.

D.2. Additional Calibration Details

The text references several extensions and details about our calibration that we describe in
this appendix.

Details on Probability of Transaction Failure

As described in the text, we measure q using the mortgage application denial rate among pre-
approved, first-lien, mortgages for the purchase of an owner-occupied, single-family home. We
observe this denial rate at the zip code-by-year level, and we calculate the distribution weighting
zip code-years by number of applications.

This parameterization constitutes an upper bound because not all denials as recorded in
HMDA necessitate that the buyer terminate the purchase. There are two reasons why a HMDA-
recorded denial does not necessitate termination. First, based on discussions with practitioners,
originators typically record a mortgage application as “denied” in HMDA if doing so violates
their underwriting protocol, but they will subsequently counsel a borrower on how to modify
their application so as to be approved in the second round of underwriting. Since the revised
application is recorded separately in HMDA, a mortgage-financed transaction that is ultimately
successful would nevertheless be associated with a denied application. Second, if borrowers
cannot negotiate a second-round application with their initial originator, they can apply for
credit from one of its competitors.
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Accordingly, we also parameterize q using the share of transactions that were terminated
over 2015 to 2021, based on the National Association of Realtors RCI data set described in
Section I.C. This measure is reasonable because the most common reasons reported for delayed
or terminated settlements in the RCI data set are “issues related to obtaining financing” (25%),
“appraisal issues” (15%), and “home inspection” (14%), all of which pertain more commonly to
mortgage-financed purchases. However, we only observe this measure at the monthly level, and
so the distribution only reflects time-series variation.

The corresponding support of q based on the RCI data set is {0.04, 0.06, 0.07}, based on the
discretization described in Section V.A of the main article applied to all other parameters. The
corresponding average mortgage-cash premium equals 6.6%.

Details on Offer Arrival Rate

The baseline calibration of λ involves calculating the average number of offers received
conditional on receiving an offer, E[N |N > 0]. We calculate the expectation at the zip code
level using the offer-level data set. The expectation filters out listings with more than the
maximum number of offers from Zillow’s 2018 CHTR report (Zillow (2018)), which we use as
a cross-reference. We then discretize the distribution across zip codes, weighting zip codes by
the total number of listings. Finally, we transform this distribution using the relationship:
E[N |N > 0] = λ

1−e−λ .

In the text, we referenced other methods of calibrating λ. One method calculates E[N |N >
0] using the number of mortgage applications per origination in HMDA. This method interprets
an application as “an offer” and an origination as “a sale,” and it implicitly assumes that the
corresponding measure of offers-per-sale applies to both all-cash and mortgaged offers. Thus, a
disadvantage of this measure is that, while still reasonable, the conceptual connection to λ is
not as strong as with the measure based on the offer-level data set. However, this measure has
the advantage of being observed at the zip code-by-year level, as it comes from the HMDA data
set. Accordingly, we can rely on much broader variation, which will be critical when turning
to our semi-structural estimation of the empirical premium. We discretize the distribution of
E[N |N > 0] in the same manner as we discretize the distribution of q. Finally, we apply the
Poisson transformation to recover λ. The corresponding support of λ is {0.42, 0.74, 1.45}. The
corresponding average mortgage-cash premium equals 5.4%.

A second method uses Zillow’s 2018 CHTR report (Zillow (2018)), which reports the distri-
bution of total number of offers within a listing spell and includes zero in the support. Therefore,
we can directly calculate the distribution E[N ] = λ, which gives λ the support {1, 2, 4}. The
average mortgage-cash premium equals 5.4%.

A third method uses the NAR’s RCI data set, which includes a monthly measure of the
average number offers received conditional on receiving an offer, E[N |N > 0]. So, we use time-
series variation to discretize the distribution of E[N |N > 0]. The standard transformation gives
λ the support {1.85, 2.47, 4.02}. The average mortgage-cash premium equals 7.0%.

Collectively, we robustly find an average mortgage-cash premium between 5.4% and 7.0%
based on four unique calibrations of λ.
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Details on Seller Net Total Wealth

As described in the text, we measure w using the SCF data set. The unit of observation
in the SCF data set is the household. For each household, we calculate w as the ratio of the
sum of checking and savings accounts, certificates of deposit, cash, stocks, savings bonds, other
bonds, mutual funds, annuities, trusts, IRAs, employer-provided retirement plans, and total
household income, divided by the value of the home. We exclude nonhomeowners and first-time
homeowners, and we weight households using SCF sample weights.

We measure ℓs and ξ using the baseline ZTRAX data set as described in the text. Sum-
marizing, we obtain the grid points for ℓs by first calculating the ratio of mortgage balance
outstanding, imputed by a straight-line amortization using the loan’s initial term, to the sale
price. We obtain the grid points for ξ by first calculating the difference in price between the home
to which the seller moves next in the ZTRAX data set and her mortgage on that home. Then,
we divide by the price on her current home sale, conditional on the two transactions lying within
12 months. For both measures, we do not divide by the price of the transaction in question, but
by the average sale price within the same zip code and month, after excluding the transaction
in question (“leave-one-out-mean”). We divide in this manner to maintain consistency with our
regressions, which will also rely on these measures but require division by a leave-one-out-mean
for econometric reasons. In particular, using the actual sales price induces mechanical correlation
that leads to biased estimates.

We aggregate these transaction-level measures of ℓs and ξ to the zip code by year level by
taking the average, excluding implausibly large values of 10 for the LTV ratio and 1 for the down
payment-to-sale price ratio. We discretize the distribution across zip codes and years, weighting
by the number of transactions in a zip code and year.

As in the text, the seller’s net total wealth-to-housing ratio is defined as ω ≡ w − ℓs − ξ.
Thus, while the supports of w, ℓs, and ξ each have 3 unique values, the support of ω has 27 = 33

unique values.

Details on Buyer Liquid Assets-to-Housing

Since buyers typically cannot tap retirement wealth to finance their home purchase, we
do not use the SCF data set to measure y. Instead, we measure y using average income in a
given zip code and year based on the IRS SOI data set. Consequently, we can also incorporate
this measure into our semi-structural variation. Accordingly, we divide average income by the
leave-one-out-mean sales price, for econometric reasons just described. Details on the IRS SOI
data set are in Section I.C. We discretize the distribution of y across zip codes and years like we
do with the other parameters. We weight zip code-years by the number of transactions in the
ZTRAX data set.

Details on Loan-to-Value Constraint

We measure ℓ̄ using the average LTV ratio conditional on lying between the GSE regulatory
limit and 100%. We calculate the regulatory limit as the minimum of 80% and the ratio of
the conforming loan limit that applies to a given zip code and year to the leave-one-out-mean
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sales price. We calculate the LTV ratio using the leave-one-out-mean sales price, for the same
econometric reasons as with the other parameters, and we round the transaction-level LTV ratio
to the nearest 5% to reduce idiosyncratic measurement error. Then, we aggregate to the zip
code-by-year level. We obtain the discretized distribution of ℓ̄ as with the other parameters,
weighting zip code-years by the number of transactions in the ZTRAX data set.

In an alternative calibration, we measure ℓ̄ as the modal LTV ratio within each zip code
and year. This method assumes that the modal mortgaged homebuyer faces a binding collateral
constraint. We again use the leave-one-out-mean sales price and round the transaction-level LTV
ratio to the nearest 5%, which effectively discretizes the transaction-level distribution of LTV
ratios, which, in addition to reducing idiosyncratic variation, is necessary to calculate the mode.
Additionally, we exclude LTV ratios greater than 1 when calculating the mode. As with the
calibration based on regulatory limits, we weight zip code-years by the number of transactions
in the ZTRAX data set. This method gives an average mortgage-cash premium of 6.7%.

Details on Additional Parameters

Section III.D describes the calibration of the probability of transaction delay (qd), the mort-
gage offer share (m), and the maintenance cost (δ̃). Our baseline calibration does not feature
nonfinancial contingencies: qc = h = 0. We only observe these parameters as short monthly time
series of less than three years in the NAR RCI data set. So, in the associated extensions, we
simply use the average values. Accordingly, qc = 1%. We set h = 7% to match the share of all
offers come with a home-sale contingency. Dividing by the share of offers that are mortgaged
would raise h to 11.3%, and it would result in quantitative results within 0.2 pps of those under
our main calibration of h.

The probability of delay (qd) is measured as one minus the share of home sales not settled
on time across months, based on the NAR RCI data set. The data are at the monthly frequency,
and so the distribution used to obtain the grid points is purely time-series. In the text, we
mentioned that the average time to issue an approval conditional on delay equals two months.
Substantiating this value: in the NAR RCI data set, delays occur a quarter of the time, and, in
Zillow’s Time-to-Close data set, the average times to close conditional on lying below or above the
75th percentile equal 37 days (around one month) and 64 days (around two months), respectively.
Ellie Mae (2012) reports a similar unconditional average time to close for a successful mortgaged
transaction of 47 days.

The mortgaged offer share (m) is measured as the average share of offers that are mortgage-
financed, based on the Offer-Level data set aggregated to the MSA level. Since m is treated as a
slow-moving parameter in our model, aggregating to the MSA level reduces the overall variance
in the discretized distribution. In addition, this avoids issues of bunching around zero when
aggregating to the zip code level, given the sparsity of data in some zip codes due to the data
provider’s low market share there. We weight MSAs by the number of offers when calculating
the discretized distribution.

We measure the maintenance cost-to-value ratio (δ̃) using the ratio of Zillow’s ZORI rent
index to Zillow’s Home Value index, both of which are observed at the zip code by month level.
This statistic approximates the user cost of housing, which, conceptually, is what we would like
to observe. We transform the observed maintenance cost-to-value ratio, δ̃, to the utility loss from
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home maintenance, δ, using the relationship

δ =
w1−γ

1− γ
−

(
w − δ̃

)1−γ
1− γ

.

Since utility is measured in units of dollars for a risk-neutral seller, δ̃ = δ when γ = 0. Table VII
reports the annualized δ̃ that comes from multiplying by 12.

Lastly, we parameterize the share of offers with a home-sale contingency, h, using the RCI
data set over September 2017 to May 2020, which is the longest period over which we observe this
statistic. So, the variation used to construct the distribution is purely time-series. As mentioned
in the text, we set h = 7% to match the share of all offers come with a home-sale contingency.
If, instead, we divide by the share of offers that are mortgaged to match our model’s assumption
that only mortgaged buyers rely on this contingency, then h rises to 11.3%. This has a minor
0.2 pps effect on the theoretical mortgage-cash premium.

Similarly, we parameterize qc using the product of share of contracts terminated times
conditional probability of inspection issue in terminated contract. We observe this statistic in
the RCI data set for a short monthly time series. Given the sparsity of data on h and qc and
their limited variation in the data that we do have, we treat both parameters as fixed and do
not attempt to calibrate across their distributions.

D.3. Heterogeneity in Theoretical Premium

The theoretical premium is calculated from the projection

µg = µ0 +
∑
θ

∑
p

µθ,pTercile(θ, p)g, (IA103)

where g denotes grid points in the parameter distribution defined in Table VII, and the remaining
notation is the same as in Sections V and VI. Figures 4, IA.4, and 5 plot the expected value of
the empirical and theoretical premium across terciles of θk, holding the other parameters θ−k at
their average. The parameters are one minus the probability of transaction failure (1 − q), the
seller’s total wealth net of current mortgage debt and a simultaneous down payment (ω), the
monthly Poisson offer arrival rate, which also equals the expected number of offers (λ), and the
ratio of the buyer’s maximally levered liquid assets to housing value (L).

In terms of implementation, we calculate the projection in equation (IA103) across all fea-
sible grid points in the parameter distribution, where, as described earlier in this section, feasi-
bility is defined as a grid point with a positive and real-valued µ and κ. We define the indicators
Tercile(θ, p)g according to whether the grid point lies in one of the three ranges defined by the
35th and 65th of the parameter’s discretized distribution.

We follow a similar methodology within the survey when calculating the theoretical premium
across the distribution of q, shown in Figure 6. Note that each point in the theoretical premium in
Figure 6 is an average across the values of all other parameters, holding q fixed at the value shown
in the figure. We discretize the distribution of q using the terciles of the empirical distribution,
based on the HMDA data set as described in Section V.B of the main article.
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The other two model parameters that vary when calculating the theoretical premium in
Figure 6 are w and κ. We do not observe w directly, and so we impute it using the respondent’s
log household income, which we do observe, and a projection of w onto log household income
in the SCF data set. Accordingly, we impute ŵk = 1.45 log(Incomek) − 14.25 for each survey
respondent k. We calculate terciles of ŵ and κ within the survey, weighting respondents by
their Census weight for consistency. For simplicity, κ is treated as an exogenous parameter in
the survey, with some respondents being told κ explicitly and others relying on their forecast
that we elicit at the end of the survey, as described in Section III.E. Figure IA.9 traces out the
distribution of the experimental mortgage-cash premium across µ̂ and κ.

Lastly, since the focus of the survey is to evaluate belief distortions, we also calculate terciles
of the respondent’s risk-aversion and numeracy score, following the same method as with ŵ and
κ. These are treated as parameters for the purposes of calculating the projection in equation
(IA103).

D.4. Heterogeneity in Empirical Premium

Section VI of the main article describes how we semi-structurally estimate the empirical
mortgage-cash premium across the distribution of four key model parameters: the probability of
transaction failure (q), the seller’s total net wealth (ω), the monthly Poisson offer arrival rate,
which also equals the expected number of offers (λ), and the ratio of the buyer’s maximally
levered liquid assets to housing value (L). The text mentions how, sometimes, the data sets used
in the model’s calibration summarized in Table VII cannot be merged to our ZTRAX data set,
as is the case for w, which relies on the anonymous SCF data set. Or, the intersection is so
small that estimating equation (39) is infeasible, as is the case for λ. In these cases, we choose
from alternative data sets placing a priority on data sets that vary by zip code and year with a
large match rate with ZTRAX. As we clarify in the text, it suffices for the alternative measure to
preserve the ranking of the parameter in question across zip codes and years, even if the absolute
magnitude is inaccurate.

Since the SCF data set consists of an anonymized cross-section, we must construct an
empirical proxy for ω and, in particular, w. We do so using the ratio of average household
income to the leave-one-out-mean sales price, which is exactly how we measure the buyer’s
liquid assets, y. Section III.D.2 of this appendix provides full detail on how we construct this
measure. Since the measures of ℓs and ξ used to calibrate the model are already at the zip
code-by-year level, we can incorporate them almost as-is. We do not drop outliers because we
are more interested in ranking zip code-years by a parameter’s value than obtaining an accurate
magnitude of that value. With these zip code-by-year measures of w, ℓs, and ξ, we can calculate
ω at the zip code-by-year level using the relationship ω = w − ℓs − ξ.

We cannot directly incorporate the measure of λ used in our model calibration, since it
derives from the offer-level data set and thus has a time dimension that is too limited relative to
our core ZTRAX data set. Instead, we use the measure based on HMDA, described in Section
III.D.2. This measure relies on the number of mortgage applications per origination in a zip code
and year. Thus, repeating from Section III.D.2, it interprets an application as “an offer” and
an origination as “a sale,” and it implicitly assumes that the corresponding measure of offers-
per-sale applies to both all-cash and mortgaged offers. The key advantage of this measure over
other measures of λ is that we observe it at the zip code-by-year level over a cross-section that
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includes almost the entire U.S. and a time-series extending back to 1990.

Fortunately, we can incorporate the main measure of q from our model calibration into
our regression with minimal modification. In particular, this measure is the zip code-by-year
mortgage application denial rate from the HMDA data set, which can easily be merged to our
ZTRAX data set. We must make two modifications. First, we cannot condition on pre-approval
or first-lien status when calculating the zip code-by-year denial rate, as these variables are only
collected by the administrators of HMDA for an inadequately small subset of years. The remain-
ing conditions still apply (e.g., for-purchase loans). Second, since q governs the extensive margin
of credit supply in our model, we must residualize the empirical measure against two measures
of credit demand: the log of the applicant’s income, and the log of the requested loan size. This
residualized measure maps more directly to the model analogue than the raw mortgage denial
rate, and so it is the correct measure to use in our regressions.

Lastly, the buyer’s leverage capacity, L, depends on y and ℓ̄. Since the measures of these
two variables used in our model calibration are already at the zip code-by-year level, we can
incorporate them as-is.

For all empirical measures θ̂z,t described in this section, we construct the tercile indicators
in equation (39) using terciles across zip code-years in our baseline ZTRAX data set.

D.5. Heterogeneity in Experimental Premium

We study heterogeneity in the experimental premium in Section VII.C of the main article
following a similar approach as when using observational data. The text describes the most
important parts of our methodology. We elaborate on details here. In particular, the parameters
θ̂ used in equation (40) differ, by necessity, from those in the analogous equation (39) estimated
using observational data. This difference reflects how we simply observe different parameters in
the experimental data. The parameters are: (i) the financial wealth-to-housing ratio (w), which
we impute using the respondent’s income and a projection of wealth onto log income estimated
in the 2016 SCF data set (see Section III.D.3), (ii) the cost of failure (κ), which equals 6% for
respondents without ambiguity and equals the respondent’s prior value elicited at the end of the
survey for those facing ambiguity, (iii) risk-aversion, measured on a 1-to-4 scale following Fuster
and Zafar (2021), and (iv) numeracy, based on the average difference between the respondent’s
answer and the correct answer on the survey’s numeracy quiz described in Section IV. The terciles
of these parameters are defined using their distribution within the experimental data.

E. Details on Belief Distortions

We provide details on the analytic and numerical results on belief distortions in Section
VII.D of the main article.

Realization Utility

We focus on how realization utility affects the marginal decision to accept an all-cash versus
mortgaged offer. This specific focus matches our paper’s research question, but we imagine that
realization utility would also make interesting predictions about when investors choose to list
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their home in the first place. To begin, consider a sale at price p relative to fundamental value.
Let g denote the ratio of fundamental value to initial purchase price. The realized capital gain is

G(p) = pg
1− ℓs
1− ℓ0

, (IA104)

where ℓ0 denotes the seller’s initial LTV ratio. The term pg in equation (IA104) equals the
return for a seller who initially bought all-cash, and the term 1−ℓs

1−ℓ0 equals a leverage multiple for
mortgaged sellers. Since ℓs ≤ ℓ0 in most cases, leverage amplifies a seller’s capital gain.

The seller experiences realization utility R(G) upon sale, where R′(G) > 0 and R enters
additively into the standard utility function. Such additivity is a common convention in models
of reference dependence (e.g., Koszegi and Rabin (2006)). The value functions (4) to (5) become

V S
r (C) = u

(
ω + pC

)
+R(GC), (IA105)

V S
r (M) = −δ

(
e−α + qd

)
+ e−α−ρ

[
(1− q)

[
u(ω + pM) +R(GM)

]
+ qV S

r (∅)
]
, (IA106)

where the r subscript emphasizes that the value functions are those a seller with realization
utility and GF denotes the capital gain under a successful sale under method of financing F . The
continuation value, V S

r (∅), has the same general form as equation (6), after substituting V S
r (C)

and V S
r (M). Like in Proposition 1, the mortgage-cash premium, µr, solves V

S
r (C) = V S

r (M).

To highlight the intuition, let µr and κr denote the premium and cost of failure for a seller
with realization utility. Let µ and κ (i.e., with no r subscript) denote the values for a seller with
our baseline preferences. Consider the indifference conditions that define the mortgage-cash
premium for the two types of sellers,

V S
r (M)− V S

r (C) = 0 = V S(M)− V S(C), (IA107)

which reduces to

u(ω + pCeµr) = u(ω + pCeµ)−
[
R(GM)− eα+ρ

1− q
R(GC)

]
+ ... (IA108)

...+
q

1− q

[
u(ω + e−κ)− u(ω + e−κr)

]
.

Taking a first-order approximation of equation (IA108) around µr = µ = 0 and GM = GC =
0 and κr = κ = 0 yields

µrχ0 = µχ0 +
qχ1

1− q
[κr − κ]−R′(0)

[
GM − eα+ρ

1− q
GC

]
(IA109)

χ0 = (ω + pC)−γpC (IA110)

χ1 = (ω + 1)−γ (IA111)
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or

µr = µ+
qχ̄0

(1− q)
[κr − κ]− χ̄1

[
GM − eα+ρ

1− q
GC

]
, (IA112)

χ̄0 =
1

pC

(
ω + 1

ω + pC

)−γ

(IA113)

χ̄1 =
R′(0)

(ω + pC)−γpC
(IA114)

We clarify that equation (IA112) does not identify µr in closed form, since it also enters through
κr and G

M .

Equation (IA112) conveys three ideas about how incorporating realization utility can affect
the mortgage-cash premium. First, realization utility can lower the mortgage-cash premium if it
raises sellers’ value of having no offer, so that κ > κr. Barberis and Xiong (2012) and Ingersoll
and Jin (2013) show in a more general dynamic setting that realization utility introduces option
value from of waiting for a potentially large capital gain. Applying this insight to our setting, it
seems plausible that a seller with realization utility finds it less painful to have no offer because
she retains the option value of a large capital gain from a bidding war: κ > κr.

Second, realization utility can also lower the mortgage-cash premium if the expected capital
gain from a mortgaged offer exceeds that of an all-cash offer: (1 − q)e−(α+ρ)GM > GC . By
definition, a positive mortgage-cash premium implies GM > GC . Therefore, a seller with re-
alization utility finds mortgaged offers attractive simply because they have the potential for a
higher expected capital gain, which, in equilibrium would actually reduce the mortgage-cash pre-
mium relative to a seller with our baseline preferences. Of course, what matters is the expected
capital gain, and, so, if q > 1 − eα+ρGC

GM , then a seller with realization utility requires a higher
mortgage-cash premium.

A final remark concerns the effect of leverage on the seller’s realized capital gain. The
amplification term 1−ℓs

1−ℓ0 in equation (IA104) implies that a home seller who levered her initial
equity contribution may experience a large capital gain under any method of sale, regardless
of whether the buyer is mortgaged or all-cash. Note from equation (IA108), however, that
realization utility affects the mortgage-cash premium through the relative utility burst from a
capital gain on a mortgaged versus an all-cash offer, not the overall level of this burst. So,
while leverage can indeed amplify the level of the seller’s capital gain, and thus the level of the
utility burst, it may not affect the mortgage-cash premium insofar as it raises the burst from a
mortgaged versus all-cash capital gain by a similar amount. This would obtain if, for example,
both GM and GC are large (e.g., due to the seller’s leverage) and R is concave in the gain region,
as in Ingersoll and Jin (2013).

Putting the previous three remarks together, it is theoretically unclear how accounting
for realization utility would affect the magnitude of the mortgage-cash premium puzzle. In
particular, a model with realization utility could feature a lower theoretical premium and thus a
larger puzzle.

In the specific case where GC = 0 and R(GC) = 0, however, we would expect that any
mortgaged offer that would yield positive capital gain, GM > GC = 0, should require a lower
mortgage-cash premium when sellers have realization utility than when sellers have the baseline
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preferences. In particular, equation (IA108) implies that sellers with realization utility like how
such a mortgaged offer gives them at least some chance of realizing a capital gain. We evaluate
this hypothesis experimentally by randomizing respondents to different thought experiments in
which the realized capital gain from an all-cash offer varies from 0% to 100%, on a levered basis.
Figure IA.8 tests for a difference in the mortgage-cash premium between respondents for whom
the all-cash offer results in zero capital gain versus a positive gain. The results in Figure IA.8
show no difference in the premium between the two subsamples, which is inconsistent with the
hypothesis predicted by realization utility.

We conclude this section by reiterating that realization utility may very well affect home
sellers’ behavior in ways distinct from their preference for mortgaged versus all-cash offers. For
example, realization utility discourages sellers from listing their home at a capital loss, which
may explain the well-known disposition effect in real estate (e.g., Genesove and Mayer (2001)).
This channel would significantly impact the timing of sale, even though it may have a small
impact on the price premium of a mortgaged versus all-cash transaction.

Probability Weighting

Probability weighting refers to the tendency to perceive small probabilities as larger than
they actually are when making decisions and, conversely, to perceive large probabilities as smaller.
This mechanism compresses both very small and very large probabilities toward some central
value. Thus, it predicts that home sellers will require an exceptionally large premium when
transaction risk is low. Empirically, however, we find the largest puzzle at high levels of risk
(e.g., Figures 4 and 6).

A number of economics papers have proposed and experimentally verified specific func-
tional forms that map the probability an individual has in mind onto the probability they use
in optimization. We recalculate µ from Proposition 1 using several well-known weighting func-
tions. First, Tversky and Kahneman (1992) propose the following functional form for probability
weighting,

qWs =
qαs

[qαs + (1− qs)
α]

1
α

. (IA115)

The corresponding mortgage-cash premium equals

µWs ≈ ξ +
1

γ − 1

[
qWs

((
1− ℓ− δ

e−κ−σ − ℓ− δ

)γ−1

− 1

)
− er(1−γ) + 1

]
. (IA116)

Tversky and Kahneman (1992) estimate α = 0.65, which also lies close to the midpoint of
subsequent estimates summarized by Booij, Praag, and Kuilen (2010). More recently, Bernheim
and Sprenger (2020) estimate α = 0.71, and so we view the interval [0.6, 0.75] as a reasonable
range. We follow Barberis, Jin, and Wang (2021) and parameterize α = 0.65 as our baseline.

We also consider the two-parameter function proposed by Prelec (1998),

qW
′

s = e−ᾱ0[− log(qs)]
ᾱ1
. (IA117)
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We parameterize ᾱ0 = 1.08 and ᾱ1 = 0.53 based on the most aggressive estimates summarized
by Booij, Praag, and Kuilen (2010), which come from Bleichrodt and Pinto (2000). This param-
eterization gives an average mortgage-cash premium of µWs = 4.7% across survey respondents.

We parameterize aTK = 0.65 to match the estimate in Tversky and Kahneman (1992). This
value lies close to the midpoint of subsequent estimates summarized by Booij, Praag, and Kuilen
(2010), and it also equals the value used by Barberis, Jin, and Wang (2021). More recently,
Bernheim and Sprenger (2020) estimate α = 0.71, and so we view the interval [0.6, 0.75] as a
reasonable range. Our results are robust to all values of aTK within this range. We parameterize
aPR = 1.08 and bPR = 0.53 based on the most aggressive estimates summarized by Booij, Praag,
and Kuilen (2010), which come from Bleichrodt and Pinto (2000).

Figure IA.10 shows the result, plotting the theoretical premium under probability weighting
across the distribution of q with the experimental premium. While probability weighting helps
reduce the fairly small puzzle that exists low levels of q, it does little to resolve the much larger
puzzle that obtains when q is high.

Present Focus

Repeating from the text, present focus refers to a preference for immediate gratification
that leads to dynamically inconsistent decisions (e.g., Ericson and Laibson (2019), O’Donoghue
and Rabin (2015)). It is commonly modelled by incorporating a quasi-hyperbolic time discount
factor (e.g., Laibson (1997), O’Donoghue and Rabin (1999)). At first glance, present focus would
seem like a plausible explanation for the large mortgage-cash premium. For example, when asked
to describe their preference for an all-cash buyer, most survey respondents select: “Even if the
Mortgaged Buyer would never back out, the Cash Buyer would close more quickly and end the
stressful process of selling my home” (Table IA.XIII). The desire to “end the stressful process”
may relate to the stress induced by uncertainty, consistent with how respondents facing ambiguity
select this reason at an 11 pps higher rate. The attractiveness of “closing more quickly” would
loosely suggest a role for present focus.

However, two features of our setting make present focus an inappropriate explanation. First,
present focus concerns consumption, as distinct from wealth. Since sellers in our model primarily
maximize indirect utility over wealth, we cannot properly incorporate present focus without
assuming, for example, extreme liquidity constraints. Second, present focus concerns a distinction
between the immediate present (“now”) and the future (“later”). Realistically, an all-cash offer
can close quickly but not immediately. Nevertheless, the “now” period may last longer in the
home-sale context, and so we test for present focus in our survey by randomly presenting a subset
of survey respondents with a thought experiment in which all-cash offers close “in four weeks,”
whereas they close “any time within two weeks” for the remaining respondents. If the “now”
period indeed lasts as long as two weeks, then we should find a significantly lower mortgage-cash
premium for the “four week” cohort. Figure IA.8 finds no such difference. We conclude that
present focus cannot explain the mortgage-cash premium.

45



IV. Survey Appendix

In this appendix, we elaborate on the description of the experimental survey in Section
A of the main article. We describe how we administer the survey in Section IV.A. In Section
IV.B, we outline the survey’s structure, transcribe the main questions, and explain the choice of
wording. The survey itself can be accessed at: https://ucsd.co1.qualtrics.com/jfe/form/
SV_eu4yrLgIgbPYhBc.

A. Survey Administration

We develop the survey using Qualtrics, an online survey design platform. Then, we recruit
survey respondents through Prolific, a firm that specializes in helping researchers administer
online surveys. Prolific carefully screens its pool of candidate respondents, and it is a competitor
to Amazon’s MTurk. A number of recent economics papers have recruited survey respondents
through MTurk, as summarized by Lian, Ma, and Wang (2018), and Casler, Bickel, and Hackett
(2013) find that the quality of data collected from MTurk respondents resembles that of data
collected through laboratory experiments.

For our purposes, Prolific offers two advantages relative to MTurk. First, Prolific allows
researchers to recruit participants who satisfy a more specific set of demographic characteristics
than does MTurk. This feature enables us to target our survey exclusively to U.S. homeowners.
Second, MTurk surveys tend to attract “professional survey respondents” and automated software
(e.g., Kennedy et al. (2021)). By contrast, Prolific respondents tend to be more representative
within a given set of demographic characteristics, partly because Prolific is a newer entrant
into the survey recruitment market (e.g., Peer et al. (2017)). Consequently, the quality of data
collected from Prolific respondents more closely resembles that of data collected through an ideal
survey administered by, say, the U.S. Census Bureau.

Survey respondents in the first two waves are paid $2.00 for completing the survey and take
an average of six minutes to do so. Survey respondents in the third wave are paid $2.25 to
account for inflation and take the same average time. The text referenced a $24 average hourly
wage. This value equals the average of the average hourly wage for the first ($21.88), second,
($22.78), and third ($27.75) waves.

We administered the survey’s first wave in April 2021, the second wave in November 2021,
and the third wave in January 2023. All respondents in both surveys reside in the U.S. and own
their home. We drop a small number of participants who are recruited despite not satisfying
these two conditions. The three waves of the survey comprise three repeated cross-sections, not
a panel. We retain respondents who spend at least two minutes on the survey and are at least
twenty years old, which reduces the sample sizes to 1,019 and 1,202 and 1,199 in the three waves,
respectively, as shown in Table VIII.

B. Survey Transcript

Respondents begin by consenting to anonymously participate in the survey and by providing
their Prolific identification number. Then, they are told: “In what follows, we will describe a
hypothetical scenario in which you are selling a home. You will then be asked several questions
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about how you would respond in this scenario. Please be assured that your responses will be kept
completely confidential.” On the next screen, respondents are asked to select the price range in
which a typical home in their neighborhood would sell for from among the following ranges: less
than $50,000, between $50,000 and $250,000, between $250,000 and $500,000, between $500,000
and $1,000,000, or greater than $1,000,000. The respondent’s answer determines the level of
prices discussed in the subsequent thought experiment. As discussed shortly, this framing tech-
nique addresses issues related to nonproportional thinking, and a similar technique is used in
the Federal Reserve Bank of New York’s Survey of Consumer Expectations (Liu and Palmer
(2021)). For reference, the share of respondents who fall into these five bins are, respectively,
1.2%, 38.0%, 41.3%, 16.5% and 2.9%. This frequency distribution rather closely matches the
analogous distribution of real house prices in the ZTRAX data set, in which the corresponding
shares of transactions are 1.7%, 43.6%, 32.4%, 15.7%, and 6.6%. This similarity supports the
relevance of our survey results for the rest of the paper.

Description of Thought Experiment

The thought experiment takes place over the following six screens. On the first screen, we
ask respondents: “Imagine that you are selling the home in which you now live and are under
contract to purchase another home. In other words, you are trying to sell your current home and
move to a home you are buying.” The remaining five screens introduce conditions of the home
sale that correspond to parameters from the model.

On the second screen of the thought experiment, we ask respondents: “Imagine, also, that
you bought your current home ten years ago for $[0.5× B], and you have now listed it at $[B].
The remaining mortgage balance that you owe on it is $[0.3×B]. So, what you owe on the home
is 30% of what you have listed it at.” The value of B depends on the price range in which a
typical home in the respondent’s neighborhood would sell for, and the values of B for the five
bins are, respectively, $45,000, $125,000, $300,000, $700,000, and $1,300,000. Thus, respondents
are told all quantities in both levels and percentages.7 For respondents in the second and third
waves, the share of the list price at which the home was bought ten years ago randomly equals
either 0.5 or 0.95, with 50% probability for each value. The quantity $[0.3 × B] corresponds to
ℓsv in the model.

The third screen introduces the time deadline. We tell respondents: “To make the down
payment on the new home, you will need to finalize the sale of your current home, pay off the
balance, and then use the money that’s left over. The down payment is $[0.15 × B]. That is
15% of the price at which you have listed your current home. You must make this down payment
within [T ] weeks.” The parameter T randomly equals either 6 or 8, with 50% probability for
each value. To match our theoretical framework, T will also equal the time it will take to close a
mortgaged transaction. Accordingly, the values of T are chosen such that the difference between
the all-cash and mortgage closing periods equals one month (Ellie Mae (2012)), as we describe
shortly. The quantity $[0.15×B] corresponds to ξv in the model.

7For example, a household in whose neighborhood homes typically sell for between $250,000 and $500,000

would see the following text: “Imagine, also, that you bought your current home ten years ago for $150,000, and

you have now listed it at $300,000. The remaining mortgage balance that you owe on it is $90,000. So, what you

owe on the home is 30% of what you have listed it at.”
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The subsequent three screens describe the set of potential homebuyers. On the fourth screen,
we tell respondents: “You receive purchase offers from two potential buyers, neither of which are
your family members. Today, you must accept one of these two offers. You will have to decline
the other offer, and you cannot keep it as a backup in case the other potential buyer does not
follow through.”

The fifth screen describes an all-cash offer: “The first buyer will pay for the home using
their own money, whom we’ll call ‘Cash Buyer’. If you accept the offer from the Cash Buyer,
you can close the transaction any time within 2 weeks. Since the Cash Buyer already has the
money to buy your home, there is almost no risk that the Cash Buyer will fail to follow through.”
This statement pertains to respondents for whom T = 6. When, instead, T = 8, we replace the
clause “you can close the transaction any time within 2 weeks” with “the transaction will close
in 4 weeks.” Thus, as just mentioned, the difference between the all-cash and mortgage closing
periods equals one month. We introduce this randomization to test for present focus, but, as
described in Section VII.D of the main article, we find no evidence of a difference in premium
according to the closing period of the all-cash transaction.

The sixth screen describes a mortgaged offer: “The second buyer has borrowed money from
a mortgage lender, whom we’ll call the ‘Mortgaged Buyer’. If you accept the offer from the
Mortgaged Buyer, it will take [T ] weeks to close the transaction. There is a chance that the
Mortgaged Buyer will not be able to secure money from their lender by the end of the [T ]-week
period. If that happens, then you will need to relist your home in [T ] weeks.” This statement
pertains to respondents in the first wave, a 50% random sample of the second wave, and a 40%
random sample in the third wave. The remaining respondents are given a distribution of outcomes
for the mortgage transaction: “The second buyer has borrowed money from a mortgage lender,
whom we’ll call the ‘Mortgaged Buyer’. If you accept the offer from the Mortgaged Buyer, it will
take [T ] weeks to close the transaction. There is a [100 × q] percent chance that the Mortgaged
Buyer will not be able to secure money from their lender by the end of the [T ]-week period. If
that happens, then you will need to relist your home in [T ] weeks. To attract another offer, you
would also need to cut your list price by 6%, that is, reduce your list price to$[0.94 × B] from
$[B].” In the second wave, q = 7%. In the third wave, q equals 1%, 7% and 13% with equal
probability, which approximately maps to the empirical distribution of q based on the HMDA
data set.

We avoid overwhelming survey respondents by either providing a fixed value of κ = 6%,
or not specifying the value of κ at all. Indeed, Lemma 1 shows how κ requires a complicated,
dynamic calculation. Fixing κ and interpreting it as an actual price cut enables our respondents
to focus their attention on q, which, per our analysis of observational data, is an important driver
of the mortgage-cash premium. We do not provide a value of κ to respondents in the first wave
and those who face ambiguity in the second wave are not given a price cut. Interestingly, when
asked to report the price cut (i.e., κ) they would impose, the average value of 4.6% lies close to
6%.

Core Questions

The survey’s core consists of several questions that elicit the respondent’s mortgage-cash
premium (i.e., µ), her motivation for requiring a positive premium, and her beliefs about the
probability of transaction failure (i.e., q) and the price cut after failure (i.e., κ).
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The first core question asks respondents: “Suppose that both the Mortgaged Buyer and the
Cash Buyer offer to pay $[B]. Which offer would you accept today?” The Cash Buyer’s offer
dominates the Mortgaged Buyer’s offer in our experiment, and so we expect that respondents
will answer that they prefer the Cash Buyer. Reassuringly, 97% of respondents do so. For a
random 50% of participants in the survey’s second wave, both buyers offer to pay 95% of the list
price. We include this randomization to test for loss aversion relative to the list price.

Conditional on preferring the all-cash offer, respondents are then asked: “Why would you
prefer to sell your home to the Cash Buyer rather than the Mortgaged Buyer? Please select the
most important reason.”. Respondents can select one option from the following set:

1. “If the Mortgaged Buyer backs out and I relist at a lower price, I may not have enough
money to meet my mortgage and moving expenses.”

2. “If the Mortgaged Buyer backs out and I relist at a lower price, I will sell the home at a
loss relative to my target price.”

3. “Even if the Mortgaged Buyer would never back out, the Cash Buyer would close more
quickly and end the stressful process of selling my home.”

4. “Other (please describe)”

Importantly, the order of the first three of these options is randomized, and so the results do not
confound tendencies to select options that appear at the top of a list. Conditional on selecting
the option related to a target price, respondents are asked: “What is your target price?”. They
can then select one of the following options:

1. “The price at which I bought my home.”

2. “The price at which my home is currently listed.”

3. “Other (please describe)”

The order of the first two of these options is again randomized. Table IA.XIII summarizes the
responses.

The following screen contains a series of questions that elicit a respondent’s mortgage-cash
premium in a multiple price list format. Each question asks the respondent whether she would
prefer the all-cash versus the mortgaged offer at gradually increasing offer price spreads. The
questions are of the form: “Suppose the Mortgaged Buyer offers to pay $[(1 + µ̃) × B]. That
is [100 × µ̃]% more than the Cash Buyer. Which offer would you accept now?” The offer price
spreads µ̃ range from 4% to 28% in increments of 4 pps. We emphasize that respondents are
shown the price differentials in both levels and percentages. In the first wave, we proceeded from
5% to 20% in increments of 5 pps, but the similarity of the premiums between the two waves
shown in Table VIII suggests that the reduced granularity does not affect the results.

The majority of respondents switch from preferring the all-cash offer to the mortgaged offer
once µ̃ passes some unique threshold. We define the mortgage-cash premium for respondent k as
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the midpoint between the minimum value of µ̃ at which the respondent prefers the mortgaged
offer and the maximum value of µ̃ at which the respondent prefers the all-cash offer. Explicitly,

Premiumk =
1

2
[min { µ̃|Mortgaged Offer ≻ All-Cash Offer}+ ... (IA1)

...+ max { µ̃|All-Cash Offer ≻ Mortgaged Offer}] .

We assign a missing value to the 2% of respondents who exhibit multiple switch points, following
convention (e.g., Bernheim and Sprenger (2020)). Moreover, we assign a missing value to respon-
dents who never switch to the mortgaged offer. On the one hand, such respondents could indeed
require a mortgage-cash premium that exceeds 28% in the second and third waves or 20% in the
first wave. For such respondents, we would like to top-code the mortgage-cash premium. On the
other hand, such respondents may not understand the experiment, in which case we would like
to drop them. Therefore, our decision to assign a missing value plausibly leads to conservative
estimates of the mortgage-cash premium.

The remaining screens in the survey’s core elicit the respondent’s beliefs about transaction
risk and asks them to perform basic arithmetic calculations. First, we ask respondents: “What
percent of the time do you think the Mortgaged Buyer will back out of the transaction because they
fail to secure money from their lender?” We bound the answers to lie within a range by allowing
respondents to select a value between 0% and 30% on a sliding scale. As mentioned in the text,
41% of respondents select a value less than 10% or greater than 20%, suggesting that the scale
does not lead to bunching around the midpoint. Let Failure Probabilityk denote the respondent’s
prior probability, or, for respondents facing a given distribution, let Failure Probabilityk equal
the value to which the respondent is assigned. We then assess numeracy and attentiveness
following the commonly used approach of Lipkus, Samsa, and Rimer (2001), asking: “If indeed
the Mortgaged Buyer backs out of the transaction [Failure Probabilityk]% of the time, then how
many times out of 1,000 will the Mortgaged Buyer back out?”. Respondents answer this question
by supplying a number.

Similarly, we then ask respondents: “Homes with lower listing prices typically sell more
quickly. At what price would you relist your home if you accept the Mortgaged Buyer’s offer
today and they subsequently back out?” Respondents can select a price level between 70% and
100% of the home’s list price, again on a sliding scale. Let κ̂1 denote the difference between
the log of the answer and the log of the list price. We again assess numeracy and attentiveness
by asking: “If you indeed need to relist your home at [e−κ̂1B] because the transaction fails, by
what percent would you need to cut the list price relative to your current list price of [B]?”.
Respondents answer this question by supplying a number, which we denote by κ̂2. We define the
respondent’s value of κ in Table VIII as the average of κ̂1 and κ̂2, or, when this average exceeds
30%, we define the respondent’s value of κ as κ̂1. For respondents facing a given distribution, we
assess numeracy by simply asking: “Instead of reducing your list price by 6% if the Mortgaged
Buyer backs out, imagine that you reduce your list price by [10%×B]. How large is this [10%×B]
reduction relative to your current list price of [B]?”.

We construct a numeracy score − or, alternatively, an attentiveness score − for respondent
k as follows. First, we calculate the absolute error for both the question based on q and the
question based on κ. Then, we standardize the error in each question to have a mean of zero and
variance of one. We do so separately for respondents facing a given distribution and those facing
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ambiguity, since the question based on κ differs slightly between the two groups. Then, we take
the average of the standardized error across the two questions for each respondent. This average
defines the numeracy score. Lower values correspond to greater accuracy, which may either be
interpreted as greater numeracy or sharper attention.

Background Questions

The remainder of the survey asks respondents background questions related to their de-
mographic characteristics, risk attitude, and experience in real estate markets. The first four
questions ask the respondent to provide her age, approximate annual household income, state of
residence, and highest level of educational attainment.

In the fifth question, we follow Fuster and Zafar (2021) and assess a respondent’s risk-
aversion by asking respondents: “In financial matters, are you generally a person who is willing
to take risks, or do you try to avoid taking risks?” The set of possible answers are:

1. “I am always willing to take risks.”

2. “I am usually willing to take risks, but I am sometimes reluctant to do so.”

3. “I am usually reluctant to take risks, but I am sometimes willing to do so.”

4. “I am never willing to take risks.”

We code a respondent’s risk-aversion on a scale of one to four based on her chosen response.
Pooling the three waves, the distribution across these four responses is 5.5%, 32.6%, 56.0%, and
5.8%, respectively.

As described in Section III.D.3 we use the respondent’s household income to impute financial
wealth. We do not elicit wealth directly, since doing so would likely result in substantial idiosyn-
cratic variance from measurement error, as calculating one’s wealth is typically more complicated
than doing so for income. Repeating from Section III, we use the SCF data set to first project
the financial wealth-to-housing ratio (w) onto log household income. The estimated mapping is
ŵk = 1.45 log(Incomek) − 14.25, which we calculate for each survey respondent k. Table VIII
reports average seller (i.e., survey respondent) wealth based on this mapping.
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Panel A. Time to Sell

Panel B. Offers per Sold Home

Figure IA.1. Time series of time to sell and number of offers. Data are from the National
Association of Realtors (Cororaton (2022)).
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Figure IA.2. Distribution of the theoretical mortgage-cash premium and cost of failure.
This figure plots the distribution of the theoretical mortgage-cash premium, µ, and seller’s endoge-
nous cost of failure, κ, across the distribution of model parameters. The expressions for µ and κ are
shown in Proposition 1. The distribution of parameters is reported in Table VII. The red vertical
lines in Panel A mark: the theoretical mortgage-cash premium obtained when all parameters equal
their average values, as reported in Table I (Rep Agent), the average theoretical premium across
the parameter distribution, as reported in Figure 3 (Baseline Model), and the baseline estimated
premium, as reported in Table IV (Empirical). The red vertical lines in Panel B have a similar
interpretation in terms of the seller’s cost of failure.
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Figure IA.3. Heterogeneity with quintile discretization. This figure is analogous to Figure
4 when discretizing the distribution of each parameter into quintiles, as opposed to terciles. The
remaining notes are the same as in Figure 4.
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Figure IA.4. Heterogeneity by parameters that work through continuation value. This
figure builds on Figure 4 by plotting the empirical and theoretical premium across the distribution
of parameters that affect the premium through the seller’s continuation value, κ, but do not affect it
directly. The parameters are the monthly Poisson offer arrival rate, which also equals the expected
number of offers (λ), and the ratio of the buyer’s maximally levered liquid assets to housing value
(L). The slopes of the theoretical premium with respect to λ and L are negative. In particular,
the values of the theoretical premium across the three terciles of λ are: 7.44%, 6.65%, and 6.54%,
respectively. The values of the theoretical premium across the three terciles of L are: 6.93%, 6.83%,
and 6.83%, respectively. The remaining notes are the same as in Figure 4.
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Figure IA.5. Representativeness of survey respondents by income. This figure plots the
distribution of survey respondents studied in our main analysis across income bins specified by the
2020 Census. The dark blue bars plot the share of respondents in each bin. The light red bars plot
the share of all U.S. homeowners in each bin. Data are from the survey described in Section VII of
the main article.
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Figure IA.6. Heterogeneity under model with ambiguity-aversion. This figure is analogous
to Figure 4 under an extension of the baseline model that features ambiguity-aversion (i.e., robust
decision-making). As described in Section VII.C.1 of the main article, an ambiguity-averse home
seller who approximates the mortgage transaction failure rate as q̂ acts according to the worst-case
failure rate Q > q̂, where Q solves

R = Q log

(
Q

q̂

)
+ (1−Q) log

(
1−Q

1− q̂

)
,

and R has the interpretation of the seller’s ambiguity-aversion. Specifically, R is the largest permis-
sible entropy between q̂ and Q. Panels A and B plot the theoretical premium for entropy bounds
of R = 0.35 and R = 0.15, respectively. The bottom of the figure notes the average theoretical
premium under each value of R. The remaining notes are the same as in Figure 4.
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Figure IA.7. Geographic representativeness of survey respondents. This figure plots the
share of survey respondents studied in our main analysis from each U.S. state. Warmer colors
correspond to a larger share. Data are from the survey described in Section VII of the main article.
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Figure IA.8. Additional belief distortions and the experimental premium. This figures
summarizes tests of how various belief distortions affect the experimental mortgage-cash premium.
There are three tests, which correspond to three separate regressions of a similar form as equation
(40)

Premiumk = µ0 +∆µBBk +
∑
θ

∑
p

µθ,pTercile(θ̂, p)k + ϵk,

where Bk indicates whether a given belief distortion is relatively strong. The remaining notation
is the same as in Figure 6, except that q is now included in the index of parameters, θ, instead of
writing it explicitly. The left region of the figure tests ambiguity-aversion, and Bk indicates whether
k is told the distribution of q (Bk = 1) versus facing ambiguity (Bk = 0). The central region of the
figure tests present bias, and Bk indicates whether k is told that the all-cash offer will close “in four
weeks” (Bk = 1) versus “any time within two weeks” (Bk = 0). The right region of the figure tests
realization utility, and Bk indicates whether k is given a thought experiment in which the all-cash
offer would result in zero capital gain (Bk = 1) versus a positive gain (Bk = 0). Capital gains are
calculated on a levered basis. The definition of Bk is such that the respective theories predict a
lower experimental mortgage-cash premium when Bk = 1. The gray dashed line marks the average
theoretical premium from Figure 3. The remaining notes are the same as in Figure 6.
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Figure IA.9. Additional heterogeneity in the experimental premium. This figure is
analogous to Figure 6 in terms of the seller’s cost of failure κ and the seller’s financial wealth w.
Additional Details on calculation of the theoretical premium are in the note to Table VIII.
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Figure IA.10. Theoretical premium with probability weighting. This figure plots the
empirical and theoretical premiums across the distribution of the transaction success rate, using
data from the experimental survey and a probability weighting function, Q(q) to calculate the
theoretical premium. The left panel uses the Tversky and Kahneman (1992) weighting function,

Q(q) =
qaTK

[qaTK + (1− q)aTK ]
1

aTK

.

The right panel uses the Prelec (1998) function,

Q(q) = e−aPR[− log(q)]bPR
.

We parameterize aTK = 0.65, aPR = 1.08, and bPR = 0.53 following the literature. Section III.E
provides detail. The blue solid lines plot the estimated coefficients {µq,p} from the regression
equation

Premiumk =
∑
p

µq,pTercile(q̂, p)k +
∑
θ

∑
p

µθ,pTercile(θ̂, p)k + ϵk,

where the notation is the same as in Figure 6. The remaining notes are the same as in Figure 6.
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Table IA.I.

Robustness to Data Set

P-values are in parentheses. This table estimates equation (28) using various data sets, which assesses the external validity of the baseline results. Subscripts
i and t index property and month. All data sets are property-by-month panels that derive from the ZTRAX database. The data set used in columns (1)
and (2) consists of all purchases in the ZTRAX database, after the imposing the basic filters described in Section I.A (ZTRAX Universe). The data set used
in columns (5) and (6) consists of all purchases in a 25% random sample of the ZTRAX Universe, which is the paper’s core data set (Core Data Set). The
data set used in columns (3) and (4) consists of all purchases in the ZTRAX Universe that are also in a zip code-by-month bin that lies in the Core Data
Set. The data set used in columns (7) and (8) consists of all purchases in the CoreLogic database, after the imposing the basic filters described in Section
I.A (CoreLogic). The CoreLogic database relies on the same underlying public records as the ZTrans component of the ZTRAX database. The hedonic
characteristics used in column (8) is an indicator for whether the property is a detached single-family home, as we describe in Section I.C. Columns (2), (4),
(6), and (8) include a property fixed effect, while the remaining columns do not. The remaining notes are the same as in Table IV.

Outcome: log (Pricei,t)

(1) (2) (3) (4) (5) (6) (7) (8)

Mortgagedi,t 0.186 0.181 0.126 0.126 0.161 0.117 0.209 0.122
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Data Set ZTRAX Universe
ZTRAX Universe,

Core Data Set CoreLogic
Core Zip-Months

Zip Code-Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Hedonic-Month FE Yes Yes Yes Yes Yes Yes No Yes
Property FE No Yes No Yes No Yes No Yes
R2 0.513 0.757 0.566 0.812 0.582 0.907 0.652 0.951
Number of Observations 11,367,195 7,869,239 3,911,805 2,847,146 2,254,389 426,256 103,070,160 62,547,998
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Table IA.II.

Robustness to Controlling for Buyer and Seller Characteristics

P-values are in parentheses. This table estimates a variant of equation (28) that controls for characteristics of the
seller and buyer, which accounts for the possibility that parties in all-cash transactions hold lower private valuations
than parties in mortgaged transactions. Subscripts i and t index property and month. Column (1) controls for seller
characteristics: High Seller LTVi,t indicates whether the seller’s LTV ratio is above 50%, where the numerator is
imputed using a straight-line amortization according to loan term and the denominator is imputed using the median
sales price in the buyer’s zip code, Same-Month Purchasei,t indicates whether the seller purchases another home in
the same month, and Foreign Selleri,t indicates whether the seller has a foreign address. Column (2) controls for
buyer characteristics: Flipi,t indicates whether the property is subsequently sold within 12 months, Foreign Buyeri,t
indicates whether the buyer has a foreign address, Same-County Buyeri,t indicates whether the buyer’s address is
in the same county as the property, and Institutional Buyeri,t indicates whether the buyer is an institution and the
property is not to be owner-occupied. Column (3) for Cash Propensityb(i,t), defined as an indicator for whether
the buyer of property i in month t, denoted b(i, t), buys another home all-cash over our sample period. With the
exception of Mortgagedi,t, all indicator variables are assigned a value of zero when the raw variable is unobserved.
The remaining notes are the same as in Table IV.

Outcome: log (Pricei,t)

(1) (2) (3)

Mortgagedi,t 0.113 0.100 0.129

(0.000) (0.000) (0.000)

Seller Characteristics:

High Seller LTVi,t -0.036 -0.049 -0.047

(0.000) (0.000) (0.000)
Same-Month Purchasei,t 0.048 0.048 0.056

(0.000) (0.000) (0.000)
Foreign Selleri,t -0.115 -0.125 -0.118

(0.255) (0.213) (0.236)

Buyer Characteristics:

Flipi,t -0.049 -0.062

(0.000) (0.000)
Foreign Buyeri,t 0.027 0.043

(0.635) (0.442)
Same-County Buyeri,t -0.047 -0.039

(0.002) (0.009)
Institutional Buyeri,t 0.204 0.188

(0.096) (0.117)
Cash Propensityb(i,t) 0.101

(0.000)

Zip Code-Month FE Yes Yes Yes
Hedonic-Month FE Yes Yes Yes
Property FE Yes Yes Yes
R2 0.907 0.907 0.908
Number of Observations 426,256 426,256 426,256
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Table IA.III.

Robustness to Regulatory Appraisal Discontinuity as an Instrumental Variable

P-values are in parentheses. This table estimates equation (28) after instrumenting forMortgagedi,t using an indicator
for whether the home is predicted to be sold above the $250,000 floor at which federal regulators require bank-
originated loans to come with an appraisal. The predicted price equals

Predicted Pricei,t = Last Pricei,t ×
FHFA Indexz(i),t

Last FHFA Indexz(i),t
,

where Last Pricei,t denotes the price at which the home sold for in its most recent transaction before t,
FHFA Indexi,t denotes the FHFA All-Transaction Price Index in the associated zip code z(i) and month t, and
Last FHFA Indexz(i),t denotes the analogous index in the month of the most recent transaction. The main instru-
ment is Appraisal Requiredi,t, which is an indicator for whether Predicted Pricei,t is greater than or equal to $250,000.
Column (1) validates the existence of a first stage by regressing Mortgagedi,t on Appraisal Requiredi,t. Columns (2) to
(4) report the second-stage results. To ensure the strength of the instrument set, the first-stage regression equation
is

Mortgagedi,t =
∑
t

ψt

(
Appraisal Requiredi,t ×Xi,t

)
+ χ̃ log (Predicted Pricei,t) + ζ̃z(i) + τ̃t + ϵ̃i,t,

where Xi,t consists of the hedonic characteristics in Table IV and a vector of quarter fixed effects, which are included
as interactions to improve the strength of the first stage (e.g., Murray (2006)). The second-stage regression equation
is

log (Pricei,t) = µ ̂Mortgagedi,t + χ log (Predicted Pricei,t) + ζz(i) + τt + ϵi,t.

Observations in the second stage are restricted to those with a predicted price that lies within a ±5%, ±10%, or
±15% bandwidth of the $250,000 cutoff. The table drops observations for which the predicted price differs from the
actual price by more than the longest bandwidth length (35%). The remaining notes are the same as in Table IV.

Outcome: Mortgagedi,t log (Pricei,t) log (Pricei,t) log (Pricei,t)

(1) (2) (3) (4)

Mortgagedi,t 0.136 0.137 0.142

(0.000) (0.000) (0.000)
Appraisal Requiredi,t -0.005

(0.043)
log (Predicted Pricei,t) 0.009 0.872 0.855 0.858

(0.000) (0.000) (0.000) (0.000)

Estimator OLS 2SLS 2SLS 2SLS

Bandwidth around Cutoff 5% 10% 15%

Zip Code FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
First Stage F-Statistic 7.702 15.090 22.632
J-Statistic (p-value) 0.146 0.065 0.187
Number of Observations 250,924 7,207 14,575 22,021
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Table IA.IV.

Robustness to Using Seller Cash Preference as an Instrumental Variable

P-values are in parentheses. This table estimates equation (28) after instrumenting for the method of financing (i.e.,
Mortgagedi,t) using the seller’s propensity to sell to cash buyers in other purchases. Subscripts i and t index property
and month. The instrument Cash Shares(i,t) is the share of homes sold to cash buyers over our sample period by the
seller of property i in month t, denoted s(i, t), after excluding the sale in question. Sellers who appear only once in
the data are assigned a value of zero. Column (1) regresses Mortgagedi,t on Cash Shares(i,t) as a first stage. Column
(2) estimates a similar specification as in column (1) of Table IV after controlling separately for Cash Shares(i,t),
which assesses whether this instrument affects log (Pricei,t) only through its effect on through Mortgagedi,t, that is,
the exclusion restriction. The regression equation in columns (3) and (4) is of the same form as in column (1) of
Table IV, but it is estimated through 2SLS using Cash Shares(i,t) as an instrument for Mortgagedi,t. Seller controls
are the same as in column (1) of Table IA.II. Standard errors are clustered by seller. The remaining notes are the
same as in Table IV.

Outcome: Mortgagedi,t log (Pricei,t) log (Pricei,t) log (Pricei,t)

(1) (2) (3) (4)

Mortgagedi,t 0.116 0.156 0.139

(0.000) (0.006) (0.017)
Cash Shares(i,t) -0.058 0.009

(0.000) (0.443)

Estimator OLS OLS 2SLS 2SLS

Zip Code-Month FE Yes Yes Yes Yes
Hedonic-Month FE Yes Yes Yes Yes
Property FE No Yes Yes Yes
Seller Controls No No No Yes
First Stage F-Statistic 313.702 300.770
Number of Observations 425,398 425,395 425,395 425,395
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Table IA.V.

Additional Calculations of the Theoretical Premium

This table summarizes the theoretical mortgage-cash premium under model extensions. The first row reports the
baseline value, for reference. The other extensions are as in Figure 3. The extensions by the borrower’s loan cost
adjust the borrower’s loan cost as a share of par, D, and the remaining aspects of the calculation are the same as in
the first row. The feasible parameter space is held fixed to account for the possibility that changes in D expand the
set of feasible parameters. Dropping this restriction results in a calculated premium between 7.0% and 8.1%. The
remaining notes are the same as in Figure 3.

Specification Mortgage-Cash Premium (µ)

Baseline: 0.069

By Nonfinancial Contingency:

Home Sale (h = 0.07, qc = 0) 0.078

Home Sale and Inspection (h = 0.07, qc = 0.01) 0.079

By Risk Aversion:

γ = 0 0.019

γ = 5 0.069

γ = 12 0.081

Panel D. By Borrower Loan Cost:

D = 0.2 0.066

D = 0.4 0.066

D = 0.6 0.066

D = 0.8 0.067

D = 1.0 0.069
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Table IA.VI.

Heterogeneity in the Premium. Coefficient Estimates.

P-values are in parentheses. This table reports the coefficient estimates for the regressions in Figure 4. For reference,
column (1) re-estimates the baseline regression equation (28) on the subsample with enough information to test for
heterogeneity. Column (2) estimates equation (39), which performs the main test of heterogeneity. Column (4) contains
the analogous projection across the model’s parameter space, described in the note to Figure 4. Column (3) reports
the baseline mortgage-cash premium already shown in Figure 3, and it is analogous to column (1). The remaining
notes are the same as in Figure 4.

Outcome: log (Pricei,t)

Data Model
(1) (2) (3) (4)

Mortgagedi,t 0.107 0.191 0.069 0.109

(0.000) (0.000)

Mortgagedi,t × Tercile(q̂, 2)z,t 0.067 0.006

(0.001)
Mortgagedi,t × Tercile(q̂, 3)z,t 0.122 0.024

(0.000)
Mortgagedi,t × Tercile(ω̂, 2)z,t -0.007 -0.005

(0.774)
Mortgagedi,t × Tercile(ω̂, 3)z,t -0.076 -0.077

(0.024)

Mortgagedi,t × Tercile(λ̂, 2)z,t -0.020 -0.008

(0.382)

Mortgagedi,t × Tercile(λ̂, 3)z,t -0.056 -0.009

(0.042)

Mortgagedi,t × Tercile(L̂, 2)z,t -0.027 -0.001

(0.191)

Mortgagedi,t × Tercile(L̂, 3)z,t -0.051 -0.001

(0.084)

Zip Code-Month FE Yes Yes
Hedonic-Month FE Yes Yes
Property FE Yes Yes
R2 0.880 0.880
Number of Observations 267,583 267,583
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Table IA.VII.

Robustness to Controlling for Listing Characteristics

P-values are in parentheses. This table estimates a variant of equation (28) using the California Association of Realtors
(CAR) data set, which assesses the robustness of the baseline results to controlling for characteristics of the listing.
Subscripts h and t index home sale and month. The main variables are defined as follows: Sale Priceh,t is the sale price,
Mortgagedh,t indicates whether the home was sold to a buyer with an “all cash offer,” the “ability to close fastest,” or
an “offer without contingencies”, List Priceh,t is the price at which the home was initially listed, Days on Marketh,t
is the number of days from initial listing to sale, and First Sales(h,t) indicates whether the seller, denoted s(h, t), is
selling a home for the first time. All specifications include county fixed effects, include month fixed effects, control
for First Sales(h,t), and control the following additional seller and hedonic variables: the seller’s age, an indicator for
whether the seller is female, an indicator for whether the seller is black or Hispanic, an indicator for whether the seller
is moving to another home at the same time, an indicator for whether the property is a detached single-family home,
and the property’s age, log square feet, and number of bedrooms. Columns (3) and (4) are analogous to Table IA.XII
in that they interact the method of financing with a measure of the seller’s experience, a proxy for less uncertainty.
Standard errors are heteroskedasticity robust. Data are from the CAR data set. Details on this data set are in Section
I.

Outcome: log (Sale Priceh,t)

(1) (2) (3) (4)

Mortgagedh,t 0.171 0.143 -0.005 0.068
(0.062) (0.029) (0.963) (0.419)

Mortgagedh,t × First Sales(h,t) 0.381 0.163
(0.042) (0.255)

Other Variables:

log (List Priceh,t) 0.450 0.447
(0.000) (0.000)

log
(
Days on Marketh,t

)
0.053 0.054
(0.027) (0.025)

Hedonic Controls Yes Yes Yes Yes
Seller Controls Yes Yes Yes Yes
County FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
R2 0.313 0.631 0.320 0.633
Number of Observations 570 570 570 570
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Table IA.VIII.

Robustness to Semi-Structural Estimator from Bajari et al. (2012)

P-values are in parentheses. This table estimates equation (28) using the semi-structural estimator from Bajari et al.
(2012). Subscripts i and t index property and month. All of the variables have been residualized against the indicated
set of fixed effects, so that these fixed effects are not included in the regression to reduce the number of incidental
parameters. Column (1) estimates equation (28) using OLS. Column (2) estimates equation (28) using the Bajari et al.
(2012) estimator. Explicitly, column (2) shows the estimated value of µ from the following second-stage regression
equation,

log (Pricei,t+n) = µ ̂Mortgagedi,t+n + α+ ϱt (n)
[
log (Pricei,t)− µMortgagedi,t − α

]
+ ωi,t+n,

where the first-stage regression equation is

̂Mortgagedi,t+n = φ̄+ φM
t (n)Mortgagedi,t + φP

t (n) log (Pricei,t) + νi,t+n,

and where n denotes holding period, and ϱt (n) , φ
M
t (n) , and φP

t (n) are vectors of holding period-year fixed effects.
Holding periods are rounded to the nearest year. The sample includes all properties that transacted at least twice
over the sample period, and the smaller sample size relative to Table IV reflects how Pricei,t+n is unobserved for a
property’s final transaction in the sample. Standard errors are clustered by property in column (1) and bootstrapped
in column (2). The remaining notes are the same as in Table IV.

Outcome: log (Pricei,t)

(1) (2)

Mortgagedi,t 0.109 0.149
(0.000) (0.000)

Estimator OLS Semi-Structural

Zip Code-Month FE Yes Yes
Hedonic-Month FE Yes Yes
Property FE Yes Yes
Number of Observations 225,897 225,897
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Table IA.IX.

Robustness to Weighting by Representativeness

P-values are in parentheses. This table estimates equation (28) after weighting repeat sales by their representativeness,
which assesses the external validity of the baseline results. Subscripts i and t index property and month. Column
(1) estimates a logistic regression in which the outcome variable is an indicator for whether the transaction is in
the baseline ZTRAX data set, denoted Baselinei,t, and the independent variables are observed characteristics of the
transaction: Agei through Cash Propensityb(i,t) are described in the note to Table II, Sales-per-Propertyz(i) is the
total number of home sales in the raw ZTRAX data set over 1980 to 2017 in property i’s zip code, denoted z(i),
divided by the total number of properties in z(i) in the raw ZTRAX data set, and Period 1996 to 2004t through
Period 2010 to 2017t indicate whether month t lies in the associated time period from Table IV, where 1980-1996
constitutes the reference period. The values shown in column (1) are the coefficient estimates, not the marginal
effects, and the p-values associated with each coefficient are not shown to conserve space. Column (2) estimates
equation (28) through WLS, where transactions are weighted by the reciprocal probability of appearing in the baseline
sample, based on the predictions from column (1). The remaining notes are the same as in Table IV.

Outcome: Baselinei,t log (Pricei,t)

(1) (2)

Mortgagedi,t 0.103

(0.000)

Characteristics:

Agei -0.027
Roomsi 0.103
Bathroomsi -0.144
Storiesi 0.083
Air Conditioningi -1.468
Detachedi 0.072
High Seller LTVi,t 2.117

Same-Month Purchasei,t 0.136
Foreign Selleri,t -0.794

Flipi,t 1.335

Foreign Buyeri,t -0.612

Same-County Buyeri,t -0.020

Institutional Buyeri,t -1.209

Cash Propensityb(i,t) 0.359

Sales-per-Propertyz(i) -1.209

Period 1996 to 2004t 0.362
Period 2005 to 2010t 0.320
Period 2010 to 2017t -0.045

Estimator Logistic WLS

Zip Code-Month FE No Yes
Hedonic-Month FE No Yes
Property FE No Yes
R2 0.943
Number of Observations 2,709,165 426,256
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Table IA.X.

Consistency with Contemporaneous Estimates in the Literature

P-values are in parentheses. This table estimates a variant of (28), which assesses the consistency of the baseline results
with existing estimates related to the mortgage-cash premium in the literature. Subscripts i and t index property and
month. Each column interacts Mortgagedi,t with an indicator for whether the transaction falls within the indicated
subsample: HH refers to the subsample of purchases in the Los Angeles MSA between 1999 to 2017, corresponding to
the sample studied in Han and Hong (2023), BMPS refers to the subsample of purchases in the Phoenix, Las Vegas,
Dallas, and Orlando MSAs and in Gwinnet County, GA between 2013 to 2018, corresponding to the sample studied
in Buchak et al. (2020). The lower panel summarizes the share of purchases that are cash-financed in each subsample.
The mortgage-cash premium estimated by Han and Hong (2023) is 5%. The mortgage-cash premium implied by the
estimates in Buchak et al. (2020) is between 4% and 21%, depending on iBuyers’ share of cash-financed purchases
within the subsample. The remaining notes are the same as in Table IV.

Outcome: log (Pricei,t)

(1) (2)

Mortgagedi,t 0.121 0.099
(0.000) (0.000)

Mortgagedi,t × Subsamplei,t -0.047 -0.149
(0.000) (0.509)

Subsample HH BMPS

Subsample Cash Share 0.304 0.829
Zip Code-Month FE Yes Yes
R2 0.714 0.714
Number of Observations 426,256 426,256
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Table IA.XI.

Robustness to Nonparametric Matching Estimator

P-values are in parentheses. This table estimates the mortgage-cash premium through nonparametric matching, which
assesses whether the results are robust to using a nonlinear pricing kernel and to limiting the comparison between
highly similar purchases. Subscripts i and t index property and month. Each mortgage-financed purchase is matched
to a cash-financed purchase within the same zip code and year based on the hedonic characteristics in Table IV and
seller characteristics in Table IA.IV using a logistic propensity score. Explicitly, we predict whether a purchase is
cash-financed by estimating a logistic regression equation within each zip code-by-year bin, taking the characteristics
Agei through Foreign Selleri,t as explanatory variables. Then, we obtain the logistic propensity score as the sum of
the predicted probability and the bin’s identification code scaled by 100, where the scaling ensures that purchases are
matched within the same zip code and year. Finally, each mortgage-financed purchase is matched to one cash-financed
purchase, with replacement, using the calculated propensity score. The matching is based on a nearest-neighbor
algorithm using the package developed by Leuven and Sianesi (2003). Columns (1) and (2) summarize the mean of
the indicated variable across mortgage-financed and matched cash-financed purchases. Column (3) summarizes the
mean difference across matches and tests for its statistical significance. Standard errors are as in Abadie and Imbens
(2006). The remaining notes are the same as in Table IV.

Mean of Matched Purchases

Mortgaged Matched Cash Difference

(1) (2) (3)

log (Pricei,t) 12.298 12.129 0.169
(0.000)

Hedonic Characteristics:

Agei 28.327 28.320 0.007
(0.772)

Roomsi 1.308 1.310 0.002
(0.675)

Bathroomsi 0.178 0.179 0.001
(0.815)

Storiesi 1.096 1.095 0.001
(0.061)

Air Conditioningi 0.193 0.193 0.000
(0.941)

Detachedi 0.185 0.182 0.003
(0.017)

Seller Characteristics:

High Seller LTVi,t 0.213 0.208 0.005

(0.002)
Same-Month Purchasei,t 0.004 0.005 0.001

(0.017)
Foreign Selleri,t 0.000 0.000 0.000

(0.285)

Matched on Zip Code Yes Yes Yes
Matched on Year Yes Yes Yes
Number of Observations 140,844 140,844 140,844
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Table IA.XII.

Sale Experience as a Proxy for Less Uncertainty

P-values are in parentheses. This table assesses the relationship between the mortgage-cash premium and the seller’s
experience, a proxy for less uncertainty about mortgaged transactions. Subscripts i, and t index property and month.
The data set is the baseline ZTRAX data set. The table estimates a variant of the repeat sales and hedonic pricing
equation (28) that interacts Mortgagedi,t with the number of sales made by the seller of property i in month t,
denoted s(i, t), as of month t in the baseline ZTRAX data set. The remaining notes are the same as in Table IV.

Outcome: log (Pricei,t)

(1) (2)

Mortgagedi,t × Number of Saless(i,t) -0.005 -0.004
(0.001) (0.005)

Other Variables:

Mortgagedi,t 0.149 0.143
(0.000) (0.000)

Number of Saless(i,t) -0.020 -0.020
(0.000) (0.000)

Data Set ZTRAX

Seller Controls No Yes
Zip Code-Month FE Yes Yes
Hedonic-Month FE Yes Yes
Property FE Yes Yes
R2 0.907 0.907
Number of Observations 426,256 426,256
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Table IA.XIII

Motivation for Preferring All-Cash Offers for Survey Respondents

This table summarizes the motivation for preferring all-cash offers from an experimental survey of U.S. homeowners. Subscript k indexes survey respondent.
The upper panel summarizes responses to a question of why a respondent would prefer an offer from an all-cash buyer relative to a mortgage-financed buyer
offering the same price. Respondents are restricted to choosing their most important motivation, and so the shares sum to one across motivations. Column
(1) summarizes respondents who are told the probability of transaction failure and the subsequent price cut (Known Failure Rate). Column (2) summarizes
respondents who are not told these parameters (Ambiguous Failure Rate). The sample consists of respondents in the survey’s second and third waves, in which
these questions are asked. Respondents are shown each possible answer in a random order, and so the ordering in this table does not correspond to the actual
ordering. The remaining notes are the same as in Table VIII.

Share of Respondents

Known Ambiguous
Failure Rate Failure Rate

(1) (2)

“Why would you prefer to sell your home to the Cash Buyer?”:

“If the Mortgaged Buyer backs out and I relist at a lower price, I may
0.118 0.260

not have enough money to meet my mortgage and moving expenses.”

“Even if the Mortgaged Buyer would never back out, the Cash Buyer
0.618 0.732

would close more quickly and end the stressful process of selling my home.”

“If the Mortgaged Buyer backs out and I relist at a lower price, I will
0.223 0.129

sell the home at a loss relative to my target price.”

“Other (please describe)” 0.039 0.048
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