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Abstract

Control of crop pests by shifting host plant availability and natural enemy

activity at landscape scales has great potential to enhance the sustainability

of agriculture. However, mainstreaming natural pest control requires

improved understanding of how its benefits can be realized across a variety

of agroecological contexts. Empirical studies suggest significant but highly

variable responses of natural pest control to land-use change. Current

ecological models are either too specific to provide insight across

agroecosystems or too generic to guide management with actionable pre-

dictions. We suggest obtaining the full benefit of available empirical,
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theoretical, and methodological knowledge by combining trait-mediated

understanding from correlative studies with the explicit representation of

causal relationships achieved by mechanistic modeling. To link these

frameworks, we adapt the concept of archetypes, or context-specific gener-

alizations, from sustainability science. Similar responses of natural pest

control to land-use gradients across cases that share key attributes, such as

functional traits of focal organisms, indicate general processes that drive

system behavior in a context-sensitive manner. Based on such observations

of natural pest control, a systematic definition of archetypes can provide

the basis for mechanistic models of intermediate generality that cover all

major agroecosystems worldwide. Example applications demonstrate the

potential for upscaling understanding and improving predictions of natural

pest control, based on knowledge transfer and scientific synthesis.

A broader application of this mechanistic archetype approach promises to

enhance ecology’s contribution to natural resource management across

diverse regions and social-ecological contexts.

KEYWORD S
archetype, conservation biological control, crop, ecological model, landscape, land use,
natural enemy, natural pest control, pest, upscale

INTRODUCTION

Worldwide, sustainable agriculture relies on integrated
pest management principles to reduce crop losses to pests
through a combination of ecological understanding
and technological advances (Oerke, 2006). Less sustain-
able agricultural practices, such as extensive pesticide use
(Lechenet et al., 2017), can be complemented or even
replaced by natural control of arthropod pests (Holland
et al., 2017; Khan et al., 2014; Tschumi et al., 2015). Natural
pest control in a crop field depends on the activity of
natural enemies (e.g., predators and parasitoids) and the
availability of host plants for the pests (Pedigo & Rice,
2014). Both factors are controlled not only by crop manage-
ment in the field but also by land-use patterns in the
landscape surrounding the crop field (Landis et al., 2000;
Tscharntke et al., 2005). In theory, landscapes can thus
be designed to enhance natural pest control (Bianchi
et al., 2006; Chaplin-Kramer et al., 2011). In practice, how-
ever, pest suppression and crop yields show inconsistent
responses to changes in landscape composition and con-
figuration across cases (Karp et al., 2018), with effects
often being modified by diverse life histories, ecological
settings, and management regimes (Dominik et al., 2018;
Tscharntke et al., 2016).

Mechanistic models, that is, models of explicit causa-
tive agents, can provide understanding and predictions of
ecological responses to environmental change when such

responses are difficult to anticipate based on observed
correlation alone (Gotelli et al., 2009; Seppelt et al.,
2013). The application of classical biological control has
benefited from predictions of mechanistic ecological
models (Palladino, 2013). In contrast, the complexity and
context sensitivity of natural pest control (Tscharntke
et al., 2016) exacerbate fundamental modeling trade-offs
(Levins, 1966). Modelers have had to either sacrifice
generality by realistically representing narrowly defined
systems or sacrifice realism through general models of
largely theoretical systems (Alexandridis et al., 2021).
Consequently, existing models do not provide realistic
predictions of natural pest control at landscape to global
scales, where multiple crop–pest–enemy systems are
involved (Seppelt et al., 2020).

Sustainability science faces similar challenges of sys-
tems complexity, heterogeneity, and context dependence
(Cox, 2014; Magliocca et al., 2018; Verburg et al., 2015).
Researchers are increasingly addressing these challenges
using archetype analysis to identify recurrent patterns
among causal relationships that shape sustainability
across cases (Eisenack et al., 2019). Recurrent patterns
are then translated into archetypes, that is, “context-
sensitive, generalized models of sustainability problems,
dynamics or strategies with case-level empirical validity”
(Oberlack et al., 2019). For instance, Sietz et al. (2017)
used similarities in social-ecological constraints to food
security in the drylands of sub-Saharan Africa to cluster a
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diverse set of farming systems into groups, or archetypes,
of vulnerability. They thus found that most of the studied
area benefits from relatively good governance but suffers
from both high remoteness and extremely dry and
resource-constrained conditions. In systems with better
agricultural potential, food security is mostly threatened
by high erosion sensitivity and relatively severe under-
nourishment. Shared determinants of vulnerability to
food insecurity allow for targeted, evidence-based promo-
tion of strategies, such as sustainable agricultural intensi-
fication and the transfer of knowledge among farming
systems grouped into the same archetype. Recurrent pat-
terns in causal relationships can be identified in complex
spatial (e.g., Messerli et al., 2016) and temporal phenom-
ena (e.g., Levers et al., 2018). We suggest the use of an
archetype approach to identify similar patterns in natural
pest control, underpinning model development from
landscape to global scales.

Using archetypes as context-specific representations
of general mechanisms behind natural pest control can
capture essential features of agroecosystem functioning,
such as feedbacks between pesticide use and pest
suppression (Normile, 2013) or the nonlinear effects of
landscape complexity on biodiversity (Concepci�on et al.,
2012). Defining a reasonable number of archetypes can
strike the missing balance between model generality and
realism (Alexandridis et al., 2021) and contribute to the
resolution of inconsistencies in natural pest control
responses to agricultural management (Karp et al., 2018).
Wider adoption of a mechanistic archetype approach can
reduce the reliance of sustainability science on event-
oriented phenomenological models (Meyfroidt, 2016) of
questionable causality (Oberlack et al., 2019) that ignore
feedbacks and are, thus, associated with high policy resis-
tance (Sterman, 2010). Moreover, predictions derived from
underlying mechanisms should be more robust to chang-
ing environmental conditions than purely correlation-
based predictions (Cuddington et al., 2013).

In the following three sections, we first describe the
general properties of an archetype modeling approach
to the representation of geographically distant natural
pest control systems that share key characteristics.
Second, we demonstrate a proof of concept for such an
approach by initially deriving two crop–pest–enemy arche-
types from general ecological theory and available knowl-
edge of American and African agroecosystems and then
testing the ability of the two archetypes to reproduce
observed responses of natural pest control to changes in
landscape composition and configuration across Europe.
Finally, we draw conclusions to leverage the approach for
the purpose of upscaling understanding and improving
prediction in agroecosystems worldwide.

STRATEGY FOR DEFINING AND
MODELING ARCHETYPES OF
NATURAL PEST CONTROL

From traits to archetypes

The definition of archetypes for heterogeneous real-world
systems requires that multiple cases of the studied phe-
nomenon show similar responses to change and that
these cases share key attributes (Oberlack et al., 2019).
Natural pest control may appear to respond idiosyncrati-
cally to land-use gradients, but the life-history traits of
pests or their enemies could mediate their responses to
landscape characteristics in a predictable way (Segoli &
Rosenheim, 2012). For instance, organisms in different
systems often show similar responses to agricultural
land-use change, when grouped according to their die-
tary, dispersal, and overwintering traits (Martin et al.,
2019). Similar to life-history traits, agronomic character-
istics, such as spatial and temporal in-field crop diversity,
are also expected to mediate natural pest control responses
consistently across systems owing to converging crops and
management practices worldwide (Malek & Verburg, 2020;
Woodward & Bohan, 2013). The archetype approach can
ultimately incorporate most agroecosystem properties
linked to natural pest control, including climate, biogeogra-
phy, and baseline levels of landscape characteristics subject
to land-use change.

Trait-mediated similarities in natural pest control
responses to land-use gradients indicate the potential to
group diverse agroecosystem components into arche-
types that represent important processes behind observed
patterns. Ecological theory enables such a mechanistic
aggregation by linking mediating traits to underlying pro-
cesses (Lavorel & Garnier, 2002; Lavorel & Grigulis, 2012;
Pontarp et al., 2019). Specific values of functional (e.g., die-
tary, dispersal or overwintering) traits can thus describe
context-specific roles of pests and natural enemies in gen-
eral processes, such as reproduction, mortality, dispersal,
predation, herbivory, and environmental filtering driven
by agricultural land use (Alexandridis et al., 2021).
Trait-based conceptual models of each archetype would
represent the most salient roles of pests and natural ene-
mies within these processes in the form of system compo-
nents and their relationships. The level at which systems
are aggregated into archetypes should allow each set of
components and relationships to represent multiple sys-
tems and, at the same time, generate predictions that
agree with system-specific observations. Inclusion of
agroecosystem properties other than biological traits in
archetype definition will potentially improve a model’s
pertinence and predictive ability.
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A robust modeling framework

Reaching archetypes’ full potential for improved under-
standing and prediction requires the use of rigorous
techniques to translate trait-based archetype components
and their relationships into model variables and their
interactions (Ings et al., 2009; Zakharova et al., 2019).
The resulting mechanistic models can leverage established
knowledge from ecological theory to produce outputs of
interest (e.g., pest population levels or crop yields) from
existing or anticipated system inputs (e.g., changing land-
scape proportion of noncrop habitat or crop rotations).
The predictions of archetype models can be compared
with observed responses of natural pest control to land-use
gradients across cases that correspond to each archetype.
Agreement between predictions and observations would
verify the archetypes’ ecological basis (Overmars
et al., 2007). Further model analysis can improve our
understanding of the respective agroecosystems and indi-
cate priority areas for future research (Pontarp
et al., 2019).

A major challenge for model development is the
typically high level of uncertainty associated with system
structure, technical formulation, and model para-
meterization. All of these sources of uncertainty can be
constrained by limiting the complexity of ecological
models (Cuddington et al., 2013), with the added benefit
of enhancing model transferability between systems
(Yates et al., 2018). The first source of uncertainty, related
to system structure, can be addressed by using allometric
relationships to predict trophic interactions (Curtsdotter
et al., 2019). The well-established use of body size can be
complemented with other biological traits (Wood et al.,
2015; Woodward & Bohan, 2013) to compensate for
losses in predictive power as trophic complexity increases
(Curtsdotter et al., 2019; Jonsson et al., 2018). The second
source of uncertainty, regarding model formulation, can
be tackled through ensemble forecasting by multiple
models (Araújo & New, 2007). Alternatively, one may
only consider “robust theorems” (Levins, 1966), that is,
shared predictions of models developed independently
but conditioned on the assumptions that define each
archetype. We adopt the latter approach in selected
examples (see below) because it offers more flexibility
with respect to employed techniques, encompassing qual-
itative and quantitative models. Qualitative mathematical
modeling requires no parameter estimation, thereby
circumventing the third source of uncertainty, associated
with parameterization, which is prominent in quantita-
tive modeling (Levins, 1998). Therefore, we indepen-
dently develop qualitative and quantitative models for
example archetypes but acknowledge that these represent
just two of the many possible models for each.

Applying the archetype approach

The development of mechanistic models for each arche-
type, as illustrated in the following section, is an iterative
process that can be divided into four main stages
(Sterman, 2010). (1) The process starts with the articula-
tion of the problems that need to be addressed by an
application of the archetype approach. Such problems
typically arise from an inability of existing models to
explain observations. Problem description indicates the
spatiotemporal scales of the focal system and system
components. (2) Then hypotheses are combined into a
mechanistic archetype, with the goal of explaining obser-
vations across systems. Here, previously identified system
components are linked through causal relationships
based on available mechanistic understanding. (3) The
compiled hypotheses are then translated into system vari-
ables and their interactions, within models that aim to
reproduce observed system patterns. The characteristics
of these model elements can vary depending on the
adopted modeling technique. (4) Finally, the models’ pre-
dictive ability is tested against observations in order to
evaluate the underlying hypotheses and improve our
understanding of the system. These observations should
be as independent as possible from sources of mechanis-
tic understanding used in model development in order to
test the applicability of archetype models across systems.

APPLYING THE ARCHETYPE
APPROACH—A WORKED EXAMPLE

The problem

Individual components of natural pest control, and their
responses to landscape-scale land use, are often studied
in isolation, impeding our understanding of observed pat-
terns and reliable prediction. A recent synthesis of natu-
ral pest control observations across Europe (Martin
et al., 2019) indicates significant, trait-mediated responses
of involved organisms to changes in landscape composi-
tion and configuration. On the one hand, natural ene-
mies that are generalists in their feeding behavior and
move actively by flight or on the ground between crop
and noncrop habitats increase in abundance in response
to increasing noncrop habitat proportion and field edge
density (Table 1). This observation is consistent with our
understanding of the facilitative role of landscape com-
plexity for natural enemy dispersal and resource provi-
sion (Tscharntke et al., 2012). In contrast, dietary
specialist enemies that may disperse passively by wind
tend to decrease in abundance or show no response to
increasing landscape complexity. Therefore, dietary and
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dispersal traits appear to interactively dictate the
responses of natural enemies to land-use gradients, but
the underlying mechanisms are not clear.

Martin et al. (2019) further observed distinct responses
of pest abundances to land-use gradients, depending on the
explanatory variable and the pests’ overwintering strategy,
that is, in crop fields (resident) or noncrop habitats (tran-
sient). Only a higher density of field edges in the landscape,
but not a higher proportion of noncrop habitat, leads to a
lower abundance of transient pests (Table 1). Resident pests,
in contrast, do not respond to either land-use variable. The
need of transient pests to move between crop and noncrop
habitats appears to mediate their distinct responses
(Tscharntke et al., 2012). However, the lack of impact by
noncrop habitat amount cannot be explained by these traits
alone and may be related to other traits, such as invasive sta-
tus (Tamburini et al., 2020). Elucidating differences in pest
and natural enemy responses and assessing the degree to
which differences are influenced by and feedback to other
system components, including crop yields, requires a system
perspective that encompasses multiple trophic levels.

Combining hypotheses into archetypes

Among the many properties of complex agroecosystems
that can shape natural pest control around the world, we

here focus on a few key life-history traits. In the follow-
ing examples, we present two archetypes that incorporate
divergent natural enemy dietary and dispersal behaviors
and that differ in pest overwintering strategies, along
with system elements related to each strategy. Besides
facilitating the following illustration of archetype defini-
tion and model development, this choice also assesses the
ability of the archetype approach to parsimoniously
reproduce markedly different pest and natural enemy
responses to change, through simple, minimally different
models.

Mechanistic understanding of natural pest control in
several American and African agroecosystems was elicited
from experts through participatory modeling techniques
(Fulton et al., 2015) toward the formulation of four concep-
tual models (Figure 1a–d). These detailed models were then
simplified into two archetypes of crop–pest–enemy interac-
tions (Figure 1e,f). Simplification was achieved by only
retaining system components whose traits appeared to
mediate natural pest control responses to land-use gradients
in Europe (Martin et al., 2019) (Figure 1g). We then
modeled theory-anticipated functional roles of organisms
with specific values of these traits. We focused on these
traits and system components in order to capture important
mechanisms that shape natural pest control across systems
and to allow comparison of archetype model predictions
with observations of pests and natural enemies with the
respective trait values from geographically distant systems
(Table 1). These objectives are further facilitated by using
trait values that are well represented in empirical observa-
tions of natural pest control, while still defining archetypes
that are general enough to allow the use of ecological the-
ory and available expert knowledge.

The two conceptual models (Figure 1e,f) represent
resident pest (termed A1) and transient pest (termed A2)
archetypes. A resident pest (A1) stays in crop fields
throughout the year, whereas a transient pest (A2) moves
to noncrop habitats when crop resources are unavailable
or noncrop host plants are required (indicated as
“overwintering,” even for systems that lack winter per
se). Pest populations grow by feeding on a specific crop
without density dependence, that is, reflecting the rela-
tive abundance of the crop. In-field agricultural manage-
ment practices, such as intercropping or cover cropping,
are not considered. Both archetypes include natural ene-
mies that specialize on the pest’s taxonomic family and
disperse with the help of the wind (specialist enemy), as
well as other natural enemies that feed on a variety of
pest and nonpest herbivores and disperse by active move-
ment (generalist enemy).

The specialist enemy in Archetype A1 is exposed to
abundant pest prey in the crop, so its density reflects pest
relative abundance. In contrast, pest migration to
noncrop habitats in Archetype A2 forces the specialist

TAB L E 1 Observed trait‐mediated responses of pest and

natural enemy abundances to changes in landscape composition

and configuration across Europe, including different baseline levels

of these landscape characteristics, in cases where such differences

were linked to significant divergence in abundance responses

(Martin et al., 2019). Pests overwinter in crop fields (resident) or

noncrop habitats (transient). Natural enemies of pests disperse

passively or actively; the former have narrow (specialist) and the

latter broad (generalist) feeding preferences. Responses of these

organisms to increasing landscape proportion of noncrop habitat

and density of field edges are given as upward and downward

facing arrows for increases and decreases, respectively. Lack of

responses is illustrated with dashes.

Abundance responses

Increasing
noncrop
habitat

Increasing
edge

density

Resident pest ▬ ▬ 

Transient pest ▬ �
Passively dispersing

specialist enemy �a
▬ 

b �c
▬ 

d

Actively dispersing
generalist enemy � �

aIn landscapes with relatively low density of field edges.
bIn landscapes with relatively high density of field edges.
cIn landscapes with relatively low proportion of noncrop habitat.
dIn landscapes with relatively high proportion of noncrop habitat.
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enemy to either seek other prey (usually of the same fam-
ily) within the crop or move to more species-rich noncrop
habitats. This hypothesis is supported by the observed
behavior and host range of the main braconid parasitoids
of pests in the Archetype A2 example agroecosystems:
the broccoli aphid in North America (Pike et al., 1999)
and the fall armyworm in sub-Saharan Africa (Agboyi
et al., 2020). As a result, the specialist enemy in Arche-
type A2 diversifies its diet with nonpest herbivores,
thereby reducing its dependence on the pest. We note
that this group is nevertheless “specialized” compared to
generalists that are able to prey on a wide range of taxo-
nomic families. Higher proportions of noncrop habitat in
the landscape enhance organisms that rely directly on
noncrop resources, that is, generalist enemies in both
archetypes and the pest in Archetype A2. Field edges also

provide such resources, along with interfaces for spillover
between and into crops, particularly to generalist ene-
mies actively dispersing in short distances (Tscharntke
et al., 2012).

Qualitative and quantitative models

We developed mechanistic models of Archetypes A1 and
A2, with the goal of yielding testable predictions from each
set of hypotheses. We independently formulated qualitative
(Figure 2a,b) and quantitative (Figure 2c,d) models based
on the same basic assumptions for each archetype but using
system simplifications that are specific to the two modeling
techniques. Qualitative mathematical models (Levins, 1998)
represent interactions among crop yield and populations of

F I GURE 1 Conceptual models based on expert knowledge of systems of natural control of (a) coffee berry borer (Hypothenemus

hampei) in Latin America, (b) grape leafhopper (Erythroneura spp.), (c) broccoli aphid (Brevicoryne brassicae) in North America, and (d) fall

armyworm (Spodoptera frugiperda) in sub-Saharan Africa. Arrows indicate diverse causal relationships, pointing from cause to effect, and

colors identify system components with pertinent similarities. Conceptual models of Archetypes A1 and A2 (e and f) aim at representing the

defining components of multiple systems with respect to natural pest control and crop yield responses to changes in landscape

characteristics (noncrop habitat proportion and field edge density). (g) Model simplification is based on theoretical expectations regarding

the role of pest overwintering and enemy dietary and dispersal traits in natural pest control. See main text for details. Photo credits:

(a) Daniel S. Karp, (b) Jack Kelly Clark, courtesy University of California Statewide IPM Program, (c) Andrew Jensen, and (d) Yann Clough.
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pests and natural enemies, as well as the proportion of
noncrop habitat and field edge density in the landscape
(Figure 2a,b). This technique has been applied to improve
understanding and prediction of classical biological control
of crop pests (e.g., Levins, 1969; Levins & Schultz, 1996).
Signed digraphs (networks depicting the direction and sign
of interactions among variables) represent the structure of a
system as a whole. The matrix representation of a signed
digraph is a qualitatively specified (i.e., consisting of
�1, 0, and 1) community matrix (linearization of a Lotka–
Volterra equation at an equilibrium point) (Puccia &
Levins, 1985). Standard analysis of this qualitative matrix
(Dambacher et al., 2002) predicts the equilibrium responses
of system variables to sustained increases or decreases in
landscape proportion of noncrop habitat and field edge
density (Appendix S1).

We implemented quantitative models as sets of
stochastic differential equations (e.g., Walton et al.,

2016). For simplicity, in what follows we describe the
deterministic part of the model for Archetype A1 in order
to illustrate its basic structure (for the full stochastic A1
and A2 equations, which add structured variability to the
deterministic models, see Figure 2c and Appendix S1):

dP
dt

¼ aP�μPP�
f sPS
PþKs

� f gPG

PþKg
þυpP0�υpP, ð1Þ

dS
dt

¼�μSSþ
εsf sPS
PþKs

þυsS0�υsS, ð2Þ

dG
dt

¼�μgGþυgG0�υgG, ð3Þ

where P, S, and G are the numbers of pests, specialist
natural enemies, and generalist natural enemies in the

F I GURE 2 Qualitative and quantitative modeling of Archetypes A1 (left-hand panels) and A2 (right-hand panels) based on respective

conceptual models (Figure 1e,f). Note that both modeling approaches represent a subset of the conceptual models’ variables considered as

necessary. Qualitative mathematical models (a and b) are shown as signed digraphs, that is, networks of directed interactions, including

loops of self-effects, with arrows for positive and dots for negative signs. Stochastic differential equations (c and d) represent the dynamics of

pest (P), specialist (S), and generalist (G) enemy populations. For details, see the main text. Stochastic terms are shown in gold font, where

dBi tð Þ represent Gaussian white noise and, for each t and i¼ 1, … 12, are independently drawn from N 0,
ffiffiffiffiffi

dt
p

� �

.
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crop, which suffer from natural mortality at rates μP, μS,
and μG, respectively. Pests have a population growth rate
of a and suffer predation or parasitism at a rate of
fsPSð Þ= PþKsð Þ, representing a functional type II
response, which describes the ability of consumers to
detect and consume pests (Holling, 1959). For the param-
eters shown, the average time taken to handle a prey
item is 1=f s, and the rate at which specialist enemies
encounter prey per unit density is f s=Ks. Specialist ene-
mies convert consumed pests with efficiency εs. Similarly,
generalist enemies prey on the pests at rate
ðf gPGÞ= PþKg

� �

, where f g and Kg describe the generalist
enemies’ ability to detect and consume the pests. Note
that, owing to generalist enemies’ direct reliance on
noncrop resources, we assume that the population size of
this natural enemy group is not increased by the con-
sumption of pests. Although likely not often realistic, this
assumption allows us to represent the distinction
between generalist and specialist natural enemies with a
parsimony that suits our demonstrative purposes. More
generally, the influence of noncrop resources is described
in terms of both inflow and outflow of organisms, for
example, for pests υpP0 and υpP, respectively. The param-
eters P0, S0, and G0 represent the amounts of pests, spe-
cialist enemies, and generalist enemies, respectively, that
noncrop habitats can sustain. The parameters υp, υs, and
υg describe the connectivity between crop and noncrop
habitats, which is experienced differently by pests, spe-
cialist enemies, and generalist enemies, respectively. The
model for Archetype A2 is the same as for A1, except that
we assume that the reproduction of specialist enemies
does not depend on pests because pests that overwinter
in noncrop habitat expose natural enemies to a more
diverse diet. This is equivalent to assuming εs ¼ 0
(Figure 2d).

Changes in the landscape proportion of noncrop
habitat and field edge density are imposed on the A1
quantitative model by changing G0 in the former case
and both G0 and υg in the latter. This is the same in
Archetype A2, except that changes in the proportion of
noncrop habitat are imposed by also changing P0.
Changes in G0 and P0 represent the impacts of varying
the quality or quantity of noncrop habitat on generalist
natural enemies and pests. Quality could be enhanced,
for example, by habitat improvement, but changing
the quantity of noncrop habitat might reduce crop area.
Our models represent pest and natural enemy density
within the crop and, therefore, do not explicitly account
for a trade-off between the amount of noncrop habitat
and crop area. The values of the model parameters were
varied within realistic ranges based on expert knowledge
of representative systems worldwide (Appendix S1).

Model testing—Shared qualitative/
quantitative predictions

Identical main hypotheses behind each archetype’s pair
of models resulted in consistent predictions for both qual-
itative and quantitative models, except for responses of
the resident pest in Archetype A1 to changes in land-
scape characteristics (Table 2). This discrepancy stems
from the quantitative model’s explicit representation of
crop inflow and outflow of organisms, which carries
more information but requires additional hypotheses on
arthropod dispersal. Still, the difference is marginal
because the qualitative model predicts no change, com-
pared to the quantitative predictions of a slight decrease
(Appendix S1). In what follows, we assess the models’
underlying hypotheses and their transferability across
systems by comparing model predictions in response to
varied parameter values with observations of natural pest
control systems in Europe along land-use gradients
(Martin et al., 2019).

Shared qualitative and quantitative predictions for
both the resident (A1) and transient (A2) pest archetypes
(Table 2) agree with observations of increasing generalist
enemy abundances in response to an increasing propor-
tion of noncrop habitat and field edge density in the land-
scape (Table 1). Archetype A1 models further show the
specialist enemy being outcompeted by the generalist
and, hence, reducing in numbers. In contrast to A1,

TABL E 2 Shared qualitative and quantitative predictions from

models of Archetypes A1 and A2 in response to parameter variation

within globally realistic value ranges. Equilibrium responses of

pest, specialist and generalist enemy abundances to imposed

increases in landscape proportion of noncrop habitat and density of

field edges are given as upward and downward facing arrows for

increases and decreases, respectively. Predictions of no response are

illustrated with horizontal lines. Tildes indicate diverging response

predictions (here, qualitative models predict no change, while

quantitative models predict slightly decreasing abundances).

Abundance
responses

Increasing
noncrop
habitat

Increasing
edge

density

Resident pest archetype (A1)

Pest ~ ~
Specialist enemy � �
Generalist enemy � �

Transient pest archetype (A2)

Pest ▬ �
Specialist enemy ▬ ▬ 

Generalist enemy � �
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access to diverse resources in A2 allows the specialist
enemy to maintain its abundance. Therefore, natural
enemies that are considered broadly as specialists but
exhibit varying degrees of specialization in response to
different pest overwintering strategies show contrasting
responses to the same changes in landscape characteris-
tics. These predictions may explain the weak signal from
impacts of land-use gradients on the combined, but of
varying specialization degree, group of specialist enemies
across Europe found by Martin et al. (2019).

A1 predictions of lower specialist enemy abundance with
increasing landscape complexity lead to less effective control
of the pest, despite increasing generalist enemy abundance
(Table 2). The predicted lack of substantial pest responses
agrees with observations of no significant change in resident
pest abundances in response to varying landscape character-
istics (Table 1). A2models predict no impact of noncrop hab-
itat changes on the pest despite its use of noncrop resources,
owing to conflicting influences directly on the pest (positive)
and through the generalist enemy (negative). In contrast,
increasing field edge density enhances the generalist enemy
but not the pest, leading to effective pest control and lower
transient pest abundance. The predicted distinct responses
of transient pests to changes in landscape composition and
configuration are a prominent pattern in observations across
Europe (Martin et al., 2019). Consequently, reducing field
sizes in landscapes dominated by the transient pest arche-
type, such as Swedish cropland with spring-sown cereals
attacked by aphids (Östman et al., 2003), is a land-use strat-
egy predicted to sustain crop yields independently of other
management practices (Appendix S1).

To summarize, our example application illustrates the
use of crop–pest–enemy archetypes for the context-
sensitive representation of general ecological mechanisms.
Different assumptions regarding pests’ overwintering strat-
egy result in striking differences in predicted responses to
land-use gradients, in agreement with observations that
transcend geography. Potential benefits extend beyond
elucidating inconsistencies in observed patterns of natural
pest control, toward generating robust predictions about
quantities, such as avoided pest damage or increased crop
yield, that are difficult to measure accurately across
agroecosystems (Holland et al., 2017).

LEVERAGING ARCHETYPES TO
MODEL NATURAL PEST CONTROL
AT LANDSCAPE TO GLOBAL SCALES

Exploiting the potential of archetypes

The preceding examples show how crop–pest–enemy arche-
types can mobilize a broad range of available knowledge to

explain apparently contradictory responses of natural pest
control to the same management intervention. We transfer
expert knowledge across agroecosystems and synthesize
general ecological theory to build archetypes that occupy an
intermediate level of generality between these two extremes
(Meyfroidt et al., 2018). The resulting mechanistic under-
standing applies to several systems, but it is context-specific
and, hence, more nuanced and with a greater potential for
consistency across cases than general theories (Levins,
2005). For example, we show how exploitative competition
among natural enemies can be rendered context-sensitive
by divergent overwintering strategies of pests.

The context of application can be extended beyond
the functional traits of focal organisms to include vari-
ables such as baseline landscape characteristics or agricul-
tural management regimes. For instance, simpler landscapes
can be assumed to favor organisms represented by the resi-
dent pest archetype. More complex landscapes could simi-
larly be associated with the transient pest archetype.
Overrepresentation of each set of organisms in the respec-
tive landscape context would justify targeted application
of the two archetypes to systems with both specific trait
values and baseline landscape characteristics. In this case,
the predicted responses of specialist enemies from the A1
and A2 archetype models (Table 2) match observations
from relatively simple and complex landscapes, respec-
tively (Table 1). Therefore, defining the context of
application in terms of functional traits and landscape
complexity can provide a testable explanation of the vari-
able responses of specialist enemies to land-use gradients
across Europe (Martin et al., 2019).

Mathematically rigorous, testable explanations of
seemingly idiosyncratic patterns, as illustrated by the
example archetypes, are required for mainstream natural
pest control in agricultural management worldwide
(Kleijn et al., 2019). By facilitating the application of
mechanistic modeling in more cases, archetypes can
explain inconsistencies in the responses of natural pest
control to changing landscapes (Karp et al., 2018) and
prompt empirical research that distinguishes between
competing hypotheses. Because changes in land use and
climate are predicted to increase crop losses to insect
pests (Deutsch et al., 2018) and hamper natural pest con-
trol worldwide (Raven & Wagner, 2021), mechanistic
archetype models can increase predictive robustness by
not only considering direct biological impacts but also
modulating biotic interactions and feedbacks with agri-
cultural management.

Agricultural landscapes often consist of mosaics of
different crops that host pests and natural enemies with
different characteristics. Archetypes representing major
crop–pest–enemy combinations provide the building
blocks for upscaling natural pest control modeling across
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landscapes. Predictions of farming-system-wide natural
pest control potential will facilitate management of this
ecosystem service through the design of agricultural land-
scapes, as well as the inclusion of natural pest control in
frameworks that bridge ecology and agroeconomics
(e.g., Seppelt et al., 2020). An archetype approach to
modeling natural pest control would be a valuable addi-
tion to existing tools that use detailed land-use infor-
mation to map ecosystem services across landscapes
(Sharp et al., 2014) or to global assessments of nature’s
contributions to people under different scenarios of envi-
ronmental change (Chaplin-Kramer et al., 2019).

Toward a global set of natural pest control
archetypes

The coordination of archetype definition across agro-
ecosystems will generate archetypes with precisely
assigned contexts of application and minimize the effort
required for the development of their models. We suggest
a research agenda that builds on our examples to
operationalize the definition of archetypes globally by
taking the following steps:

1. Identify determinant system attributes. Example arche-
types developed here are based on evidence on themedi-
ating role of life-history traits in natural pest control
responses to land-use gradients in Europe. Similarly, we
can identify functional traits, landscape characteristics,
and other attributes that play a significant role in the
behavior of natural pest control worldwide and collect
relevant values across agroecosystems (Figure 3a).
A modeled system can thus expand from a network of
interacting organisms to a more inclusive set of agroeco-
logical components. Co-occurring crops, pests, and nat-
ural enemies from recently compiled large-scale data
sets (e.g., Dainese et al., 2019; Karp et al., 2018) provide a
starting point for the identification of natural pest con-
trol systemsworldwide. It should be possible to explicitly
link system attributes to specific processes underlying
the behavior of natural pest control, based on ecological
theory and expert knowledge (Lavorel et al., 2007).
Empirical studies that build consensus on drivers of
behavior across systems and identify attributes with
cross-system explanatory potential (e.g., Martin
et al., 2019; Tamburini et al., 2020) are a key resource
for this task.

2. Reduce dimensionality of collected information. In the
preceding examples, expert knowledge of diverse
agroecosystems is rather arbitrarily simplified using
trait-based theoretical expectations. In a more system-
atic approach, the dimensionality of the previously

collected information can be reduced using multivari-
ate statistical techniques (Figure 3b). The selection of
specific techniques will depend on the nature of col-
lected information. For instance, the functional traits
of crops, pests, and natural enemies can be used to
cluster a diverse set of organisms into archetypes with
distinct combinations of trait values. These values
should describe the respective organisms’ roles in
trait-associated processes, such as feeding, dispersal,
and overwintering in the previously given examples.
These processes can then inform the mechanistic
representation of each archetype in terms of
system components and their relationships

Identify determinant 
system attributes

Reduce dimensionality
of collected information

Functional traits, landscape 
characteristics, etc.

Groups of systems that share 
key attributes

Models for
major agro-
ecosystems

(a)

(b)

(c)

Components and relationships 
for a system group (e.g., C2)

Set rules for definition of 
archetypes from attributes

A1

B1

C1 C2

B2

C3

Sy
st

em
s

Attributes

“Living” 
database

Collect 
attribute 

values

Multivariate 
statistical 

techniques

Mechanistic 
understanding

Va
lid

at
io

n

F I GURE 3 Steps toward operationalizing the definition of

archetype models of natural pest control. (a) First, general

attributes of natural pest control systems that determine their

behavior should be identified and relevant values collected across

systems. A “living” database will allow the contribution of

empirical information by researchers around the world. (b) Then,

multivariate statistical techniques will reduce the dimensionality of

the collected information by identifying groups of systems,

potentially structured hierarchically, that share key attributes.

Mechanistic understanding based on ecological theory and expert

knowledge will link group attributes to specific ecological

processes. (c) Finally, a standardized set of rules should use these

processes to define archetypes for all combinations of system

attribute values. These archetypes will comprise system

components and their relationships, which will be translated into

elements of mechanistic models for all major agroecosystems.

Validation of these models against independent observations will

evaluate available mechanistic understanding and dictate the need

to redefine system groups and their archetype models.

10 of 15 ALEXANDRIDIS ET AL.



(Boulangeat et al., 2012). Hierarchical classification
of agroecosystem components linked to natural pest
control (Sietz et al., 2017) has the advantage of flexi-
ble, case-specific determination of the aggregation
level in subsequent applications, depending on the
model output or spatiotemporal scales of interest
and knowledge availability.

3. Set rules for defining archetypes based on attributes. The
last step should establish a standardized, dynamic set of
rules for the definition of archetypes and their models
based on combinations of trait values, landscape charac-
teristics, and other system attributes (Figure 3c). These
rules will allow researchers to place any real-world sys-
tem within or, if necessary, outside the previously
reduced space of system attributes. In the case of systems
fromworld regions that are underrepresented in the col-
lected information, expert knowledge can be used to
either explore close associations with existing system
groups or independently develop conceptual models,
similar to our example archetypes. In either case, rules
should ensure the translatability of system-specific attri-
butes into system components and relationships, toward
model variables and interactions. The four stages of
model development outlined in Applying the archetype
approach provide a potential blueprint for establishing
such a rule set. Observed responses of natural pest con-
trol to land-use gradients across systems (e.g., Dainese
et al., 2019; Karp et al., 2018) can then be compared with
qualitative or quantitative model predictions to assess
each archetype’s validity. An iterative process of model
development and validation could identify the optimal
set of archetypes worldwide (Alexandridis et al., 2017;
Hérault, 2007).

OUTLOOK ON ARCHETYPES

As the scope of natural pest control archetypes
broadens, data establishing their empirical basis can
take the form of a “living” database of crop–pest–enemy
combinations and associated traits, along with environ-
mental variables, such as landscape or climate charac-
teristics, management regimes, and biogeographic
regions. A consistent coding for this database will lower
the bar for empirical researchers and practitioners will-
ing to contribute with case-specific knowledge. For
instance, climate scientists, geographers, agronomists,
entomologists, and farmers from different parts of the
world will be able to feed information on rainfall, land
use, crop yield, pest abundance, and pesticide applica-
tion into the database in a standardized format. Data
analysis will allow for the definition of archetypes at

different scales, for example, regional or global. Experts
will then be able to use available information to place a
natural pest control system of interest among identified
archetypes and apply the respective model or develop a
new one. Such data will facilitate dynamic archetype
definitions and systematic evaluation of the mechanistic
understanding that archetypes are hypothesized to carry.
Keeping this framework sufficiently flexible to con-
stantly incorporate new knowledge will require an itera-
tive and participatory research axis involving experts
and practitioners.

The need for general modeling approaches that
account for the context of application extends to many
environmental areas, including major land-use issues,
such as deforestation and desertification, and their
interactions with climate change (Dale, 2003). An
enrichment of the archetype approach with ecological
principles promises to improve the mechanistic basis of
models of land-use archetypes and broaden their pre-
dictive scope (V�aclavík et al., 2013). A wide adoption of
an archetype approach to ecological modeling will
increase the use of models with similar basic assump-
tions and comparable output. The ensuing potential for
knowledge synthesis is particularly needed in the
fragmented discipline of ecology (McGill, 2010). Fur-
thermore, context specificity reduces the effective
degrees of freedom, allowing for more robust knowl-
edge transfer. This is crucial in the case of persistent
data shortages, for example, in regions where the
highest projected impacts from cumulative environ-
mental change coincide with the least studied social
and ecological systems (Beckmann et al., 2019).
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