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GLOBAL WELL-POSEDNESS FOR THE YANG-MILLS EQUATION IN
4 + 1 DIMENSIONS. SMALL ENERGY.

JOACHIM KRIEGER AND DANIEL TATARU

Abstract. We consider the hyperbolic Yang-Mills equation on the Minkowski space R4+1.
Our main result asserts that this problem is globally well-posed for all initial data whose
energy is sufficiently small. This solves a longstanding open problem.

1. Introduction

Let G be a semisimple Lie group and g its associated Lie algebra. We denote by ad(X)Y =
[X, Y ] the Lie bracket on g and by 〈X, Y 〉 = tr(ad(X)ad(Y )) its associated nondegenerate
Killing form. The action of G on g by conjugation is denoted by Ad(O)X = OXO−1. We
recall that the Killing form is invariant, in the sense that

〈[X, Y ], Z〉 = 〈X, [Y, Z]〉, X, Y, Z ∈ g,

or equivalently

〈X, Y 〉 = 〈Ad(O)X,Ad(O)Y 〉, X, Y ∈ g, O ∈ G.

Let R4+1 be the five dimensional Minkowski space equipped with the standard Lorentzian
metric m = diag(−1, 1, 1, 1, 1). Denote by Aα : R4+1 → g, α = 0, 1 . . . , 4, a connection form
taking values in the Lie algebra g, and by Dα the associated covariant differentiation,

DαB := ∂αB + [Aα, B],

acting on g valued functions B. Introducing the curvature tensor

Fαβ := ∂αAβ − ∂βAα + [Aα, Aβ],

the Yang-Mills equations are the Euler-Lagrange equations associated with the formal La-
grangian action functional

L(Aα) :=
1

2

∫
R4+1

〈Fαβ, Fαβ〉 dxdt.

Here we are using the standard convention for raising indices. Thus, the Yang-Mills equations
take the form

(1.1) DαFαβ = 0.

There is a natural energy-momentum tensor associated to the Yang-Mills equations, namely

Tαβ =
1

2
mγδ〈Fαγ, Fδβ〉 −

1

4
mαβ〈Fγδ, F γδ〉.

The first author was partially supported by the Swiss National Science Foundation. The second author
was supported in part by the NSF grant DMS-1266182 as well as by a Simons Investigator grant from the
Simons Foundation.
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If A solves the Yang-Mills equations (1.1) then Tαβ is divergence free,

(1.2) ∂αTαβ = 0.

Integrating this for β = 0 yields a conserved energy

(1.3) E(A) =

∫
R4

T00 dx ≈ ‖F‖2
L2 .

The case β 6= 0 yields further conservation laws, i.e. the momentum, which play no role in
the present article.

The Yang-Mills equations also have a scale invariance property,

A(t, x)→ λA(λt, λx).

The energy functional E is invariant with respect to scaling precisely in dimension 4 + 1.
For this reason we call the 4 + 1 problem energy critical; this is one of the motivations for
our interest in this problem.

In order to study the Yang-Mills equations as well-defined evolutions in time we first need
to address its gauge invariance. Precisely, the equations (1.1) are invariant under the gauge
transformations

Aα −→ OAαO
−1 − ∂αOO−1,

with O elements of the corresponding group G. In order to uniquely determine the solutions
to the Yang-Mills equations we need to add an additional set of constraint equations which
uniquely determine the gauge. This procedure is known as gauge fixing.

To motivate our choice we introduce the covariant wave operator

2A := DαDα.

Then we can write the Yang-Mills system in the following form

2AAβ = Dα∂βAα = ∂β∂
αAα + [Aα, ∂βAα].(1.4)

Expanded out, the equations take the form

2Aβ − ∂β∂αAα + ∂α[Aα, Aβ] + [Aα, ∂αAβ − ∂βAα + [Aα, Aβ]] = 0,

or

2Aβ + 2[Aα, ∂
αAβ] = ∂β∂

αAα − [∂αAα, Aβ] + [Aα, ∂βAα]− [Aα, [Aα, Aβ]].

A natural condition which insures that the above system is strictly hyperbolic is the
Lorenz gauge, ∂αAα = 0. Unfortunately there are multiple technical difficulties if one tries
to implement such a gauge in the low regularity setting, see e.g. [26]. For this reason we will
instead impose the Coulomb Gauge condition which requires

(1.5)
4∑
j=1

∂jAj = 0.

We remark that a somewhat similar gauge is the temporal gauge, namely A0 = 0. Another
choice which is likely better but more involved technically is the caloric gauge, see e.g. [19].

Returning to the Coulomb gauge, we can use it to view the equations as a nonlocal
hyperbolic system for the spatial components Aj; precisely, they solve the system

2AAj = −∂j∂tA0 + [Aα, ∂jAα].
2



In order to eliminate the first term on the right and also to restrict the evolution to divergence
free fields Aj we apply the Leray projection P, and rewrite the equation in the form

(1.6) 2Aj = P ([Aα, ∂jAα]− 2[Aα, ∂αAj] + [∂0A0, Aj]− [Aα, [Aα, Aj]]) .

The nonlocality is due to the A0 component, which solves an elliptic equation at fixed time,
namely

(1.7) ∆AA0 = [Aj, ∂0Aj].

Here we use the notation ∆A = DjDj, with j ranging from 1 to 4. The time derivative of
A0 also appears in the Aj system, so it is useful to derive an equation for it as well. This
has the form (see e. g. [10])

(1.8) ∆∂0A0 = ∂0∂j[A0, Aj]− ∂jJj
with

Jj = −∂tFj0 + ∂kFjk = −2Aj − ∂t∂jA0 − ∂t[Aj, A0] + ∂k[Aj, Ak].

In fact, the preceding is a tautological identity in the Coulomb Gauge, which becomes
interesting due to the fact that

Jj = [A0, Fj0]− [Ak, Fjk]

due to the Yang-Mills equations.

To summarize, in the Coulomb gauge, the Yang-Mills system can be cast in the following
expanded out form:

2Ai + 2[Aα, ∂
αAi] =− ∂i∂tA0 + [∂0A0, Ai] + [Aα, ∂iAα]− [Aα, [Aα, Ai]],

∆A0 + 2[Ai, ∂iA0] = [Ai, ∂0Ai]− [Ai, [Ai, A0]].

We will consider the solvability question for the system (1.6) in the class of divergence free
vector fields, with initial data at time t = 0,

(1.9) (Aj(0), ∂0Aj(0)) = (A0j, A1j) ∈ H := Ḣ1(R4)× L2(R4).

We will also consider higher regularity properties of the solutions, using the spaces

HN := (ḢN(R4) ∩ Ḣ1(R4))×HN−1(R4), N ≥ 1

Here the dependent variables A0, ∂0A0 are determined by the linear equations (1.7), (1.8).
We remark that the solvability for these equations in various spaces, including Ḣ1 × L2 at
fixed time, is considered in Section 2.

In order to study the dependence of the solutions on the initial data we will also need the
linearized Yang-Mills equation,

2Bj = P ([Aα, ∂jBα]− 2[Aα, ∂αBj]− 2[Bα, ∂αAj] + [∂0A0, Bj] + [∂0B0, Aj]

−2[Bα, [Aα, Aj]]− [Aα, [Aα, Bj]])
(1.10)

with appropriate linear elliptic equations for B0, ∂0B0,

∆B0 = [Bj, ∂0Aj] + [Aj, ∂0Bj]− 2[Bj, ∂jA0]− 2[Aj, ∂jB0]− 2[Bj, [Aj, A0]],(1.11)

∆∂0B0 = ∂0∂j([B0, Aj] + [A0, Bj]).(1.12)
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For the linearized equation we will go below scaling in regularity, and use the spaces

Ḣs = Ḣs(R4)× Ḣs−1(R4),

with s < 1 but close to 1. Now we can state our main result:

Theorem 1. The Yang-Mills system in Coulomb gauge (1.6)-(1.7)-(1.8) is globally well-posed
in H for initial data which is small in H, in the following sense:

(i) (Regular data) If in addition the data (A0j, A1j) is more regular, (A0j, A1j) ∈ HN , then
there exists a unique global regular solution (Aj, ∂0Aj) ∈ C(R,HN), which has a Lipschitz
dependence on the initial data locally in time in the HN topology.

(ii) (Rough data) The flow map admits an extension

H 3 (Aj0, Aj1)→ (Aj, ∂tAj) ∈ C(R,H)

within the class of initial data which is small in H, and which is continuous in the H ∩ Ḣs

topology for s < 1 and close to 1.
(iii) (Weak Lipschitz dependence) The flow map is globally Lipschitz in the Ḣs topology

for s < 1, close to 1.

To clarify, in part (ii) the H∩Ḣs norm is applied to differences of solutions. In particular,
we remark that HN is dense in H in this topology, so this extension yields solutions for all
small data in H. The Ḣs norm plays an essential role here, as this is the norm where we have
Lipschitz dependence of the solutions on the initial data. If we limit ourselves to just the H
topology, then the best we can prove is a local in time continuous dependence on data; thus,
the scattering information is lost.

We remark that in effect the proof of the theorem provides a stronger statement, where the
regularity of the solutions is described in terms of function spaces S1, SN which incorporate
both Strichartz norms, Xs,b norms and null frame spaces. For convenience, the stronger
result is stated later in Theorem 2.

Implicit in Theorem 2 is also a scattering result; however, this is not so easy to state as it
is a modified rather than linear scattering. In a weaker sense, one can think of scattering as
simply the fact that the S1 norm is finite.

1.1. Brief historical remarks. The Yang-Mills equation belongs to the larger class of
geometric nonlinear wave equations, which includes other problems such as Wave-Maps and
the (mass-less) Maxwell-Klein-Gordon system. These problems have a number of shared
features, including the gauge structure, and the null condition. Also, in all these problems
the nonlinearity is nonperturbative at critical scaling, though only mildly so, more precisely
in a way which can be addressed via renormalization. For these reasons, the understanding
of these problems has evolved in a related fashion, and, as we describe below, our work on
Yang-Mills was strongly influenced by prior developments for both Wave-Maps and Maxwell-
Klein-Gordon.

For the Yang-Mills equation, a first global regularity result on a Minkowski background in
the physical dimension n = 3 was first established for large data in classical work by Eardley-
Moncrief, [6], [7], after earlier work by Choquet-Bruhat and Christodoulou had proved a small
data global existence result in [4]. The physical n = 3 case is energy subcritical, which makes
this problem easier from the point of view of global existence than the critical case n = 4,
but harder from the point of view of understanding scattering.
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The Eardley-Moncrief result was revisited and significantly strengthened by Klainerman-
Machedon [10]. In fact, these authors showed local (and thence global) well-posedness in
H1. This work proved important for future developments on account of the fact that it
identified the null-structure and its use via bilinear null-form estimates, which is also of
paramount importance in this work. The energy critical case n = 4 of the Yang-Mills system
was first attacked in Klainerman-Tataru [11]; more precisely, a model system with similar
null-structures was considered there, and almost optimal local well-posedness (in light of the
scaling of the system) was shown. Somewhat later, Machedon-Sterbenz [17] revisited the
closely related subcritical Maxwell-Klein-Gordon system in 3 + 1 dimensions, and exploiting
a deep trilinear null-structure in the system, managed to push local well-posedness all the
way to an almost optimal H

1
2

+ε-result (optimal in light of scaling). The new null-structure
used there will also be of fundamental importance for our work.

Further work on the Maxwell-Klein-Gordon and Yang-Mills equation followed in the wake
of important progress on the Wave Maps equation by the second author in [36, 37] as well
as by Tao in [30]. These works introduced the functional framework that will be crucial for
the present paper. In [23], Rodnianski and Tao established an optimal small data global
existence result at the scaling invariant level for high-dimensional Maxwell-Klein-Gordon
in the Coulomb Gauge. The important innovation there was the use of an approximate
parametrix for a magnetic potential wave equation to deal with certain bad interaction
terms which could not be handled perturbatively. By refining this and working with more
sophisticated Banach spaces coming from the theory of Wave Maps, the authors jointly with
J. Sterbenz pushed this to the energy critical case in n = 4 dimensions in [16].

The present paper will borrow quite heavily from [16], and in fact be built directly on
the spaces and null-form estimates established there. However, the geometry for the Yang-
Mills system is significantly more complicated than for the Maxwell-Klein-Gordon system,
as the field A no longer ’essentially behaves like a free wave’. An adaptation of the method
of [23] to global regularity for small critical data of high dimensional (n ≥ 6) Yang-Mills
was accomplished in Krieger-Sterbenz [15]. In the present paper we use an approximate
parametrix of the same type as in [15]. However, in its construction we take advantage of
the better functional framework in [16], as well as of better connection integration techniques
borrowed from Wave-Maps [37].

The small data result in the present paper can also be viewed as a stepping stone to-
ward the corresponding large data problem, which is still open. The large data problem
is better understood for the Wave-Map equation, where the so-called Threshold Conjec-
ture was recently proved by Sterbenz-Tataru [28, 29] and also, independently, by Krieger-
Schlag [14] and Tao [31, 32, 33, 34, 35] for special target manifolds. More recently, large data
well-posedness was also established for the Maxwell-Klein-Gordon system, independently in
Oh-Tataru [20, 21, 22] and Krieger-Luhrmann [13].

In related developments, one should also note the work of Bejenaru-Herr [1],[2] on the
closely related cubic Dirac equation, as well as the massive Dirac-Klein-Gordon system.

1.2. Ingredients of the proof. The present paper is built directly on the predecessor paper
[16]. The nonlinearity is split into two parts, a perturbative one and a non-perturbative
paradifferential type component. As in [16], even the “perturbative” part cannot directly
estimated in full. Instead, there is a portion of it that requires reiteration of the equation
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and the use of the second null condition. The nonperturbative part is then eliminated via a
paradifferential gauge renormalization.

The main novelty here then concerns the approximate parametrix construction for the
magnetic potential wave equation (6.1), which is considerably more difficult in the present
noncommutative setting. We use an ansatz (6.16) as in [15], but construct the phase shift
O(t, x, ξ) via a continuous version of the ’discretized’ (over frequency blocks) Gauge con-
struction in [30], see (6.14). Such a construction was first introduced in [37], and proved its
usefulness further in [28]. The fact that the angular separation in the definition of the Ψk

can be chosen as 2δk with δ > 0 arbitrarily small simplifies the arguments for the control of
the parametrix in section 7 compared to the arguments in [15].

1.3. Notation and Conventions. We use the notation A . B to mean A ≤ CB for some
universal constant C > 0. We write A � B if the implicit constant should be regarded as
small.

Our convention regarding indices is as follows. The greek indices α, β run over 0, . . . , 4,
whereas the latin indices i, j only run over the spatial indices 1, . . . , 4. We raise and lower
indices using the Minkowski metric, and sum over repeated upper and lower indices. The
indices k, h, l are reserved for dyadic frequencies.

For the space-time Fourier variables we will use (τ, ξ) or (σ, η). On occasion we set
τ = ξ0, or σ = η0; we will do this only to keep the notations simple where there is covariant
summation with respect to indices α, β.

Littlewood-Paley projections. We denote by Pk = Pk(Dx) the standard spatial Littlewood
Paley projections, where k is a dyadic index. We allow k to be either discrete (integer) or
continuous. We also use the notations P<k, P>k for projections selecting lower or higher
frequencies.

On occasion we will also need space-time Littlewood Paley projections. These are denoted
by Sk := Sk(Dx,t), S<k, S>k.

We also define modulation Littlewood Paley projections, Qj := Qj(|Dt|−|Dx|). Sometimes
we will restrict these to positive or negative time frequencies, Q±j := Q±Qj, where Q± :=

F−1[1[0,∞)(±τ)F [ϕ]] restricts to the ± frequency half-space.

Frequency envelopes. For some more accurate bounds at various places we need to keep
better track of the dyadic frequency distribution of norms. This is done using the language
of frequency envelopes. An admissible frequency envelope will be any sequence {ck}k∈Z of
positive numbers which is slowly varying upwards,

2−C0(j−k) ≤ cj/ck ≤ 2δ0(j−k), j > k,

with a large universal constant C0 and a small universal constant δ0. Given such a sequence
and a norm X, we define the norm

‖φ‖Xc = sup
k
c−1
k ‖Pkφ‖X .

We say that c is a frequency envelope for the data Ax[0] if for every k ∈ Z, we have

‖(PkAx[0], Pkφ[0])‖H ≤ ck.
6



Given any Ax[0], φ[0] ∈ Ḣ1 × L2, we may construct such a c by

ck :=
∑
k′>k

2−δ0|k−k
′|‖Pk′Ax‖H +

∑
k′≤k

2−C0|k−k′|‖Pk′Ax‖H.

By Young’s inequality, we have ‖c‖`2 . ‖Ax[0]‖Ḣ1×L2 .

Lie group and algebra notations. We use the notation ad(A)B = [A,B] for the Lie bracket
on g, and its interpretation as a representation of g as a subspace of Aut(g). The Killing
form

〈A,B〉 = tr(ad(A)ad(B))

is nondegenerate if G is semisimple, and (with a possible sign adjustment) can be used as
an invariant inner product on g. It also has the invariance property

〈[A,B], C〉 = 〈A, [B,C]〉.
The action of G on g is denoted by Ad(O)A = OAO−1. This preserves Lie brackets and the
Killing form.

We also need to work with G valued functions and symbols O(t, x, ξ). To differentiate O
we introduce the notations

O;x = ∂xOO
−1, O;ξ = ∂ξOO

−1, etc.

These are all well defined elements of the Lie algebra g. Furthermore, for any two such
derivatives we have the commutation relation

(1.13) ∂kO;l − ∂lO;k = [O;k, O;l].

Now we introduce the corresponding classes of pseudodifferential operators acting on Lie
algebra valued functions. We begin with Lie algebra valued symbols Ψ(x, ξ), where for g
valued functions B we use the Lie bracket to define using the left calculus

(1.14) Op(ad(Ψ))(x,D)B(x) =

∫
ei(x−y)ξ[Ψ(x, ξ), B(y)]dydξ.

We note that its L2 adjoint (with respect to the Killing form duality) is −Op(ad(Ψ))(D, y),
Similarly for a G valued symbol O we define

(1.15) Op(Ad(O))(x,D)B(x) =

∫
ei(x−y)ξO(x, ξ)B(y)O−1(x, ξ)dydξ.

Its L2 adjoint (with respect to the Killing form duality) is Op(Ad(O−1))(D, y).

1.4. Structure of the paper. Our paper is organized as follows:
In Section 2, we begin with some elliptic gauge related fixed time estimates. In particular

these will help us relate the full nonlinear gauge independent energy with the linear energy
associated to the YM-CG system. We also consider similar issues for the linearized equation.

In the following section we switch to space-time analysis, and define the function spaces S1

and N ; with minor changes this follows [16]. We also recall some useful estimates from [16],
and add to that some additional properties from [21], related to the interval decomposition
of the S1 and N spaces.

In Section 4 we use the S1 norms to provide a stronger form of our main theorem, and we
show that this follows from three estimates in Propositions 4.1, 4.2 and 4.3.

7



Section 5 contains the perturbative part of our analysis, which primarily consists of bilinear
estimates in S1 and N spaces. There we prove Proposition 4.1, as well as Proposition 4.3
(the latter modulo Lemma 5.6, which captures the trilinear structure governed by the second
null condition, and whose proof is relegated to the next to last section).

The bulk of the paper is devoted to the construction of a parametrix for the paradifferential
equation (4.3), which is the main step in the proof of the remaining Proposition 4.2.

We begin in Section 6 with some heuristic considerations, followed by the rigorous defi-
nition of the parametrix and by Theorem 3, which summarizes its properties. This suffices
for the proof of Proposition 4.2. In Section 7 we review the notion of decomposability,
and establish a number of bounds for the symbols Ψ and O arising in the definition of the
parametrix. The symbol bounds are then used in Section 8 to derive kernel bounds, and a
number of L2 estimates, concluding with the proof of the first three parametrix bounds in
Theorem 3, as well as the Strichartz and null frame bounds for the renormalization operators
in our parametrix. Section 9 contains the proof of the error estimates in Theorem 3, modulo
Lemma 9.1. The two estimates that require a fine trilinear analysis, namely Lemma 9.1 and
Lemma 5.6, are proved in Section 10.

2. Elliptic L2 bounds

Here for convenience we show that any small energy data admits a Coulomb representation
which is small in H. We also show that the equations (1.7)-(1.8) are well-posed; this justifies
the fact that the initial data in the Coulomb gauge is fully determined by (Aj(0), ∂tAj(0))
(at least at small energies).

Proposition 2.1. a) Let (Ãα(0), ∂tÃj(0)) ∈ Ḣ1 × L2 be an initial data for the Yang-Mills
equation with energy E. If E is small enough then there exists a unique gauge equivalent
Coulomb data (up to action of a constant O ∈ G) with

(2.1) ‖(Aj(0), ∂tAj(0))‖2
H ≈ E

b) For any Coulomb data (Aj(0), ∂tAj(0)) which is small in H there exists a unique solution
(A0(0), ∂tA0(0)) ∈ H to (1.7)-(1.8) so that

(2.2) ‖(A0(0), ∂tA0(0))‖2
H . E2

c) If in addition we have (Aj(0), ∂tAj(0)) ∈ HN then we also have (A0(0), ∂tA0(0)) ∈ HN

and

(2.3) ‖(A0(0), ∂tA0(0))‖2
HN . E‖(Aj(0), ∂tAj(0))‖2

HN

Proof. The first part is proved (in n ≥ 6 dimensions, but equally valid in lower ones) for
example in [15]. The second part is a consequence of Sobolev embeddings and a simple fixed
point argument.

�

We also consider the counterpart of part (b) for the linearized equation (1.10). We have:

Proposition 2.2. Let (Aj(0), ∂tAj(0)) ∈ H be a Coulomb initial data for the Yang-Mills

equation with small energy E. Let 1
2
< s < 1 and (Bj(0), ∂tBj(0)) ∈ Ḣs be a Coulomb

8



initial data for the linearized Yang-Mills equation (1.10). Then there exists a unique solution
(B0(0), ∂tB0(0)) ∈ Ḣs to (1.11)-(1.12) so that

(2.4) ‖(B0(0), ∂tB0(0))‖2
Ḣs . E‖(Bj(0), ∂tBj(0))‖2

Ḣs

Proof. This is also a simple fixed point argument which is based on the Sobolev embeddings.
The details are left for the reader.

�

3. The S and N spaces

With minor modifications, we will use the function spaces introduced in [16] in the whole
of R4+1. We also need to work on bounded time intervals, for which we use the set-up of
[21].

3.1. The S1, N , Z and Y 1 spaces. We begin our discussion with the function spaces
introduced in [16], namely S1 for the MKG waves (A, φ) and N for the inhomogeneous
terms in both the 2 and the 2A equation. In addition to these we also recall the Z norm,
which plays a key role in the reiteration of the equation in connection to trilinear estimates
and the second null structure.

These are spaces of functions defined over all of Rn+1, together with the related spaces S
and N∗. They are all defined via their dyadic subspaces, with norms

‖φ‖2
X =

∑
k∈Z

‖φk‖2
Xk
, X ∈ {S, S1, N, Z}.

Here we use the `2 Besov structure. On occasion we will also need `1 and `∞ type Besov
norms, which are denoted by `1X, respectively `∞X, with norms

‖φ‖`1X =
∑
k∈Z

‖φk‖Xk , ‖φ‖`∞X = sup
k∈Z
‖φk‖Xk , X ∈ {S, S1, N, Z}.

We recall the definition of their norms. With minor modifications at high modulations,
we follow [16]. For Nk we set

(3.1) Nk = L1L2 +X
0,− 1

2
1 ,

where

‖φ‖Xs,b
r

:=
(∑

k

(∑
j

(2sk2bj‖PkQjφ‖L2L2)r
) 2
r
) 1

2 .

The Nk norm is the same as in [16].
The Sk space is a strengthened version of N∗k ,

(3.2) X
0, 1

2
1 ⊆ Sk ⊆ L∞L2 ∩X0, 1

2∞ = N∗k ,

while S1
k is defined as

(3.3) ‖φ‖S1
k

= ‖∇φ‖Sk + 2−
k
2 ‖2φ‖L2L2 + 2−

4k
9 ‖2φ‖

L
9
5L2

.

As in [21], compared to [16] we have loosened the `1 summability of the 2−1L2L2 norm

and added the 2−1L
9
5L2 norm above. Both of these modifications are of interest only at

high modulations. The exact exponent 9/5 is not really important, for our purposes it only
matters that it is less than two and greater than 5/3.
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We now recall the definition of the space Sk from [16]. The space Sk scales like free waves
with L2 × Ḣ−1 initial data, and is defined by

‖φ‖2
Sk

= ‖φ‖2
Sstrk

+ ‖φ‖2
Sangk

+ ‖φ‖2

X
0, 12∞

,

where:

(3.4)

‖φ‖Sstrk = sup
2≤q,r,≤∞, 1

q
+

3/2
r
≤ 3

4

2( 1
q

+ 4
r
−2)k‖(φ, 2−k∂tφ)‖LqLr , ‖φ‖Sangk

= sup
l<0
‖φ‖Sangk,k+2l

,

‖φ‖2
Sangk,j

=
∑
ω

‖P ω
l Q<k+2lφ‖2

Sωk (l) with l = dj − k
2
e.

The Sstrk norm controls all admissible Strichartz norms on R1+4. The ω-sum in the definition
of Sangk,j is over a covering of S3 by caps ω of diameter 2l with uniformly finite overlaps,
and the symbols of P ω

l form a smooth partition of unity associated to this covering. The
angular sector norm Sωk (l) combines the null frame space as in wave maps [30, 36] with
additional square-summed norms over smaller radially directed blocks Ck′(l′) of dimensions
2k
′ × (2k

′+l′)3. We first define

‖φ‖PW±ω (l) = inf
φ=

∫
φω′

∫
|ω−ω′|62l

‖φω′‖L2
±ω′ (L

∞
(±ω′)⊥

)dω
′ ,

‖φ‖NE = sup
ω
‖/∇ωφ‖L∞ω (L2

ω⊥
) ,

where the norms are with respect to `±ω = t± ω · x and the transverse variable in the (`±ω )⊥

hyperplane (i.e., constant `±ω hyperplanes). Moreover, /∇ω denotes tangential derivatives on
the (`+

ω )⊥ hyperplane. As in [16], we set:

(3.5) ‖φ‖2
Sωk (l) = ‖φ‖2

Sstrk
+ 2−2k‖φ‖2

NE + 2−3k
∑
±

‖Q±φ‖2
PW∓ω (l)

+ sup
k′6k,l′60

k+2l6k′+l′6k+l

∑
Ck′ (l′)

(
‖PCk′ (l′)φ‖

2
Sstrk

+ 2−2k‖PCk′ (l′)φ‖
2
NE

+ 2−2k′−k‖PCk′ (l′)φ‖
2
L2(L∞) + 2−3(k′+l′)

∑
±

‖Q±PCk′ (l′)φ‖
2
PW∓ω (l)

)
,

where the Ck′(l′) sum runs over a covering of R4 by the blocks Ck′(l′) with uniformly finite
overlaps, and the symbols of PCk′ (l′) form an associated partition of unity. We emphasize
the role played by the next to last term in the above expression, which captures the gain in
Strichartz estimates on blocks which are shorter radially. This gain was first discovered in
[11], and plays a key role in getting some of the sharper bilinear bounds which are needed in
the present paper. We remark that there is a similar gain at the level of the L2L6 Strichartz
norm, which could be easily added to the S1 structure; this would improve some of the
intermediate estimates in this paper, but would not affect the final result in a significant
way.

We also define the smaller space S]k ⊂ Sk (see the bound (3.7) below) by

‖u‖S]k = ‖2u‖Nk + ‖∇u‖L∞L2 .
10



On occasion we need to separate the two characteristic cones {τ = ±|ξ|}. Thus we define

the spaces Nk,±, S]k,± and N∗k,± in an obvious fashion, so that

Nk = Nk,+ ∩Nk,−, S]k = S]k,+ + S]k,−, N∗k = N∗k,+ +N∗k,− .

Next we describe an auxiliary space of the type L1(L∞) which will be useful for decom-
posing the nonlinearity:

‖φ‖2
Z =

∑
k

‖Pkφ‖2
Zk
, ‖φ‖2

Zk
= sup

l<C

∑
ω

2l‖P ω
l Qk+2lφ‖2

L1(L∞) .

Note that as defined this space already scales like Ḣ1 free waves. In addition, note the
following useful embedding which is a direct consequence of Bernstein’s inequality:

(3.6) 2−1L1(L2) ⊆ Z .

Finally, the function space Y 1 for A0 is easy to describe, since the A0 equation is elliptic:

‖A0‖2
Y 1 = ‖∇A0‖2

L∞L2 + ‖∇A0‖2

L2Ḣ
1
2
,

In the study of the linearized equations we will also use the spaces Ss and N s−1, whose
norms are defined as

‖B‖2
Ss[I] =

∑
k

22(s−1)k‖∇Bk‖2
Sk
, ‖G‖2

Ns−1[I] =
∑
k

22(s−1)k‖Gk‖2
Nk
.

One of the results in [16] asserts that we have linear solvability for the d’Alembertian in
our setting.

Proposition 3.1. We have the linear estimates

‖∇φ‖S . ‖φ[0]‖H + ‖2φ‖N ,(3.7)

‖φ‖S1 . ‖φ[0]‖H + ‖2φ‖
N∩L2Ḣ−

1
2 ∩L

9
5 Ḣ−

4
9
.(3.8)

Here (3.7) is the embedding S] ⊂ S, whereas (3.8) follows immediately from (3.7).

3.2. Interval localization. So far, we have described the global setting in [16]. However,
in this article we need to work on compact time intervals, therefore we also need suitable
interval localized function spaces. For this we borrow the set-up of [21].

We start by defining

(3.9) ‖φ‖S1[I] = inf
φ=φ̃|I

‖φ̃‖S1 , ‖f‖N [I] = inf
f=f̃|I

‖f̃‖N

The next result from [21] provides an alternate take on these definitions:

Proposition 3.2. Consider a time interval I = [0, T ], and its characteristic function χI .
Then we have the bounds

(3.10) ‖χIφ‖S . ‖φ‖S, ‖χIf‖N . ‖f‖N ,
The latter norm is also continuous as a function of I. We also have the linear estimates

‖∇φ‖S[I] . ‖φ[0]‖H + ‖2φ‖N [I],(3.11)

‖φ‖S1[I] . ‖φ[0]‖H + ‖2φ‖
(N∩L2Ḣ−

1
2∩L

9
5 Ḣ−

4
9 )[I]

.(3.12)
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Note that a consequence of the above proposition is that, up to equivalent norms, we can
replace the arbitrary extensions in (3.9) by the zero extension in the N case, respectively by
homogeneous waves with (φ, ∂tφ) as the data at each endpoint outside I in the S1 case.

4. The proof of the main result

In this section we provide the main intermediate results used in the proof, and we use
them in order to complete the proof of the Theorem 1. For convenience, we restate the
theorem here in a more precise form:

Theorem 2. The Yang-Mills system in Coulomb gauge (1.6)-(1.7)-(1.8) is globally well-posed
in Ḣ1 × L2 for initial data which is small in H = Ḣ1 × L2,

(4.1) ‖Ax(0), ∂tAx(0)‖H ≤ ε,

in the following sense:
(i) (Regular data) If in addition the data (A0j, A1j) is more regular, (A0j, A1j) ∈ HN , then

there exists a unique global in time regular solution (Aj, ∂0Aj) ∈ SN , which has a Lipschitz
dependence on the initial data locally in time in the HN topology.

(ii) (Rough data) The initial data to solution map admits an extension

H 3 (Aj0, Aj1)→ (Aj, ∂tAj) ∈ S1,

globally in time, for all small data as above, and which is continuous in the H∩Ḣs → S1∩Ṡs
topology (applied to differences of solutions) for s < 1 but close to 1.

To set the stage for the proof of the theorem, we assume that we have a solution Aj for
the Yang-Mills equation (1.6) in a time interval I containing 0, and further that this solution
satisfies

(4.2) ‖Aj‖S1[I] ≤ ε� 1.

We begin by rewriting the equation in a paradifferential fashion,

(4.3) 2Aj,k + 2P[Aα,<k, ∂
αAj,k] = Fk,

where Fk contains only terms that will be treated in a perturbative fashion,
(4.4)
Fk = P

(
Pk
(
[Aα, ∂jAα]− 2[Aα≥k, ∂αAj]− [∂0A0, Aj]− [Aα, [Aα, Aj]]

)
− 2[[Pk, A

α
<k], ∂αAj]

)
.

To estimate F we use the following:

Proposition 4.1. Assume that A is a solution to the Yang-Mills equation in Coulomb gauge
in an interval I, which satisfies (4.2). Then for any admissible frequency envelope c we have

(4.5) ‖F‖Nc[I] . ε‖Aj‖S1
c [I],

and

(4.6) ‖F‖`1N [I] . ε‖Aj‖S1[I]

as well as

(4.7) ‖2A‖
(L2Ḣ−

1
2 ∩L

9
5 Ḣ−

4
9 )c[I]

. ε‖Aj‖S1
c [I],
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This proposition is proved in the next section.
We now turn our attention to the linear equation (4.3). In order to uncouple variables it

will be useful to also consider the more general frequency localized equation:

(4.8) 2Bj,k + 2P[Aα,<k, ∂
αBj,k] = Gj,k.

Proposition 4.2. Assume that A is a solution to the Yang-Mills equation in Coulomb gauge
in an interval I, which satisfies (4.2). Then for the equation (4.8) we have the following linear
estimate:

(4.9) ‖∇Bj,k‖S[I] . (‖Gj,k‖N [I] + ‖Bj,k[0]‖H).

This result is the key point of the paper. Its proof is closed in Section 6, using the
paradifferential parametrix in Theorem 3. However, the proof of Theorem 3 requires all the
subsequent sections of the paper.

The two bounds above suffice in order to close the a-priori bounds in S1 and SN , including
frequency envelope bounds. In order to compare different solutions, we need to work with
the linearized equation (1.10)-(1.11)-(1.12).

Proposition 4.3. Suppose that A is a solution to the Yang-Mills equation in Coulomb gauge
in an interval I, which satisfies (4.2). Then the equation (1.10) is well-posed in Hs for s < 1,
close to 1, in the time interval I.

To further clarify this last result, we rewrite the equation (1.10) in a paradifferential form,

(4.10) 2Bk + P[Aα,<k∂
αBk] = P[Bα,<k, ∂

αAk] +Gk.

The term Gk plays the same role as Fk in the original equation. Precisely, we have:

Proposition 4.4. Assume that A is a solution to the Yang-Mills equation in Coulomb gauge
in an interval I, which satisfies (4.2). Let B be a solution for the equation (1.10). Then for
s ≤ 1, close to 1 we have

(4.11) ‖Gj‖Ns−1 . ε‖Bj‖Ss .
This result is proved in the next section. We remark that the range of s depends on the

constant δ in the estimate (5.1) in the next section, which is from [16]. We expect the correct
range here to be s > 1

2
.

The new term [Bα,<k, ∂
αAk] in (4.10) does not have a counterpart in the previous argument.

This is the term which is responsible for disallowing case s = 1 in Proposition 4.2, and
ultimately for the failure of the Lipschitz dependence of the solution on the initial data in
the strong topology H. We will estimate this in a more roundabout fashion, proving the
following statement:

Proposition 4.5. Suppose that B ∈ Ss solves the linearized equation (1.10) in a time
interval I, around a YM-CG solution A which satisfies (4.2). Then for s < 1, close to 1 we
have the estimate

(4.12) ‖[Bα,<k, ∂
αCk]‖Ns−1 . ε‖B‖Ss‖Ck‖S1 .

This proposition is more delicate than the previous proposition, as it requires a fine trilinear
analysis based on reiterating the linearized equation. Its proof is also in the next section,
modulo the most difficult case in Lemma 5.6, which is relegated to Section 10.

The result in Proposition 4.3 is a direct consequence of Proposition 4.2, Proposition 4.4
and Proposition 4.5. We now turn our attention to Theorem 2.

13



Proof of Theorem 2. Here we show that Theorem 2 follows from Propositions 4.1,4.2,4.3. In
addition to these Propositions, we will also take it for granted that for large N (e.g. N ≥ 3)
the Yang-Mills equation is locally well-posed in HN , with smooth dependence on the initial
data; at least at small energies this is a straightforward perturbative result, based purely on
energy estimates. We carry this out in several steps.

Step 1:(A-priori bounds for regular data) Here we consider regular HN solutions in a time
interval I = [0, T ], and which satisfy the smallness condition

(4.13) ‖Ax‖S1[I] ≤ ε0 � 1.

Let c be an admissible H frequency envelope for the initial data. Then we claim that c is
also an S1 frequency envelope for the solution, and, in addition, we have the bound

(4.14) ‖Ax‖S1
c
. ‖Ax[0]‖Hc .

We remark that, as a consequence of this, we have in particular the bounds

(4.15) ‖Ax‖S1 . ‖Ax[0]‖H, ‖Ax‖SN . ‖Ax[0]‖HN .

Assume first that we already know that Ax ∈ Sc. Then (4.14) is obtained by successively
applying Propositions 4.1, 4.2 in the equation (4.3). Without knowing that Ax ∈ Sc, let d be
an admissible frequency envelope for Ax in S1. Then for δ > 0 we have Ax ∈ S1

c+δd. Then we
have (4.14) with c replaced by c+ δd, and it suffices to let δ to zero to obtain again (4.14).

Step 2:(Global solutions for regular data) Here we start with regular data (Aj(0) ∂tAj(0)) ∈
HN which is small in the energy norm, i.e. it satisfies (4.1). Then the solution exists in HN

on some nonempty time interval [0, T ). We claim that the solution is global, T = ∞, and
that it satisfies the bound

(4.16) ‖Aj‖S1 ≤ Cε,

with a fixed universal constant C.
This is done using a time continuity argument. Let T denote the set of all times T for

which a classical (i.e. HN solution ) exists in [0, T ] which satisfies (4.16). We will prove that
T is both open and closed, and thus must be equal to R+.

a) T is closed. Indeed, suppose that [0, T0) ⊂ T . By (4.15) we have a uniform bound

‖Aj‖SN [0,T ] . ‖Aj[0]‖HN .

Then, in view of the Lipschitz dependence for classical solutions, the solution Aj extends to
time T0 (and indeed, past it) as a classical solution. By a scaling argument, see e.g. [37], the
S1[I] norm of classical solutions depends continuously on the interval I. Thus the bound
(4.16) at time T0 follows, so T0 ∈ T .

b) T is open. Let T ∈ T . Then Aj[T ] ∈ HN , so we can continue the solution beyond time
T . It remains to show that the bound (4.16) persists. Using again the continuous dependence
of the S1[I] norm of classical solutions on the interval I, it suffices to prove (4.16) this under
a bootstrap assumption

(4.17) ‖Aj‖S1 ≤ 2Cε,

with a large universal constant C. But this again follows from (4.15) in Step 1.
14



Step 3:(Weak Lipschitz dependence for regular solutions) Here we assert that for any two
small data global regular solutions we have the bound

(4.18) ‖Aj − Ãj‖Ss . ‖Aj[0]− Ãj[0]‖Hs .

provided s < 1 is close to 1. This is a direct consequence of the result in Proposition 4.3.

Step 4:(Rough data solutions) The continuous extension of the flow map to rough data for
solutions which satisfy (4.16), using the H∩ Ḣs topology, follows in a standard manner from
two properties of small data solutions:

• The frequency envelope bounds (4.14).
• The Lipschitz dependence in a weaker topology (4.18).

Indeed, consider some small energy data Ax[0] ∈ H. Then for any A
(n)
x are regular solu-

tions, whose data A
(n)
x [0] converge to Ax[0] ∈ H in the sense that

‖A(n)
x [0]− Ax[0]‖H∩Ḣs → 0.

By (4.18) the limit Ax of A
(n)
x exists in Ṡs. Further, the relation (4.18) extends to all solutions

constructed in this way.

Favorably choosing A
(n)
x [0] so that they have the same H frequency envelope as Ax[0] (e,g.

as A
(n)
x [0] = P<nAx[0] ) and applying (4.14), it follows that Ax ∈ S1, and further that (4.14)

holds for Ax.
Finally, to establish the continuity of the data to solution map from H ∩ Ḣs to S ∩ Ṡs

we use the previously established Ḣs Lipschitz bound for low frequencies, combined with
the uniform smallness of high frequency tails, which is in turn derived from the frequency
envelope bound.

�

5. Bilinear estimates and perturbative analysis

The first goal of this section is to review the bilinear null form bounds from [16], which will
be repeatedly used in our analysis. Then we use these bounds to provide some preliminary
characterization of YM solutions which satisfy an a-priori S1 bound. Finally, we conclude
with a proof of Propositions 4.1 and 4.3.

5.1. Bilinear null form bounds. We begin with the main bilinear null form estimate,
where N (u, v) refers to any expression of the form ∂iu∂jv − ∂ju∂iv. It comes from [16], and
specifically from (131) in Theorem 12.1 there:

Proposition 5.1. ([16]) For any null form N we have the following null form estimates:

(5.1) ‖PkN (uk1 , vk2)‖N . 2k2δ(kmin−kmax)‖uk1‖S‖vk2‖S

We remark that, in view of Proposition 3.2, the same bound holds in any time interval I.
Ideally, we would like to improve this bound in the case of low-high frequency interactions

k1 < k2 = k, and have a 2k1 factor instead. Unfortunately that does not work in general.
However, it does work for the most part. To describe that we isolate the bad component,
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namely H∗N (uk1 , vk2). Here, following [16], if M(Dt,x, Dt,y) is any bilinear translation in-
variant operator then we set:

H∗M(φk1 , ψk2) =
∑
j<k1

Q<j−CM(Qjφk1 , Q<j−Cψk2) , k1 < k2 − C(5.2)

We observe that the map H∗ selects the portion of the bilinear interaction where both the
high frequency input and the output have low modulation. This case is unfavorable in the
high frequency limit; this is most easily seen using duality to rewrite the above bound in a
trilinear fashion. We also remark that the frequency/modulation localization in H∗ fixes the
angle θ between the two input functions to

θ ≈ 2(j−k1)/2

A benefit of the null form structure of the nonlinearity is that it provides an additional
gain at small angles in bilinear estimates, which is roughly proportional to the angle. We
will also need to take advantage of this gain in our estimates. For this we introduce a second
selection device for bilinear interactions. Precisely, given two spatial frequencies ξ and η we
define a partition of unity

1 =
∑

θ dyadic

χθ(ξ, η)

where χθ(ξ, η) is a smooth homogeneous cutoff which selects the region where ∠(ξ, η) ≈ θ.
Then, given bilinear translation invariant operator M(Dt,x, Dt,y) with symbol m(τ, ξ, σ, η),
we defineMθ as the bilinear translation invariant operator with symbol m(τ, ξ, σ, η)χθ(ξ, η).
We will similarly used the notations M<θ, M>θ with the obvious meanings.

We now return to the promised decomposition of the null form into a good and a bad
part. For the complement (I −H∗)N (uk1 , vk2) we have a good S bound; for H∗N (uk1 , vk2),
instead, we use the Z norm as a proxy. The following estimates are contained in Theorem
12.1, Theorem 12.2 in [16]:

Proposition 5.2. ([16]) For k1 < k2−C and any null form N we have the following bilinear
estimates:

a) S1 × S1 → N bound:

(5.3) ‖(I −H∗)N (uk1 , vk2)‖N . 2k1‖uk1‖S1‖vk2‖S1 .

We also have the small angle improvement

(5.4) ‖(I −H∗)<θN (uk1 , vk2)‖N . 2k1θ
1
4‖uk1‖S1‖vk2‖S1 .

b) Z × S1 → N bound:

(5.5) ‖H∗N (uk1 , vk2)‖N . 2k1‖uk1‖Z‖vk2‖S1 , k1 < k2

c) L2Ḣ
3
2 × S → N bound:

(5.6) ‖(I −H∗)(uk1 · ∇vk2)‖N . ‖uk1‖L2Ḣ
3
2
‖vk2‖S1 .

d) 2
1
2 ∆−

1
2Z × S → N bound:

(5.7) ‖H∗(uk1 · ∇vk2)‖N . ‖uk1‖2 1
2 ∆−

1
2Z
‖vk2‖S1 .
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In order to be able to take advantage of the bilinear bounds which use the Z norm we
need to have an additional estimate allowing us to bound Z norms appropriately.

To describe the result we need a second operator Hk, which, following [16] is defined as

HkM(φk1 , ψk2) =
∑
j<k+C

QjPkM(Q<j−Cφk1 , Q<j−Cψk2), k < k1 = k2(5.8)

Then the Z bounds are as follows, also contained in [16]:

Proposition 5.3. For any null form N have the following Z bounds:
a) Bound for classical solutions:

(5.9) ‖φk‖Z . ‖2φk‖L1L2

b) High-low interactions:

(5.10) ‖PkN (uk1 , vk2)‖2Z . 2k2−δ|k1−k2|‖uk1‖S‖vk2‖S1 , k > kmax − C

(5.11) ‖Pk(uk1 · ∇vk2)‖∆
1
22

1
2Z
. 2k1+k22−δ|k1−k2|‖uk1‖S‖vk2‖S1 , k > kmax − C

c) High-high-low interactions:

(5.12) ‖(I −Hk)N (uk1 , vk2)‖2Z . 2k12−δ|k−k1|‖uk1‖S‖vk2‖S1 , k < k1 = k2

(5.13) ‖(I −Hk)(uk1 · ∇vk2)‖∆
1
22

1
2Z
. 2k1+k22−δ|k−k1|‖uk1‖S1‖vk2‖S1 , k < k1 = k2

To better understand how the last two propositions fit together, we remark that in the
bounds in Proposition 5.2 there is no off-diagonal decay with respect to the frequency gap
k1− k2. Hence, we can only apply it for portions of Ax which we control in `1Z. This is why
the off-diagonal decay in (5.10), (5.11) and (5.12), (5.13) is important.

We further remark that the same estimates in [16] also yield a bound for the remaining
bad component of N (uk1 , vk2), namely

(5.14) ‖HkN (uk1 , vk2)‖2Z . 2k1‖uk1‖S1‖vk2‖S1 , k < k1 = k2

and similarly

(5.15) ‖Hk(uk1 · ∇vk2)‖∆
1
22

1
2Z
. 2k1+k2‖uk1‖S1‖vk2‖S1 , k < k1 = k2

Unfortunately, these bounds have no off-diagonal decay, so they only lead to an `∞Z bound
for the corresponding “bad”part of A. If one attempts to combine this with Proposition 5.2,
we are left with an unresolved logarithmic divergence. Addressing this issue requires the
finer trilinear analysis in the last section of the paper, and the use of the second null form.

5.2. Characterization of S1 solutions for YM-CG. While the S1 envelope of a Yang-
Mills wave A naturally inherits the `2 dyadic structure from the initial data, one might expect
that the inhomogeneous part of A, arising from bilinear or cubic interactions, might carry a
better, `1 dyadic summation. This was indeed the case for the Maxwell-Klein-Gordon system
in [16], and it allowed us to treat the inhomogeneous part of A in a perturbative fashion, as
well as to use free wave magnetic potentials in the parametrix construction. Unfortunately, it
is no longer the case here, as the bilinear self-interactions of A are not perturbative. However,
we are still able to prove `1 dyadic summation fully for A0, and in a partial manner only
for the inhomogeneous part of Ax. This will allow us to treat not all but the bulk of the
nonlinearity in a perturbative fashion. Precisely, we prove the following:
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Proposition 5.4. Let A be a solution for the YM-CG in an interval I so that ‖A‖S1 ≤ ε.
Then the following property holds:

(5.16) ‖∇A0‖`1L2Ḣ
1
2
. ε.

Also, for each 0 ≤ b < 1
2

we have

(5.17) ‖2Ax‖`1Xb− 1
2 ,−b

+ ‖2Ax‖L 9
5 Ḣ−

4
9
.b ε

A related result holds for the linearized equation. There, the dyadic summation is not an
issue because the bounds for the linearized problem are no longer at scaling (though they
are scale invariant). Also, the bounds we need for the linearized equation are not as refined
as those we need for the original equation. We have:

Proposition 5.5. Let A be a solution for the YM-CG in an interval I so that ‖A‖S1 ≤ ε,
and B ∈ Ss a solution to the linearized equation, with 1

2
< s ≤ 1. Then the following

properties hold:

(5.18) ‖∇B0‖L2Ḣs− 1
2
. ε‖B‖Ss

(5.19) ‖2Bx‖L2Ḣs− 3
2
. ε‖B‖Ss

Next we prove Proposition 5.4 with b = 0, as well as Proposition 5.5. The proof of the
case b > 0 of Proposition 5.4 is postponed for later in this section. We remark that while
the case b = 0 is frequently used, the stronger bound for b > 0 is used just once, later in the
paper, in estimating the error term E1,out in Section 9.

Proof of Proposition 5.4 for b = 0. a) We begin with the A0 bound, where we first estimate
the right hand side in the equation (1.7). Using Sobolev embeddings we have the dyadic
estimate with off-diagonal decay

‖Pk[Aj,k1 , ∂0Aj,k2 ]‖L2Ḣ−
1
2
. 2−

1
6

(kmax−kmin)‖|Dx|
1
6Aj,k1‖L2L6‖∂0Aj,k2‖L∞L2

. 2−
1
6

(kmax−kmin)‖Aj,k1‖S1‖Aj,k2‖S1

(5.20)

After dyadic summation this gives

‖[Aj,k1∂0Aj,k2 ]‖`1L2Ḣ−
1
2
. ‖Aj‖S1‖Aj‖S1 . ε2

Now we solve the equation (1.7) perturbatively in `1L2Ḣ
3
2 , estimating the terms [Aj, [Aj, A0]]

and [Aj, ∂jA0] in the same manner as above, appropriately using Sobolev embeddings to gain
off-diagonal decay in frequency.

We need to separately prove the ∂tA0 bound, for which we use the equation (1.8). Then
it suffices to prove estimates of the form

‖[∂0A0, Aj]‖`1L2Ḣ−
1
2
. ‖∂0A0‖L2Ḣ

1
2
‖Aj‖`2L∞Ḣ1

‖[A0, ∂0Aj]‖`1L2Ḣ−
1
2
. ‖A0‖L2Ḣ

3
2
‖∂0Aj‖`2L∞L2

These are also easily proved via dyadic estimates with off-diagonal decay, which in turn are
obtained using Sobolev embeddings.

b) We separately consider each of the terms on the right in the equation (1.6) for Ax.
exactly as in case (a), using the bound (5.16) for the terms containing A0. Then the b = 0
case of (5.17) follows exactly as in case (a), simply by combining Strichartz estimates for the
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two factors ans using Bernstein’s inequality as needed. We remark that the null condition is
not used at all here.

�

Proof of Proposition 5.5. a) This is similar to the proof of the previous proposition. One
only needs to combine the bound (5.16) and the energy bound (2.2) for A0 with Strichartz
estimates for Ax and Bx and Sobolev embeddings in order to solve the equations (1.11) and

(1.12) perturbatively in L2Ḣs+ 1
2 , respectively L2Ḣs− 1

2 .
b) This is similar to the corresponding bound in the b = 0 case of the previous proposition.

The terms on the right in (1.10) are similar to those in (1.11), so exactly the same estimates
apply. �

5.3. The perturbative bounds in Proposition 4.1, 4.4. We primarily discuss Proposi-
tion 4.1 here, as the numerology is simpler. As the terms in Gk are similar to those in Fk, the
proof of Proposition 4.4 is completely similar. However, we remark that, since we work with
Fk and Gk term by term, one can view Proposition 4.1 as a special case of Proposition 4.4,
for s = 1.

Proof of Proposition 4.1. The high modulation bounds (4.7) have already been taken care of
in Proposition 5.4, so we only need to prove the bounds for F . We will successively consider
all terms in F , taking into account the following observations:

(a) All estimates below are consequences of the corresponding dyadic estimates. Hence,
in order to gain the control of the frequency envelope for the output F it suffices to obtain
an off-diagonal gain in each of the expressions we consider.

(b) The estimates in the proposition are restricted to a time interval I. However, this
does not cause any difficulties since both the Strichartz bounds and the estimate (5.1) are
equally valid in I. Further, we recall that by Proposition 3.2 we can readily restrict S and
N functions to time intervals.

(c) Due to the Leray projector and the identity

Fj =
∑
k

4−1∂k
(
∂kFj − ∂jFk

)
valid for divergence free vector fields F , it suffices to estimate the curl of Fk. This observation
will be used for the first term below, but not for the rest.

1. The term [Ai, ∂jAi]. Its curl is a null form N (Ai, Ai), therefore it remains to
produce an N bound for the expression |Dx|−1N (Ai, Ai). But this is a direct consequence
of Proposition 5.1, with a suitable off-diagonal gain.

2. The term [Aj, ∂jAi], high-high and and high-low interactions. Here we use the
Coulomb condition ∂jAj = 0 to write

[Aj, ∂jAi] = [∂k(4−1∂kAj), ∂jAi] = [∂k(4−1∂kAj), ∂jAi]− [∂j(4−1∂kAj), ∂kAi]

which is of the form N (|Dx|−1A,A) where the high frequency term is hit by |Dx|−1. Then
the desired bound is again a consequence of Proposition 5.1, with off-diagonal gain.

3. The term [∂0A0, Ai]. This is a Strichartz term. Precisely, we can use ∂0A0 ∈ L2Ḣ
1
2 as

in (5.16) together with the L2L6 Strichartz bound for Ai and Sobolev embeddings to place
it in L1L2, with off-diagonal gain.
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4. The term [A0, ∂tAi], high-high and and high-low interactions. Here one uses A0 ∈
L2Ḣ−

1
2 and ∇− 3

2∂tAi ∈ L2L∞ to place the output into L1L2.

5. The commutator term [Pk, ad(Aα<k)]∂αAj. This is equivalent to an expression of
the form

2−k[|Dx|Aα<k, ∂αAk]
For α 6= 0 this gives, as in Case 2, a null form of the type 2−kN (A<k, Ak) which is handled
via Proposition 5.1. For α = 0 it is equivalent to

2−k[∇A0,<k, ∂tAk]

which is a Strichartz term as in Case 3. Both cases have some off-diagonal gain.

6. The cubic term [Aj, [Aj, Ai]]. This is placed in L1L2 via Strichartz estimates and
Sobolev embeddings. The off-diagonal gain is a consequence of the fact that there is a range
of Strichartz estimates which can be used in order to obtain the L1L2 bound. �

5.4. The proof of Proposition 5.4 for b > 0. We consider the paradifferential decom-
position of the nonlinearity in the wave equation for Aj as in (4.3). For the F component
we already have the bound in Proposition 4.1, more precisely (4.6), which suffices for all
0 ≤ b < 1

2
. Hence it remains to bound the expression

(5.21) ‖
∑

k1<k−C

[Ak1,α, ∂
αAk2 ]‖`1Xb− 1

2 ,−b
. ε2

We first dispense with some good portions of this expression. First, by using an L2L∞ bound
for the first factor we obtain

‖[Ak1,α, ∂αAk2 ]‖L2 . 2
k1
2 (‖Ak1,0‖L2Ḣ

3
2

+ ‖Ak1,x‖S1)‖Ak2‖S1

which has off-diagonal decay when measured in Xb− 1
2
,−b at modulations j ≥ k1 − C in the

output. It remains to consider low modulations in the output, namely

Q<k1−C [Ak1,α, ∂
αAk2 ].

We can peel off some further part of this, using the estimate

‖(I −H∗)Q<k1−C [Ak1,α, ∂
αAk2 ]‖N . (‖Ak1,0‖L2Ḣ

3
2

+ ‖Ak1,x‖S1)‖Ak2‖S1

which is a consequence of (5.3) and (5.6), and again suffices for all b < 1
2
. Thus we have

reduced the problem to an estimate for

H∗Q<k1−C [Ak1,α, ∂
αAk2 ] =

∑
j<k1

Q<j−C [QjAk1,α, Q<j−C∂
αAk2 ]

For each j, this fixes the angle θ between the two factors to θ ≈ 2−(k1−j)/2, so we can localize
to angles of this size. Note carefully that these angles will be essentially disjoint on the high
frequency side, but they will be overlapping on the low frequency side.

From here on we can no longer view this as a bilinear estimate for two S1 functions. This
is not just a technical difficulty; the direct bilinear null form estimate for two S1 functions
will in effect be false for b < 1

4
, which is exactly the threshold we need to cross.

To bypass this difficulty we need to use the fact that (A0, Ax) are not arbitrary L2Ḣ
3
2 ,

respectively S1 functions, but are solution for the Yang-Mills equation. Thus we can reiterate,
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and use again the equation (1.6) specifically for the low frequency factor Ak1 . Here we can
take advantage of the Z norm. We will consider A0 and Ax separately:

a) The contribution of A0. The analysis is simpler in this case. We simply observe that,
once (5.16) is proved, we can use it to expand it to a range of mixed norm spaces as follows:

(5.22) ‖|Dx|
3
pA0‖`1Lp′Lp . ε2, 2 ≤ p <∞

We remark that this bound fails when p = ∞ (precisely, we can only control the `∞ norm
in that case). This is why in the study of the Yang-Mills equation we cannot simply think
of A0 as directly perturbative, and is closely related to the coupling of A0 with Ax in the
second null condition leading to the trilinear estimates in the last section of the paper.

To prove (5.22), we only discuss the inhomogeneous term in the A0 equation, as the terms
involving A0 are similar but simpler. For this, it suffices to prove the L1L∞ counterpart of
(5.20) without off-diagonal decay; then by interpolation we gain the off-diagonal decay for
all intermediate p’s, and conclude as above. Precisely, we claim that

(5.23) ‖|D|−2Pk[Aj,k1 , ∂0Aj,k2 ]‖L1L∞ . ‖Aj,k1‖S1‖Aj,k2‖S1

The case of unbalanced frequency interactions is easy, just by using L2L∞ Strichartz bounds
for both factors. The more delicate case is that of high × high → low interactions, where
k < k1 = k2. There simply using L2L∞ for both factors would yield a bad 22(k1−k) bound.
To remedy this, we partition both Ak1 and Ak2 in spatial frequency with respect to a lattice
of cubes Ck of size 2k, so that only opposite cubes will contribute to the output. Then by
Cauchy-Schwarz we have

‖|D|−2Pk[Aj,k1 , ∂0Aj,k2 ]‖2
L1L∞ . 2−4k22k1

(∑
Ck

‖PCkAj,k1‖2
L2L∞

)(∑
Ck

‖PCkAj,k2‖2
L2L∞

)
. ‖Aj,k1‖2

S1‖Aj,k2‖2
S1

where we have used the next to last component of the Sωk (l) norm in (3.5) with k = k1,2,
k′ = k and l′ = 0.

We can now use (5.22) to bound directly all low × high frequency interactions in the
expression [A0,k1 , ∂0Ax,k2 ]. Indeed, by Sobolev embeddings we have

‖|Dx|−
1
pA0‖`1Lp′L∞ . ε2.

Using this we can estimate

‖|Dx|−
1
p [A0, ∂0Ax]‖Lp′L2 . ε2‖∂0Ax‖L∞L2

which gives the desired bound as in (5.17) with b = 1
2
− 1

p
in view of the embedding

Lp
′
L2 ⊂ X0, 1

p
− 1

2

Since p is arbitrarily large, we obtain the desired bound for all 0 ≤ b < 1
2
.

b) The contribution of Ax. Here we begin with the bounds (5.9) and (5.10), which allow
us to split Ax into two components,

Ax = Agoodx + Abadx
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where Agoodx satisfies a favorable Z bound,

‖Agoodx ‖`1Z . ε2

and Abadx is the remainder, namely

Abadx = 2−1|Dx|−1
∑

k<k1=k2

HkN (Ak1 , Ak2)

We can use the `1Z bound directly for Agoodx due to (5.5), which yields off-diagonal decay for
all b > 0.

For Abadx , on the other hand, we have a favorable S1 bound with off-diagonal decay, due to

(5.1), and a Z bound without off-diagonal decay. Hence interpolating the X
1, 1

2∞ component
of the S1 norm with the Z norm we obtain all intermediate bounds for Abadx with off-diagonal
decay. Then we can conclude as in the A0 case. This suffices for all b < 1

2
.

5.5. Proof of Proposition 4.5, the bulk part. Here we consider most of the proof of
Proposition 4.5, modulo the more delicate trilinear part in Lemma 5.6. We extend Bj

outside the interval I as free waves, and B0 by zero. Then we seek to prove the bound in
the proposition on the full real line. This allows us to consider modulation localizations. We
decompose the bilinear form

[Bα,<k, ∂
αCk] = (I −H∗)[Bα,<k, ∂

αCk] +H∗[Bα,<k, ∂
αCk]

In the first term we separate the Bj and B0 components. For Bj we use the S norm bound,

together with the null condition and the estimate (5.3). For B0 we use the L2Ḣs+ 1
2 bound in

(5.6). It remains to consider the second term, for which the Bj and B0 terms can no longer
be separated:

Lemma 5.6. Suppose that B ∈ Ss solves the linearized equation (1.10) in a time interval I.
Extend Bj outside I as free waves, and B0 by zero. Then for s < 1, close to 1 we have the
global estimate

(5.24) ‖H∗[Bα,<k, ∂
αCk]‖Ns−1 . ε‖B‖Ss‖Ck‖S1

This remaining lemma is proved in Section 10.

6. The gauge transformation

This section is devoted to the proof of Proposition 4.2.

6.1. Equivalent formulations. A first difficulty we encounter in the proof of the proposi-
tion is that the equations for Bj are coupled via the Leray projection. Fortunately, it turns
out that the coupling is perturbative, and we can discard the projector and work with the
uncoupled equations:

Proposition 6.1. Assume that A is a solution to the Yang-Mills equation in Coulomb gauge
which satisfies

‖Aj‖S1 ≤ ε� 1.

Then for the equation

(6.1) 2Bk + 2[Aα,<k, ∂
αBk] = Fk
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we have the following linear estimate:

(6.2) ‖∇Bk‖S . (‖Fk‖N + ‖Bk[0]‖H)

To transition from this to Proposition 4.3 it suffices to apply this with Bk = Bj,k and
estimate the difference, namely

‖∆−1∂j[∂lAα,<k, ∂
αBl,k]‖N . ‖Aα,<k‖S1‖∇Bl,k‖S

(using the null condition via ∇ · B = 0). This is a pure S bound as we have an extra
derivative on the low frequency, and follows by (5.1).

In view of the estimates in Proposition 4.1, the frequency localized result in Proposition 6.1
is equivalent to the following nonlocalized version:

Proposition 6.2. Assume that A is a solution to the Yang-Mills equation in Coulomb gauge
which satisfies

‖Aj‖S1 ≤ ε� 1.

Then for the equation

2AB = F

we have the following linear estimate:

(6.3) ‖∇B‖S . (‖F‖N + ‖Bk[0]‖H)

Further, in view of the same estimates in Proposition 4.1, the last proposition is equivalent
to the existence of a good parametrix for the corresponding paradifferential problem, see the
proof of Theorem 5 in [16]:

Proposition 6.3. Assume that A is a solution to the Yang-Mills equation in Coulomb gauge
which satisfies

‖Aj‖S1 ≤ ε� 1.

Then for each frequency localized initial data (B0k, B1k) ∈ H and inhomogeneous term Fk ∈
N there exists an approximate solution Bk for the equation (4.8), in the sense that:

(i) We have the following linear estimate:

(6.4) ‖∇Bk‖S . (‖Fk‖N + ‖(B0k, B1k)‖H)

(ii) We have the small error estimates:

(6.5) ‖Bk[0]− (B0k, B1k)‖H + ‖2Bk + 2[Aα,<k, ∂
αBk]− Fk‖N . ε(‖Fk‖N + ‖(B0k, B1k)‖H)

6.2. Heuristic considerations. Naively, our goal is to “gauge out” the magnetic potential,
i.e. to find a suitable transformation, which we call the renormalization operator, which, up
to small errors, interchanges the magnetic wave equation with the flat d’Alembertian. We
now outline several considerations which eventually lead to our renormalization operators.

1. Scalar conjugations. We would like to make a gauge transformation

Ck = O−1
<kBkO<k

where O<k is a G valued map which is also localized at lower frequency, in order to turn the
above equation into

2Ck = error
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A direct computation gives

2Ck = O−1
<k(2Bk − [∂αO<kO

−1
<k, ∂

αBk] + l.o.t.)O<k

where in “lower order terms” we have included expressions where both derivatives apply to
the lower frequency term O<k. To insure cancellation here we would need to require that

(6.6) ∂αO<kO
−1
<k = −A<k,α

Solving this exactly would require the connection A to have zero curvature, which is obviously
unacceptable.

2. Pseudodifferential renormalizations. The first remedy to the above failure of complete
integrability is then to allow the conjugation by O to be a pseudodifferential operator, whose
symbol O(t, x, ξ) would then have to satisfy

(6.7) ∂αO<kO
−1
<kξ

α ≈ −A<k,αξα

Algebraically this means that for each ξ we renormalize Aα in a single direction, which is
now possible.

However, from an analytic perspective this implies that the symbol of O will have sin-
gularities associated to space-time frequencies η so that ηαξα = 0. To bypass this second
difficulty we observe that solutions to the linear wave equation are localized in frequency on
the null cone ξαξ

α = 0, while the leading part of Aα are also primarily localized on the cone
ηαη

α = 0. This is useful because when both ξ and η are on the cone, the expression ηαξα
cannot vanish unless ξ and η are collinear.

To take advantage of the above observation, we first note that we are in a paradifferential
situation where |η| � |ξ|, therefore the two cones ξ0 = ±|ξ| are completely uncoupled, and
will be renormalized separately using different parametrices O±. In particular this will allow
us to work with symbols O±(t, x, ξ) which do not depend on ξ0, therefore they act separately
on time slices. Thus we replace (6.7) by

(6.8) (ωj∂j ± ∂0)O<k,±O
−1
<k,± ≈ −(ωjA<k,j ± A<k,0), ω = ξ′|ξ′|−1

3. Pseudodifferential vs. nonlinear: divide and conquer. Above it was easy to replace ξ0

by ±|ξ|, but, due to the nonlinear nature of the expression on the left, it is far less straight-
forward to do the same for η. In order to uncouple the pseudodifferential and nonlinear
aspects of the analysis, we introduce an intermediate step, namely

(6.9) (ωj∂j ± ∂0)O<k,±O
−1
<k,± ≈ (ωj∂j ± ∂0)Ψ<k,± ≈ −(ωjA<k,jξ

j ± A<k,0)

The transition from A to Ψ is pseudodifferential but linear, therefore appropriately (so
that only differential operators in time are used) replacing η0 by |η′| we can rewrite the
second part of the above relation as

(6.10) (∂2
j − (ωj∂j)

2)Ψ<k,± ≈ (∂0 ± ∂jωj)(ωjA<k,jξj ± A<k,0)

This transition is similar to the related step in the previous Maxwell-Klein-Gordon result
[16].
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The step from Ψ to O, on the other hand, is more algebraic in nature, and resembles the
similar step in the study of wave maps, see [37]. Precisely, for fixed ω we seek to have the
more general approximate relation

∇O<k,±O
−1
<k,± ≈ ∇Ψ<k,±

Differentiating with respect to the frequency parameter h < k we obtain

∇(∂hO<h,±O
−1
<h,±) + [∂hO<h,±O

−1
<h,±,∇O<h,±O

−1
<h,±] ≈ ∇Ψh

The second term on the left is quadratic, and has the added feature that the derivative
applies to the lower frequency factor. Hence it is natural to discard it. Then it is natural to
obtain O by integrating Ψh with respect to the frequency parameter h, i.e.

(6.11) ∂hO<hO
−1
<h = Ψh

which is a well defined G valued evolution.

4. Perturbative vs. renormalizable. The last question we need to address is whether we
need to feed all or only part of A into the construction of the renormalization operators. For
simplicity one might attempt first the former, but, as it turns out, there are two distinct
obstructions for this strategy. Of course, the downside of choosing the latter is that the
remaining part of A needs to be treated perturbatively.

The first issue is related to the symbol regularity for O. We observe that even with ξ and
η restricted to the null cones, the expression ηαξα = 0 can still vanish but only when ξ and
η are collinear. This is the well-known difficulty of small angle interactions. To avoid the
corresponding symbol singularities, we will excise the small angle interactions from the linear
flow (4.3) and treat them perturbatively; this is where the null condition comes in handy.
Unfortunately, it is too much to ask to uniformly excise the small angle interactions, and
instead we do this in a frequency dependent fashion. Precisely, we will treat perturbatively
only the interactions at angles

|∠(ξ, η)| . (|η|/|ξ|)δ

where δ is a universal small parameter. This considerations will affect the linear step in the
above construction, i.e. the transition from A to Ψ.

The second issue is related to the fact that the expression ∂αΨξα vanishes in frequency on
the hyperplane ηαξα = 0. Thus, it cannot at all cancel A in the region near this hyperplane.
It follows that, in order for our strategy to work, the portion of A near this hyperplane
must be perturbative. But then it is pointless (and indeed counterproductive) to allow it
to participate in the construction of the renormalization operator. Further, A0’s leading
contribution lies in this region. Thus it is natural to place A0 fully on the perturbative side.

6.3. The parametrix. Here we define the parametrix for 2A that yields the proof of Propo-
sition 6.3. By scaling we can assume that k = 0 in the Proposition, and drop it from the
notations. For the rest of the section we will use k < 0 to denote dyadic frequencies for A,
Ψ and O.

Following the above heuristics, we begin with ξ of size O(1) and ω = ξ/|ξ|. Then we
decompose Aj,<0 into a leading part Amain,±j,<0 and a perturbative part Apert,±j,<0 in a fashion
which depends on ω. Here the choice of ± sign corresponds to the two cones τ ± |ξ| = 0.

The first difficulty we face is that Aj are a-priori only defined in a fixed time interval
I, while our analysis uses many modulation localizations, which are nonlocal in time. To

25



address this issue, we start with Aj in I, and extend them in time outside I as free waves.
By Proposition 3.2, such an extension does not increase significantly the S1 norm of A.

Denoting the Fourier variables for A by (σ, η), the two relevant geometric objects are the
null cone |σ| = |η| and the null plane σ ± η · ω = 0.

It is natural to consider the two components of η, namely η · ω and η⊥ = η − ωη · ω. We
first define a partition of the Fourier space

R4+1 = Dω,±
cone ∪D

ω,±
null ∪D

ω,±
out

where the three regions are homogeneous, symmetric with respect to the origin and

Dω,±
cone = {sgn(σ)(σ ∓ η · ω) >

1

16
|η|−1(|η⊥|2 + |σ ∓ η · ω|2)} ∩ {|σ| < 4|η|},

Dω,±
null = {|σ ∓ η · ω| ≤ 1

8
|η|−1(|η⊥|2 + |σ ∓ η · ω|2)},

Dω,±
out = {sgn(σ)(σ ∓ η · ω) < − 1

16
|η|−1(|η⊥|2 + |σ ∓ η · ω|2)} ∪ {|σ > 2|η|}

Correspondingly we consider a partition of unit

1 = Πω,±
cone + Πω,±

null + Πω,±
out

where the regularity of these symbols degenerates where (σ, η) and (∓1, ω) are collinear,

∂ασ,η⊥∂
β
η||
|Πω,±
∗ | .

(
|η|

|η⊥|+ (|η||σ ± η · ω|) 1
2

)2|α|+|β|

Our second partition is with respect to angles. Given an angle 0 < θ < π/2 we partition
the Fourier space as

R4+1 = Dω,±
<2θ ∪D

ω,±
>θ/2

where

Dω,±
<2θ = {∠(ω,−η sgn(σ)) < 2θ}, Dω,±

>θ/2 = {∠(ω,−η sgn(σ)) > θ/2}

Correspondingly we define a partition of unit

1 = Πω,±
<θ + Πω,±

>θ

with the obvious symbol regularity.
Now we are ready to define the decomposition of Aj,<0, namely

Aj,<0(t, x) = Amain,±j,<0 (t, x, ξ) + Apert,±j,<0 (t, x, ξ)

where

Amain,±j,<0 (t, x, ξ) =Πω,±
>|η|δΠ

ω,±
coneAj,<0

Apert,±j,<0 (t, x, ξ) =(Πω,±
<|η|δΠ

ω,±
cone + Πω,±

null + Πω,±
out )Aj,<0

Here we make two observations. First, the size of the excised angle decreases with the size
of the frequency |η|. This is needed in order to guarantee decay of the perturbative errors as
|η| → 0. Secondly, even though Πω,±

>|η|δ has a jump discontinuity at σ = 0, the symbol Πω,±
cone

vanishes at σ = 0 so the discontinuity disappears.
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Next we use the symbols Amain,±j,<1 to define the g valued zero homogeneous symbols Ψ± =
Ψ<0,±, by

(6.12) Ψ±(t, x, ξ) = −Lω∓∆−1
ω⊥
Amain,±j,<0 ωj

where

Lω± = ∂t ± ω · ∇x, ∆ω⊥ = ∆− (ω · ∇x)
2,

Later in the analysis we will also use the frequency localized functions Amain,±j,k and Ψ±,k
defined for a continuous dyadic parameter h < 0 so that

(6.13) Amain,±j,<k =

∫ k

−∞
Amain,±j,<h dh, Ψ±,<k =

∫ k

−∞
Ψ±,hdh

Once we have the g valued symbols Ψ±,k, we define the zero homogeneous G valued
symbols O±,<k(t, x, ξ) by solving the following differential equation on the Lie group G,

(6.14)
d

dk
O<k,±O

−1
<k,± = Ψ±,k, O−∞,± = const

Here the ode is solved separately for each (x, ξ), and the solution is uniquely determined up
to multiplication O → OU with U = U(x, ξ) an arbitrary G-valued function. While a-priori
U may depend on x and ξ, we can partially eliminate this dependence by requiring that

(6.15) lim
k→−∞

‖∂xO<k,±(t, x, ξ)‖L∞ = 0,

This uniquely determines O± up to multiplication with respect a field U(ξ). We will allow this
ambiguity to remain; all of our results will be invariant with respect to such a conjugation.

To construct the parametrix for the equation (4.8) we fix a large universal constant κ (e.g.
κ = 10), and use the symbols

O±(x,D) := O±,<−κ(x,D)

and the associated operators Op(Ad(O±))(x,D). To do this we conjugate the constant
coefficient wave flow with respect to the pair Op(Ad(O±))(x,D) on the left, respectively
their adjoints Op(Ad(O−1

± ))(D, y) on the right. The ± operators apply to the ± waves.
It is important to remark here on a minor technical point that will affect the exact def-

inition of the parametrix. Precisely, our parametrix should take frequency one functions
to frequency one functions. However, even though the symbols Ψ±,k have sharp frequency
localization, the symbols O±,<k are defined in a nonlinear fashion and do not fully inherit
this property. Thus, instead of using directly the operators Op(Ad(O±))(t, x,D) in our
parametrix, we need to relocalize these symbols at frequencies much smaller than 1; for this
we use the notation

(Ad(O±)<0)(t, x,D) = P (|Dx| � 1)Ad(O±)(t, x,D)

which is nothing but a localized average of O±(x, ξ) on the unit spatial scale. We further
remark that this truncation is largely harmless, because the symbols O± exhibit rapid decay
with favorable bounds at all frequencies much larger than 2−κ. This issue is discussed in
detail in [16], and we will only go over it lightly in here.
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The approximate solution B will have the form

B(t) =
∑
±

1

2
Op(Ad(O±)<0)(t, x,D)e±it|D|Op(Ad(O−1

± )<0)(D, 0, y)(B0 ± i|D|−1B1)

+Op(Ad(O±)<0)(t, x,D)
1

|D|
K±Op(Ad(O−1

± )<0)(D, s, y)F

(6.16)

where

K±f(t) =

∫ t

0

e±i(t−s)|D|f(s)ds

represents the solution to

(∂t ∓ i|D|)u = f, u(0) = 0

By analogy with the MKG problem, we need to prove the following bounds:

Theorem 3. The frequency localized renormalization operators Op(Ad(O±)<0)(t, x,D) have
the following mapping properties with Z ∈ {N0, L

2, N∗0}:
Op(Ad(O±)<0)(t, x,D) : Z → Z ,(6.17)

∂tOp(Ad(O±)<0)(t, x,D) : Z → εZ ,(6.18)

Op(Ad(O±)<0)(t, x,D)Op(Ad(O−1
± )<0)(D, y, s)− I : Z → εZ,(6.19)

Op(Ad(O±)<0)2−2
p
A<0

Op(Ad(O±)<0) : S]0,± → εN0,± .(6.20)

Op(Ad(O±)<0) : S]0 → S0 ,(6.21)

where

2
p
A<0

= 2 + 2ad(Aα,<0)∂α.

We remark that, as we have constructed it above, O is defined globally in time, and is
based on the free wave extension of Aj outside the interval I. All the bounds in the above
theorem will also be proved globally in time; indeed, with the exception of the error estimate
(6.20), only the S1 norm of Ax and the Coulomb Gauge condition are used. However, in
order to prove the bound (6.20) we will need to use the Yang-Mills equation for Ax in I, as
well as the definition of A0 in terms of Ax, also in I.

The rest of the paper are devoted to the proof of the theorem. For the remainder of this
section we use the Theorem to conclude the proof of Proposition 6.3:

Proof of Proposition 6.3. This is completely analogous to the proof of Theorem 4 in [16].
We define the approximate solution via (6.16). Then the bound (6.4) follows from (6.17),
(6.21).

Next, we prove (6.5). For the homogeneous part of the parametrix at time t = 0, we have

B(0)−B0 =
1

2

∑
±

Op(Ad(O±)<0)(0, x,D)Op(Ad(O−1
± )<0)(D, 0, y)(B0 ± i|D|−1B1)−B0

=
[1
2

∑
±

Op(Ad(O±)<0)(0, x,D)Op(Ad(O−1
± )<0(D, 0, y))− I

]
(B0 ± i|D|−1B1)

Thus the bound ∥∥B(0)−B0

∥∥
Ḣ1 . ε

∥∥(B0, B1)
∥∥
H
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is a consequence of (6.19) applied to Z = L2. Further, the inequality∥∥∂tB(0)−B1

∥∥
L2 . ε

(∥∥(B0, B1)
∥∥
H +

∥∥F∥∥
N

)
is a consequence of (6.18), (6.19), see the proof of Theorem 5 in [16]. Finally, for the the
inhomogeneous term, we have the following

2B + 2[Aα,<0, ∂
αB] =

∑
±

[
2
p
A<0

Op(Ad(O±)<0)(t, x,D)−Op(Ad(O±)<0)(t, x,D)2
]
B±

+
1

2

∑
±

[
Op(Ad(O±)<0)(t, x,D)Op(Ad(O−1

± )<0)(D, t, y)− 1
]
F

+
1

2

∑
±

±
[
Op(Ad(O±)<0)(t, x,D)|D|−1Op(Ad(O−1

± )<0)(D, t, y)− |D|−1
]
∂tF

+
∑
±

Op(Ad(O±)<0)(t, x,D)|D|−1∂tOp(Ad(O−1
± )<0)(D, t, y)F

where we set

B± = e±it|D|Op(Ad(O−1
± )<0)(D, 0, y)(B0 ± i|D|−1B1) + |D|−1K±Op(Ad(O−1

± )<0)(D, s, y)F

The first term on the right is handled by combining (6.20) with (6.17), and the last three
terms are controlled using (6.19) and (6.18).

�

7. Decomposability and symbol bounds for Ψ and O

In this section we review the notion of disposability, which is a convenient technical tool
allowing us to easily deal with issues related to symbol calculus, which would otherwise be
quite technical in the context of our function spaces. Then we provide bounds for Ψ and O,
first pointwise and then in disposable spaces.

This section uses only the spatial components Aj,<0 at low frequency. We assume through-
out that this is divergence free, with ‖A‖S1 ≤ ε and frequency envelope ck. We fix the ±
sign to + and drop it from the notations.

7.1. A review of the Decomposable Calculus. First we discuss the notion of decom-
posable function spaces and estimates. This has originated in [23], [15].

A zero homogeneous symbol c(t, x; ξ) is said to be in “decomposable Lq(Lr)” if c =
∑

θ c
(θ),

θ ∈ 2−N, and:

(7.1)
∑
θ

‖ c(θ) ‖
Dθ

(
Lqt (L

r
x)
) < ∞ ,

where, adhering to the definition in [23] and with n = 4 throughout, we put:

(7.2) ‖ c(θ) ‖
Dθ

(
Lqt (L

r
x)
) =

∥∥( 10n∑
k=0

∑
φ

sup
ω
‖ bφθ (ω) (θ∇ξ)

k c(θ) ‖2
Lrx

) 1
2∥∥

Lqt
.

Here bφθ (ξ) denotes a cutoff on a solid angular sector
∣∣ξ|ξ|−1 − φ

∣∣ 6 θ for a fixed φ ∈ Sn−1, and
the sum is taken over a uniformly finitely overlapping collection. We define ‖ b ‖DLq(Lr) as

29



the infimum over all sums (7.1). In [15] it is shown that the following Hölder type inequality
holds:

(7.3) ‖
m∏
i=1

bi ‖DLq(Lr) .
m∏
i=1

‖ bi ‖DLqi (Lri ) , (q−1, r−1) =
∑
i

(q−1
i , r−1

i ) .

In the sequel we only need a special case of decompositions provided in terms of these norms:

Lemma 7.1 (Decomposability Lemma). ([16], Lemma 7.1) Let A(t, x;D) be any pseudodif-
ferential operator with symbol a(t, x; ξ). Suppose A satisfies the fixed time bound:

(7.4) sup
t
‖A(t, x;D) ‖L2→L2 . 1 .

Then for any symbol c(t, x; ξ) ∈ DLq(Lr) one has the space-time bounds:

‖ (ac)(t, x;D) ‖Lq1L2→Lq2 (Lr2 ) .‖ c ‖DLq(Lr) ,
1

q1

+
1

q
=

1

q2

,
1

2
+

1

r
=

1

r2

, 1 ≤ q1, q2, q, r, r2 ≤ ∞
(7.5)

In the sequel it will also be useful for us to treat estimates for products of operators in a
modular way. Recall that if a(x, ξ) and b(x, ξ) are symbols, then arbr − (ab)r ≈ i(∂xa∂ξb)

r.
This formula is not exact, but it leads to an estimate, which is a simple variant of Lemma
7. 2 in [16]:

Lemma 7.2 (Decomposable product calculus). Let a(x, ξ) and b(x, ξ) be smooth symbols,
and λ > 0. Then:
(7.6)
‖ arbr−(ab)r ‖Lr(L2)→Lq(L2) . sup

1≤|α|<N
λ−|α|‖ (∇xa)r ‖Lr(L2)→Lp1 (L2) sup

1≤|α|<N
λ|α|‖∇α

ξ b ‖Lp1L2→LqL2

7.2. Bounds for A. Here we state the decomposability bounds for A, see [16], Lemma 7.3:

Lemma 7.3. The functions Ax · ω, A0 satisfy the following decomposability bounds:

(7.7) ‖Pk(A(θ)
x · ω,A

(θ)
0 )‖DLpL∞ . ε2(1− 1

p
)kθ

5
2
− 2
p , p ≥ 2.

where we use the notation A
(θ)
x = Πω

θAx =
∑
±Πω,±

θ Ax and similarly for A
(θ)
0 , and Πω,±

θ

localises to {∠(ω,−ηsgn(σ)) ∼ θ}.

We observe that we gain two powers of θ compared to [16], Lemma 7.3 on account of the

fact that A
(θ)
x here does not involve the singular operator 4−1

ω⊥
.

7.3. Bounds for Ψ. For the purpose of our first step we use the frame determined by
ω = ξ|ξ|−1 and its orthogonal complement ω⊥ to describe the regularity of Ψ. We have

Lemma 7.4. The functions Ψk(t, x, ξ) satisfy the following bounds for fixed t and ξ:

(7.8) ‖∇ω⊥∇Ψk‖L2 . ck

(7.9) ‖∇2Ψk‖L2 . 2−δkck

We also get the bounds

(7.10) ‖∇N
ξ ∇2Ψk‖L2 . 2−(N+1)δkck.
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We remark that, as a consequence of Bernstein’s inequality, the bound (7.8) implies the
pointwise bounds

(7.11) ‖Ψk‖L∞ . ck

Also we consider Lp norms at fixed time. Fixing ξ we use the orthonormal frame associated
to ξ, and the mixed norms L2

ωL
6 and L∞ω L

3. By Bernstein’s inequality, from (7.8) we obtain

(7.12) ‖∇xΨk‖L2
ωL

6 + ‖∇ω⊥Ψk‖L∞ω L3 . ck

Proof. We first note that simply using the L2 fixed time bound for ∇A does not suffice due
to the presence of two inverse derivatives in (6.12). We will use the Coulomb gauge condition
to cancel one of these two derivatives. Precisely, using the Coulomb gauge condition to write

Aj,kωj = (ωj − |∆|−1∇⊗∇)Aj,k = ∆−1∇∇ω⊥Aj,k

which is exactly what we need.
�

Next, we consider a number of decomposable estimates for the phase Ψ(t, x; ξ) used to
define our microlocal gauge transformations:

Lemma 7.5. [Decomposable estimates for Ψ] Let the phase Ψ(t, x; ξ) be defined as in (6.12),
and its angular components Ψ(θ) = Πω

θψ(t, x; ξ), where ω = |ξ|−1ξ. Then for q ≥ 2 and
2/q + 3/r ≤ 3

2
one has:

(7.13) ‖ (Ψ
(θ)
k , 2−k∇t,xΨ

(θ)
k ) ‖DLq(Lr) . 2−( 1

q
+ 4
r

)kθ
1
2
− 2
q
− 3
r ε,

In addition, suppose that θ . 2j . 1. Then for q, r ≥ 2 we also have

(7.14) ‖Qk+2j(Ψ
(θ)
k , 2−k∇t,xΨ

(θ)
k ) ‖DLq(Lr) . 2−( 1

q
+ 4
r

)k2−
2
q
jθ

1
2
− 3
r ε,

Further,

(7.15) ‖2Ψ
(θ)
k ‖DL2(L∞) . θ

1
2 2

3
2
kε.

In particular

‖ (Ψk, 2
−k∇t,xΨk) ‖DLq(L∞) . 2−

1
q
kε , q > 4 ,(7.16)

‖Qk+2j(Ψk, 2
−k∇t,xΨk) ‖DLq(L∞) . 2−

1
q
k2( 1

2
− 2
q

)jε , 2 ≤ q < 4 ,(7.17)

‖∇t,xΨk ‖DL2(Lr) . 2( 1
2
− 4
r
−δ( 1

2
+ 3
r

))kε , r ≥ 6 ,(7.18)

Proof. Notice that the last three estimates follow from the first by summing over dyadic
2−δk ≤ θ . 1. For the first two bounds we interchange the t integration and the ω summation
to obtain:

‖ (Ψ
(θ)
k , 2−k∇t,xΨ

(θ)
k ) ‖DLq(Lr) . θ−22−k

(∑
ω

‖Πω
θ (D)A · ω ‖2

Lq(Lr)

) 1
2

. θ−12−k
(∑

ω

‖Πω
θ (D)A ‖2

Lq(Lr)

) 1
2 ,

where at the second step we have used the Coulomb gauge to gain another factor of θ.
Now we conclude the proof of (7.13) using the Strichartz estimate component of the Sk

norms. In four space dimensions the Strichartz sharp range is given by 2
q
+ 3

r0
= 3

2
. Moreover,
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on an angular sector of size θ Bernstein’s inequality gives the embedding Πω
θ (D)PkL

r0 ⊆
θ

3( 1
r0
− 1
r

)
2

4( 1
r0
− 1
r

)k
Lr. Thus:(∑

ω

‖Πω
θ (D)Ak ‖2

Lq(Lr)

) 1
2 . θ

3
2
− 2
q
− 3
r 2(1− 1

q
− 4
r

)k‖Ak ‖S1
k
,

and (7.13) follows.
The argument for (7.14) is simpler. The case q = r = 2 is immediate using the L2

bound coming from the X
1, 1

2∞ component of the S1 norm, and the transition to larger q, r
is done using Bernstein’s inequality. Finally, the estimate (7.15) is a direct consequence of
Bernstein’s inequality, as

‖2Ψ
(θ)
k ‖DL2(L∞) . θ

3
2 22k‖2Ψ

(θ)
k ‖DL2(L2) . θ

1
2 2k‖2Ax,k‖L2 . θ

1
2 2

3k
2 ‖Ax,k‖S1

�

We wrap this section up by proving some additional symbol type bounds for the phases
Ψ. These involve the variation over the physical space variables:

Lemma 7.6 (Additional symbol bounds for Ψ). Let Ψ be as above. Then one has:

|Ψ<k(t, x; ξ)−Ψ<k(s, y; ξ)| . ε log(1 + 2k(|t− s|+ |x− y|)),(7.19)

|Ψ(t, x; ξ)−Ψ(s, y; ξ)| . ε log(1 + |t− s|+ |x− y|)(7.20)

|∂αξ (Ψ(t, x; ξ)−Ψ(s, y; ξ))| . ε〈(t− s, x− y)〉|α−
1
2
|δ, 1 6 α 6 δ−1.(7.21)

Proof. We decompose as before

Ψ<k(t, x; ξ) =
∑
j<k

∑
θ>2δj

Ψ
(θ)
j (t, x, ξ)

For each fixed θ and j we have by the definition of Ψ and the Coulomb gauge condition

|Ψ(θ)
j (t, x, ξ)| . θ−12−j sup

ω
‖Πω

θAj‖L∞

Then by energy estimates for A and Bernstein’s inequality we obtain

(7.22) |Ψ(θ)
j (t, x, ξ)| . θ

1
2‖Aj‖S1 , |Ψj(t, x, ξ)| . ‖Aj‖S1

A similar argument leads to

(7.23) |∂t,xΨ(θ)
j (t, x, ξ)| . 2jθ

1
2‖Aj‖S1 , |∂t,xΨj(t, x, ξ)| . 2j‖Aj‖S1

Differentiating with respect to ξ yields θ−1 factors,

|∂αξ Ψ
(θ)
j (t, x, ξ)| . θ

1
2
−|α|‖Aj‖S1 , |∂x,t∂αξ Ψ

(θ)
j (t, x, ξ)| . 2jθ

1
2
−|α|‖Aj‖S1 .

For the bound (7.19) we use both (7.22) and (7.23) to write for j ≤ k

|Ψ<k(t, x; ξ)−Ψ<k(s, y; ξ)| .
[
2j(|t− s|+ |x− y|) + |k − j|

]
‖Aj‖S1

and then optimize the choice of j.
The proof of (7.21) is similar.

�
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7.4. Fixed time bounds for O. Here we transfer the above bounds from Ψ to O. Precisely,
we have the following

Lemma 7.7. The following estimates hold for O, where ⊥ below refers to derivatives in the
plane ω⊥:

(7.24) ‖Pk′O<k;⊥‖L2 . 2−k
′
ck′2

−N(k′−k)+

(7.25) ‖Pk′O<k;x,t‖L2 . 2(−δ−1)k′ck′2
−N(k′−k)+

Estimates with one derivative less hold for ∂kO<k;x,t.

Proof. We treat the case of spatial derivatives, time derivatives being handled similarly. Our
strategy will be to use integration in h and reiteration in the commutation relation

(7.26)
d

dh
O<h;x = Ψh,x + [Ψh, O<h;x]

as well as differentiated forms of it, in order to build up successively stronger bounds for
the derivatives of O<h. In this section, mixed Lebesgue spaces LpLq refer to the coordinates
ω, ω⊥ for the x-plane.

1. L∞ bounds. A-priori we have

‖Ψk‖L∞ . ck.

Then integration from −∞ with respect to h in (7.26) gives

‖O<k;x‖L∞ . 2kck

Repeated differentiation similarly leads to a better high frequency bound

‖∂m−1
x O<k;x‖L∞ . 2mkck

2. L2L12 bounds. Here we start with

‖Ψk‖L2L12 . 2−
3k
4 ck

The same argument as above using (7.26) leads to

‖O<k;x‖L2L12 . 2
k
4 ck ‖∂m−1

x O<k;x‖L2L12 . 2(m− 3
4

)kck

3. L∞L6 bounds. Here we start with

‖∂⊥Ψk‖L∞L6 . 2
1
2
kck

As above, using (7.26) but only for ∂⊥ derivatives we obtain

‖O<k;⊥‖L∞L6 . 2
k
2 ck ‖∂m−1

x O<k;⊥‖L∞L6 . 2(m− 1
2

)kck

4. L2L6 bounds. For this we use the bound

‖Ψk‖L2L6 . 2−kck
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We apply a Littlewood-Paley projector Pk′ in (7.26) and integrate in h,

‖Pk′O<k;x‖L2L6 .
∫ k

−∞
‖Pk′Ψh,x‖L2L6 + ‖Pk′ [Ψh, O<h;x]‖L2L6 dh

The first term on the right contributes only when h = k + O(1). Thus we consider two
scenarios. If k < k′ then we combine directly the high frequency L∞ bound for O;x with the
L2L6 bound for Ψh,x to obtain the rapid decay

‖Pk′O<k;x‖L2L6 . ck′2
−N(k′−k), k < k′

If k ≥ k′ then we retain the contribution of the first term when h = k′+O(1), and in addition
we bound the second term for larger h > k′ using Bernstein’s inequality as follows:

‖Pk′ [Ψh, O<h;x]‖L2L6 . 2
3
4
k′‖Ψh‖L2L6‖O<h;x‖L2L12 . c2

h2
3
4

(k′−h)

Taking advantage of the decay in h, we obtain the desired bound

‖Pk′O<k;x‖L2L6 . ck′ , k ≥ k′.

5. L∞L3 bounds. For this we use the bound

‖∂⊥Ψk‖L∞L3 . 2−kck

and argue as in the L2L6 case. The only difference arises in the treatment of the bilinear
term for h ≥ k′, namely

‖Pk′ [Ψh, O<h;⊥]‖L∞L3 . 2
1
2
k′‖Ψh‖L2L6‖O<h;⊥‖L∞L6 . c2

h2
1
2

(k′−h)

We obtain
‖Pk′O<k;⊥‖L∞L3 . ck′2

−N(k′−k)+

6. L2 bounds. In this final step we use the equation

d

dh
Pk′O<h;⊥ = Pk′Ψh,⊥ + Pk′ [Ψh, O;⊥]

take L2 norms and integrate with respect to h. For h < k′ the first term on the right vanishes,
while for the second we have

‖Pk′ [Ψh, O<h;⊥]‖L2 . ‖Ψh‖L2L6‖Pk′O;⊥‖L∞L3 . c2
h2
−h2−N(k′−h)

Integrating we obtain

‖Pk′O<k;⊥‖L2 . ck′2
−k′2−N(k′−k), k < k′.

It remains to consider the case k > k′. The first term Pk′Ψh,⊥ is nonzero only if h =
k′+O(1), in which case it is easily estimated using (7.8). For the second term, on the other
hand, we have

‖Pk′ [Ψh, O<h;⊥]‖L2 . ‖Ψh‖L2L6‖O;⊥‖L∞L3 . c2
h2
−h

which is easily integrated for h > k′. Thus the proof of (7.24) is complete.

7. Proof of the bound (7.25). This proof is largely similar, so we outline the change. In

fact, in Step 5, a 2−
1
2
δk loss in the ∂xΨ bound generates a similar loss for O<k;x. The same

loss propagates directly to Step 6.
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7.5. Fixed time bounds for O;ξ. Differentiating the functions Ψk with respect to ξ looses
a factor of ∠(ξ, η). Due to the angular separation, this factor is at most 2δk. Thus, the
bounds for O<k;ξ are similarly related to the bounds for O<k:

Lemma 7.8. We have the pointwise bounds

(7.27) |∂nξO<k;x| . 2k(1−nδ), nδ < 1,

as well as the L2 bounds

(7.28) ‖Pk′∂nξO<k;x‖L2 . 2k(−1−nδ)2−N(k′−k)+

The evolution equation for O;ξ = OξO
−1 is

d

dh
O<h;ξ = Ψh,ξ + [Ψh, O<h;ξ]

We have a similar relation for Ox,

d

dh
O<h;x = Ψh,x + [Ψh, O<h;x]

Differentiating the latter with respect to ξ yields

d

dh
∂ξO<h;x = ∂ξΨh,x + [∂ξΨh, O<h;x] + [Ψh, ∂ξO<h;x]

Since (see Lemma 7.5 as well as (1) in the proof of Lemma 7.8)

|Ψh,x|+ |O<h;x| . 2h, |∂ξΨh,x| . 2h(1−δ)

we can integrate to obtain

|∂ξO<h;x| . 2h(1−δ)

We further have L2 bounds

‖∂ξΨh,x‖L2 . 2h(−1−2δ), ‖∂ξΨh‖L2 . 2h(−2−2δ), ‖Ψh‖L2 . 2h(−2−δ)

with extra gain for further x derivatives. We can transfer these bounds to ∂ξO<h;x by using
Littlewood-Paley projectors in x in the above evolution, to obtain (7.28).

We also have the commutation relation

(7.29) ∂ξO<h;x − ∂xO<h;ξ = −[O<h;x, O<h;ξ]

Up to this point O is only uniquely determined up to a ξ dependent conjugation,

O<h(x, ξ)→ O<h(x, ξ)P (ξ)

At the level of O<h;ξ this translates to the gauge freedom

O<h;ξ(x, ξ)→ O<h;ξ(x, ξ) +O<h(x, ξ)PξP
−1O−1

<h(x, ξ)

Fixing a choice of P is not necessary, as all estimates we need are invariant under such a
change.
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7.6. Decomposable bounds for O;x, O;t. Our goal here is to transfer decomposability
bounds from Ψ to O. Precisely, we have

Lemma 7.9. We have the following estimates:

‖O<k;x, O<k;t ‖DLq(L∞) . 2(1− 1
q

)kε , q > 4 ,(7.30)

‖O<k;x, O<k;t ‖DL2(L∞) . 2
1
2

(1−δ)kε ,(7.31)

Proof. We prove the bounds for O<k;x; those for O<k;t are identical. We use the evolution
for Ok;x, namely

∂kO<k;x = Ψk,x + [Ψk, O<k;x]

We proceed in several stages:

Step 1:(A weaker DL∞L∞ bound) Using the pointwise bounds on O;x and its ξ derivatives,
we directly conclude that (for δ > 0 small enough)

‖O<k;x‖DL∞L∞ . 2(1−nδ)k, n = 40.

Step 2:(The full DL∞L∞ bound) Using the above evolution we obtain the integral bound

‖O<k;x‖DL∞L∞ . ‖O<l;x‖DL∞L∞ +

∫ k

l

‖Ψh,x‖DL∞L∞ + ‖Ψh‖DL∞L∞‖O<h;x‖DL∞L∞dh

By Gronwall’s inequality this gives

(7.32) ‖O<k;x‖DL∞L∞ . ‖O<l;x‖DL∞L∞e
∫ k
l chdh +

∫ k

l

2hche
∫ k
h ch1dh1dh

But by Cauchy-Schwarz we have ∫ k

l

chdh . |k − l|
1
2

Thus, using the weaker DL∞L∞ bound, the first term in (7.32) decays to zero as l → −∞.
On the other hand, the leading contribution in the second term in (7.32) comes from h =
k −O(1). Hence we obtain the desired bound.

‖O<k;x‖DL∞L∞ . 2kck

Step 3:(The DLqL∞ bound) Using again the above evolution and the fact that, by con-
struction, limk→−∞O<k;x = 0 we write

O<k;x =

∫ k

−∞
Ψh,x + [Ψh, O<h;x]dh

Then we combine the DLqL∞ decomposability bound (7.16) for Ψh with the previously
established DL∞L∞ bound for O<h;x.

Step 4:(The DL2L∞ bound) We proceed as in the previous step, but using the bound (7.16)
for Ψh instead.

�
36



7.7. Difference bounds for O. Here we seek to compare O<k(t, x, ξ) with O<k(s, y, ξ).
Since both are elements of the Lie group G, it is natural (and most useful in the sequel) to
look at the product O<k(t, x, ξ)O

−1
<k(s, y, ξ). We have

Lemma 7.10 (Difference bounds for O). Let O be as above. Then one has:

d(O<k(t, x, ξ)O
−1
<k(s, y, ξ), Id) . ε log(1 + 2k(|t− s|+ |x− y|)),(7.33)

d(O(t, x, ξ)O−1(s, y, ξ), Id) . ε log(1 + |t− s|+ |x− y|)(7.34)

|∂nξ (O(t, x, ξ)O−1(s, y, ξ));ξ| . 〈(t− s, x− y)〉nδ.(7.35)

Proof. For the first two bounds we use the Ad(O−1(t, x, ξ)) to interchange the order and
estimate instead the distance d(O−1

<k(s, y, ξ)O<k(t, x, ξ), Id). This vanishes as k → −∞,
therefore we can write

d(O−1
<k(s, y, ξ)O<k(t, x, ξ), Id) .

∫ k

−∞
|(O−1

<h(s, y, ξ)O<h(t, x, ξ));h|dh

But we have

(O−1
<h(s, y, ξ)O<h(t, x, ξ));h = O−1

<h(t, x, ξ)(Ψh(t, x, ξ)−Ψh(s, y, ξ))O<h(s, y, ξ)

so we obtain

d(O−1
<k(s, y, ξ)O<k(t, x, ξ), Id) .

∫ k

−∞
|Ψh(t, x, ξ)−Ψh(s, y, ξ)|dh

For Ψh we have the bound

|Ψh(t, x, ξ)−Ψh(s, y, ξ)| . εmin{1, 2h(|x− y|+ |t− s|)}
Thus the bounds (7.33) and (7.34) follow after dyadic integration with respect to h.

For the third bound (7.35) we denote V<k = O<k(t, x, ξ)O
−1
<k(s, y, ξ), and proceed in two

steps. For the first step we fix k, and show that

(7.36) |∂nξ V<k;ξ| . (|t− s|+ |x− y|)2k(1−nδ), 2k|x− y| . 1, n ≥ 0.

This bound is favorable provided that k is small enough. In the second step, we extent the
range of k for which (7.35) holds by evaluating the k derivative of ∂nξ V<k;ξ.

We now proceed with the first step, where we will crucially use the bound

(7.37) |∂nξO<k;x(t, x, ξ)| . 2k(1−δn),

see (7.27). The expression V<k;ξ vanishes if x = y, t = s so it suffices to estimate its x, t
derivatives; below we do so for the x-derivatives, with similar estimates applying to the
t-derivatives:

∂x∂
n
ξ V<k;ξ = ∂n+1

ξ V<k;x + ∂nξ [V<k;x, V<k;ξ]

for which we use V<k;x = O<k;x(t, x, ξ) to rewrite it as

∂y∂
n
ξ V<k;ξ − [V<k;y, ∂

n
ξ V<k;ξ] = ∂n+1

ξ O<k;x +
n∑
j=1

[∂jξO<k;x, ∂
n−j
ξ V<k;ξ].

The last term is absent if n = 0, so the bound (7.36) follows directly from (7.37) by integra-
tion. Finally we close by induction integrating over x, estimating

|[∂jξO<k;x, ∂
n−j
ξ V<k;ξ]| . 2k(1−δj)|x− y|2k(1−δ(n−j)) = 2k|x− y|2k(1−δn)
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So far the bound (7.35) is established in the range 2k|x − y| . 1. To extend it we forget
about the distance between x and y and integrate instead with respect to l (the new k).
First write

V<l = W<l(x)V<kW
−1
<l (y)

where

W<l = O<lO
−1
<k

We have

V<l;ξ = −W<l(x)V<kW
−1
<l (y)W<l;ξ(y)W<l(y)V −1

<kW
−1
<l (x) +W<l(x)V<k;ξW

−1
<l (y) +W<l;ξ(x)

so repeated differentiation shows that it suffices to bound

(7.38) |∂nξW<l;ξ(x)| . 2−kδn, l > k, n ≥ 0

For this we follow the previous strategy, writing

∂l∂
n
ξW<l;ξ = ∂n+1

ξ O<l;l + ∂nξ [O<l;l,W<l;ξ]

which leads to

∂l∂
n
ξW<l;ξ − [Ψl, ∂

n
ξW<l;ξ] = ∂n+1

ξ Ψl +
n∑
j=1

[∂jξΨl, ∂
n−j
ξ W<l;ξ]

Using the bounds for Ψ we can inductively close (7.38).
�

8. L2 bounds for the parametrix

In this section we establish a number of L2 bounds for the renormalization operators
and the parametrix. In the last part we prove the bounds (6.17), (6.18), (6.19) and (6.21).
Throughout the section we assume that A is a Yang-Mills wave with ‖A‖S � 1 and frequency
envelope ck. We fix the ± sign to + and drop it from the notations. Also, we shall consider
unit frequencies, and put O instead of O<0. We split the argument across several subsections.

8.1. Oscillatory integral estimates. We first observe that on one hand our parametrix
involves operators of the form

T a = Op(Ad(O±))(t, x,D)e±i(t−s)|D|a(|D|)Op(Ad(O−1
± ))(D, s, y)

where a is localized at frequency 1. On the other hand, arguing in TT ∗ fashion in order to
prove various L2 estimates involving the operatorsOp(Ad(O(t, x,D)) andOp(Ad(O<0(t, x,D)∗)),
we need to consider bounds for similar operators in the special case when t = s.

The kernel of the operator Ta is given by the oscillatory integral

KaF (t, x) =

∫
a(ξ)e±i(t−s)|ξ|eiξ(x−y)(O(t, x, ξ)O−1(s, y, ξ))F (s, y)(O(t, x, ξ)O−1(s, y, ξ))−1dξ

Our main estimates for such kernels are as follows:

Proposition 8.1. a) Assume that a is a smooth bump on the unit scale. Then the kernel
Ka satisfies

(8.1) |Ka(t, x; s, y)| . 〈t− s〉−
3
2 〈|t− s| − |x− y|〉−N
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b) Let a = aC be a bump function on a rectangular region C of size 2k × (2k+l)3 with
k ≤ l ≤ 0. Then

(8.2) |Ka(t, x; s, y)| . 24k+3l〈22(k+l)(t− s)〉−
3
2 〈2k(|t− s| − |x− y|)〉−N

If in addition x− y and C have a 2k+l angular separation then

(8.3) |Ka(t, x; s, y)| . 24k+3l〈22(k+l)|t− s|〉−N〈2k(|t− s| − |x− y|)〉−N

Proof. a) Away from a conic neighborhood of the cone {|t− s| = ±|x− y|} the phase

Φ = ±(t− s)|ξ|+ ξ(x− y)

is nondegenerate. Hence applying the symbol bounds (7.21) repeated integration by parts
with respect to ξ yields

|Ka(t, x, s, y)| . 〈(t, x)− (s, y)〉−N , N ∼ δ−1

Near the cone we need to be more careful. Denoting T = |t−s|+|x−y| and R = |t−s|−|x−y|,
in suitable (polar) coordinates the operator Ka takes the form

KaF (t, x) =

∫
(O(t, x, ξ′)O−1(s, y, ξ′))F (s, y)(O(t, x, ξ′)O−1(s, y, ξ′))−1eiRξ1eiT ξ

′2
ã(ξ)dξ

In ξ1 (the former radial variable) this is a straight Fourier transform, so we get rapid decay
in R. Given the bound (7.21), we can use stationary phase in ξ′. While the ξ derivatives
of the O−1(t, x, ξ′)O(s, y, ξ′) part of the phase are not bounded, they only bring factors of
T σ, which is small enough not to affect the stationary phase ( this works up to σ = 1

2
). We

obtain
|Ka(t, x, s, y)| . T−

3
2 (1 +R)−N

b) Away from the cone the estimate follows easily as above since the phase is nondegen-
erate. Near the cone we use again polar coordinates to express our oscillatory integral as
above,

KCF (t, x) =

∫
(O(t, x, ξ′)O−1(s, y, ξ′))F (s, y)(O(t, x, ξ′)O−1(s, y, ξ′))−1eiRξ1eiT ξ

′2
ãC(ξ)dξ

where aC is a bump function in a rectangle on the 2k scale in the radial variable ξ1 and on
the 2k+l scale in the angular variable ξ′. Then we can separate variables in (ξ1, ξ

′). We note
that this rectangle need not be centered at ξ′ = 0, though this is the worst case. In ξ1 this
is again a Fourier transform, so we get the factor

2k〈2kR〉−N

In ξ′ we can use stationary phase to get the factor

23(k+l)〈22(k+l)T 〉−
3
2

The bound (8.2) follows by multiplying these two factors.
Finally, the estimate (8.3) corresponds to the case when aC is supported in |ξ′| > 2k+l

in the above representation. If T < 2−2(k+l) then there are no oscillations in ξ′ on the 2k+l

scale, and we just use the brute force estimate. For T > 2−2(k+l) the phase is nonstationary
in ξ′, and we obtain the factor

23(k+l)(1 + 22(k+l)T )−N

�
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While the above proposition contains all the oscillatory integral estimates which are
needed, it does not apply directly to the frequency localized operators Op(Ad(O))<0(t, x,D)
and Op(Ad(O))<0(D, y, s). For that we need to produce similar estimates for the kernels
Ka
<0 of the operators

T a<0 = Op(Ad(O))<0(t, x,D)a(D)e±i(t−s)|D|Op(Ad(O−1))<0(D, s, y)

The transition to such operators is made in the next

Proposition 8.2. a) Assume that a is a smooth bump on the unit scale. Then the kernel
Ka
<0 satisfies

(8.4) |Ka
<0(t, x; s, y)| . 〈t− s〉−

3
2 〈|t− s| − |x− y|〉−N

In addition, the following fixed time bound holds:

(8.5) |Ka
<0(t, x; t, y)− ǎ(x− y)| ≤ ε| log ε|

b) Let a = aC be a bump function on a rectangular region C of size 2k × (2k+l)3 with
k ≤ l ≤ 0. Then

(8.6) |Ka
<0(t, x; s, y)| . 24k+3l〈22(k+l)(t− s)〉−

3
2 〈2k(|t− s| − |x− y|)〉−N

c) Let a = aC be a bump function on a rectangular region C of size 1 × (2l)3 with l ≤ 0.
Let ω ∈ S3 be at angle l from C. Then we have the characteristic kernel bound

|Ka
<0(t, x; s, y)| . 23l〈22l|t− s|〉−N〈2l|x′ − y′|〉−N

t− s = (x− y) · ω
(8.7)

Here we use the coordinate splitting x = (x1, x
′) in analogy to the splitting ξ = (ξ1, ξ

′)
introduced above.

Proof. a) We represent the action of symbol Op(Ad(O))<0 by

(8.8) Op(Ad(O))<0F (x) =

∫
m(z)

∫
ei(x−y)ξO(x+ z, ξ)F (y)O−1(x+ z, ξ)dydξ dz

where m(z) is an integrable bump function on the unit scale. One proceeds similarly for
functions on space-time.

This can be expressed in a concise form using the operators Tz, Tw to represent translation
in the space-time directions z, w acting on the variables t, x. and s, y, respectively.

Using this representation for both operators Op(O)<0, Op(O)∗<0, and denoting a(z, w)(ξ) =
a(ξ)ei(±|ξ|,ξ)·(z−w), the kernel Ka

<0 can be expressed in terms of the kernels Ka in the previous
proposition, namely

(8.9) Ka
<0F (t, x) =

∫
TzTwK

a(z,w)F (t, x) m(z)m(w) dzdw

To prove the bound (8.4) we use (8.1), together with the additional observation that the
implicit constant in (8.1) depends on finitely many seminorms of a (at most 8, to be precise)
which we denote by |||a|||. Then

|||a(z, w)||| . (1 + |z|+ |w|)N

However, this growth is compensated by the rapid decay of m, therefore the bound (8.1) for
Ka transfers directly to Ka

<0 in (8.4).
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To prove (8.5) we use the same representation as above to write

Ka
<0F (t, x)− ǎ ∗ F (t, x) =

∫
(TzTwK

a(z,w) − I)F (t, x) m(z)m(w) dzdw

By (7.20) we have

|Tzψ±(t, x, ξ)− Twψ±(t, y, ξ))| . ε log(1 + |z|+ |w|+ |x− y|)
which yields

|Ka
<0(t, x, t, y)− ǎ(x− y)| . ε

∫
log(1 + |z|+ |w|+ |x− y|)|m(z)||m(w)|dzdw

. ε log(2 + |x− y|)
This suffices if log(2 + |x− y|) . | log ε|. But for larger |x− y| we can use (8.4) directly.

b) Using the representation (8.9), the bound (8.6) follows from (8.2) exactly by the same
argument as in case (a).

c) Using the representation (8.9), the same argument also yields the bound (8.7) provided
we have the following estimate for Ka:

|Ka(t, x, s, y)| . 23l〈22l|t− s|〉−N〈2l|x′ − y′|〉−N(1 + |(t− s)− (x− y) · ω|)10N

To see that this is true, we consider four cases:
(i) If |t− s| . 2−2l then (8.2) applies directly.
(ii) If |t− s| � 2−2l but ||x− y| − |t− s|| & 2l|x′ − y′|+ 22l|t− s| then (8.2) still suffices.
(iii) If |t − s| � 2−2l and |(t − s) − (x − y) · ω)| & 2l|x′ − y′| + 22l|t − s| then (8.2) also

applies.
(iv) Finally, if |t− s| � 2−2l, but ||x− y| − |t− s|| � 2l|x′ − y′|+ 22l|t− s| and |(t− s)−

(x − y) · ω|)| � 2l|x′ − y′| + 22l|t − s| then we must have ∠(x − y, ω) � 2l, which implies
that ∠(x− y, C) ≈ 2l. Then (8.3) applies.

�

8.1.1. Fixed-time L2 estimates for the gauge transformations. Here we use the previous the-
orem to prove three L2 estimates which correspond to the L2-part of (6.17), (6.18) as well
as that of (6.19). These will also be repeatedly used later in conjunction with the notion of
disposability.

Proposition 8.3. The following fixed time L2 estimates hold for functions localized at fre-
quency 1, with or without the < 0 symbol localization:

Op(Ad(O))<0(t, x,D) : L2 → L2,(8.10)

Op(Ad(O))<0(t, x,D)a(D)Op(Ad(O−1))<0(D, y, s)− a(D) : L2 → ε
N−4
N log ε L2(8.11)

∂x,tOp(Ad(O))<0(t, x,D) : L2 → εL2(8.12)

Proof. a) By the estimate (8.1) with s = t, the TT ∗ type operator

Op(Ad(O))(t, x,D)P 2
0Op(Ad(O−1))(D, y, t)

has an integrable kernel, so it is L2 bounded. Therefore Op(Ad(O))(t, x,D)P0 and its adjoint
are L2 bounded. To accommodate symbol localizations we observe that

Op(Ad(O))<k =

∫
mk(z)Op(Ad(TzO)) dz
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where m(z) is an integrable bump function on the 2−k scale and Tz denotes translation in the
direction z, with z representing space-time coordinates. Since the wave equation is invariant
to translations, the symbol TzO is of the same type as O and its left and right quantizations
are also L2 bounded. Thus the bound (8.10) follows by integration with respect to z.

b) For the estimate (8.11) we note that the kernel of

Op(Ad(O))<0(t, x,D)a(D)Op(Ad(O−1))<0(D, y, s)− a(D)

is given by Ka
<0(t, x, t, y)− ǎ(x− y). Combining (8.4) and (8.5) we get

|Ka
<0(t, x, t, y)− ǎ(x− y)| . min{ε| log ε|, |x− y|−N}

The integral of the expression on the right is about ε
N−4
N | log ε|, therefore the conclusion

follows.
c) By translation invariance we discard the < 0 symbol localization, and show that

∂x,tOp(Ad(O))(t, x,D)P0 is L2 bounded. We have

∂x,tAd(O) = ad(O;x,t)Ad(O)

By (7.30) we have O;x,t ∈ εDL∞(L∞) therefore we can dispose of it and use the L2 bound-
edness of Op(Ad(O))P0. �

8.2. High space-time frequencies in O. Although Ψ<k is localized at space-time fre-
quencies < k, its renormalization counterpart O<k does not share the same property since
it is obtained in a nonlinear fashion. Nevertheless, the following result asserts that the high
frequency part of O<k does satisfy much better bounds:

Lemma 8.4. Assume that 1 6 q 6 p 6∞. Then for k + C ≤ l ≤ 0 we have :

(8.13) ‖Op(Ad(O<k))l(t, x;D) ‖Lp(L2)→Lq(L2) . ε2( 1
p
− 1
q

)k25(k−l) ,

This holds for both left and right quantizations.

Proof. For the symbol we iteratively write:

SlAd(O<k) = 2−lSl∂x,t(Ad(O)<k) = 2−lSl(ad(O;(x,t))Ad(O)<k)

= . . . = 2−5l(
5∏
j=1

S
(j)
l ad(O;(x,t))) · Ad(O)<k ,

where the product denotes a nested (repeated) application of multiplication by Sl∂tψ<k, for

a series of frequency cutoffs S
(j+1)
l S

(j)
l = S

(j)
l ≈ Sl with expanding widths. Disposing of

these translation invariant cutoffs we see that (8.13) follows directly from (7.30).
�

8.3. Modulation localized estimates. Our next goal is to show that the fixed time L2

bounds for Op(O) drastically improve to space-time L2(L2) bounds if one selects a fixed
“frequency” in the symbol. Precisely, for k < 0 we can express the difference

Ad(O<0)− Ad(O<k) =

∫ 0

k

ad(Ψh)Ad(O<h)dh

where the integrand Ad(O);h := ad(Ψh)Ad(O<h), while not exactly localized at frequency
2h, nevertheless is better behaved both at higher and at lower frequencies. The next result
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asserts that the output of Op(Ad(O);h)(t, x,D) is better behaved at modulations less than
2h:

Proposition 8.5. For l 6 k′ ±O(1) one has the fixed frequency estimate:

(8.14) ‖QlOp(Ad(O);k′)Q<0P0 ‖
N∗→X

0, 12
1

. 2δ(l−k
′)ε .

In particular summing over all (l, k′) with l 6 k and k −O(1) 6 k′ for a fixed k 6 0 yields:

(8.15) ‖Q<k(Op(Ad(O<0))−Op(Ad(O<k−C)))Q<0P0 ‖
N∗→X

0, 12
1

. ε .

Proof of Proposition 8.5. We proceed in a series of steps, where we consider successive mod-
ulation scenarios.

Step 1:(High modulation input) First we estimate the contribution of the dyadic piece

QkOp(Ad(O);k′)Q>k−CP0 to line (8.14). Using the X
0, 1

2∞ bounds for the input, it suffices to
prove the estimate:

‖QkOp(Ad(O);k′)P0 ‖L2(L2)→L2(L2) . 2
1
5

(k−k′)ε .

By Sobolev estimates in |τ | ± |ξ|, this reduces to the bound:

‖Op(Ad(O);k′)P0 ‖L2(L2)→L
10
7 (L2)

. 2−
1
5
k′ε .

Recalling that Op(Ad(O);k′) has symbol ad(Ψk′)Ad(O<k′), it suffices to use the L2 bounded-
ness for Op(O<k′) and the L5L∞ disposability bound for Ψk′ .

Step 2:(Main decomposition for low modulation input) Now we estimate the expression
QkOp(Ad(O);k′)Q<k−CP0u. First expand the untruncated group elements as follows:

Ad(O);k′ = ad(Ψk′)Ad(O<k−C) +

∫ k′

k−C
ad(Ψk′)ad(Ψl)Ad(O<k−C)dl(8.16)

+

∫ k′

k−C′

∫ k′

l′
ad(Ψk′)ad(Ψl)ad(Ψl′)Ad(O<l′)dldl

′

= L+Q+ C.

We will estimate the effect of each of these terms separately.

Step 3:(Estimating the linear term L) The factor ad(Ψk′) in L is well localized both in
frequency and modulation. While not exactly localized, the second factor Ad(O<k−C) is
to the leading order localized at frequency and modulation ≤ k − C/2, with more regular
and decaying tails at larger frequencies and modulations. The geometry of the bilinear wave
interactions, on the other hand, requires us to estimate differently the contribution of ad(Ψk′)
depending on its modulation relative to 2k. To account for both considerations above, we
split the term L as follows:

(8.17) L = ad(Ψk′)S<k−4Ad(O<k−C) + ad(Ψk′)S>k−4Ad(O<k−C)
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Step 3a:(Estimating the principal linear term in L) For the first term on RHS of line (8.17)
it suffices to show the general estimate:

(8.18) ‖QkOp(ad(Ψk′)b<k−4)Q<k−CP0 ‖L∞(L2)→L2(L2) . ε 2−
1
2
k+ 1

4
(k−k′) sup

t
‖B<k−4(t) ‖L2→L2

for k′ > k, and for symbols b(x, ξ)<k−4 with sharp frequency and modulation localization
and with either the left or right quantization. The geometry of the bilinear wave interactions
requires us to estimate differently the contribution of ad(Ψk′) depending on its modulation
relative to 2k. Thus we will consider three cases:

Step 3a(i):( The contribution of Q<kΨk′) In this case the modulation of the output deter-
mines the angle θ between the spatial frequencies of Ψk′(x, ξ) and the spatial frequency of the

input, which is θ ∼ 2
1
2

(k−k′). Since this is also the angle with ξ, we may restrict the symbol

of Ψk′ to Ψ
(θ)
k′ for which the estimate (8.18) follows immediately from (7.5) and summing

over (7.13).

Step 3a(ii):( The contribution of QkΨk′) In this case one of the inputs has the same modu-

lation as the output, so we only get a bound from above on the angle θ, namely θ . 2
1
2

(k−k′).
However, instead of (7.13), which looses at small angles, we can take advantage of the fixed
modulation to use (7.14), which gains at small angles.

Step 3a(iii):( The contribution of Q>kΨk′) In this case one of the inputs has high modula-
tion, say 2k

′+2j′ with (k − k′)/2 < j′ ≤ 0 . This determines the angle θ to be θ ≈ 2j
′
. Then

we can use again (7.14).

Step 3b:(Estimating the frequency truncation error in L) For the second term on RHS of
line (8.17) we use (7.16) for Ψk′ with p = 6 combined with (8.13) with (p2, q) = (∞, 3).

Step 4:(Estimating the quadratic term Q) We follow a similar procedure to Step 3 above.
First split S<k−4Ad(O<k−C) + S>k−4Ad(O<k−C). For the second term one can proceed as in
Step 3b above using (7.16), (8.13), and (7.3).

Therefore we only need to consider the effect of the first term, for which we will prove the
trilinear bound:

(8.19) ‖Qk ·Op(ad(Ψk′)ad(Ψl)b<k−4)(t, x;D) ·Q<k−CP0 ‖L∞(L2)→L2(L2)

. ε2 2−
1
2
k2

1
4

(k−k′)2
1
6

(k−l) sup
t
‖B<k−4(t) ‖L2→L2 ,

for k′ > l > k. We decompose the symbol ad(Ψk′)ad(Ψl) in terms of the angles,∑
θ&2

1
2 (k−k′)

ad(Ψ
(θ)
k′ )ad(Ψl)+

∑
θ&2

1
2 (k−k′)

θ′�2
1
2 (k−l)

ad(Ψ
(θ)
k′ )ad(Ψ

(θ′)
l )+

∑
θ�2

1
2 (k−k′)

θ�2
1
2 (k−l)

ad(Ψ
(θ)
k′ )ad(Ψ

(θ′)
l ) = T1+T2+T3 .

For the term T1 put the first factor in DL3(L∞) and the second in DL6(L∞). This gives us

dyadic terms in LHS(8.19)(T1) ∼ 2−
1
2
k2

1
4

(k−l)2
1
6

(k−k′). For the term T2 do the opposite, which
yields a similar bound. Finally, for the term T3 a frequency modulation analysis shows that
at least one of the two factors has modulation ≥ k. Then we use (7.14) to place that factor
in DL2(L∞) and simply bound the remaining factor in DL∞L∞.
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Step 5:(Estimating the cubic term C) In this case we can gain 2
1
6

(k−k′) directly through the
use of (7.16) and three DL6(L∞). Further details are left to the reader.

�

8.4. The N0 and N∗0 bounds in (6.17), (6.18) and (6.19). We are now ready to conclude
the proof of the first part of Theorem 3.

Proof of (6.17) for Z = N0, N
∗
0 . By duality it suffices to prove the N∗0 bound for both the

left and the right calculus. The L∞L2 bound follows from the fixed time L2 bound. The

X
0, 1

2∞ bound is also straightforward when we go from high to low modulation. It remains to
consider the case of low modulation input and high modulation output. Precisely, we need
to show that

(8.20) ‖QkOp(Ad(O))Q<k−CP0‖L∞L2→L2 . ε2−
k
2

From here on, we specialize to the left calculus. By (8.15), it remains to estimate

‖QkOp(Ad(O<k−C))Q<k−CP0‖L∞L2→L2L2 . ε2−
k
2

Here we can harmlessly replace Ad(O<k−C) by S>k−4Ad(O<k−C). But then we can conclude
using (8.13).

To prove (8.20) for the right calculus, we use duality to switch to the left calculus bound

(8.21) ‖P0Q<k−COp(Ad(O))Qk‖L2→L1L2 . ε2−
k
2

Then we can conclude the proof in the same manner as before. �

Proof of (6.18) for Z = N0, N
∗
0 . Here we repeat the above analysis with Ad(O) replaced by

∂t(Ad(O)) = ad(O:t)Ad(O). We remark that

∂h∂t(Ad(O)) = ad(∂t(Ψh))Ad(O) + ad(Ψh)ad(O:t)Ad(O)

and all terms above are of the same form as above, possibly with Ad(O) harmlessly replaced
by ad(O:t)Ad(O). �

Proof of (6.19) for Z = N0, N
∗
0 . By duality it suffices to consider the case Z = N∗0 . In view

of the L2 bound proved earlier, it suffices to show that

‖QkOp(Ad(O))Op(Ad(O))∗Q<k−C‖L∞L2→L2 . ε2−
k
2

But this is a consequence of two bounds,

‖QkOp(Ad(O))Q<k−C‖L∞L2→L2 . ε2−
k
2

and

‖Q>k−C/2Op(Ad(O))∗Q<k−C‖L∞L2→L2 . ε2−
k
2

both of which follow from (8.20). �

8.5. Strichartz and null frame norm estimates. Here we briefly outline how to prove
the bound (6.21). In fact, the argument for this bound follows exactly like the proof of (83)
in section 11 of [16]. One replaces (114) in [16] by the L2-boundedness of the operators
Op(Ad(O±)<k)(t, x,D), the dispersive bounds (108), (110) in [16] by the bounds (8.4), (8.6),
and the bound (118) in [16] by (8.15).
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9. Error estimates

Here we again simplify notation by writing O<0 = O. The goal of this section is to consider
the conjugation error

E = 2
p
A<0

Op(Ad(O))−Op(Ad(O))2

and prove the bound (6.20) in Theorem 3.
Commuting 2 we have

E =2Op(ad(A<0,α)Ad(O))∂α + 2Op(ad(A<0,α)ad(O;α)Ad(O)) + 2Op(ad(O;α)Ad(O))∂α

+Op(ad(∂αO;α)Ad(O)) +Op(ad(O;α)ad(O;α)Ad(O))

= 2Op(ad(A<0,α + Ψ<0,α)Ad(O))∂α

+ 2Op(ad(O;α −Ψα)Ad(O))∂α

+ 2Op(ad(A<0,α)ad(O;α)Ad(O)) +Op(ad(O;α)ad(O;α)Ad(O))

+Op(ad(∂αO;α)Ad(O))

= E1 + E2 + E3 + E4

Here the main difficulty is to estimate the term E1, which not only contains the input of
Apert,±j,<0 but also the full input from A0. We carry out a good portion of the analysis in
Section 9.1, modulo a single interaction scenario which is more extensive and requires more
than the S norm of A ; this is relegated to the last section 10. The remaining terms E2, E3

and E4 are dealt with in Section 9.2. These are more in line with previous estimates, and
only require the S1 norm of Ax.

9.1. The estimate for E1. We recall that

Ψk,+(t, x, ξ) = −Lω−∆−1
ω⊥

(Amainj,k · ωj), Amainj,k = Πω
>δkΠ

ω
coneAj,k

where

Lω− = ∂t − ω∇x

Replacing the operator Dt by −|Dx| we produce a first error, namely

Op(ad(A0 + ∂0Ψ)Ad(O))(Dt + |Dx|)

which is easily dealt with using DL2L∞ disposability bounds for A0 and ∂tΨ. We are left
with

E1 = Op(ad(Aj · ω + A0 + Lω+Ψ+)Ad(O))

Now we use

−Lω+Lω−∆−1
ω⊥

= 2∆−1
ω⊥
− 1

to write

G := Aj · ω + A0 + Lω+Ψ+ = Gcone +Gnull +Gout

where

Gcone = 2∆−1
ω⊥

Πω
>δkAj,coneωj + Πω

<δkAj,coneωj + A0,cone

Gnull = Aj,nullωj + A0,null

Gout = Aj,outωj + A0,out
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We seek to prove that Op(ad(G)Ad(O)) : N∗ → N . We do this in two stages. First we will
show that we can dispense with O, and simply prove that

(9.1) Op(ad(G)) : S0 → N

Since Op(Ad(O)) is bounded from S]0 into S0, in order to achieve this it suffices to show that

(9.2) Op(ad(G)Ad(O))−Op(ad(G))Op(Ad(O)) : N∗ → N

This latter bound will not follow immediately from pdo calculus, since G is not smooth with
respect to ξ on the unit scale. Instead, our strategy will be to first peel off a contribution
which is bad from the perspective of pdo calculus but has a good decomposable structure.

For this we consider the pieces G
(θ)
h of G, which are localized at frequency 2h and angle θ

with respect to ω. In view of the bounds (7.7) and (7.13) they satisfy

‖G(θ)
h ‖DL2L∞ . θ

3
2 2

h
2

These symbols are smooth in ξ on the θ scale, so it is natural to match them against
symbols which are smooth in x on the θ−1 scale. Thus, let hθ be defined by 2hθ = θ. Then
we decompose the above difference as

D
(θ)
h = Op(ad(G

(θ)
h ))Ad(O))−Op(ad(G

(θ)
h ))Op(Ad(O))

=

∫ 0

hθ

Op(ad(G
(θ)
h )ad(Ψk)Ad(O<k))dk

−
∫ 0

hθ

Op(ad(G
(θ)
h )Op(ad(Ψk)Ad(O<k))dk

+ Op(ad(G
(θ)
h )Ad(O<hθ))−Op(ad(G

(θ)
h ))Op(Ad(O<hθ))

For the first term, decomposable estimates show

‖Op(ad(G
(θ)
h )ad(Ψk)Ad(O<k))‖L∞L2→L1L2 . ‖G(θ)

h ‖DL2L∞‖Ψk‖DL2L∞ . θ
3
2 2

h
2 2(− 1

2
−δ)k

which is favorable in view of the range θ < 2k < 1. A similar argument applies for the second
term. For the third term, instead, we can use the pdo calculus. For |α| ≥ 1 we have

‖∂αξ G
(θ)
h ‖DL2L∞ ≤ cαθ

−|α|θ
3
2 2

h
2

while (using Lemma 7.9)

‖∂αxAd(O<hθ)‖L∞L2→L2L2 . θ|α|−
1
2
−δ

It follows that

‖Op(ad(G
(θ)
h )Ad(O<hθ))−Op(ad(G

(θ)
h ))Op(Ad(O<hθ))‖L∞L2→L1L2 . θ

1
2 2

h
2 θ

1
2
−δ

which again suffices. Thus the bound (9.2) is proved. We now return to (9.1).
Corresponding to the partition of G into three parts we will also partition

E1 = E1,cone + E1,null + E1,out

In this section we will estimate E1,cone and E1,out. We will postpone the bound for E1,null for
the next section.

The bound for E1,cone. The redeeming feature of E1,cone is that the modulation localiza-
tion and the angle are mismatched and that forces a large modulation on either the input
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or the output. Precisely, consider the Gcone component G
(θ)
cone,k at frequency k and angle θ.

Then G
(θ)
cone,k has modulation at most 2kθ2, whereas either the input or the output must have

modulation at least 2kθ2. Hence we can use the L2 norm for either the input or the output,
therefore it suffices to have L2L∞ disposability for the terms in Gcone. Precisely, we obtain

‖E1,cone‖N∗→N .
∑
k<0

∑
θ<1

θ−12−k/2‖G(θ)
cone,k‖DL2L∞

The nontrivial business is to insure summation. In the second term in Gcone we gain from
the angle, and thus also in k. In the first term we use disposability derived from the L2

bound for 2Ak therefore we gain in angle, and `1 summation in k. Same for the third term.

The bound for E1,out. Again the modulation localization and the angle are mismatched
and that forces a large modulation on either the input or the output. Precisely, consider the

Gout component Qk+2jG
(θ)
out,k at frequency k and angle θ. Then G

(θ)
out,k has modulation 2k+2j ≥

2kθ2, whereas either the input or the output must have modulation at least comparable.
Hence we can again use the L2 norm for either the input or the output, therefore it suffices
to have L2L∞ disposability for the terms in Gout. We obtain

‖E1,out‖N∗→N .
∑
k<0

∑
j<0

∑
θ<2j

2−(k+2j)/2‖Qk+2jG
(θ)
out,k‖DL2L∞

.
∑
k<0

∑
j<0

∑
θ<2j

2−
(k+2j)

2 θθ
3
2 22k

∥∥PkQk+2jAx
∥∥
L2L2 + 2−(k+2j)/2θ

3
2 22k

∥∥PkA0

∥∥
L2L2

The first term comes from Aj and the second from A0. The latter has `1 dyadic summation,
while for the former we use Proposition 5.4.

The bound for E1,null. We can dispense with the case when either the input or the
output have high modulation (& 2kθ2, where k, θ stand for the frequency, respectively the
angle of A) as in the case of E1,cone. We are then left with the expression

H∗Op(ad(Aα,<0))∂αC

The bound for this expression is stated in the following lemma, whose proof is relegated to
the next section:

Lemma 9.1. Suppose that A has S1 norm at most ε and solves the YM-CG equation in a
time interval I. Extend Ax to a free wave outside I, and A0 by 0. Then for C at frequency
1 we have the estimate

(9.3) ‖H∗Op(ad(Aα,<0))∂αC‖N . ε‖C‖S

9.2. The estimates for E2, E3 and E4. For these terms we can directly use the decompos-
ability bounds bounds on Ψ and O in the previous sections. We consider them successively.
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9.2.1. The E2 term. For the second term in the error we recall that

∂hO;α = Ψh,α + [Ψh, O;α]

Thus, repeatedly expanding the symbol ad(O;α−Ψα)Ad(O) (by means of (6.13)) with respect
to h, we are left with an integral with respect to decreasing h’s of expressions of the form

ad(Ψh1)ad(∂αΨh2)Ad(O<h2), · · · ad(Ψh1) · · · ad(Ψh5)ad(∂αΨh6)Ad(O<h6)

plus a final remainder term

ad(Ψh1) · · · ad(Ψh5)ad(O<h6;α)Ad(O<h6)

with possibly changed order of factors.
For the sixth-linear terms we use DL6L∞ bounds for all factors (in particular we need this

for O<h6;α with no loss; DL∞L∞ would also do by reiterating once more).
For the lower order expressions we are in the same situation as in the MKG case, with the

critical difference that the Ψ’s may now have nonzero modulations. We discuss the second
order term, as all higher order terms are similar.

ad(Ψh1)ad(∂αΨh2)Ad(O<h2)∂
α

Replacing ∂0 by −|ξ| (with a better error) this becomes

ad(Ψh1)ad(Lω+Ψh2)Ad(O<h2)|ξ|

and doing the symbol computation, this has the form

D2 = ad(Ψh1)ad(Amainj,h2
ωj)Ad(O<h2)|ξ|

Now we do an angle/modulation analysis. We begin with angles, and denote by θ1, θ2 the
two angles. Then by (7.13) and (7.7) we can first estimate

‖D2‖L∞L2→L1L2 . ‖Ψ(θ1)
h1
‖DL2L∞‖Amain,(θ

2)
j,h2

· ω‖DL2L∞ . 2(h2−h1)/2θ
− 1

2
1 θ

3
2
2

This is favorable if 2h1θ2
1 & 2h2θ2

2. If this is not the case, then either one of the factors or
the input or the output must have modulation at least as large as 2h2θ2

2. This cannot be the

case for A
main,(θ2)
j,h2

by definition, so we have three scenarios to consider:
a) High modulation input. Then by (7.13) and (7.7) we have

‖D2B‖L1L2 . 2−h2/2θ−1
2 ‖Ψ

(θ1)
h1
‖DL6L∞‖Amain,(θ2)

j,h2
· ω‖DL3L∞‖B‖N∗ . 2(h2−h1)/6θ

2− 1
6

2

which suffices.
b) High modulation output where we have exactly the same bound.
c) High modulation on Ψ1. Then we can use (7.14) for its DL2L∞ bound.

9.2.2. The term E3. In this term we have high frequencies to spare. For [O;α, [O
α
; , Op(O)·]]

we need some mild L2L∞ disposability estimate for O;α. Similarly, for Aα we can use an
L2L∞ bound.
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9.2.3. The term E4. For ad(∂αO;α)Ad(O) we expand in h

ad(∂αO;α)Ad(O) =

∫ 0

−∞
(ad(2Ψh) + ∂α[Ψh, O<h;α] + ad(∂αO<h;α)ad(Ψh))Ad(O<h)dh

For the second and third term we use L2L∞ disposability for Ψh and O<h;α, with room to

spare. For the first term, consider the component ad(2Ψ
(θ)
h ) at angle θ and reexpand with

2hθ = θ22h:

ad(2Ψ
(θ)
h )Ad(O<h) = ad(2Ψ

(θ)
h )Ad(O<hθ−C) +

∫ h

hθ−C
ad(2Ψ

(θ)
h )ad(Ψh1)Ad(O<h1)dh1

For the integrand we can use two DL2L∞ bounds to estimate

‖2Ψ
(θ)
h ‖DL2L∞‖Ψh1‖DL2L∞ . θ

1
2 2

3h
2 2−( 1

2
+δ)h1

which is favorable due to the range of h1 and the fact that θ is restricted to the range θ > 2δh

in the definition of Ψh.
For the leading term, using (8.13), we replace Ad(O<hθ−C) by S<hθ−4Ad(O<hθ−C). At this

stage we are left with the operator

Op(ad(2Ψ
(θ)
h )S<hθ−4Ad(O<hθ−C))

Given the frequency localization of Ψ
(θ)
h , the space-time frequency interaction analysis shows

that either the input or the output must have modulations at least 2hθ2. Then we can

conclude using the DL2L∞ disposability of 2Ψ
(θ)
h in (7.15). Again, the restricted range

θ > 2δh in the definition of Ψh allows us to compensate θ losses by 2δh gains.
�

10. Trilinear forms and the second null structure

Here we prove Lemma 9.1 and Lemma 5.6, which we restate for convenience:

Lemma 10.1. a) Suppose that A has S1 norm at most ε and solves the YM-CG equation in
a time interval I. Extend Ax to a free wave outside I, and A0 by 0. Then for Ck at frequency
2k we have the estimate

(10.1) ‖H∗[Aα,<k, ∂αCk]‖N . ε‖Ck‖S1

b) Suppose in addition that B ∈ Ss solves the linearized equation (1.10) in a time interval
I. Extend Bj outside I as free waves, and B0 by zero. Then for s < 1, close to 1 we have
the global estimate

(10.2) ‖H∗[Bα,<k, ∂
αCk]‖Ns−1 . ε‖B‖Ss‖Ck‖S1

The proofs for the two parts are quite similar, and hinge on a double null structure in
the main trilinear expression arising when one replaces the first factor in the expressions
above with the solutions of the corresponding 2 equation for Ax and Bx, respectively the ∆
equation for A0 and B0.

Proof of Lemma 10.1. a) To better frame the question, denote by 2h, θ the frequency, re-
spectively the angle of A. Then the H∗ operator selects the cases where both the input and
the output are at modulation less than 2hθ2.
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Our first tool here is to use the Z norm bounds (5.5), (5.7). To bound (most of) Ax and
A0 we use their equations (1.6), respectively (1.7). We claim that the following hold:

‖2Aj −HP[Ai, χI∂jAi]‖`12Z . ε2

‖∆A0 −H[Ai, χI∂0Ai]‖`12 1
2 ∆

1
2Z
. ε2

(10.3)

For this we consider all other terms in the equations for Aj and A0, which we recall here:

2Aj = P ([Aα, ∂jAα]− 2[Aα, ∂αAj]− [∂0A0, Aj]− [Aα, [Aα, Aj]])

∆A0 = [Aj, ∂0Aj]− 2[Aj, ∂jA0]− [Aj, [Aj, A0]]

Here we seemingly pay a price for working in an interval I, as both right hand sides need to
be multiplied by the characteristic function χI of I. However, this turns out to be harmless,
because we can always place χI on the differentiated factor, and still retain the use of the S
norm.

(i) Cubic terms A3. These are placed in `1L1L2 which suffices by (5.9) (we do need to
gain `1 summability in k).

(ii) [Aj, ∂jA0] and [∂0A0, Aj]. are also in `1L1L2 by using L2Ḣ
1
2 for ∇A0 and L2L6 for Aj.

(iii) The term [A0, ∂0Aj]. The low-high case is the worst, but even then we can use
Strichartz to produce L1L∞.

(iv) High-low interactions in the quadratic terms Aj∇Ak. This is where we use (5.10).
(v) High-high interactions in [Aj, ∂jAk]. Here we can take the derivative out and estimate

as in the high-low case via (5.10).
(vi) High-high interactions in [Aj, ∂αAj]. with at least one high modulation Here by esti-

mating one factor in L2 we can gain in terms of high frequencies, see (5.12).
This concludes the proof of (10.3). In view of (5.5), (5.7), this leaves us with one remaining

case:

(Final case) High-high interactions in [Aj, ∂αAj] with two low modulations. Here we need
to combine the 2−1Aj and ∆−1A0 contributions in order to gain an additional cancellation.
Omitting the frequency and modulation localizations, the expression is as follows:

L =2−1P[Aj, ∂kAj]∂kF + ∆−1[Aj, ∂0Aj]∂0F

= 2−1[Aj, ∂kAj]∂kF −
∂k∂i
2∆

[Aj, ∂iAj]∂kF −∆−1[Aj, ∂0Aj]∂0F

= 2−1[Aj, ∂αAj]∂
αF − ∂k∂i

2∆
[Aj, ∂iAj]∂kF +

∂2
0

2∆
[Aj, ∂0Aj]∂0F

= 2−1[Aj, ∂αAj]∂
αF − ∂α∂i

2∆
[Aj, ∂iAj]∂

αF − ∂0∂i
2∆

[Aj, ∂iAj]∂0F +
∂2

0

2∆
[Aj, ∂0Aj]∂0F

= 2−1[Aj, ∂αAj]∂
αF − ∂α∂i

2∆
[Aj, ∂iAj]∂

αF − ∂0∂α
2∆

[Aj, ∂
αAj]∂0F

The estimate for this term is exactly the trilinear bound in [16], see (136) - (138) in Theorem
12.1 there.

b) This is similar to the proof in part (a), with two differences:
i) There is an additional gain in the low frequency input, which eliminates any need to

control `1 norms.
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ii) There is a small additional loss in high-high interactions in 2Ax and ∆A0. However,
this is harmless as in all cases we have a small high frequency gain (including, notably, the
trilinear case).

�
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