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Abstract

The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural
circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback
to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular
mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon
guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we
have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls
the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons
results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between
these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These
findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor
projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal
limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain
unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by
motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on
each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and
within the plexus region of the limbs.
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Introduction

The establishment of concerted locomotor behaviors in verte-

brates relies on the formation of integrated motor and sensory

circuits that form between defined populations of neurons and their

appropriate targets in the periphery. During the development of the

spinal neuromuscular circuitry, motoneurons and sensory neurons

of the dorsal root ganglia (DRG) align their axons to form spinal

nerves that extend together over long distances towards their

respective peripheral targets in the developing limb. The molecular

mechanisms underlying the early organization of these projections,

from diverse origins into tight fascicles, and subsequent sorting into

target-specific bundles are crucial to their pathfinding success, but

are not well understood. Several families of complementary

receptor-ligand pairs that are expressed on projecting neurons

and their targets and serve as axon guidance cues have been

identified over the last two decades [1–3]. The expression of these

secreted and membrane-bound factors, and their neuronal

receptors, is tightly regulated, both spatially and temporally.

However, growing axons recognize and respond to cues

presented not only in intermediary and final target tissues but

also on neighboring axons. In the fly olfactory system, axon-axon

interactions mediated by Sema1A expressed on early-arriving

axons to the antenna constrain the choice of late-arriving axons

from the maxillary palp, likely through repulsive interactions with

PlexinA, a receptor for Sema1A [4]. Recently, the same family of

axon guidance molecules has been implicated in pre-target

segregation of axons that project to different regions of the mouse

olfactory bulb. Genetic experiments revealed that these pre-target

axon-axon interactions are mediated by expression of comple-

mentary amounts of Neuropilin-1 (Npn-1) and Semaphorin 3A

(Sema3A) on olfactory sensory neurons and result in axonal

segregation en route to their target destinations, specific and

unique glomeruli in the olfactory bulb [5].

PLoS Biology | www.plosbiology.org 1 February 2011 | Volume 9 | Issue 2 | e1001020



During the development of the vertebrate limb, axon-environ-

ment interactions mediated by molecules of several axon guidance

cue families play crucial roles in the establishment of precise

connectivity in sensory-motor circuitry. Motoneurons that inner-

vate limb muscles reside at brachial and lumbar levels in the

ventral spinal cord and form the lateral motor columns (LMC).

Lateral LMC neurons (LMCl) express EphA4 and are guided to

the dorsal limb through repulsive interactions with ephrinA

ligands [6–9] while repulsive Sema3F-Npn-2 as well as ephrinB-

EphB signaling directs axons from the medial LMC (LMCm) to

ventral limb muscles [10,11]. Selective fasciculation and de-

fasciculation of sensory and motor nerves within specific decision

areas, e.g. the plexus region, are also controlled by axon-

environment interactions [10,12,13]. Only recently inter-axonal

signals between co-extending sensory and motor axons have been

proposed to organize these projections within nerves innervating

axial muscles of the trunk. Indeed, repulsive interactions mediated

through ephrinA ligands expressed on sensory axons and EphA3/

A4 receptors present on motoneurons of the medial aspect of the

medial motor column (MMCm) result in a sharp pre-target

segregation of motor and sensory pathways [14]. However, the

role of axon-axon interactions in the formation of non-axial

projections, for example in the trajectories to the limb, remains

unclear. Deletion of motoneurons through surgical removal of

several segments of neural tube in the developing chick suggested

that motor axons influence the patterning of sensory trajectories

either by axons providing environmental and/or selective

fasciculation cues to guide sensory axons [15]. Subsequent studies

showed that sensory axons retain the capability of finding their

correct targets if motoneurons are removed after the developmen-

tal stage when neural crest cells coalesce into the DRG. This

suggests that the sensory neuron identity or axon extension is

plastic with regard to pathway and target choice [16]. While these

data show a dependence on correct motor axon growth for correct

sensory axon outgrowth and guidance, they do not rule out the

converse.

Class 3 semaphorin mediated signals govern several distinct

aspects of the formation of spinal sensory-motor connectivity: in

contrast to repulsive Sema3F-Npn-2 interactions, which guide a

subset of medial LMC axons into the ventral forelimb, Sema3A-

Npn-1 signaling directs the fasciculation, timing, and fidelity of

motor axon growth into the forelimb [10]. Interestingly, Npn-1 is

expressed not only at early time points in all LMC neurons

projecting to the limb, but also in sensory neurons of the DRG,

and is therefore in a position to mediate axon-axon interactions

between sensory and motor fibers during development.

In this study, using genetic tools, we re-examined the reciprocal

interactions of sensory and motor axons as they navigate their

trajectories and explored the role of Npn-1 signaling in the

communication between these two peripheral nerve components.

We show that Npn-1 is required in sensory axons to maintain

proper fasciculation and organization of both sensory and motor

axons. DRG-specific removal of Npn-1 leads to defasciculation of

motor projections even though Npn-1 is still present in

motoneurons. In line with these findings, peripheral motor

projections can still form if sensory neurons are partially

eliminated by activation of diphteria toxin fragment A (DT-A),

however motor trajectories become defasciculated. Elimination of

Npn-1 from motoneurons, however, leads to defasciculation of

motor projections beyond the plexus without influencing the

correct formation of sensory trajectories. This defasciculation of

motor axons also resulted in dorsal-ventral guidance errors within

the limb. Partial elimination of motoneurons resulted in markedly

thinned, or even absent, sensory projections depending on the

degree of motoneuron reduction. Our results underscore the

crucial role of Npn-1 signaling for the sorting and selective

fasciculation of sensory and motor axons of the vertebrate limb

prior to these projections arriving at the important early choice

point, the plexus region. Our data show that correct fasciculation

and the presence of either motor or sensory axons proximal to the

plexus region play a key role in the development of both classes of

projections.

Results

Fasciculation of Motor Axons Is Controlled by Npn-1
Expressed in Motoneurons

Absence of Sema3-Neuropilin signaling in all cells, as occurs in

the Npn-1Sema2 mouse line where Sema3A-Npn-1 signaling is

abrogated, results in defasciculation of peripheral sensory and

motor projections [10]. To determine whether Npn-1 is required

cell-autonomously in motoneurons for motor axon fasciculation,

we utilized a conditional approach (Npn-1cond, GeneID:18186, [17])

to selectively remove Npn-1 from this cell type using an Olig2-Cre

line (GeneID:50913, [18]). In Npn-1cond2/2;Olig2-Cre+ animals

Npn-1 mRNA and protein were strongly reduced in motoneuron

cell bodies and axons, respectively, while sensory neurons and

axons still expressed unchanged levels of Npn-1 (Figure 1A–E).

Motor axons were visualized by also crossing to an Hb9::eGFP

transgenic mouse line [19]. The formation of peripheral motor

and sensory projections was observed in wholemount embryo

preparations by GFP fluorescence (motor axons) or expression of

neurofilament in absence of GFP (sensory trajectories), respective-

ly. At E12.5, when motor and sensory axons have traversed the

plexus region and formed individual nerve branches in the distal

limb in the wildtype, motor axons were found to be strongly

defasciculated in homozygous Npn-1cond mice heterozygous for

Author Summary

During embryonic development, growing axons establish
intricate neural networks with their peripheral targets, a
process that builds the basis for complex behaviors. While
wiring up the proper circuits in peripheral limbs, for
example, motor axons from the spinal cord and sensory
axons from the dorsal root ganglia converge in the spinal
nerve. Here, they intermingle and are subsequently sorted
before reaching the plexus region, the pivotal dorsal-
ventral choice point on their path to the limb. In this study,
we analyzed the contribution of the axon guidance
receptor Neuropilin-1 (Npn-1) to determine how axons
choose their path, how well they are able to maintain their
correct path, and how it influences the interactions
between spinal sensory axons and motor axons. We find
that when Npn-1 is eliminated from sensory neurons, both
sensory and motor axons are ‘‘derailed’’ from their correct
nerve bundles, and there is a break in the tight coupling
between these axonal populations. Loss of Npn-1 in
motoneurons, however, leads to impairments in axon
bundling and pathfinding errors only in motor axons,
while sensory axons remain unaffected. Genetic ablation
studies of either sensory or motor neurons corroborate the
results on the mutual dependency and specificity of the
outgrowing spinal projections. These results reveal a role
for Npn-1 in controlling specific axon-axon interactions
that lead to formation of proper spinal sensory-motor
trajectories to the limb. Furthermore, they suggest that the
presence of minimal numbers of sensory or motor axons is
sufficient for the formation of correct spinal projections.

Npn-1 Mediates Sensory-Motor Axon Interactions
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Olig2-Cre (Figures 2, S1A,B). These findings were also corroborat-

ed when an alternative Cre line was used, Hb9-Cre (GeneID:15285,

[20]), to eliminate Npn-1 from motoneurons (Figure S2). After

exiting the spinal cord motor axons converged to form the plexus,

however, in Npn-1cond2/2;Olig2-Cre+ mutants the defasciculation

was so severe that hardly any motor fibers reached the distal

forelimb (Figure 2B,F, arrowhead). To visualize the degree of

defasciculation we measured the pixel intensity along a line

perpendicularly crossing the four major motor nerves visible at this

developmental time point in the forelimb (Figure 3A). In Npn-

1cond2/2;Olig2-Cre+ animals all nerves are heavily defasciculated

and only the radial nerve (number 2 in Figure 3C,D) could still be

identified in the plot profile. This also revealed a pronounced

defasciculation of motor nerves in the Npn-1cond2/2;Hb9-Cre+

animals, albeit less severe (Figure 3E,F). To quantify the

defasciculation of motor fibers, we measured the thickness of the

four major motor nerves in the forelimbs and found significantly

increased values in Npn-1cond2/2;Olig2-Cre+ and Npn-1cond2/2;Hb9-

Cre+ mutants when compared to wildtype littermates (Figure 3G).

Since the distal advancement of motor axons in the forelimb

appeared to be reduced in Npn-1cond2/2;Olig2-Cre+ mutants, we

quantified the ingrowth of motor axons into the forelimb by

measuring the length of the distal-most motor fiber relative to the

length of the forelimb (Figure 3H). We found that the

advancement of motor axons was significantly reduced in Npn-

1cond;Olig2-Cre+ embryos (0.4260.03 SEM) compared to wildtype

littermates (0.6360.02, p,0.005) while the distal advancement

was normal in Npn-1cond2/2;Hb9-Cre+ animals (Figure 3I). Surpris-

ingly, the formation of sensory trajectories was unaffected by

defasciculation or stunted growth of motor nerves in Npn-1cond2/2;

Olig2-Cre+ mutants (Figure 2B’,D’). This was particularly obvious

with the sensory part of the ulnar nerve that was formed normally

even though the motor nerve did not extend as far as in control

animals (Figure 2E’,F’, arrow). We quantified the defasciculation

of sensory projections by counting the number of neurofilament

positive pixels in a defined region of interest and found no

difference in Npn-1cond2/2;Olig2-Cre+ or Npn-1cond2/2;Hb9-Cre+

mutants when compared to wildtype littermates (Figure 3J–M).

Npn-1 is also expressed in a large majority of LMC neurons at

lumbar level and indeed we observed a very similar phenotype in

the hindlimb where, after removal of Npn-1 from motoneurons,

motor projections were significantly defasciculated while the

sensory branching pattern was established normally (Figure S3,

quantification in Figure S4). Interestingly, not only LMC

projections to the limbs were affected by selective removal of

Npn-1 in motoneurons, but also other motor projections, as

exemplified by the innervation of intercostal musculature origi-

nating from neurons of the lateral aspect of the medial motor

column (MMCl, Figure S5). In contrast to wildtype intercostal

nerves, which are tightly bundled (Figure S5A,B), these nerves are

strongly defasciculated in Npn-1cond2/2;Olig2-Cre+ mutant mice

with many axon fascicles crossing between major nerve branches

(Figure S5D, arrowheads). The mean number of such crossings in

mutant embryos was almost 30-fold higher than in control

littermates (14.1764.1 versus 0.560.5 crossings per embryo,

respectively, p,0.005, Figure S5E). Interestingly, defasciculated

intercostal axons were also observed later in embryonic develop-

ment at E15.5 (Figure S6). These data indicate that Npn-1 is

required cell-type autonomously in motoneurons for proper

fasciculation of motor trajectories. They further suggest that

peripheral sensory projections are established correctly, even if the

motor projections are severely defasciculated in the distal fore- and

hindlimb due to loss of Npn-1 function.

Npn-1 Is Required in Motoneurons Cell-Autonomously
for Accurate Dorsal-Ventral Guidance of LMC Axons

Defasciculation of motor projections as caused by removal of

Npn-1 from motoneurons could affect the stereotypical dorsal-

ventral choices made by LMC axons. We therefore examined

whether cell-type-specific removal of Npn-1 affected this guidance

decision. We retrogradely labeled motoneuron cell bodies by

injecting rhodamin-coupled dextran into either ventral or dorsal

forelimb muscles of E12.5 embryos and then assessed the presence

of retrogradely transported dextran in the cell bodies of Lim1-

positive LMCl motoneurons projecting to dorsal musculature or

Isl1-positive LMCm motoneurons projecting to ventral limb

muscles, respectively. In wildtype embryos, only very few

motoneurons that were retrogradely labeled from ventral fore- or

hindlimb muscle injections expressed Lim1 (Figure 4A,C). In

contrast, significantly more ventrally labeled rhodamin-positive

motoneurons expressed Lim1 in Npn-1cond2/2;Olig2-Cre+ mutant

embryos (Figure 4B,C, arrowheads). Thus, removal of Npn-1 from

motoneurons leads to misrouting of LMCl axons to the ventral half

in both fore- and hindlimb. Analysis of the fidelity of LMCm

projections by retrograde labeling from dorsal limb muscles

revealed that 11.25%61.66% of lumbar LMCm axons aberrantly

projected to the dorsal limb when Npn-1 was removed from

motoneurons (Figure 4E,F). Due to the shortened ingrowth of motor

axons in Npn-1cond;Olig2-Cre+ mutants none of the dorsal backfills at

brachial levels resulted in any retrogradely traced neurons

(Figure 3I). We therefore assessed the fidelity of the brachial

dorsal-ventral choice also in Npn-1cond2/2;Hb9-Cre+ mutants where

motor axons, though defasciculated, are found at comparable distal

positions in the forelimb as in control littermates (Figure 3I).

Retrograde tracing from dorsal forelimb musculature revealed a

significant number of misguided Isl1 positive LMCm neurons in

these mutant embryos (Figure 4F). Together, these data show that

decreased fasciculation caused by motoneuron-specific loss of Npn-

1 leads to pathfinding errors at the dorsal-ventral choice point.

Ablation of Npn-1 from Sensory Neurons Leads to
Defasciculation of Sensory and Motor Projections

We next assessed the consequences of deletion of Npn-1 in sensory

neurons by crossing Npn-1cond mice with a transgenic line expressing

Cre recombinase under the control of the human tissue plasminogen

activator promoter (Ht-PA-Cre). This line targets all known derivatives

of neural crest cells and, hence, also sensory neurons of the DRG but

not central nervous system (CNS) neurons [21]. In Npn-1cond2/2;Ht-

PA-Cre+ animals we found reduced levels of Npn-1 mRNA and

protein in sensory neurons and axons of the DRG, respectively, while

motor neurons and axons expressed unchanged amounts of Npn-1

(Figure 1F–J). At E12.5, we found a pronounced defasciculation of

sensory projections innervating both the fore- and hindlimbs and

aberrant, exuberant growth when compared to wildtype embryos

(Figure 5A,C and B,D, arrows; Figure S3G’,H’). We quantified the

degree of defasciculation of sensory projections to the dorsal or

ventral forelimb and found a dramatic increase in Npn-1cond2/2;Ht-

PA-Cre+ mutants compared to wildtype littermates (Figure 6A–C).

Surprisingly, this incorrect pattern of sensory projections was

accompanied by defasciculation of motor axons: several major motor

branches, particularly the radial and median nerves to the forelimb,

were defasciculated (Figure 5B’,D’, arrowheads). To visualize this

phenotype we generated a plot profile by measuring the pixel

intensity of the Hb9::eGFP staining along a line perpendicularly

crossing the four major nerves in the E12.5 forelimb (Figure 6D–G).

We found that removal of Npn-1 from sensory neurons leads to a

defasciculation of motor trajectories in Npn-1cond2/2;Ht-PA-Cre+

Npn-1 Mediates Sensory-Motor Axon Interactions
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mutants, particularly of the n. radialis. We quantified the degree of

defasciculation by measuring the thickness of the four major motor

nerves and found a significantly increased value in Npn-1cond2/2;Ht-

PA-Cre+ mutants when compared to wildtype littermates (Figure 6H),

which was, however, less severe than the defasciculation caused by

ablation of Npn-1 from motor neurons (Figure 3C–G). Interestingly,

these motor branches, while defasciculated, still developed in roughly

appropriate relative positions to each other and the distal

advancement of motor axons was normal (Figure S4J). At higher

magnification, we noted that defasciculated motor projections were

always accompanied by sensory axons that preceded motor axons

(e.g. in the radial nerve, Figure 5G,H, arrowheads). At the same time,

many defasciculated sensory axons were observed (Figure 5F–H).

When we distinguished proprioceptive from nociceptive sensory

projections by TrkC or TrkA immunohistochemistry, respectively,

we found that in Npn-1cond2/2;Ht-PA-Cre+ mutants, defasciculated

motor axons follow either TrkC- or TrkA-positive fibers (Figure 7B,

arrowhead and open arrowhead, respectively). At this stage, Npn-1 is

expressed in the majority of TrkA-positive DRG neurons, but also in

a significant number of TrkC-positive sensory neurons and is

therefore in a position to mediate fasciculation of nociceptive

and proprioceptive axons (Figure S7). The phenotype observed in

Npn-1cond2/2;Ht-PA-Cre+ is in stark contrast to the situation in Npn-

1cond2/2;Olig2-Cre+ mutants where Npn-1 is removed from moto-

neurons. Here, defasciculated motor axons are not followed by

nociceptive or proprioceptive fibers (Figure 7C, arrows).

In the hindlimb, after removal of Npn-1 from sensory neurons,

both the peroneal and tibial nerves were defasciculated (Figure

S3G,H). In addition, we found guidance defects of motor axon

bundles aberrantly turning back towards the proximal limb (Figure

S3H, open arrowhead, observed in two out of five embryos in

addition to defasciculated motor and sensory projections). Also, the

innervation of intercostal muscles was affected by the ablation of

Npn-1 from sensory neurons in Npn-1cond2/2;Ht-PA-Cre+ mutants.

Intercostal nerve branches were severely defasciculated and axon

fascicles frequently crossed between the main branches (Figure

S5F,G, arrowheads), a phenotype that was only rarely observed in

control littermates (13.2561.25 versus 0.460.24, respectively,

p,0.0001). From this we conclude that Npn-1 is required in

sensory neurons for proper fasciculation of sensory projections. In

addition, defasciculation of sensory axons by removal of Npn-1

leads to a compromised development of motor trajectories.

To address whether the less severe defasciculation of motor

projections caused by absence of Npn-1 from sensory neurons also

Figure 1. Quantification of Cre recombinase efficiency. In situ hybridization against the floxed exon 2 of Npn-1 demonstrates ablation of Npn-
1 from motor neurons (arrows in B) but not from DRG (outlined with a white dashed line) in Npn-1cond2/2;Olig2-Cre+ mutant embryos; littermate
control in (A). Quantification (E) reveals that in control embryos nearly 100% of medial and lateral LMC neurons (positive for Isl-1 and Lim-1,
respectively) at brachial and lumbar levels express Npn-1, whereas in mutant embryos a decrease to 29.8%62.3% in medial, 30.1%60.8% in lateral
(p,0.0001) brachial neurons, and 41.8%62.6% in medial and 39%63.6% in lateral (p,0.0005) lumbar neurons was observed. Absence of Npn-1
protein is visualized by immunohistochemistry against Npn-1. In Npn-1cond2/2;Olig2-Cre+ mutant embryos Npn-1 is absent from motor nerve braches
(arrowhead in D, wildtype littermate in C), whereas Npn-1 expression is not affected in sensory trajectories. In situ hybridization on Npn-1cond2/2;Ht-
PA-Cre+ mutant embryos (G, littermate control in F) reveals ablation of Npn-1 selectively from DRG, but not from motor neurons (arrows in D).
Quantification (J) shows a 2-fold decrease in the numbers of Npn-1 expressing sensory neurons (positive for Isl-1) in mutant embryos to 10.4%60.8%
at brachial and 13.5%60.4% at lumbar levels (n = 3, pbrachial,0.005; plumbar,0.0005). In Npn-1cond2/2;Ht-PA-Cre+ mutant embryos Npn-1 protein
expression is unchanged in motor projections, whereas its presence in sensory fibers is markedly reduced (arrowhead in I) when compared to
littermate controls (H). Bar equals 50 mm in all panels (n = 3 for all genotypes).
doi:10.1371/journal.pbio.1001020.g001

Npn-1 Mediates Sensory-Motor Axon Interactions
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affects the dorsal-ventral guidance decision of motor axons at the

base of the limb, we retrogradely traced motor projections to the

dorsal and ventral mesenchyme in fore- and hindlimb of Ht-PA-Cre

mutants. Our data show that medial and lateral LMC neurons at

brachial and lumbar levels project correctly to the ventral or dorsal

limb mesenchyme, respectively (Figure S8). We thus conclude that

the defasciculation of motor axons induced by removal of Npn-1

from sensory neurons does not lead to guidance errors at the

dorsal-ventral choice point at the base of the limb.

Axon Bundling Before the Plexus Determines Distal Axon
Fasciculation

After motor and sensory axons exit the spinal cord and DRG,

respectively, they converge in the plexus region where sorting into

new target-specific bundles occurs. We monitored the formation of

distinct projections to the forelimb at E10.5 when wildtype motor

and sensory projections have reached the plexus but have not yet

navigated through this dorsal-ventral choice point (Figure 8).

Motoneuron-specific deletion of Npn-1 resulted in pronounced

defasciculation of motor axons in the plexus region (circled area in

Figure 8B; all defasciculated axons were stained for GFP

indicating their motor origin). Interestingly, defasciculation in

Npn-1cond2/2;Olig2-Cre+ mutants is limited to the plexus region:

after exiting the spinal cord, nerve bundles projected directly

towards the plexus in a fasciculated manner (Figure 8H,

arrowheads indicate fasciculated spinal nerves before the plexus).

In contrast, elimination of Npn-1 from sensory neurons resulted in

pronounced defasciculation of both motor and sensory projections

before these axons reach the plexus as well as in the plexus region

in Npn-1cond2/2;Ht-PA-Cre+ mutants (sensory axons were identified

Figure 2. Npn-1 is required in motor neurons for proper fasciculation of LMC projections in the forelimb. Wholemount antibody
staining of E12.5 embryos against GFP (green, motor nerves) and neurofilament (red, motor and sensory nerves). Ablation of Npn-1 from
motoneurons leads to severe defasciculation of motor projection to the forelimb in Npn-1cond2/2;Olig2-Cre+ mutant embryos (B) when compared to
wildtype littermate controls (A). A higher magnification of the areas boxed in (A) and (B) reveals that the severe defasciculation of motor nerves in the
forelimb is accompanied by absence of several major rami (compare arrows in C and D). Even though the motor projections are severely reduced, the
general appearance, positioning, and fasciculation pattern of the sensory trajectory appears normal in Npn-1cond2/2;Olig2-Cre+ mutant embryos
(arrowheads in A’, B’). A high magnification in (F’) shows normal growth of the sensory compartment of the ulnar nerve (arrow) in absence of motor
projections (F) in mutant embryos when compared to controls (E and E’). The open arrowhead in F marks an ectopic motor nerve observed in all
mutant embryos. Bar equals 400 mm in (A, B), 100 mm in (C, D), and 80 mm in (E, F). nmutant = 10, ncontrol = 7.
doi:10.1371/journal.pbio.1001020.g002

Npn-1 Mediates Sensory-Motor Axon Interactions
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Figure 3. Fasciculation and distal advancement of motor and sensory projections are impaired after ablation of Npn-1 from
motoneurons. Defasciculation of motor nerves was assessed by calculating a plot profile of Hb9::eGFP positive motor projections crossing a virtual
line. In control embryos (A and B) four major projections can be seen (1 = branch of n. radialis, 2 = n. radialis, 3 = n. medianus, 4 = n. ulnaris, arrowhead =
n. musculocutaneous). In Npn-1cond2/2;Olig2-Cre+ mutant embryos (C and D) only the remainders of the radial nerve (2) can be assigned to the plot
profile, whereas all other motor projections are heavily defasciculated, leading to many peaks along the virtual line. In Npn-1cond2/2;Hb9-Cre+ mutant
embryos defasciculation of motor projections is not as severe as defasciculation caused by Olig2-Cre. Therefore, it is possible to assign the small branch
of the radial nerve (1), the radial nerve, even though it is defasciculated more distally (2), and the ulnar nerve (4) to the peaks in the plot profile, whereas
the median nerve is heavily defasciculated. To quantify the defasciculation of motor fibers, we measured the thickness of the four major motor nerves in
wildtype forelimbs (G, 27.861.4 SEM) and found significantly increased values in Npn-1cond2/2;Olig2-Cre+ and Npn-1cond2/2;Hb9-Cre+ mutants (G,
97.465.0 SEM p,0.00001 and 79.7613.4 SEM p,0.005, respectively). To quantify the ingrowth of motor axons into the forelimb, the length of the distal-
most motor fiber was measured starting from the reference point, and normalized with the length of the forelimb (H). The distal advancement of motor
fibers was significantly reduced in Npn-1cond2/2;Olig2-Cre+ mutant embryos (I, 0.4260.03, p,0.005) compared to control embryos (0.6360.02), while it
was unchanged when Npn-1cond2/2 mice were crossed to the Hb9-Cre line (0.6160.03). Defasciculation of cutaneous sensory nerves was assessed by
calculating the number of neurofilament positive red pixels in a given 1006100 pixel region of interest (ROI, white squares in J–M). When compared to
control embryos (J), sensory innervation was not altered in Npn-1cond2/2;Olig2-Cre+ (K) and Npn-1cond2/2;Hb9-Cre+ (L) mutant embryos in the dorsal or
ventral limb. Quantification in (M). n = 3 for all genotypes; both limbs were quantified. Scale bar in (E) equals 400 mm for (A, C, E) and 100 mm for (I, J, K).
doi:10.1371/journal.pbio.1001020.g003
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by staining positive for neurofilament and absence of GFP

immunoreactivity, Figure 8C,I). Interestingly motor and sensory

axons are spread out over a wider area than in control embryos

before they reach the plexus (Figure 8I, arrowheads). Within the

plexus region, however, the tips of sensory axons are further

advanced than motor fibers and are severely defasciculated

(Figure 8I,I’,I’’, open arrowheads). To quantitatively compare

the degree of pre-plexus defasciculation between different

genotypes, we calculated a fasciculation coefficient by measuring

the width of the spinal nerves contributing to the forelimb at their

narrowest point and relating it to the total rostro-caudal length of

the analyzed segments (‘‘a’’ and ‘‘b’’, respectively, in Figure 8E).

The fasciculation coefficient was significantly higher only when

Npn-1cond mice were crossed to Ht-PA-Cre, while there was no

difference in Npn-1cond2/2;Olig2-Cre+ mutants (Figure 8F, p,0.01

and p,0.2, respectively, see figure legend). Deletion of Npn-1 from

both sensory and motoneurons by combining the Npn-1cond allele

with an Isl1-Cre transgenic line [22] resulted in an intermediary

phenotype (Figure 8D,J): while spinal nerves approach the plexus

in a normally fasciculated way, a strong defasciculation was

observed within the plexus with sensory axons leading motor fibers

(Figure 8J,J’ open arrowheads).

These data suggest that the state of sensory axon fasciculation

before entering the plexus region influences motor axon

fasciculation before, within, and after the plexus. We therefore

analyzed the sensory-motor projections at E10.0, when motor

axons have left the spinal cord and joined the sensory fibers but

have not yet reached the plexus region. We found that the sensory

projection is defasciculated already at this early timepoint in Npn-

1cond2/2;Ht-PA-Cre+ mutants and that sensory axons are frequently

further advanced than motor fibers, a behavior that was never

observed in wildtype littermate controls (Figure 9D–F). In

contrast, motor and sensory projections are indistinguishable in

Npn-1cond2/2;Olig2-Cre+ mutants compared to control embryos

(Figure 9A–C). In particular, motor axons exit the spinal cord in a

normally fasciculated manner in mutant embryos. In a small

number of embryos, at brachial levels, motor axons were found to

turn dorsally after exiting the spinal cord and to project into the

DRG (Figure 9C, open arrowhead). Together, our data suggest

that removal of Npn-1 from sensory neurons breaks the tight

coupling of sensory and motor axons and allows for sensory fibers

to overtake motor axons.

Elimination of Sensory or Motor Neurons Impairs the
Correct Formation of Both Projections Distinctly

To investigate whether sensory fibers require motor axons at all

for the correct formation of their peripheral projection we utilized

a genetic approach to deplete motoneurons. Crossing a condi-

tional diphteria toxin fragment A (DT-A) transgenic line [23] with

Olig2-Cre mice resulted in partial removal of motoneurons

(Figure 10F–H). Motoneurons hardly sent out any axons at all

(see inset in Figure 10B’’). Interestingly, sensory axons were able to

project towards the plexus region, however at this developmental

stage, their growth appeared delayed as the individual spinal

nerves did not join together to form a distinct plexus and no axons

were observed entering the forelimb (Figure 10B’). At E11.5 very

few motoneurons sent out axons at all, and some segmental spinal

nerve branches were completely absent (Figure 11A–C, asterisks).

Figure 4. LMC projections are misrouted when Npn-1 is removed from motor neurons. Retrograde tracing of ventrally and dorsally
projecting LMC neurons by injection of dextran-coupled Rhodamine into limb musculature of E12.5 embryos. Injection of fluorescent tracer into the
ventral musculature of Npn-1cond2/2;Olig2-Cre+ mutant embryos shows a significant increase of aberrantly projecting Lim1 positive neurons of the
LMCl at lumbar (n = 4, 12.16%61.59%, plumbar = 0.03) and brachial levels (n = 4, 10.7160.99, pbrachial = 0.01; arrowheads in B, C) when compared to
controls (n = 3, 4.33%62.11% and n = 4, 4.48%61.5%, respectively). In Npn-1cond2/2;Olig2-Cre+ mutant embryos 11.25%61.66% (p = 0.01) of dorsally
backfilled neurons were Isl1 positive and thus projecting aberrantly at lumbar levels (n = 3, arrowheads in E) compared to only 3.9%60.65% in
littermate controls (n = 3, D, F). At brachial levels, dorsal backfills did not lead to labeled motor neurons. Analysis of Npn-1cond2/2;Hb9-Cre+ mutant
embryos shows a significant number (9.21%60.97%, p = 0.012, n = 3) of aberrantly projecting LMCm motor neurons to dorsal musculature (F) at
brachial levels when compared to littermate control embryos (n = 3, 3.5%60.88%). Bar equals 45 mm in (A, B, D, E).
doi:10.1371/journal.pbio.1001020.g004

Npn-1 Mediates Sensory-Motor Axon Interactions

PLoS Biology | www.plosbiology.org 7 February 2011 | Volume 9 | Issue 2 | e1001020



Npn-1 Mediates Sensory-Motor Axon Interactions

PLoS Biology | www.plosbiology.org 8 February 2011 | Volume 9 | Issue 2 | e1001020



Interestingly, sensory projections developed, although reduced in

thickness, with a considerable variation in the fidelity of the

normally stereotypical projection patterns. In different animals,

both increased and decreased branching frequencies in the distal

limb were observed (Figure 11B’,C’). In addition, the number of

DRGs contributing to the innervation was reduced in the mutant

embryos where only sensory branches from 3 to 4 DRGs were

observed to project towards the forelimb.

We next analyzed the behavior of motor axons when sensory

neurons were eliminated by combining the Ht-PA-Cre line with the

floxed DT-A mice. At E10.5, the number of sensory neurons in the

DRG was dramatically reduced in Ht-PA-Cre+:DT-Afloxed mutants

(Figure 10I–K). Reminiscent of our earlier experiments where removal

of Npn-1 from sensory neurons caused defasciculation of motor axons

(Figures 5 and 8), we observed defasciculated motor projections prior to

the plexus region (Figure 10C’’, arrows). At E11.5 the remaining

sensory axons were defasciculated and single peripheral branches

missing (Figure 11G’, open arrowhead). In addition, certain spinal

nerves, particularly the most anterior nerve, did not join the plexus and

contribute to the peripheral limb projection. Interestingly, motor axons

were also dramatically defasciculated and not as far advanced as the

remaining sensory axon (Figure 11G, arrowhead).

Together, these data support the notion that motor axons are

required at an early stage in sensory trajectory development, when

sensory axons need to find their way to the plexus. At later stages,

after having navigated the plexus, sensory fibers become

independent of motor axons for their projection to the distal

limb, hence defasciculation or even complete absence of motor

axons has a lesser influence on the patterning of sensory

trajectories. Our data also indicate that motor projections are

defasciculated and impaired in the distal advancement by absent

or reduced sensory trajectories.

Figure 6. Fasciculation of sensory and motor projections is affected after ablation of Npn-1 from sensory neurons. Defasciculation of
cutaneous sensory nerves was assessed by calculating the number of neurofilament positive red pixels in a given 1006100 pixel region of interest
(ROI). When compared to control embryos (A) this number is significantly increased in Npn-1cond2/2;Ht-PA-Cre+ mutant embryos (B, C) for the
cutaneous innervation of the dorsal and ventral limb (pdorsal,0.005, pventral,0.005). Defasciculation of motor nerves was assessed by calculating a
plot profile of Hb9::eGFP positive motor projections crossing a virtual line (1 = branch of n. radialis, 2 = n. radialis, 3 = n. medianus, 4 = n. ulnaris,
arrowhead = n. musculocutaneous). When compared to control embryos (D, E) all four nerve branches can be found in Npn-1cond2/2;Ht-PA-Cre+

mutant embryos, however, at slightly inappropriate positions to each other, and defasciculated fibers can be found in between major nerve branches.
Quantification of the defasciculation of motor projections by measuring the thickness of the four major nerves revealed a significant increase in Npn-
1cond2/2;Ht-PA-Cre+ mutant embryos (H, 47.965.98 SEM) when compared to wt embryos (27.861.4 SEM, p,0.0001. The scale bar in (F) equals 100 mm
for (A, B) and 400 mm for (D, F). n = 3 for all both genotypes; both limbs were quantified.
doi:10.1371/journal.pbio.1001020.g006

Figure 5. Removal of Npn-1 from sensory neurons leads to defasciculation of sensory and motor projections to the limbs.
Wholemount antibody staining of E12.5 embryos against GFP (green, motor nerves) and neurofilament (red, motor and sensory nerves). Ablation of
Npn-1 from sensory neurons leads to severe defasciculation and exuberant growth of sensory projections to the forelimb in Npn-1cond2/2;Ht-PA-Cre+

mutant embryos (arrows in B, D) when compared to littermate controls (arrows in A, C). A higher magnification of the boxed areas in (A) and (B)
reveals that the severe defasciculation of sensory projections is associated with defasciculation of major motor nerve trunks in the forelimb
(arrowheads in D’). A high magnification of the radial nerve shows aberrant projections of motor axons (open arrowheads in G, H) that are always
preceded by an aberrantly projecting sensory axon (arrowheads in G, H). nmutant = 7, ncontrol = 8.
doi:10.1371/journal.pbio.1001020.g005
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Discussion

Investigations into how growing axons navigate the environ-

ment to reach their targets during development have yielded a

growing list of molecular cues and corresponding receptors that

determine guidance decisions [24]. A strong focus of these studies

has been to understand growth cone behavior at defined positions,

so called choice points, where growth cones of nerve fibers pause,

explore their environment, and, subsequently, in response to local

cues, resume their growth in the appropriate direction. The

concept of pioneering axons that lay down the landscape for later

following fibers has been described for many vertebrate systems

from retinotectal to callosal projections [25–28]. During develop-

ment, however, only a small number of pioneer axons grow into

‘‘uncharted’’ territories, the vast majority of fibers orient their

growth patterns along axon tracts already laid out by preceding

fibers. Nevertheless, in order to establish correct trajectories these

fibers cannot simply follow existing trajectories but need to make

appropriate decisions about which branch to follow, and when to

form new rami. These interactions with existing fiber bundles

clearly require strictly regulated events of selective fasciculation

and de-fasciculation, the molecular basis of which are in most

cases not well understood. In this study we have explored the

coordinated growth and fasciculation of sensory and motor fibers

during the establishment of limb innervation and in particular the

role of a well-characterized guidance receptor, Npn-1, in the

interaction of these axonal populations.

Fasciculation of Motor Axons and Its Role in Establishing
Peripheral Sensory Trajectories

In the spinal nerve, sensory axons from the DRG and motor

axons from the ventral horn of the spinal cord converge to

establish conjoined trajectories to their respective peripheral

targets. Whether and to what degree sensory axons depend on

motor projections in the formation of their peripheral projection

patterns has been controversial. Early surgical removal of

motoneurons in the embryonic chick resulted in abnormal

Figure 7. Defasciculation of motor fibers is accompanied by defasciculation of TrkA and TrkC positive fibers in Npn-1cond 2/2;Ht-PA-
Cre+, but not in Npn-1cond2/2;Olig2-Cre+ mutant embryos. Fluorescent immunohistochemistry shows that nociceptive TrkA positive (red) and
proprioceptive TrkC positive (white) fibers accompany motor nerves (Hb9::GFP, green) on their way into the distal limb (control in A). In Npn-1cond2/2;
Ht-PA-Cre+ mutant embryos defasciculation of motor projections is only observed in combination with severe defasciculation of sensory trajectories,
either axons positive for TrkA or TrkC (empty arrowhead and arrowhead, respectively, in B), or fibers positive for both TrkA and TrkC (double
arrowhead in B). In Npn-1cond2/2;Olig2-Cre+ mutant embryos no defasciculated sensory axons were observed even in areas with clear defasciculation
of motor projections (arrows in C). Sensory axons grow rather fasciculated and do not seem to be affected by defasciculation of motor pathways
(empty double arrowheads in C). Scale bar equals 100 mm for all panels.
doi:10.1371/journal.pbio.1001020.g007
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patterning of sensory trajectories [15], while eliminating moto-

neurons after neural crest cells have coalesced into DRG had no

obvious impact on the formation of sensory projections to muscles

[16]. We used a genetic approach to partially eliminate

motoneurons. Our findings indicate that sensory axons depend

on a minimal scaffolding of motor fibers to correctly establish their

Figure 9. Sensory axons overtake motor axons after removal of Npn-1 in sensory neurons. Coronal sections of E10.0 (Theiler stage 16,
30–32 somites) embryos, staining against Hb9::eGFP and neurofilament. In control embryos, GFP expression was found all along motor axons into the
distal-most tips of outgrowing trajectories (arrowhead in A’ and C), indicating that motor axons lead the spinal nerve projection. In Npn-1cond2/2;
Olig2-Cre+ mutant embryos some motor axons choose a wrong trajectory, turning dorsally into the DRG (open arrowhead in C), however GFP-positive
motor axons are observed in the tips of the leading axons growing towards the limb (arrowheads in B’ and C). In Npn-1cond2/2;Ht-PA-Cre+ mutant
embryos sensory axons defasciculate from the forming spinal nerve (arrows in E’ and F, note the missing GFP expression in those nerves, therefore
classified as sensory axons). Note that sensory axons outgrow motor axons (double arrowheads in E’ and F), indicating that sensory nerves overtake
motor axons already on the way towards the plexus. Bar equals 20 mm for (A–E) and 10 mm for (A’–E’, C, and F).
doi:10.1371/journal.pbio.1001020.g009

Figure 8. Fasciculation before the plexus determines the fasciculation in the distal limb. Side view of forelimb plexi of E10.5 wholemount
embryos stained against GFP (green, motor nerves) and neurofilament (red, motor and sensory nerves), numbers 1–6 in (A) mark the spinal nerves
contributing to the forelimb plexus, and the plexus region is encircled with a white dashed line. Elimination of Npn-1 selectively from motoneurons
(Olig2-Cre) leads to defasciculation of motor nerves in the plexus region (B and H), however fasciculation before the plexus region was not
significantly altered (n = 4, B, arrowheads in H). Sensory nerves stay behind motor axons in the plexus (open arrowheads in H). Note that all
defasciculated and disorganized axons in the plexus region are positive for Hb9::GFP, indicating that these are motor axons. In Npn-1cond2/2;Ht-PA-
Cre+ mutant embryos (C) motor and sensory axons do not converge to form a plexus as in control embryos (A), but sensory projections are further
advanced than motor axons (open arrowheads in I). Motor and sensory trajectories are defasciculated already before the plexus region (n = 6,
arrowheads in C and I). When Npn-1 is ablated from both motor and sensory neurons (Npn-1cond2/2;Isl1-Cre+) mutant embryos show an intermediary
phenotype with sensory and motor projections defasciculated in the plexus region, however only two-thirds of the mutant embryos exhibit pre-
plexus defasciculation (n = 6, D). For quantification of pre-plexus defasciculation (F) the thickness of the six individual spinal nerves (a1–a6)
contributing to the forelimb plexus was measured, added up, and divided by the length of the area occupied by these spinal nerves (b) for both
forelimb regions of three embryos (E). The fasciculation coefficient was significantly increased in Npn-1cond2/2;Ht-PA-Cre+ mutant embryos when
compared to littermate controls (pOlig2-Cre = 0.2690, pHt-PA-Cre,0.0001, pIsl-Cre = 0.2182). Bar graph equals 500 mm in (A–D) and 150 mm in (G–J).
doi:10.1371/journal.pbio.1001020.g008
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trajectory, however very few fibers suffice to allow for sensory

projections to form. The guidance receptor Npn-1 is expressed in

LMC neurons at brachial and lumbar levels as well as in sensory

neurons of the DRG and therefore presents itself as a plausible

candidate to mediate these inter-axonal interactions. When we

removed Npn-1 specifically from motoneurons, we found a

dramatic defasciculation of motor axons in the plexus region

and in the distal limb accompanied by a reduced extension into

the distal limbs (Figures 2, 3). The formation of the sensory

trajectories, however, was unaffected with respect to fasciculation

and localization of individual nerve branches. One possible

explanation for this normal development is that the sensory

neurons correctly present Npn-1 on the cell surface and Sema3A

expressed in adjacent tissues efficiently promotes sensory axon

fasciculation through a surround repulsion mechanism [1,10,29].

In addition, even though defasciculated, motor axons are still

present in the proximal limb and might nonetheless facilitate

sensory fiber growth through the plexus region by providing an

aligned substrate [15]. Interestingly, while removal of Npn-1 from

motoneurons leads to dramatic defasciculation of motor axons in

the plexus and distal limb, motor fibers remain normally

fasciculated in the segment of their trajectory preceding the

plexus. Recently, it was shown that Drosophila axons in culture

are intrinsically divided into two compartments and that the

guidance receptors Derailed and ROBO2/3 are differentially

localized to proximal and distal compartments, respectively [30].

Diffusion barriers preventing the exchange of specifically localized

membrane proteins have also been described in cultured

mammalian neurons, prohibiting the exchange of membrane

proteins between the somatodendritic and axonal compartments

at the axon initial segment, and between the proximal and distal

segments of the axon [31]. The concept of diffusion barriers

regulating the presence and/or concentration of cell surface

molecules within defined segments of axonal trajectories is an

attractive model to explain differential sensitivities to guidance

cues of growing axons for various stages of development. It will be

interesting to determine whether such diffusion barriers exist at

specific choice points of the spinal motor projection, such as the

base of the limb, and regulate Npn-1 localization preferentially to

the distal motor axon shaft, hence controlling motor axon

fasciculation within and beyond the plexus region.

The defasciculation caused by removal of Npn-1 from

motoneurons is also accompanied by defects in the selection of

the dorsal-ventral trajectory after the plexus. Interestingly, this

phenotype is less severe compared to dorsal-ventral pathfinding

errors that were observed after complete interruption of Sema3-

Npn-1 signaling by transgenic replacement of a mutated Npn-1

receptor that is incapable of Sema3 binding [5]. A residual

function might be maintained by non-quantitative Cre-mediated

recombination at the Npn-1 locus and a subset of motoneurons still

expressing Npn-1. The wide scattering of motor axons in the

plexus area likely interferes with the required interaction and

disrupts the assembly of correct bundles of axons traveling to the

same peripheral targets. Hence, pre-target axon sorting is

hampered and the establishment of the topographic projections

of lateral LMC axons to the dorsal limb and medial LMC axons to

the ventral limb is impaired [5].

Most of our analysis was done at early embryonic stages and

thus raises the question of whether the defects in fasciculation that

were induced by the removal of Npn-1 are transient or maintained

into later developmental or even adult stages. While a previous

study reported the correction of aberrant projections in embryonic

Sema3A mutants [32], we found persistent defasciculation of

intercostal nerves after removal of Npn-1 (Figure S6) and in mice

with non-functional binding of Sema3 to Npn-1 [33] at least

through E15.5. Unfortunately, due to poor reagent penetration

and increasingly higher GFP background staining of the

Hb9::eGFP line, an analysis of the deeper motor axons of the

forelimb is not feasible at these late embryonic stages. However,

anatomical, electrophysiological data and behavioral analysis of

locomotor skills of adult Npn-1cond2/2;Olig2-Cre+ mutants demon-

strate that defects in motor connectivity persist ([33], Soellner and

Huber, unpublished), suggesting that indeed mutant phenotypes

are maintained at least to some degree.

Sensory Projections Mediate Fasciculation, But Not
Dorsal-Ventral Choice of Motor Axons through Npn-1

What role do sensory neurons play in the formation of motor

projections to the limbs? Removal of Npn-1 specifically from

sensory neurons not only had a pronounced effect on the

fasciculation of sensory axons but was also associated with

defasciculation of motor trajectories (Figure 12). We found no

obvious alterations in vasculature and DRG segmentation after

Ht-PA-Cre-induced removal of Npn-1 (Figure S9). Also, both

Schwann cell progenitors and boundary cap cells were clearly

present and Schwann cells were found to migrate along

defasciculated and normal fiber tracts in similar patterns in

mutants and wildtype embryos (Figure S9). The total loss of

Schwann cells, such as is the case in erbB2 deficient mice, has been

shown to cause defasciculation of the phrenic nerve in the

diaphragm, suggesting that glial cells play a role in axon

fasciculation [34]. The largely normal appearance of Schwann

cells in Npn-1cond2/2;Ht-PA-Cre+ mutants makes an effect of

Schwann cells appear unlikely, although it cannot be completely

excluded at this point. Our data on the defasciculation of motor

axons after sensory-specific deletion of Npn-1 were corroborated

Figure 10. Elimination of motor or sensory neurons influences fasciculation and timing of peripheral projections. Wholemount
antibody staining of E10.5 embryos (A–C’’) against GFP (green, motor nerves) and neurofilament (red, motor and sensory nerves). Ablation of either
developing motor (Olig2-Cre+; B) or sensory neurons (Ht-PA-Cre+; C) upon DT-A expression results in a delay in axonal ingrowth in the forelimb plexus.
Interestingly, sensory axons are capable of navigating to the plexus region if motor axons are completely absent or severely reduced (B’ and B’’
and inlay, respectively). Reduction of sensory projections in Ht-PA-Cre+;DT-A floxed embryos causes thinned or absent sensory projections (spinal nerves
1, 2 in C) as well as defasciculation of sensory and motor axons of more posterior nerves (arrows in C’’). For quantification of pre-plexus
defasciculation and axonal thinning, the diameter of the six spinal nerves of the plexus was measured for both forelimbs of four control and six
mutant embryos. Either the sum of the six spinal nerves or of individual spinal nerves (a) was normalized to the length of the occupied area (b). The
fasciculation coefficient was significantly decreased in Olig2-Cre+;DT-A floxed mutant embryos but not in Ht-PA-Cre+;DT-A floxed when compared to
controls (D; pOlig2-Cre,0.001, pHt-PA-Cre = 0.2602). Analysis of the fasciculation status of the individual spinal nerves in Ht-PA-Cre+;DT-A floxed embryos
revealed either thinning (nerves 1 and 2) or defasciculation (nerve 5) depending on their anterior-posterior position in the forelimb (E).
Immunohistochemical quantification of the partial elimination of motor (Olig2-Cre+;F–H) or sensory neurons (Ht-PA-Cre+ I–K) upon tissue-specific
expression of lethal diphteria toxin A fragment (DT-A floxed) shows that the number of LMCm (FoxP1+;Isl1+; p,0.05) and LMCl neurons (FoxP1+; p,0.05)
is significantly decreased in Olig2-Cre+;DT-Afloxed mutants (G) when compared to littermate controls (F) at E11.5 (H, ncontrol = 3; nmutant = 3). The
number of sensory neurons in the DRG is significantly decreased in Ht-PA-Cre+;DT-Afloxed mutants (J,) when compared to controls (I) per DRG (K, Isl1+

cells per DRG; ncontrol = 3; nmutant = 3; p,0,005). Bar equals 400 mm in (A–C’’) and 50 mm in (F–J).
doi:10.1371/journal.pbio.1001020.g010
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by genetic elimination of sensory neurons through diphtheria toxin

expression, which caused a similar defasciculation of motor fibers

prior to the plexus. Particularly interesting is the observation that

sensory axons lacking Npn-1 expression are leading motor fibers in

their trajectories (Figures 8, 9). This is a surprising result in light of

elegant studies showing that in wildtype embryos, at least in the

Figure 11. Elimination of motor or sensory neurons impairs the formation of the untouched axonal projection. Wholemount antibody
staining of E11.5 embryos against GFP (green, motor nerves) and neurofilament (red, motor and sensory nerves). Partial elimination of motor (Olig2-
Cre+) or sensory (Ht-PA-Cre+) neurons was achieved by tissue-specific expression of lethal DT-A (DT-Afloxed). Ablation of motoneurons (Olig2-Cre+;DT-
Afloxed, B, C) impairs the formation of sensory trajectories and their branching behavior, whereby both increased and decreased branching was
observed (B’ and C’). The reduced number of sensory neurons in Ht-PA-Cre+;DT-Afloxed mutants (E, E’) leads to absence of some anterior spinal nerve
and branches in the limb (open arrowhead in G’) as well as a dramatic defasciculation of remaining sensory axons (arrows, G’) when compared to
wildtype littermates (D, F). Motor axons are also defasciculated and less far advanced than sensory axons (arrowhead in G, G’). Bar equals 400 mm in
(A–E) and 200 mm in (F, G).
doi:10.1371/journal.pbio.1001020.g011
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hindlimb later-born sensory axons lag behind motor fibers [5]. A

possible explanation may be that Npn-1 presented on sensory

fibers produces a tight coupling of sensory to leading motor axons.

If Npn-1 is removed from sensory neurons, this ‘‘brake’’ is lifted,

sensory axons can overtake motor fibers, and serve as pioneer

axons for motor axons to follow. This is in agreement with our

observation that sensory axons enter the limb slightly prematurely

if Npn-1 is removed from sensory neurons. Complete abolishment

of Sema3 binding to Npn-1 in all cells (Npn-1Sema2) or elimination

of Sema3A leads to a qualitatively similar though considerably more

intense phenotype [10], which might be explained by the residual

expression of Npn-1 in sensory neurons in Npn-1cond2/2;Ht-PA-

Cre+ mutants (Figure 1).

Alternatively, the inter-axonal, possibly ligand-independent

adhesion emanating from sensory fibers together with Sema3A-

mediated surround repulsion may be strong enough to force

fasciculation of motor axons with sensory fibers. Upon loss of Npn-

1 from sensory fibers, surround repulsion caused by Sema3A may

no longer be sufficient to force motor axons into tightly

coordinated bundles resulting in defasciculated motor trajectories

in spite of Npn-1 still being present in motoneurons. The

observation that the motor axon defasciculation phenotype

observed upon the removal of Npn-1 from sensory axons is less

pronounced than when Npn-1 is ablated from motoneurons

supports this explanation (Figure 12). A third explanation might be

provided by the neuronal co-expression of Sema3A and Npn-1. It

has been shown that Sema3A in motoneurons regulates the level

of sensitivity of their growth cones to exogenous Sema3A exposure

in the distal limb of the developing chick embryo [35]. This fine-

tuning of responsiveness is associated with a local control of the

availability of the receptor at the growth cone surface. As Sema3A

is also expressed in DRG neurons [29], and sensory and motor

axons grow in tight spatial vicinity, it is conceivable that Sema3A

secreted from sensory growth cones is not only taken up by sensory

but also by motor axons. If Npn-1 is removed from sensory

neurons, motor growth cones should be confronted with an excess

of Sema3A and in consequence will defasciculate, very similar to

the phenotype observed when Sema3A is overexpressed in

motoneurons by in ovo electroporation in chick [35]. Aside from

class 3 semaphorins, additional, structurally diverse extracellular

binding partners have been reported for Npn-1, for example

different isoforms of vascular endothelial growth factors [36] or the

cell adhesion molecule L1 [37], which may also contribute to the

formation of the sensory-motor circuitry.

Intriguingly, the absence of Npn-1 from sensory axons is

associated with defasciculation of both motor and sensory axons

before, in, and beyond the plexus region in the distal limb. When

the cell adhesion molecule L1 was neutralized by injection of

function-blocking antibodies into the chick hindlimb at a stage

where motor axons have already re-sorted into target-specific

bundles, sensory axons chose slightly inappropriate pathways and

decreased adhesion was detected ultrastructurally. The pathfind-

ing of motor axons, however, was not affected [38,39]. From this

we conclude that sensory axons affect the fasciculation of motor

axons before reaching the plexus and experimental defasciculation

of sensory projections after motor axons have left this decision

region has little or no effect on motor axon patterning. Most likely,

a concerted effort of both axon-environmental and axon-axonal

interactions is required to achieve the remarkable accuracy of limb

innervation. While Sema3 ligands constitute the most probable

environmental cues to interact with axonally expressed Npn-1,

communication between axons might be mediated by Npn-1

homophilic, Npn-1-L1 complexes or even by Sema3A-Npn-1

interactions. A complex combination of molecular mechanisms of

axon pathfinding has been reported in other systems including the

zebrafish retinotectal projection [28] and MMC motor axon

projections [14] and might reflect a general principle in the

development of intricate neuronal circuits.

Interestingly, the defasciculation of motor axons that we

observed after deletion of Npn-1 in sensory neurons has no effect

on the dorsal-ventral pathfinding decision to the limb mesen-

chyme. This might be due to the less severe degree of

defasciculation when compared to the fasciculation defects

induced by removal of Npn-1 from motoneurons. In the absence

of any markers for dorsally or ventrally projecting sensory neurons,

it can currently not be assessed whether sensory axons are still able

to correctly navigate this choice point.

Our findings reveal that inter-axonal communication has a

pronounced influence on the layout of growth and fasciculation

patterns of specific neuronal projections, whereby the spatial

region of interaction in relation to important choice points seems

to be of critical significance.

Materials and Methods

Ethics Statement
Animals were handled and housed according to the federal

guidelines for the use and care of laboratory animals, approved by

the Helmholtz Zentrum München Institutional Animal Care and

Use Committee and the Regierung von Oberbayern.

Mouse Embryo Preparation
The genotype of mouse embryos was determined as described

for Npn-1cond [17], Hb9::eGFP [19], and DT-A [23] or using the

following primers and conditions to detect the Cre allel in Hb9-Cre

[20], Ht-PA-Cre [21], Isl1-Cre [22], and Olig2-Cre mice [18]:

Forward (GTC TCC AAT TTA CTG ACC GTA CAG) and

Reverse (GAC GAT GAA GCA TGT TTA GCT GG) primers

were used with the following cycling parameters: 5 min preheating

to 95uC, 30 cycles of denaturation for 1 min at 95uC, 1 min

annealing of the primers at 59.5uC, and 30 s polymerization at

72uC. In all experiments, mutant mice (Npn-1cond2/2;Cre+) were

compared to control littermates (wt, Npn-1cond+/+;Cre+; or Npn-

1cond2/2;Crewt).

Immunohistochemistry
The protocols for immunohistochemistry and wholemount

embryo stainings have been described previously [10]. Immuno-

histochemical staining against neurofilament in motor nerves was

more apparent in younger embryos, where motor nerves appeared

yellow due to the overlap in staining for neurofilament and GFP.

At E12.5, however, due to the less intense neurofilament labeling,

motor nerves appeared green. The following primary antibodies

were used for fluorescent immunohistochemistry on cryosections

of E10.0–E12.5 embryos or for wholemount embryo preparations

of E10.5–E15.5 embryos: Rabbit anti-Lim1 (kindly provided by

T.M. Jessell), rabbit anti-GFP (Molecular Probes), rabbit anti-

Krox20 (1:100, Covance, Vertrieb Deutschland: HISS Diagnostics

GmbH), rabbit anti-trkA (a generous gift from Lou Reichardt),

rabbit anti-Npn-1 (1:100, a generous gift from Alex Kolodkin), rat

anti-PECAM (1:400, clone Mec13.3, BD Pharmigen), goat anti-

TrkC (1:250, R&D Systems), goat anti-Sox10 (1:250, Santa Cruz

Biotechnology), goat anti-FoxP1 (1:500, R&D Systems), mouse

anti-neurofilament 2H3, and mouse anti-Isl1 39.4D5 (obtained

from the Developmental Studies Hybridoma Bank developed

under the auspices of the NICHD and maintained by The

University of Iowa, Department of Biological Sciences, Iowa City,

IA 52242). Antibody staining was visualized using fluorochrome-
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conjugated secondary antibodies (1:250; Molecular Probes;

Jackson Dianova). For wholemount imaging, embryos were

cleared using BABB (1 part benzyl alcohol, 2 parts benzyl

benzoate) and imaged using a LSM510 Zeiss confocal microscope.

Confocal stacks through the entire extent of the region of interest

were acquired and then collapsed for further investigation.

Figure 12. Npn-1-mediated axon-axon and axon-environment interactions. (A) Schematic view of forelimb innervation at E10.5 in wildtype
embryos: motor and sensory axons reach the plexus region at the base of the limb in tightly fasciculated spinal nerves. (B) If Npn-1 is ablated from
motoneurons (Olig2- or Hb9-Cre), motor and sensory axons approach the plexus in normally fasciculated spinal nerves, however motor axons are
defasciculated within the plexus. (C) If motoneurons are ablated by tissue-specific activation of the diphtheria toxin-A (DT-A) gene, only very few, very
thin motor projections form at all, while sensory axons grow fasciculated, even though a bit delayed into the plexus region. (D) If Npn-1 is removed from
sensory neurons (Ht-PA-Cre), sensory and motor axons fail to form properly fasciculated spinal nerves and are therefore defasciculated already before as
well as within the plexus region. In addition, sensory neurons lead the spinal nerve projection. (E) If sensory neurons are ablated by tissue-specific DT-A
expression, only very thin sensory projections are observed, while motor nerves that grow to the distal limb are defasciculated already before the plexus.
(F) Schematic view of forelimb innervation after motor and sensory axons have navigated the plexus region (E11.5–E12.5). (G) If Npn-1 is removed from
motoneurons (Olig2- or Hb9-Cre), motor nerves enter the limb heavily defasciculated, while sensory nerves grow fasciculated to appropriate distal
positions. (H) If motor neurons are ablated by tissue-specific activation of DT-A (Olig2-Cre), sensory axons navigate the decision region of the plexus and
show slight alterations in the patterning of their peripheral projections. (I) If Npn-1 is removed from sensory neurons (Ht-PA-Cre), both motor and sensory
nerves arrive at the plexus in a defasciculated manner, and sensory nerves are heavily defasciculated in the distal limb, while motor projections show a
milder defasciculation and grow in slightly inappropriate positions to each other. (J) If sensory neurons are ablated, motor nerves are disorganized and
defasciculated before the plexus region as well as in the distal limb, thus showing a similar phenotype to Npn-1cond2/2;HT-PA-Cre+ mutant embryos. (K)
Model illustrating the axon-environment and axon-axon interactions that control the initial outgrowth and joining of sensory and motor axons.
doi:10.1371/journal.pbio.1001020.g012
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Quantification of Motor and Sensory Defasciculation at
E12.5

To visualize motor defasciculation in wholemount embryos, a

perpendicular virtual line of 150 pixel length was placed over a

projection picture of confocal planes of the entire limb of

Hb9::eGFP-positive nerve branches in fore- and hindlimbs. A

plot profile was calculated, resulting in a peak where a gray value

above background level crossed that line. To quantify motor

defasciculation, the thickness of the four major projections in the

forelimb was measured and summarized in control and mutant

embryos. In the hindlimb, measurements were performed at the

position where tibial and peroneal nerves split up into two

branches. Significance was calculated using the two-tailed

Student’s t test. To quantify sensory defasciculation neurofilament

positive pixels above background level (without HB9::eGFP) were

counted using the imageJ program in a 1006100 pixel area (region

of interest, ROI) and significance was calculated using the two-

tailed Student’s t test.

Quantification of Pre-Plexus Defasciculation at E10.5 and
E12.5

To quantify defasciculation before the plexus region in E10.5

and E12.5 wholemount embryos, the individual thickness of the six

spinal nerves contributing to the forelimb-plexus was measured

(‘‘a’’ in Figure 8E), added up, and normalized to the length of the

spinal cord from which these six projections originate (‘‘b’’ in

Figure 8E) to determine a fasciculation coefficient. Significance

was calculated using the two-tailed Student’s t test.

Quantification of Distal Advancement
To quantify the distance of ingrowth of motor axons into the

fore- and hindlimb of E12.5 embryos, the length of the distal-most

motor fiber was measured starting from the reference point and

normalized with the length of the forelimb (see Figure 3G for a

schematic showing the reference point and the lengths measured).

Significance was calculated using the two-tailed Student’s t test.

Retrograde Labeling of Neurons
For retrograde labeling of motoneurons, dextran-conjugated

Rhodamin (Molecular Probes) in PBS was injected into either

dorsal or ventral musculature of E12.5 embryos. Preparations

were incubated for 4 h in aerated D-MEM/F12 medium (Gibco)

prior to fixation in 4% PFA in PBS and cryoprotection in 30%

sucrose in PBS [10]. To quantitate misprojecting neurons,

backfilled Rhodamin+ neurons were counted, and the percentage

of aberrantly projecting neurons was calculated based on

immunostaining against Lim1 and Isl1 and significance was

calculated using the two-tailed Student’s t test.

In Situ Hybridization
In situ hybridization was performed as described [10] using

mouse digoxigenin-labeled probes for Npn-1cond. The fragment of

Npn-1 spanning exon 1 to exon 4 was obtained with the primers

59-AGGATTTTATGGTTCTTAGG-39 and 39-TTGAA-

GATTTCATAGCGGAT-59 using Accu Prime Taq (Accu Prime

DNA Polymerase System, Invitrogen), cloned into the PCR II

topo vector (Topo Cloning Kit, Invitrogen), and antisense probe

was created using XhoI (Fermentas) and Sp6 polymerase

(Fermentas). To quantify the recombination efficiency of the

different Cre-lines, in situ hybridization against the floxed exon 2

of Npn-1 was performed on mutant and wildtype littermate

embryos. For Npn-1cond 2/2;Olig2-Cre+ embryos the percentage of

Npn-1+/Isl-1+ cells was calculated for the medial LMC (Isl1+ cells),

and the percentage of Npn-1+/Lim-1+ cells was calculated for the

lateral LMC (Lim1+ cells). To quantify the recombination

efficiency of the Ht-PA-Cre line in sensory neurons, in situ

hybridization against the floxed exon 2 of Npn-1 was performed

and the percentage of Npn-1+/Isl-1+ cells per DRG (Isl1+ cells)

was calculated. Significance was calculated using the two-tailed

Student’s t test.

Supporting Information

Figure S1 Dorsal view of brachial plexus and spinal nerve exit

points. Dorsal view of the plexus region and exit of brachial spinal

nerves from the spinal cord at E12.5. N. musculocutaneous (msc),

n. radialis (rad), n. ulnaris (uln), and n. cutaneous maximus (cm)

can be identified in control embryos at E12.5 (A). Spinal nerves

are fasciculated from their exit of the spinal cord until they reach

the plexus in Npn-1cond2/2;Olig2-Cre+ mutant embryos (B, F),

however, after the plexus motor nerves are thinner, defasciculated

(e.g. radial nerve), or stunted (e.g. ulnar nerve). Defasciculation

after the plexus was also observed in Npn-1cond2/2;Hb9-Cre+

mutant embryos (C), while the spinal nerves were fasciculated

from the spinal cord (sc) to the plexus (G, I). In Npn-1cond2/2;Ht-

PA-Cre+ mutant embryos spinal nerves arrived at the plexus in a

slightly defasciculated manner (H). Motor nerves were also

disorganized after the plexus region, particularly the ulnar nerve

(uln) and also a smaller branch of the radial nerve (empty

arrowhead) seem to consist of more nerve branches than in control

animals. Quantification of the pre-plexus defasciculation was

carried out as described for E10.5 embryos in Figure 8; both sides

of the spinal cord were analyzed for 3 embryos; pOlig2-Cre = 0.92,

pHb9-Cre = 0.84, pHt-PA-Cre , 0.01. Bar graph equals 200 mm for

(A–D) and 100 mm for (E–H).

(EPS)

Figure S2 Defasciculation of motor projections after Hb9-Cre-

mediated removal of Npn-1 from motoneurons. Wholemount

antibody staining of E12.5 embryos against GFP (green, motor

nerves) and neurofilament (red, motor and sensory nerves).

Ablation of Npn-1 from motoneurons using the Hb9-Cre line leads

to defasciculation of the radial and median nerves (B, D, n = 6), but

not the ulnar nerve (arrow in D) when compared to wildtype

littermates (A, C). The fasciculation and distal positioning of

sensory nerves is not affected by defasciculation of motor

trajectories (arrowheads in B’) when compared to littermate

controls (arrowheads in A’). High magnification of the ulnar nerve

shows normal development of motor and sensory components in

Npn-1cond2/2;Hb9-Cre+ mutants (F, F’) compared to controls (E, E’).

Bar equals 400 mm in (A, B), 100 mm in (C, F), and 80 mm in (E,

F).

(EPS)

Figure S3 Removal of Npn-1 from motor or sensory neurons

causes severe defasciculation of motor axons in the hindlimb.

Analysis of GFP immunofluorescence in wholemount E12.5

embryos reveals that motor axons of the sciatic nerve

(peroneal branch) are severely defasciculated and fanned out in

Npn-1cond2/2;Olig2-Cre+ (C, D, n = 10) and Npn-1cond2/2;Hb9-Cre+

(E, F, n = 6) mutant embryos instead of forming distinct nerve

trunks as in controls (A, B). Interestingly, motor projections are

also defasciculated when Npn-1 is removed from sensory neurons

using the Ht-PA-Cre line (G, H, n = 5), in particular the tibial nerve

(arrow in H). Here, we also observe loop formation of the

superficial branch of the peroneal nerve (H, open arrowhead).

Wholemount antibody staining against neurofilament shows that

defasciculation of motor projections and lack of major rami does
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not affect fasciculation and distal positioning (arrowheads in B’,

D’, F’) of sensory nerves to the hindlimb in Olig2-Cre (C’, D’) or

Hb9-Cre (E’, F’) mutant embryos when compared to littermate

controls (A’, B’). Elimination of Npn-1 from sensory neurons

causes a strong defasciculation and exuberant growth in Npn-

1cond2/2;Ht-PA-Cre+ mutant animals (G’, H’). Bar equals 400 mm

in (A, C, E, G) and 100 mm in (B, D, F, H).

(EPS)

Figure S4 Fasciculation, but not distal advancement, of motor

and sensory projections is affected after ablation of Npn-1 from

motor and sensory neurons in the hindlimb. Defasciculation of

motor nerves was assessed by calculating a plot profile of

Hb9::eGFP positive motor projections crossing a virtual line.

In control embryos (A and B) the two major projections of the

sciatic nerve can be seen (1 = n. peroneous, 2 = n. tibialis).

In Npn-1cond2/2;Olig2-Cre+ mutant embryos (C and D) the tibial

nerve (2) can be assigned to the plot profile, even though smaller

fibers are defasciculating from the main branch. The peroneal

nerve (1) is split up into many small projections that did not merge

to a fascicle when growing into the distal limb. This is also

observed in Npn-1cond2/2;Hb9-Cre+ mutant embryos (E and F),

with the peroneal nerve (1) showing many small fibers that are

separated from the main nerve trunk, whereas the tibial nerve (2)

appears normal. Ablation of Npn-1 from sensory neurons by Ht-

PA-Cre (G and H) causes defasciculation of motor projections,

shown in the plot profile to result particularly in defasciculation of

the tibial nerve (2). The quantification of the defasciculation by

summarizing the thicknesses of tibial and peroneal nerves (I)

revealed increased defasciculation in Npn-1cond2/2;Olig2-Cre+

(62.365.5 SEM, p,0.0001), Npn-1cond2/2;Hb9-Cre+ (100.169.7

SEM, p,0.0001), and Npn-1cond2/2;Ht-PA-Cre+ (41.164.9 SEM,

p,0.005) mutants when compared to wildtype littermates

(17.760.8 SEM). Note that the higher thickness of hindlimb

nerves in Npn-1cond2/2;Hb9-Cre+ does not indicate a more severe

degree of fasciculation, but rather a wider spread of defasciculated

nerve branches. The distal advancement in the hindlimb was

quantified by measuring the length of the most distal axon and

normalizing this to the length of the hindlimb and was found

unaltered if Npn-1 is removed from sensory or motor neurons (J).

Also the distal advancement of motor innervation in forelimbs of

Npn-1cond2/2;Ht-PA-Cre+ mutant embryos was unaffected (J).

Quantification of sensory defasciculation in the hindlimb does

not show differences in Npn-1cond2/2;Olig2-Cre+ (L) and Npn-1cond2/2;

Hb9-Cre+ (M) mutant embryos when compared to littermate controls

(K). The quantification in (O) shows a significant increase of

defasciculated sensory innervation in Npn-1cond2/2;Ht-PA-Cre+ mu-

tant embryos (N). n = 3 for all genotypes; both limbs were quantified.

Bar graph in (N) equals 100 mm for all panels.

(EPS)

Figure S5 Defasciculation of MMC projections after removal of

Npn-1. Wholemount antibody staining of E12.5 embryos against

GFP (green, motor nerves) and neurofilament (red, motor and

sensory nerves). Elimination of Npn-1 from motoneurons using the

Olig2-Cre line leads to misprojections of MMC nerve branches

innervating intercostal muscles with axons crossing between the

main nerve bundles (C, arrowheads in D), a behavior that was only

very rarely observed in control embryos (A, B, E; p = 0.0052,

n = 6). Ablation of Npn-1 from sensory neurons by Ht-PA-Cre leads

to defasciculation of sensory (G’) and motor (G) projections at

thoracic levels. Motor axons cross frequently between major nerve

bundles (arrowheads in G, E; p,0.0001, n = 4). Bar equals 500 mm

in (A, C, F) and 200 mm in (B, D, G).

(EPS)

Figure S6 Defasciculation of intercostal axons after removal of

Npn-1 at E15.5. Wholemount immunohistochemistry for neuro-

filament (red, motor and sensory nerves) and GFP (green, motor

nerves). Removal of Npn-1 from motoneurons causes defascicula-

tion of intercostal nerves in Npn-1cond2/2;Olig2-Cre+ mutants with

axon bundles frequently de- and refasciculating with the main

nerve (arrows in B, C). Bar equals 200 mm in all panels.

(EPS)

Figure S7 Npn-1 is expressed in TrkC-positive sensory neurons

at E12.5. Anti-TrkC staining (A) and in situ hybridization against

Npn-1 (B) on the same section demonstrate that 19.0%61.9%

SEM of TrkC-positive sensory neurons at brachial and

16.5%60.8% SEM at lumbar spinal levels also express Npn-1 at

E12.5. Scale bar equals 25 mm in all panels.

(EPS)

Figure S8 No dorsal-ventral guidance defects in sensory neuron-

specific ablation of Npn-1. Retrograde tracing from ventral (A)

and dorsal (B) limb mesenchyme of Npn-1cond2/2;Ht-PA-Cre+

mutant embryos did not show an increase of pathfinding errors

at brachial (2.95%60.59% and 3.86%60.84%, respectively,

n = 3) nor lumbar levels (5.1%60.82% and 4.33%61.31%,

respectively, n = 3) when compared to wildtype littermate embryos

(forelimbventral = 4.99%60.76%; forelimbdorsal = 3.56%60.47%;

hindlimbventral = 5.19%60.77%; hindlimbdorsal = 4.21%60.84%).

(EPS)

Figure S9 Assessment of DRG segmentation, Schwann cell

progenitors, and boundary cap cell formation as well as blood

vessel formation in Npn-1cond2/2;Ht-PA-Cre+ mutant embryos.

Dorsal view of the spinal cord and DRG of E12.5 wholemount

embryos revealed that the segmentation of DRG is normal in Npn-

1cond2/2;Ht-PA-Cre+ mutant embryos (B); in particular, no fusions

or aberrant morphology were observed when compared to

littermate controls (A). Schwann cell progenitor formation was

assessed by SOX10 immunohistochemistry, showing SOX10+

progenitor cells following a defasciculated distal nerve branch in

the forelimb and in DRG (inlay in D and C) of mutant embryos

(D). A control embryo is shown in (C). Also the formation of

boundary cap cells (KROX20+) at the dorsal root entry zone

(DREZ) and motor entry zone (MEZ) is not impaired in Npn-

1cond2/2;Ht-PA-Cre+ mutant embryos (F, control embryo is shown

in E). The formation of blood vessels was assessed by staining with

anti-PECAM antibody and revealed no obvious differences

between mutant (G) and control (H) embryos. Bar graph equals

100 mm for (A, B), 40 mm for (C, D), 80 mm for inlays in (C, D),

20 mm for (E, F), and 150 mm for (G, H).

(EPS)
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