
UC Irvine
ICS Technical Reports

Title
Adaptive compression of syntax trees and iterative dynamic code optimization : two 
basic techologies for mobile-object systems

Permalink
https://escholarship.org/uc/item/9b2584zz

Author
Franz, Michael

Publication Date
1997-02-07
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b2584zz
https://escholarship.org
http://www.cdlib.org/


Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

Adaptive Compression of Syntax Trees and
Iterative Dynamic Code Optimization;

Two Basic Technologies for Mobile-Object Systems

Michael Franz

Technical Report 97-04
Department of Information andComputer Science
University of California, Irvine, CA 92697-3425

7th February 1997



Adaptive Compression of Syntax Trees and
Iterative Dynamic Code Optimization:

Two Basic Technologies for Mobile-Object Systems

Michael Franz

DepartmentofInformation and Computer Science
University ofCalifornia
Irvine. CA 92697-3425

Abstract

We are designing and implementing a flexible infrastructure for mobile-object systems. Two
fundamental innovations distinguish our architecture from other proposed solutions. First, our
representation ofmobile code is based on adaptive compression of syntax trees. Not only is this
representation more than twice as dense as Java byte-codes, but it also encodes semantic
information on a much higher level than linear abstract-machine representations such asp-code or
Java byte-codes. The extra structural information that is contained in our mobile-code format is
directly beneficial for advanced code optimizations.

Second, our architecture achieves superior run-time performance by integrating the activity
of generating executable code into the operating system itself. Rather than being an auxiliary
function performed off-line by a stand-alone compiler, code generation constitutes a central,
indispensable service in our system. Our integral code generator has two distinct modes of
operation: instantaneous load-time translation and continuous dynamic re-optimization.

In contrast to just-in-time compilers that translate individual procedures on a call-by-call
basis, our system's integral code-generator translates complete code-closures in a single burst
during loading. This has the apparent disadvantage that it introduces a minor delay prior to the
start of execution. As a consequence, to some extent we have to favor compilation speed over
code quality at load time.

But then, the second operation mode of our embedded code generator soon corrects this
shortcoming. Central to our run-time architecture is athread ofactivity that continually optimizes
all of the already executing software in the background. Since this is strictly a re-compilation of
already existing code, and since it occurs completely in the background, speed is not critical, so
that aggressive, albeit slow, optimization techniques can be employed. Upon completion, the
previously executing version of the same code is supplanted by the newly generated one and re-
optimization starts over. By constructing globally optimized code-images from mobile software
components, our architecture is able to reconcile dynamic composability with the run-time
efficiencyof monolithic applications.



1. Introduction

We introduce two new basic technologies for mobile object systems; a highly compact
representation for portable code and a run-time architecture that reconciles the
traditionally conflicting goals of modularity and performance through the use of a
dynamic code optimizer embedded within the operating system. The two technologies are
complementary to each other: while the high semantic level ofthe machine-independent
representation makes it particularly well suited for supporting code optimizations, its
conciseness accelerates I/O operations, partially compensating for the effort of load-time
codegeneration. The unusual compactness of object files also facilitates their retention in
a memory cache, leading to more efficient optimization cycles later.

In the following, we give an overview ofeach ofthe two technologies, pointing to
further publications and on-line documentation where appropriate. The Slim Binary
mobile-code format [FK96] is the outgrowth of the author's doctoral dissertation work
[Fra94a, Fra94b], while the system architecture incorporating dynamic optimization is
ongoing research atUC Irvine. We also report on the current state ofour implementation,
specifically the availability of an integrated authoring and execution environment
[Oberon] for mobile software components that is based on the Oberon System [WG89,
WG92], and a family of plug-in extensions [Juice] for the Netscape Navigator and
Microsoft Internet Explorer World Wide Web browsers that recreate this execution
environment so that Oberon-based components can be used within thesebrowsers.

2. Representing Mobile Code

In the course ofthe past six years, the author has designed and successfully implemented
a portability scheme for modular software that is based on dynamic code generation at
load time [FL91, Fra94a, Fra94b, FK96]. At the core of a suite of implementations is a
machine-independent program representation called slim binarie^. This representation is
based on adaptive compression of syntax trees and achieves exceptional information
densities. For example, it is more than twice as dense as Java byte-codes. In fact, the
author knows ofno denser program representation; standard data compression algorithms
such as LZW [WeI84] applied to either source code orobject code (for any architecture,
including the Java virtual machine) perform significantly worse than our dedicated
syntax-tree-directed method (Figure 1).

' The name "slim binary" was deliberately chosen to contrast "fat binary", which has been used to describe
object files that contain multiple instruction sequences for different target architectures. Slim binaries
provide a similar functionality as fat binaries, namely the ability tobe executed onmore than one hardware
architecture, but they consume only a fraction ofthe storage space.



Slim Binaiy

LZSS Compressed 1386 Binary

LZSS Compressed JavaByte-Codes

LZSS Compressed PPC601 Binary

LZSS Conqrressed Source Code

JavaByte-Codes

i386 Binary

PPC601 Biliary

Source Code

Figure 1: Relative Size ofRepresentative Program Suite in Various Formats

Reducing the network-transfer time of mobile components (by a factor of more than two
in comparison to Java byte-codes, for example) is an advantage that should not be
underestimated, considering that many network connections in the near future will be
wireless and consequently be restricted to small bandwidths. In such wireless networks,
raw throughput rather than network latency again becomes the main bottleneck.

Taking the Oberon System developed byNiklaus Wirth andJiirg Gutknecht [WG89,
WG92] as a starting point, the author and his graduate students have implemented a
family of run-time extensible systems [Oberon] in which the slim binary format is used
instead of native object code, yielding seamless cross-platform code portability.
Currently, we support three different architectures: MC68020 and PowerPC under the

Macintosh operating system, and i386 under Microsoft Windows 95. In all three
implementations, native object code is generated on-the-fly at load time from the slim
binary representation, in a manner that is transparent to the user. From the user's
perspective, "object files" simply become portable. The implemented systems support
dynamic linking (with dynamic code generation) of extension code into running
applications and the target-machine independent use of mobile code distributed as a slim
binary across a network.

In the systems we have implemented, the time required for reading "object files" is
reduced dramatically due to the compactness of the slim binary representation. This
applies to code read from an external storage medium as well as to code received over a
network. The time that has been saved due to reduced input overhead is then instead



spent on dynamic code generation at load time, making the implemented scheme almost
as fast as traditional program loading.

The interesting aspect oftrading reduced input/output overhead for a greater amount
ofprocessing at load time is that hardware technology is currently evolving in its favor.
Raw processor power is growing much more rapidly than the speed ofinput and output
operations (Figure 2). Any computer application that reduces its input/output overhead at
the expense ofadditional computations can benefit from this effect in the long run, even
if the immediate performance gain doesn't seem to reward an increased algorithm
complexity. Code generation happens to be a particularly good example, because
processor instruction sets are not optimized for information density but have other
constraints such as regularity and ease ofdecoding. Hence, object files are usually much
larger than they need to be.

35.00 ^ • Relative CPU Performance
I —Relative Disk Performance

Quadra 700

8500/120

8100/100:

6100/601

Quadra 840AV

Quadra 800

Jan-88 Jan-SO Jan-90 Jan-91 Jan-92 Jan-93 Jan-d4 Jan-9S

Figure 2; Different Growth Rates ofProcessor Power vs. I/O Speedfor Different Models
ofthe Apple Macintosh Computer Family (as Measured by the Tool Speedometer 4.02)

The process illustrated in Figure 2 has had the effect that dynamic code-generation at
load-time has now become practical and will continue to increase its appeal. As Figure 3
illustrates, the additional cost of using slim binaries rather than native code has plunged
dramatically over the last 6years as the performance gap between processors and storage



has widened. Figure 3 compares the times required for reading and dynamically
compiling from slim binaries all of the applications in a large representative suite of
Internet applications (a WfVfV browser, a Telnet application with VTIOO emulation, an
electronic mail system, and further tools) versus simply reading pre-fabricated
executables of the same applications.

Program Suite #1
Dynamic Loading Time

Slim Bmartes

0ua(lm840

.•r. • ',t 1': •• .' •' u:,-;.Myf.-fMLktiSfyi

sioonoo

Jvas Janes JanSO Jan 91 Jan92 Jan83 Jan94 J«i9S

Figure 3: Time Requiredfor LoadingRepresentative Program Suite

Ofcourse, as processors become more complex, the techniques required to generate good
code for them tend to be more elaborate also. It is still an open question whether the
speed of processors will grow faster than the complexity of generating adequate code for
them. However, as described in the nextsection, the inclusion of dynamic re-optimization
in our architecture makes this question largely irrelevant.

It should also be noted that the absolute delay that an interactive user experiences
when code is generated dynamically is more important than the relative speed in
comparison to traditional loading. On the fastest computers of our benchmarks, it takes
about two seconds to simultaneously load all of the applications contained in the
benchmark suite from slim binaries. Although this is still almost twice as much as is
required for native binaries, the extra second is within the range thatwe have found users
to be willing to tolerate. In return for a minimally increased application-startup time, they
gain the benefit ofcross-platform portability without sacrificing any run-time efficiency;
all code generation occurs strictly before the execution commences.



Further, typical users ofour system do not start all ofthe applications in the program
suite at the same time. Quite the opposite: due to the extensible, modular structure of our
system, the incremental workload of on-the-fly code generation is usually quite small.
Most of the applications are structured in such a manner that seldom-used functions are
implemented separately and linked dynamically only when needed; moreover, there are
many modules that are shared among different applications and need to be loaded only
once. Hence, the effective throughput demanded ofour on-the-fly code generator is much
smaller than might be expected when extrapolating from systems based on statically-
linked application programs.

2.1 The Slim Binary Representation: Some Technical Details

Unlike other program representations that have been proposed for achieving software
portability, such as p-code [NAJ76] orJava byte-codes [LYJ96], the slim binary format is
based on adaptive compression of syntax trees, and not on a virtual-machine
representation. Every symbol in a slim-binary encoding describes a sub-tree of an
abstract syntax tree in terms ofall the sub-trees that precede it. During the encoding ofa
program, more and more such sub-trees are added to its slim-binary representation,
steadily evolving the "vocabulary" that is used in the encoding of subsequent program
sections.

The key idea behind this encoding is the observation that different parts of a
program are of^en similar to each other. For example, in typical programs there are often
procedures that get called over and over with practically identical parameter lists. We
exploit these similarities by use of a predictive compression algorithm that allows to
encode recurring sub-expressions in a program space-efficiently while facilitating also
time-efficient decoding with simultaneous code-generation. Our compression scheme is
based on adaptive methods such as LZW [Wel84] but has been tailored towards encoding
abstract syntax trees rather than character streams. It also takes advantage of the limited
scope of variables in programming languages, which allows to deterministically prune
entries from the compression dictionary, and uses prediction heuristics to achieve a
denser encoding.

Adaptive compression schemes encode their input using an evolving vocabulary. In
our encoding, the vocabulary initially consists ofa small number of primitive operations
(such as assignment, addition and multiplication), and ofthe data items appearing in the
program being processed (such as integer i andprocedure P). Translation of the source
code into the portable intermediate representation is a two-step process (Figure 4). First,
the source program is parsed and an abstract syntax tree and a symbol table are
constructed. If the program contains syntax ortype errors (including illegal uses of items
imported from external libraries), they are discovered during this phase. After successful



completion of the parsing phase, the symbol table is written to the slim binary file. It is
required for placing the initial data-symbols into the vocabulary of the decoder, and for
supplying type information to the code generator.

Compression Process

pmgram

parse

source fUe

symtx)ls

abstract
syntax tree

ife';
data ^

Octionary it-;

all . M P(.)|+1 object me

Figure 4: Translationfrom Source Code intoa Slim Binary

Then, the abstract syntax tree is traversed and encoded into a stream of symbols from the
evolving vocabulary. The encoder processes whole sub-trees of the abstract syntax tree at
a time; these roughly correspond to statements on the level of the source language. For
each of the sub-trees, it searches the current vocabulary to find a sequence of symbols
that expresses the same meaning. For example, the procedure call P(i + 1) can be
represented by a combination of the operation-symbols procedure call and addition, and
the data-symbols procedure P, variable i, and constant 1.



After encoding a sub-expression, the vocabulary is updated using adaptation and
prediction heuristics. Further symbols describing variations of the expression just
encoded are added to the vocabulary, and symbols referring to closed scopes are removed
from it. For example, after encoding the expression i + 7, the special symbols i-plus-
something and something-plus-one might be added. Suppose that further along in the
encoding process the similar expression i + j were encountered, this could then be
represented using only two symbols, namely i-plus-something and j. This is more space
efficient, provided that the new symbol i-plus-something takes up less space than the two
previous symbols i plus. Using prediction heuristics, one might also add i-minus-
something and something-minus-one to the vocabulary, speculating on synunetry in the
program. This decision could also be made dependent on earlier observations about
symmetryduringthe ongoingencodingsession.

2.2 Advantages and Disadvantages of Slim Binaries

Using a tree-based, nonlinear representation as a software distribution format has the
apparent disadvantage that the portable code cannot simply be interpreted byte-by-byte.
The semantics of any particular symbol in a slim-binary-encoded instruction stream are
revealed only after all symbols preceding it have been decoded. Conversely, the
individual symbols in an abstract-machine representation are self-contained, permitting
random access to the instruction stream as required for interpreted execution. However,
in exchange for giving up the possibility of interpretation, which by its inherent lack of
run-time performance is limited to low-end applications anyway, we gain several
important advantages inaddition to the extreme compactness already mentioned.

The tree-based nature ofour distribution format constitutes aconsiderable advantage
when the eventual target machine has a super-scalar architecture requiring advanced
optimizations. Many modem code-optimizations rely on structural information that,
although readily available at the syntax-tree level, is lost in the transition to linear
intermediate representations such as Java byte-codes, and whose reconstruction is
difficult. For example, the code for aprocessor that provides multiple ftmctional units can
often be improved by reordering the individual instmctions so that the functional units
are operating in parallel (instmction scheduling). Two instructions in the program can be
exchanged ifthey are functionally independent of each other, and ifno branch originates
or terminates between them. The tree-based slim binary representation preserves the
control-flow data required for this and related optimizations, giving it an edge over linear
representations that require an additional time-consuming pre-processing step for
extracting the needed structural information. In order to achieve the same efficiency with
byte-codes, these would have to be instmmented with hints about block boundaries
[Han74], which is inelegant and space-consuming.



One might argue that the presence of this extra semantic information also makes the
reverse engineering of slim binaries easier, exposing the trade secrets of software
developers. It is true that any intermediate format that preserves the abstract structure of
programs can be reverse-engineered to produce a "shrouded" source program, i.e. one
that contains no meaningful internal identifiers [Mac93]. However, with current
technology, reverse-engineering to a similar degree is possible also from binary code and
from linear byte-codes. Many ofthe algorithms that have been developed for object-level
code-optimization [DF84, Dav86] are useful for these purposes. Moreover, the statement
[DRA93] is probably correct that portable formats are such attractive targets to reverse-
engineer that suitable tools will become available eventually, regardless of how difficult
it is to produce such tools. It would, therefore, not make much sense to jeopardize the
advantages of slim binaries inan attempt to make reverse-engineering more difficult.

As a further advantage of our mobile-code representation, unlike most linear
representations, every node ina slim-binary encoded syntax tree is strongly typed, and all
variable references are accompanied by symbolic scope information. This simplifies the
task of code verification. The problem with mobile code is that it may turn out to be
malicious or faulty and thereby compromise the integrity of the host system. For
example, variables in private scopes must not be accessed from the outside, but a mobile
program may have been generated by a rogue compiler that explicitly allows these illegal
accesses. Hence, incoming code must be analyzed for violation oftype and scoping rules.
Forourtree-based representation, thisanalysis is almost trivial; for linear code, it is not.

3. A Run-Time Architecture based on Dynamic Re-Optimization

The granularity of code generation has a profound influence on the quality of the
resulting object code. In general, large pieces of code provide more opportunities for
optimizations than small ones. Traditional compilers limit their search for possible
optimizations to the individual compilation imit: a recent study by Aigner and Holzle
[AH96] demonstrates how the execution times of several benchmark programs can be
improved considerably simply by combining all of the source files into one large file
prior to compilation. More sophisticated link-time optimization strategies, such as the
Titan/Mahler system (Wal92], partially overcome this effect, as they are able to perform
certain inter-module optimizations on already compiled code. However, even these
advanced schemes still assume acontext ofstatic linking and are imable to optimize calls
to dynamic link libraries.

As an illustration ofthe underlying problem, consider an application program Athat
calls a routine R. The compiler may want to inline ^ at a specific call site, replacing the
call to i? by an instance of R"s body into which the actual parameters have been hard-



coded. Since the body of R can then be optimized in the context of^4, this might lead to
significant further simplifications. However, none ofthis is possible if Ris implemented
inan external dynamic-link library, because the library may be changed independently of
the application program.

Hence, the needs of optimizing compilers run counter to the principle of dynamic
composability that fundamentally underlies mobile-object systems. These are usually
made out of a large number of relatively small components. Consequently, they have to
pay a performance penalty for their added flexibility, as optimizations such as procedure
inlining and inter-procedural register allocation can usually not be performed across
component boundaries at reasonable cost. Note that the technique of just-in-time
compilation that is currently gaining in popularity is compounding the problem, as it
compiles methods individually as they are called.

Our system is able to overcome these limitations. The key idea is to perform the
translation from the slim binary distribution format into executable code notjust once,
but to do so continually. When a piece of mobile code is initially activated inour system,
its slim-binary representation is translated into native code a single burst, putting
compilation speed ahead of code quality so that execution can commence immediately.
However, the resulting code will usually not be executed for long. Immediately after a
component has become active, its code becomes a candidate for re-optimization.

In our architecture, code generation is provided as a central system service. A low-
priority thread of control uses the idle time of the machine to perpetually integrate all
components loaded at that moment, recompiling the already executing code base again
and again in the background into fully optimized, quasi-monolithic code images.
Whenever such an image has been constructed, it supersedes the previously executing
version of thesame code and re-compilation commences again (Figure 5).

Since a single code image is being constructed out ofa large number of individually-
distributed parts, code optimizations that transcend the boundaries of these parts can be
put to use without limitation. Furthermore, all of this occurs in the background while an
alternate version of the same software is already executing in the foreground, so that the
speed of re-compilation is not critical. This means that far more aggressive optimization
strategies can be employed than would be possible in an interactive context. Rim-time
profiling data can also be exploited during re-compilation [IngTl, Han74, CMH91] so
that successive iterations yield better and better code.

Hence, iterative dynamic re-compilation can provide the run-time efficiency of a
globally optimized monolithic application in the context of mobile objects, or even
surpass it due to the fine-tuning that profiling makes possible. It leads to a new execution
model that combines the advantages of conventional application programs with those of
dynamically configurable component-based systems. We call this model quasi-
monolithic, since it exhibits most of the characteristics of a monolithic application.
Unlike monolithic applications, however, a quasi-monolithic executable is extensible and



can be augmented at any time by further components that are linked to the monolithic
core. Eventually, the components "outside" of the monolithic core will get drawn inside
it, as the run-time code generator integrates them on successive iteration cycles.

Source Text

Compiler

Portable

Intermeditate

Representation
{Object RIe)

^ Code "N
Generatlngl

c Loader J

Executable Code

Figure 5: Schematic Overview ofthe Run-Time Architecture

3.1 Quasi-Monolithic System Architectures: Further Considerations

Run-time re-optimization affords not only a profitable utilization of a processor's idle
cycles, but is also an ideal task to be handled by a temporarily unused processor in a
multi-processor system. Such a re-optimization cycle requires no synchronization with
the rest of the system until it is completed. This applies even to memory accesses: a run
time code generator takes a series of (possibly cached) "portable object files" as its input
and produces a completely new code image as its output; it need not have access to the
currently executing object code and can make a copy of any profiling data prior to



beginning its cycle. Hence, run-time code generation, if executed concurrently with
application programs by a dedicated processor, could be implemented in such a way that
it doesn't slow down the remaining processors (although we haven't done this yet). As
processor costs decline, it may become perfectly viable to add a further processor to a
computer system specifically for handling dynamic re-optimization. This may in fact be
more cost-effective than attempting true multiprocessing when the problem set is not well
suited for parallelization.

There is, however, still a price to be paid for the increased performance of quasi-
monolithic code; inlining, loop unrolling and other optimizations such as customization
[CU89] can lead to a much larger memory requirement for the whole system. This
behavior is likely to be more pronounced for well-structured modular applications, in
which all common functions have been "factored out", than for application programs that
are not so well-structured, since dynamically compiling a collection of modules into a
quasi-monolith has the effect of "multiplying out" many of the functions that were
previously factored. Hence, while programs that make pervasive use of shared
dynamically-linked libraries are expected to benefit most from dynamic re-optimization,
they are also likely to demonstrate the downside of the technique most clearly. While we
contest that the rapidly diminishing cost of memory is a small price to pay for the
advantage of achieving high performance and modularity simultaneously, one of the
goals of our research is to develop techniques for limiting the memory requirements of
our method. It should be possible to eventually develop good heuristics for this purpose
based on the dynamic history ofrecompilation effects and the available run-time profiling
data.

We expect that integral run-time code-generation and re-optimization will become a
common feature in component-based systems. Already today, operating-system
manufacturers are beginning to support for software-portability solutions such as the Java
Virtual Machine [LYJ96]. Initially, this support will come in the form of just-in-time
compilers that translate portable program representations into the native code ofa target
machine. To attain further benefits, however, the operating system's code itselfwill need
to be accessible to the run-time code generator, so that all-encompassing quasi-
monolithic code images can be created. We trust that this additional step will eventually
also be taken in mainstream operating systems, as it promises better performance for the
small and rapidly diminishing price ofgreater memory consumption.

4. Current State of the Implementation

The work described in this paperhas originated and continues to evolve in the context of
the Oberon System [WG89, WG92]. Oberon constitutes a highly dynamic software



environment in which executing code can be extended by further functionality at run
time. The unit of extensibility in Oberon is the module-, modules arecomposed, compiled
and distributed separately ofeach other. Oberon is programmed in a language ofthe same
name [Wir88] and has been ported to a wide variety of platforms [Fra93, BCF95].

For all practical purposes, Oberon's modules supply exactly the functionality that is
required for modeling mobile objects. Modules provide encapsulation, their interfaces are
type-checked at compilation time and again during linking, and they are an esthetically
pleasing language construct. The only feature thatwe have recently added to the original
language definition is a scheme for globally unique naming of qualified identifiers.
Hence, when we have been talking about "components", or "objects" above, we were
referring to Oberon modules.

We have already come quite far in deploying the ideas described here in a broader
sense than merely implementing them in a research prototype. The current Oberon
software distribution [Oberon] uses the architecture-neutral slim binary format to
represent object code across a variety of processors. Our on-the-fly code generators have
turned out to be so reliable that the provision of native binaries could be discontinued
altogether, resulting in a significantly reduced maintenance overhead for the distribution

package. Currently, our implementations for Apple Macintosh on both ihcMC680x0 and
the PowerPC platforms (native on each) and for the i80x86 platform under Microsoft
Windows 95 all share the identical object modules, except for a small machine-specific
core that incorporates the respective dynamic code generators and a tiny amount of
"glue" to interface with the respective host operating systems.

The latest release of this distribution also contains an authoring kit for creating
mobile components that are based on a reduced system interface modeled after the Java-
Applet-API. We have created plug-in extensions for the Netscape Navigator and
Microsoft Internet Explorer families of WWW browsers, again both for the Macintosh
(PowerPC) and Microsoft Windows (i80x86) platforms, that implement runtime
environments providing this API in conjunction with on-the-fly code generation. Users
are able to create components within the Oberon environment that can then be run not
only within Oberon, but also from within the third-party browsers. We call our mobile-
component architecture "Juice" [Juice], as it complements Java in many ways. The two
kinds of mobile components can live on the same page and communicate with each other
through the browser's API. Our implementations of Oberon and the Juice plug-in
modulescan be freely downloaded from our Internetsite [Oberon, Juice].



5. Summary and Conclusion

We have presented two new technologies that we believe to be vital for future mobile-
object systems:

• The slim binary machine-independent software distribution format is extremely
dense, which will be an important benefit when wireless connectivity becomes
pervasive. Already today, its tree structure presents advantages over linear byte-code
solutions when advanced optimizations are required.

• The quasi-monolithic run-time model of code execution, made possible by iterative
dynamic code optimization, may very well become a necessity as the average unit of
distributed code gets smaller and smaller. Only by constructing all-encompassing
fully cross-optimized code images at run-time will it be possible to exploit the full
power of future superscalar processors for such software.

Hardware is currently developing in favor of these two techniques, as wireless
communications are becoming a reality while processor power is increasing rapidly,
making dynamic code generation practical. Cheaper processors also mean that eventually
a dedicated additional processor could be employed to perform background re-
optimization ofcode ultimately executed by a primary processor. This utilization of extra
processors might in fact often be more cost-effective than attempting genuine
multiprocessing.

Acknowledgment

The Oberon System has turned out to be a stable foundation for projects far beyond its
original scope. The author gratefully acknowledges the original creators of Oberon,
Niklaus Wirth and Jiirg Gutknecht, and the co-author of the Oberon/Juice software
distribution, Thomas Kistler. Thanks also go to Martin Burtscher and Markus DStwyler
for collaborating on the system's implementation.

References

[AH96] G. Aigner and U. Hfilzle; "Eliminating Virtual Function Calls in C++
Programs"; ECOOP '96 Conference Proceedings, published as Springer
Lecture Notes inComputer Science,^^o. 1098,142-166; 1996.



M. Brandis, R. Crelier, M. Franz, and J. Tempi; "The Oberon System
Software-Practice and Experience, 25:12, 1331-1366; 1995.

P. P. Chang, S. A. Mahlke, and W. W. Hwu; "Using Profile Information to
Assist Classic Code Optimizations"; Software-Practice and Experience,
21:12,1301-1321; 1991.

C. Chambers and D. Ungar; "Customization: Optimizing Compiler
Technology for Self, a Dynamically-Typed Object-Oriented
Programming Language"; Proceedings of the ACM Sigplan '89
Conference Programming Language Design and Implementation,
published as Sigplan Notices, 24:7,146-160; 1989.

J. W. Davidson; "A Retargetable Instruction Reorganizer;" Proceedings of
the ACM Sigplan '86 Symposium on Compiler Construction, Palo Alto,
California, 234-241; 1986.

J. W. Davidson and C. W. Fraser; "Code Selection through Object Code
Optimization"; ACM Transactions on Programming Languages and
Systems, 6:4,505-526; 1984.

United Kingdom Defence Research Agency; Frequently Asked Questions
about ANDF, Issue l.l; June 1993.

M. Franz and T. Kistler; "Slim Binaries"; Communicationsofthe ACM, to
appear; also available as Technical Report No. 96-24, Department of
Information and Computer Science, University of California, Irvine; 1996.

M. Franz and T. Kistler; Juice\ http://www.ics.uci.edu/--juice.

M. Franz and S. Ludwig; "Portability Redefined"; in Proceedings of the
Second International Modula'2 Conference, Loughborough, England;
September 1991.

M. Franz; "Emulating an Operating System on Top of Another";
Software-Practice and Experience, 23:6, 677-692; 1993.

M. Franz; Code-Generation On-the-Fly: A Key to Portable Software;
Doctoral Dissertation No. 10497, ETH Zurich, simultaneously published
by Verlag der Fachvereine, Zurich, ISBN 3-7281-2115-0; 1994.

M. Franz; "Technological Steps toward a Software Component Industry";
in Programming Languages and System Architectures, Springer Lecture
Notes in Computer Science, No. 782,259-281; 1994.



G. J. Hansen; Adaptive Systemsfor the Dynamic Run-Time Optimization
ofPrograms (Doctoral Dissertation); Department of Computer Science,
Carnegie-Mellon University; 1974.

D. Ingalls; "The Execution Time Profile as a Programming Tool"; Design
and Optimization ofCompilers, Prentice-Hall; 1971.

M. Franz and T. Kistler; Juice\ http://www.ics.uci.edu/-juice.

T. Lindholm, F. Yellin, B. Joy, and K. Walrath; The Java Virtual Machine
Specification', Addison-Wesley; 1996.

S. Macrakis; Protecting Source Code with ANDF; Open Software
Foundation Research Institute; June 1993.

K. V. Nori, U. Amman, K. Jensen, H. H. Nageli and C. Jacobi; "Pascal-P
Implementation Notes"; in D.W. Barron, editor; Pascal: The Language
and its Implementation; Wiley, Chichester; 1981.

Institut fiir Computersysteme, ETH Zurich, and Department of
Information and Computer Science, University of California at Irvine;
Oberon Software Distribution; http://www-cs.inf.ethz.ch/Oberon.htmI or
http://www.ics.uci.edu/-oberon.

D. W. Wall; "Experience with a Software-Defined Machine Architecture";
ACM Transactions on Programming Languages and Systems, 14:3, 299-
338; 1992.

T. A. Welch; "A Technique for High-Performance Data Compression";
IEEE Computer, 17:6, 8-19; 1984.

N. Wirth and J. Gutknecht; "The Oberon System"; Software-Practice and
Experience, 19:9, 857-893; 1989.

N. Wirth and J. Gutknecht; Project Oberon: The Design ofan Operating
System and Compiler; Addison-Wesley; 1992.

N. Wirth; "The Programming Language Oberon"; Software-Practice and
Experience, 18:7, 671-690; 1988.




