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Abstract

Purpose: The association between CVD risk factors and mortality is well established, however, 

current tools for addressing subgroups have focused on the overall burden of disease. The 

identification of risky combinations of characteristics may lead to a better understanding of 

physiologic pathways that underlie morbidity and mortality in older adults.

Methods: Participants included 5,067 older adults from the Cardiovascular Health Study, 

followed for up to 6 years. Using latent class analysis (LCA), we created CV damage phenotypes 

based on probabilities of abnormal brain infarctions, major echocardiogram abnormalities, N

terminal pro-brain natriuretic peptide, troponin T, interleukin-6, c reactive-protein, galectin-3, 

cystatin C. We assigned class descriptions based on the probability of having an abnormality 

among risk factors, such that a healthy phenotype would have low probabilities in all risk factors. 

Participants were assigned to phenotypes based on the maximum probability of membership. We 

used Cox-proportional hazards regression to evaluate the association between the categorical CV 

damage phenotype and all-cause and CVD-mortality.
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Results: The analysis yielded 5 CV damage phenotypes consistent with the following 

descriptions: healthy (59%), cardio-renal (11%), cardiac (15%), multisystem morbidity (6%), 

and inflammatory (9%). All four phenotypes were statistically associated with a greater risk 

of all-cause mortality when compared with the healthy phenotype. The multisystem morbidity 

phenotype had the greatest risk of all-cause death (HR: 4.02; 95% CI: 3.44, 4.70), and CVD

mortality (HR: 4.90, 95% CI: 3.95, 6.06).

Conclusion: Five CV damage phenotypes emerged from CVD risk factor measures. CV damage 

across multiple systems confers a greater mortality risk compared to damage in any single domain.
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Risk Factors; Cardiovascular Disease; Latent Class Analysis

Introduction

The association between cardiovascular disease risk factors, and adverse outcomes including 

frailty, dementia, and all-cause mortality, is well established.1–4 Yet, despite evidence of 

heterogeneity of CVD risk factors in older adults,4–6 many studies have evaluated these 

relationships using independent associations or composite scores. For example, Chaves et 

al. evaluated a preexisting composite score of subclinical cardiovascular disease (SCVD) in 

the Cardiovascular Health Study (CHS), defined as present (yes or no) if participants had 

an abnormal measure in at least one variable. The authors found that the presence of any 

SCVD increased the risk for incident CVD, stroke, mortality, frailty, as well as physical and 

cognitive decline.2,7

While these studies have been critical in our understanding of CVD risk profiles, there are 

some limitations to these measures. First, individual risk factors likely do not capture the full 

spectrum of cardiovascular damage and may only measure high risk. Secondly, composite 

measures are useful at capturing the overall burden of disease for people in high or low risk 

categories; however, risk may vary across the heterogeneous types of CVD risk profiles. For 

instance, participants with the same composite score may have the same burden of disease, 

yet the risk for different components may differ. Furthermore, composite measures lack the 

ability to evaluate how risk-factors co-occur on the pathophysiology of disease. This may 

provide additional information regarding etiology from a common source, and whether these 

risky combinations have differential effects on adverse outcomes such as mortality.

The present study extends prior work on CVD risk factors to evaluate the morbidity patterns 

that are most strongly associated with mortality. By using methods that cluster observations 

into groups, we can provide a clearer picture of the riskiest combinations of CVD risk factor 

measures and ignite areas of further research that may provide clinicians with the ability to 

improve targeted interventions for persons with specific cardiovascular profiles. Thus, the 

objective of the present study was to cluster older adults from the CHS into cardiovascular 

damage phenotypes, and to evaluate these phenotypes with all-cause and CVD mortality.
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Materials and Methods

Study Design

This research included participants in the Cardiovascular Health Study (CHS), a population

based prospective study initiated by the National Heart, Lung and Blood Institute (NHLBI) 

in 1989 with the objective of examining risk factors for cardiovascular disease in older 

adults. At entry, the study enrolled 5,201 adults 65 years of age and older from four field 

centers: University of California, Davis in Sacramento County, California; Johns Hopkins 

University in Washington County, Maryland; Wake Forest University School of Medicine in 

Forsyth County, North Carolina; University of Pittsburgh in Pittsburgh, Pennsylvania. Six 

hundred and eighty-seven African American participants were recruited from the same study 

sites after the initial baseline survey using similar methods in 1992–1993.

Participants were recruited from Medicare eligibility lists in each of the four areas. 

Eligibility criteria included all persons living in the household of the individual sampled 

from the Health Care Financing Administration (HCFA), were non-institutionalized, aged 65 

or older, expected to remain in the area for the following three years, and had the ability to 

give informed consent without the need for a proxy at baseline. Exclusion criteria included 

participants on hospice treatment, wheelchair bound in the home at baseline, or receiving 

radiation or chemotherapy for cancer.

At baseline and annually during the first 10 years, participants completed home visits, 

physical examinations, health questionnaires, and donation of blood specimens. At 16 years 

of follow-up, participants were invited to participate in a follow-up exam consisting of the 

same elements. Telephone interviews were conducted every 6 months beginning in 1989 to 

obtain information on outcomes, and potential events were both self-reported and obtained 

from hospital records.8 The study was approved by the institutional review boards at all 

institutions involved in the study, and informed consent was obtained from all participants.

Due to availability of the subclinical measures, the 3rd follow-up visit (1992/93) was used as 

baseline for this study.

Exposure

To create cardiovascular damage phenotypes, we first tested 14 indicator variables available 

in the CHS at the third follow-up visit representing different types of morbidity, including 

vascular markers (internal intima-media thickness [IMT], white matter grade [WMG], 

cortical brain infarctions, intermittent claudication, and ankle arm index [AAI]), cardiac 

markers (major echocardiogram abnormalities [ECG], N-terminal pro-brain natriuretic 

peptide [NTproBNP], angina, troponin-T, and ST2), inflammatory markers (interleukin-6 

[IL-6], C-reactive protein [CRP], and galectin-3 [Gal3]), in addition to cystatin C, a marker 

of renal function. Two of these variables were excluded due to low prevalence (<5% of 

observations) of abnormalities (intermittent claudication, and angina).

Indicator variables were evaluated at baseline and dichotomized into normal/abnormal based 

on clinical cut-points or cut-points found in the literature. Internal carotid intima-media 
thickness (IMT) was measured from carotid ultrasound. The maximum wall thickness for 
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the internal carotid artery was defined as a mean of the maximum wall thickness for the 

near and far wall on all three longitudinal views.9 An abnormal IMT was defined as ≥ 75th 

percentile.10,11 White matter disease was measured by MRI scans using a grade from 0–9, 

where 0 is no changes, and 9 is most pronounced changes. Abnormal was defined as a grade 

of ≥ 5.12 Cortical brain infarctions were measured using an MRI scan and defined as a 

presence or absence of lesions ≥ 3 mm.13 Ankle arm index (AAI) was measured by trained 

technicians under standard protocol. Participants underwent duplicate readings after a brief 

50-minute rest in the supine position. Duplicate blood pressure readings were taken by a 

mercury sphygmomanometer and a Doppler stethoscope in the right arm and right ankle. 

The ratio represented an average of the duplicate readings. The cut-off of ≤0.9 was used 

to define abnormal.14 Major ECG abnormalities was defined according to the Minnesota 

code as left ventricular conduction defects, atrial fibrillation, major Q or QS abnormalities, 

minor Q or QS with ST-T wave abnormalities, left ventricular hypertrophy, isolated major 

ST-T wave changes, and first-degree atrioventricular block. Major ECG abnormalities 

was dichotomized as abnormal or normal.15 All blood samples were stored in a central 

laboratory at −70C or colder. Serum N-terminal pro-brain natriuretic peptide (NTproBNP) 
pg/mL was measured in serum; the coefficient of variation was 2% to 5, and the analytical 

measurement range was 5–35,000 pg/ml.16 The highest quintile of NTproBNP was defined 

as abnormal (> 356 ng/L).17(p201) Serum troponin-T pg/mL was stored in serum at −70°C 

to −80°C with a coefficient of variation 2%−5%; analytical measurement range for troponin 

T is 3–10,000 pg/ml.18 Troponin T was dichotomized was dichotomized at 5 ng/L with ≥ 

5 defined as abnormal.19,20 Serum ST2 ng/mL was measured by the Presage ST2 assay 

(Critical Diagnostics, San Diego, CA). The highest tertile of ST2 (39.5 ng/mL) was used to 

define abnormal.21 Serum interleukin-6 (IL-6) pg/mL was stored in serum and measured by 

high sensitivity in-house ELISA; the analytic coefficient of variation was 6.3%.The upper 

tertile of IL-6 in this population was used to define abnormal. C-reactive protein (CRP), 
mg/L was measured in plasma by high sensitivity in-house ELISA; the analytic coefficient 

of variation of 8.9%. A level of >3 was considered abnormal.1 Serum Galectin-3 (gal3), 
ng/mL was measured using an optimized ELISA (BG Medicine, Waltham, MA, USA).22 A 

level of > 17.7 ng/mL was defined as abnormal.23 Cystatin C mg/L was measured by a BNII 

nephelometer (Dade Behring Inc., Deerfield, IL) in serum, and the highest quartile (values 

≥ 1.29 mg/L) were considered abnormal.24 Both intermittent claudication and angina were 

dichotomized into rarely/none of the time, and some or a little of the time, where some or a 

little of the time was considered abnormal. Cortical brain infarctions and WMG were only 

available in a subset of participants that underwent an MRI (n=3660).12

Outcome

The outcomes of interest were all-cause mortality and CVD-mortality occurring before July 

16, 2015. Deaths were identified by an adjudication committee that reviewed obituaries, 

medical records, death certificates, and the Centers for Medicare and Medicaid Services 

files.8,25 CVD mortality was defined as death due to atherosclerotic coronary heart disease 

(CHD), cerebrovascular disease, other atherosclerotic disease, and other cardiovascular 

disease.
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Covariates

Covariates were chosen a priori and were measured at baseline. Age (in years), sex, 

race (white, African American/other), years of education, and clinic site (University 

of California, Davis, Johns Hopkins University, Wake Forest University, University of 

Pittsburgh). Smoking status (never, former, current user), alcohol use defined as none (0 

drinks per week), low (1–7 drinks per week for women, or 1–14 drinks for men) or high (> 7 

drinks per week for women, or > 14 drinks per week for men). Body mass index calculated 

as weight(kg)/height(m)2, and activities of daily living (ADL) categorized as none and 1 or 

more. Diabetes (fasting glucose level greater than 125 mg/dL or the use of glucose-lowering 

medications), and high blood pressure (seated systolic blood pressure ≥ 140 mmHg, seated 

diastolic blood pressure of ≥ 90 mmHg). Low-density lipoprotein (LDL) cholesterol (mg/dl). 

Medications were transcribed by technicians based on prescription bottles brought in by 

participants during clinic visits.26 Medication use included anti-hypertensive medication 

(indication of high blood pressure and use of any of the following: beta-blockers, calcium

channel blockers, diuretics, vasodilators, etc.). Measurement methods for apolipoprotein e4 

allele (APOE) have been published elsewhere.27 APOE was dichotomized as having at 

least one ɛ4 allele (yes, no), and analyses were limited to those with available DNA who 

consented to genetic studies.

Statistical Analysis

We used latent class analysis (LCA) to create phenotypes of cardiovascular damage. LCA 

is a subset of structural equation modeling that uses the posterior distribution of the data 

to predict membership into each mutually exclusive latent class. In LCA, the user choses 

the number of classes to be estimated by the data, where the size of each class and the 

probability of a response to each variable given class membership is also included.28 The 

LCA model provides the user with likelihood probabilities of the presence of an abnormality 

to each indicator, however, it does not provide the degree of likelihood. Goodness of fit 

(GOF) statistics (likelihood ratio G2, degrees of freedom, Akaike information criterion 

(AIC), Bayesian information criterion (BIC), adjusted BIC, entropy) are used to help 

provide an empirical method for choosing the number of classes that best fits the data, 

however, a theoretical understanding is also suggested.28 In our analysis, we chose to model 

2 through 7 classes to allow both empirical and theoretical reasoning in model selection. In 

addition to GOF statistics, the optimal number of classes was chosen based on physiologic 

interpretability of classes, and class size to ensure there was enough power to detect 

statistical differences between classes.29 The maximum probability assignment rule, which 

places the participant into the latent class where they have the highest posterior probability 

of membership, was used to extract latent classes and to create the categorical exposure 

variable. We labeled each of the classes as phenotypes, based on the clinical knowledge of 

the variables contributing to each class.

Baseline characteristics were compared between phenotypes using one-way analysis of 

variance for continuous variables and pairwise chi-squared (χ2) tests for categorical 

variables. We used Cox-proportional hazards regression to evaluate the association between 

phenotype with all-cause mortality and CVD-mortality. We used SAS 9.4 (Cary, NC) for 
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LCA, and Stata 14 (Stata Corp., College Station, TX) for descriptive statistics and time-to

event analyses.

Results

In 5,067 participants with data available on the biomarkers of interest, we compared models 

ranging from 2 to 7 classes, and found that the 5-class solution was the best fit for the 

data while excluding WMG, AAI, and IMT for not meaningfully contributing to the model. 

Specifically, the 5-class model had the smallest BIC and adjusted BIC, as well as the 

most clinically meaningful classes that were large enough to maintain adequate power 

(Supplemental Table 1). We characterized the 5 classes into a healthy phenotype (59%) 

due to low probabilities of having abnormalities for every indicator variable and was the 

most common phenotype, a cardio-renal phenotype (11%) because of high probabilities of 

abnormalities in NTproBNP, Troponin T, Gal3 and Cystatin C, and low probabilities in all 

other indicator variables. Similarly, we characterized the third class as a cardiac phenotype 

(15%) due to high probabilities of ECG abnormalities, NTproBNP and Troponin T, the 

fourth class as a multisystem morbidity phenotype (6%) because of high probabilities of 

abnormalities among all of the indicator variables that span multiple systems, and finally 

the 5th class as an inflammatory phenotype (9%) because of high probabilities of having 

abnormalities in CRP and IL-18. The item-response probabilities, for these 5 phenotypes 

are displayed in Table 1. The healthy phenotype, or absence of risk phenotype, was the 

most common phenotype (59% of participants), while the cardiac phenotype was the most 

common disease phenotype (15% participants).

Descriptive statistics for participants stratified by phenotype suggested that the participants 

in the healthy phenotype tended to be younger, female, have more education, have lower 

systolic blood pressure, were less likely to have hypertension and diabetes. (Table 2) On 

the contrary, the multisystem morbidity phenotypes tended to be older, male, have less 

education, have hypertension and diabetes, and have lower cholesterol. African-Americans 

were more likely to have higher presence of the inflammatory phenotype.

Participants were followed for an average of 9.35 years. We observed 2,919 deaths from all

causes with an incident rate of 59 (per 1000 person-years). All phenotypes were associated 

with a greater risk of death from all causes compared with the healthy phenotype, and 

these associations remained significant when adjusted for covariates. In adjusted models, the 

multisystem morbidity phenotype had the greatest risk of all-cause mortality with an HR 

of 4.02 (95% CI: 3.44, 4.70) compared with the healthy phenotype, followed by the cardio

renal phenotype (HR: 2.31, 95% CI: 2.02, 2.64), the cardiac phenotype (HR: 1.76; 95% CI: 

1.55, 1.99), and finally the inflammatory phenotype (HR: 1.50, 95% CI: 1.28, 1.76; Table 

3). Kaplan-Meier failure estimates show clear differences between the healthy phenotype 

and others, showing the multisystem morbidity phenotype with the highest cumulative 

probability of mortality over follow-up (Figure 1).

There were 1,525 deaths attributed to CVD with an incident rate of 31 (per 1,000 person

years). In the unadjusted model, all phenotypes were associated with a greater risk of 

CVD-mortality, and all reached statistical significance in adjusted models. The multisystem 
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morbidity phenotype had the greatest risk of CVD related deaths with a HR of 4.90 (95% 

CI: 3.95, 6.06) followed by the cardiac-renal phenotype (HR: 2.29, 95% CI: 1.89, 2.77), the 

cardio phenotype (HR: 2.22 (1.88, 2.62) and finally the inflammatory phenotype (HR: 1.46, 

95% CI: 1.17, 1.81, Table 3).

Discussion

The current study aimed to identify cardiovascular damage phenotypes and their association 

with all-cause and CVD-mortality in a large population based prospective cohort study 

of community-dwelling older adults. We found 5 classes consistent with the following 

descriptions: healthy, cardio-renal, cardiac, multisystem morbidity and inflammatory. We 

also found that all cardiovascular damage phenotypes were significantly associated with a 

greater risk of death from all causes compared with the healthy phenotype, as well as with 

CVD related mortality. These findings highlight the heterogeneity of CVD risk factors and 

suggest that some cardiovascular profiles are riskier than others for mortality, particularly 

those with abnormalities spanning multiple domains.

Our study adds to the literature on CVD risk factors by identifying groups of participants 

using an innovative clustering technique. In another study conducted in the CHS, Inzitari et 

al. created an index of subclinical vascular disease by summing abnormalities on ankle-arm 

index, electrocardiogram, and common carotid intima-media thickness (no, mild, severe). 

Authors found a dose-response association, where those with higher disease severity had a 

greater risk of CVD and mortality, and those with a lower burden had longer survival.4,30 

Similarly, a physiologic index of comorbidity was created in the CHS that measured CV, 

pulmonary, and kidney function, glucose tolerance and brain MRI, with scores ranging 

from 0 (health) to 10 (unhealth). Authors found a similar relationship where higher scores 

were associated with higher mortality, mobility limitation and ADL difficulty.31,32 While 

this is not the first study to use clustering techniques to create phenotypes in CHS,33 we 

extended this research by examining the patterning and variations of risk factors from 

multiple domains using LCA, which has not been done previously. By combining markers 

into phenotypes, instead of examining risk factors one at a time, we are able to account for 

correlations between risk factors while reducing type 1 error, making this an ideal method 

for distinguishing clinically important phenotypes.34

Although all disease phenotypes were significantly associated with all-cause mortality 

compared with the healthy phenotype, in this elderly population, the risk associated with 

the multisystem morbidity phenotype was approximately double other 3 groups. This is 

consistent with other studies demonstrating that pathology across multiple domains confers 

greater risk than pathology in a single domain.35,36 Unlike the cardio-renal and cardiac 

groups, the inflammatory phenotype was the least risky group compared with healthy 

phenotype in all models. This would suggest that older adults with abnormal concentrations 

of inflammatory biomarkers without other CVD risk factor abnormalities may be at lower 

risk or have less advanced disease progression compared to other subtypes in our population. 

For instance, a previous study in CHS found that CRP only increased the risk of stroke in 

the presence of carotid disease.37 This is also supported by studies that have found both 

inflammation and cerebrovascular disease such as WMG to be a precursor for CVD.38–40
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Strengths of this study include the large, cohort study of community dwelling older adults, 

and the prospective design. Furthermore, this is the first study to our knowledge that 

has used an innovative approach to cluster participants into phenotypes based on their 

interrelationship of CVD risk factor markers. There are some limitations that should 

be noted. It could be argued that the inherent need for dichotomized variables in LCA 

makes this method unfavorable (as opposed to using latent profile analysis and continuous 

variables), however, using specific cut-offs that are clinically meaningful, may help ease the 

translation from research to clinical practice.41 We are also assuming that these risk factors 

remain the same over time, which is likely not the case. However, due to the small number 

of indicator variables with measurements at multiple time points, we were unable to evaluate 

the change in phenotype class over time using latent transition analysis. Furthermore, 

because MRI variables were only available in a subset of the cohort (n=3660), only those 

with data on cortical brain infarcts and WMG were able to have likelihood probabilities for 

those indicators. Moreover, recruiting participants from Medicare eligibility lists may not 

include persons with a social security number such as undocumented immigrants. Finally, 

results may not apply to younger populations where interventions to reduce risk might result 

in more years of healthy life gained, so confirmation is required.

Conclusions

In summary, the present study provides evidence of heterogeneity among CVD risk factors. 

Clinically, older adults with decrements across multiple systems, specifically cardio-renal 

and multisystem, may indicate a high mortality risk group when compared to older adults 

in the mild to moderate risk groups. Due to the exploratory nature of this study, future 

work should focus on validating these findings in other population-based studies, and should 

evaluate with other clinically important outcomes and improving interventions to target 

specific phenotypes. If confirmed, our work could lead to more tailored risk assessments 

among older adults with risk factors for CVD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CHS Cardiovascular Health Study

IMT internal intima-media thickness

WMG white matter grade

AAI ankle arm index

ECG major echocardiogram abnormalities

NTproBNP N-terminal pro-brain natriuretic peptide

IL-6 interleukin-6

CRP C-reactive protein

Gal3 galectin-3

ADL Activities of Daily Living

LDL cholesterol Low-density Lipoprotein Cholesterol

APOE Apolipoprotein e4

LCA Latent Class Analysis

GOF Goodness of Fit

BIC Bayesian Information Criterion

AIC Akaike Information Criterion

HR Hazard Ratio
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Figure 1. 
Kaplan-Meier failure estimates by phenotype.
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Table 1:

Item-response Probability for the 5-class model: Probabilities of having an Abnormality given Latent Class.

Number of Classes and Suggested Phenotypes for 5 class model

Class 1 Class 2 Class 3 Class 4 Class 5

Cardio-Renal Cardiac Healthy Multisystem Inflammatory

Membership Probability 0.11 0.18 0.53 0.07 0.11

Cortical Brain Infarct 0.45 0.40 0.23 0.51 0.32

ECG 0.46 0.73 0.20 0.89 0.23

NTproBNP 0.60 0.55 0.11 0.99 0.14

Troponin T 0.91 0.81 0.33 0.98 0.45

ST2 0.37 0.43 0.24 0.64 0.39

CRP 0.11 0.05 0.05 0.55 0.52

IL-6 0.41 0.26 0.13 0.99 0.98

Gal3 0.69 0.15 0.16 0.56 0.33

Cystatin C 0.96 0.10 0.04 0.58 0.18

Note. IMT=internal intima-media thickness; WMG=white matter grade; ECG=major echocardiogram abnormalities; NTproBNP= N-terminal 
pro-brain natriuretic peptide; IL-6= interleukin-6; Gal3= galectin-3
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Table 2.

Characteristics of 5067 Participants from the Cardiovascular Health Study stratified by Phenotype

Characteristics Healthy Cardio-Renal Cardiac Multisystem Morbidity Inflammatory P-value

n=2987 n=571 n=757 n=306 n=446

Mean (SD) or N(%)

Age, years 73.8 (4.7) 78.3 (6.1) 76.8 (5.7) 77.9 (6.1) 73.6 (4.5) <0.001

Women 1994 (65%) 290 (51%) 336 (44%) 126 (41%) 266 (60%) <0.001

African American (vs. white/other) 522 (17%) 74 (13%) 135 (18%) 47 (15%) 97 (22%) 0.005

Grade (no. years) 14.2 (4.7) 13.3 (4.9) 13.6 (4.9) 13.6 (4.9) 13.4 (4.5) <0.001

Alcohol use (frequent) 324 (11%) 36 (7%) 55 (8%) 28 (10%) 40 (10%) <0.001

Current Smokers 270 (9%) 50 (9%) 58 (8%) 39 (13%) 68 (16%) <0.001

Systolic BP, mmHg 134.4 (19.9) 140.0 (23.9) 141.1 (24.3) 140.2 (23.4) 135.9 (21.4) <0.001

Diastolic BP, mmHg 71.3 (10.9) 70.3 (12.3) 72.1 (12.9) 70.2 (13.2) 71.5 (11.1) 0.02

Hypertension 1036 (36%) 322 (56%) 382 (51%) 154 (50%) 211 (47%) <0.001

LDL Cholesterol 129.6 (32.9) 123.9 (34.9) 123.5 (33.5) 122.03 (39.7) 126.0 (34.8) <0.001

Diabetes 343 (13%) 101 (18%) 140 (20%) 78 (26%) 109 (25%) <0.001

APOE 701 (26%) 129 (25%) 173 (25%) 64 (22%) 89 (22%) 0.35

Note. Frequent alcohol use was defined as > 7 drinks per week for women, or > 14 drinks per week for men.

Note. APOE= apolipoprotein E ε4 allele
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Table 3:

The Association between Cardiovascular Damage Phenotype with All-cause and CVD Mortality.

Unadjusted Adjusted
a

All-Cause Mortality 2919 deaths HR (95% CI)

Phenotype

 Healthy (ref) - -

 Cardio-Renal 3.30 (2.96, 3.67)*** 2.31 (2.02, 2.64)***

 Cardiac 2.39 (2.16, 2.65)*** 1.76 (1.55, 1.99)***

 Multisystem Morbidity 5.59 (4.91, 6.37)*** 4.02 (3.44, 4.70)***

 Inflammatory 1.58 (1.38, 1.81)*** 1.50 (1.28, 1.76)***

CVD-Mortality 1525 deaths HR (95% CI)

Phenotype

 Healthy (ref) - -

 Cardio-Renal 3.33 (2.85, 3.89)*** 2.29 (1.89, 2.77)***

 Cardiac 3.22 (2.82, 3.68)*** 2.22 (1.88, 2.62)***

 Multisystem Morbidity 6.80 (5.66, 8.17)*** 4.90 (3.95, 6.06)***

 Inflammatory 1.58 (1.30, 1.91)*** 1.46 (1.17, 1.81)**

***
P<0.001

**
P<0.01

a
Adjusted for clinic site, age, sex, race, alcohol use, smoking status, body mass index, years of education, diabetes, LDL cholesterol, hypertension, 

antihypertensive medication, limitations in activities of daily living, and apolipoprotein e ε4 allele.
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