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Abstract

Although research has found many flaws in people's
probabilistic reasoning, we have found that middle-school
students have many productive ideas about probability.
This study examines the probabilistic reasoning used by
middle-school students as they used a technology-mediated
inquiry environment that was conceptualized and developed
to engage students in the task of analyzing the fairness of
games of chance. This research demonstrates that students
employ productive probabilistic reasoning when
participating in this task, and also demonstrates that
commonly reported heuristics such as representativeness
do not adequately describe student reasoning.

Prior Findings in Probabilistic Reasoning

There is a rich literature based on the many misconceptions
people display when asked to reason probabilistically. By far
the most influential work has been by Tversky & Kahneman
(1982), who showed that much of people's probabilistic
reasoning could be described by the heuristics of
representativeness and availability. The representativeness
heuristic is characterized by making judgments based on the
degree to which A is representative of, or resembles, B
(Tversky & Kahneman, 1982). This representativeness
heuristic has been used to explain insensitivity to sample
size, the gambler’s fallacy, the base-rate fallacy, incorrect
judgments about the output of random processes, and other
non-normative judgments. The availability heuristic is
characterized by making judgments based on the ease with
which instances of a certain event can be brought to mind.
This heuristic has been used to explain biases due to the
retrievability of instances, biases due to the effectiveness of
a search set, and biases of imaginability.

In addition, many other misconceptions have been
identified. For example, people may believe that there is a
lack of variability in the world, people have too much
confidence in small samples, people do not see the
importance of small differences in large samples, and people
seem unaware of regression to the mean in their lives (for an
overview of such misconceptions, see Shaughnessy, 1992).

Several attacks have recently been made on this literature.
Roughly speaking, these criticisms come in two forms: (i)
the so-called biases and misconceptions are not due to faulty
probabilistic reasoning, but are due to situational factors
from the experimental design, including the posing of

intentionally misleading questions (Gigerenzer, 1996;
Hilton, 1995; Konold, et al. 1993); and (ii) these heuristics
do not explain the cognitive processes used by people when
reasoning under uncertainty, and such heuristics were not
derived from protocol analysis, but were inferred from
questionnaire data (Gigerenzer, 1996; Konold, et al. 1993;
Lajoie et. al, 1995). Our research situated seventh grade
students in an environment where we hoped to minimize
misleading situational factors, and we analyzed verbal data to
allow us to investigate student reasoning about probability.

The Study

In this study pairs of seventh grade students collaborated in
the Probability Inquiry Environment (PIE). PIE was created
as a collaborative guided-inquiry environment (cf. White,
1993) in which students are asked to evaluate the fairness of
games of chance. In PIE students use representations and
tools such as event trees, simulations, and real-time graphs
and histograms. PIE's inquiry cycle consists of being
introduced to the games, making predictions about the
games, running simulations of the game, and then drawing
conclusions based on the simulation.
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Figure 1: The PIE interface.

In this study students were asked to analyze two games of
chance to determine if they were fair. The first game is
called the Two-Penny game, where Team A scores a point
whenever both coins come up the same (heads-heads or tails-
tails), and Team B scores a point whenever both coins comie
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up differently (heads-tails or tails-heads). This game is fair,
as all outcomes are equally likely, and each team scores on
two out of the four possible outcomes. The second game is
called the Three-Coin game, where Team A scores a point
on five of the eight possible outcomes, and Team B scores a
point for three of the possible outcomes. Because each
outcome is equally likely and Team A scores on more
outcomes than Team B, this game is unfair in favor of Team
A. An event tree that enumerated all the possible outcomes
and that visually presented the scoring combinations for each
team was on the screen at all times, as was a dynamic
histogram that showed scoring either by each combination
of coins, or by each team (see Figure 1).

Methodology

The research team recruited eight single-sex pairs of students
from a local urban middle school. All of the sessions took
place in the summer, between the students’ sixth grade and
seventh grade school years. Four of the pairs were boys, and
four of the pairs were girls. The students represented a wide
range of ethnicities. The students were paid $5 an hour, and
spent about an hour and a half using PIE during one two
hour session. During this session they were videotaped, and
PIE recorded their actions on the computer. A researcher was
always in the room with the students, and would
occasionally interject to help clear up any confusion arising
from the PIE interface.

The data used in this study consists of student discussions
as they participated in the activities, and their responses to
the on-line prediction and conclusion questions. The
videotape data of the students using PIE were transcribed,
and these transcripts were combined with the data recorded by
PIE to create a record of all student discussions and student
interactions with PIE during the session. These transcripts
were then analyzed, and all instances of students’ reasoning
about the games was found. Although, by the end of the
study, seven of the eight pairs of students were able to
reason normatively about the games, this paper will not
concentrate on the events that led to this normative
reasoning. Instead, the students’ reasoning throughout the
entire session will be compared to the way in which
normative probabilistic reasoning could have been employed
in those situations.

First, to acquaint ourselves with an example of student
reasoning in PIE, a case study of student reasoning during
the session will be presented. This will be followed by a
comparison between normative reasoning and student
reasoning, in an attempt to better understand students’
probabilistic reasoning. This new understanding of students’
probabilistic reasoning will then be compared to the existing
misconceptions literature to see if this understanding can
account for the findings of others.

A Case Study of Q and T Using PIE

When Q and T felt that they understood the two-penny game
(Figure 2), they made their predictions. When predicting
that the Two-Penny gaine is fair, they explicitly assigned a
50% chance to the combinations of coins that score a point
for each team, resulting in a final answer that is perfectly
aligned with normative reasoning (Figure 3). Note however,

that the students never explicitly justified this 50% chance,
and we will not attempt to make claims about the students’
probabilistic reasoning in this instance.

T: I get it, if they're both heads team A gets a point, if
they're both tails team A gets a point, and if they're one
heads and one tails Team B gels a point.

Figure 2: Understanding the two-penny game.

Q: We think the game is fair because you have a 50%
chance of getting both heads and both tails.

Typed: We think that the game is fair because you have a
50% chance of getting both heads and both tails. You also

have a 50% chance of getting one tails and one heads.

Figure 3: Fair, based on a 50% chance for each team.

Q and T next answered what they meant by fair.
Although student ideas of fairness were interesting, most
students, including Q and T, decided that a game is fair if all
teams have an equal chance of winning, a normative view of
fairness. Student ideas of fairness will not be further
discussed in this paper.

In the next prediction question, Q and T were asked to
manipulate histograms to make predictions about what
would happen after 10 points, and after 200 points. T stated
that heads would occur more, so she would expect Team A
to win more. Q countered this by saying that coins usually
come up differently (this is consistent with
representativeness), so she would expect Team B to win
more. They then decided that the game will most probably
be tied (Figure 4). After further discussion, the students
decided that luck would be an important factor in the game
(Figure 5), and this meant that Team A might win
sometimes, and Team B might win other times. Again the
students provided final answers that were close to normative,
but an analysis of the verbal data shows that their reasoning
processes were quite rich and invoked more intuitions than
are found in just their final answer.

T: OK, what about this, I think Team A will win. Because
imagine all of the heads we are gonna get

Q: I think that Team B would win it, because when you
throw it it’s like real luck when you get both of them the
same. When you throw it, most of the time they land
differently. [pause] I think they'd probably be tied, but if I
had to choose one, see, this looks right to me [pointing to
even histogram bars]

T: That’s what I think too

Figure 4: Who will win more?

T: I think that this is just a game of luck...this is like a
game of guessing

Q: It’s really like someone has to win, because it’s like you
win some you lose some, it's not like a permanent game.

[T moves histograms so A is winning after 10, and B is
winning after 200]

Q: Now how can purple [Team A| be winning on this one
and green [Team B] be winning on that?

T: Well, once you win you don't always win

Figure 5: A game of luck
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For the final prediction question in the two-penny game,
the students were asked if any of the combinations
(outcomes) would happen more than any other. The
students were again asked to manipulate a series of
histograms, and type in a justification. Although Q and T
started to reason about the different combinations, they then
switched to talking about the probability of heads or tails.
They decided that because this is not a game of skill, but a
game of luck, they would expect heads and tails to come up
the same amount (Figure 6).

Q: We don’t think that any combination should happen
more than any other, because it's luck

T: It’s how you throw it

Q: Plus, it's a game of luck

T: I think this coin game, it’s not a game of skill.

Q: No, no no. Don’t, what are we writing?

T: We don’t think that, it's not a game of skill

Q: That one penny will come up more than the other

T: It’s all equal...wait a minute, we don’t think that heads or
tails is more likely to come up than the other. We don’t
think that heads or tails will come up more

Typed: We don't think that heads would come up more than

Q: No, OK, why? We keep saying the same thing over,
Like this evidence-no because this is just a game of luck.
_And they're all equal anyway.

Figure 8: Conclusion—are any combinations more likely?

For the last set of conclusions the students were asked if
the number of combinations that score a point for each team
is an important factor in determining fairness. However, Q
and T understood this question to be asking about the data
already collected. Although they first stated that this data is
important, they then decided that luck is more important,
and one doesn’t need to know anything about the number of
outcomes (Figure 9). Then, when asked to state the most
important thing in determining if the game is fair, they
again stated the importance of luck (Figure 10).

tails. We think that this game is a game of luck.

Figure 6: Will any combination happen more?

Q and T then started the game simulation. After only four
points they noted that tail-head was happening more than the
other combinations. The game then stopped after ten
points, and told the students that they could either look at
the results or continue playing. At this point Q wanted to
go back into predictions to see if the predictions agreed with
the results (note that this behavior is consistent with the
well-documented law of small numbers). The researcher
asked them to continue playing, telling them that they
would be able to modify their predictions later, so Q and T
continued in Play.

After playing for several more points, Q and T then
decided to run the simulation at the fastest speed. At this
speed the game runs ten points at a time, and individual coin
flips can not be perceived. After about 20 seconds the game
reached 200 points, and gave the students the option to
continue playing or stop and analyze the results. Q and T
chose to stop playing and go immediately into Conclude.

The first three conclusion screens asked the students to
evaluate their predictions. For each of these conclusions,
the students stated that, although their predictions did not
exactly match the actual data, the results were close enough
for them to still agree with their predictions (Figure 7).
Additionally, in Figure 8, Q came back to their earlier
statement that being a game of luck is an important aspect
of the game. This became the single most important factor
for these students for the remainder of the session.

Q: Very important, don’t you think...why is it very
important?

T: It's data

Q: It's important data, and umm

T: You need the data to play the game

Q: You need to know the number of combinations...But it's
not that important though, as a matter of fact, it's not
important at all, cause it's a game of luck. Yeabh, it’s not
important

T: It's a little important...

Q: ...but the game is just a game of luck anyway. So if
you didn't have the data, it wouldn’t matter anyway.

Typed: It is important because it's data, but on the other
hand it is not that important because it's just a game of
luck.

Figure 9: It’s just a game of luck

Q: The most important thing is that you understand that the
game is just luck

T: Even, look, almost even
Q: Yeah, so it’s pretty fair because no one is like way, way

more than the other

Figure 7: Conclusion—is the game fair?
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Figure 10: The most important thing in determining fairness

Q and T were then introduced to the Three-Coin game, and
Q once more decided that the game was fair because it was a
game of luck, although T was hesitant to agree. However,
T could not state why she thought the game was unfair, and
finally determined that, since all the outcomes were
possible, the game must be fair. Note that, although the
partitioning of the outcomes into points for A and points for
B were on the screen at all times, the students never
considered counting the outcomes to determine if each team
had an equal number of outcomes. Although it is dangerous
to make inferences based on the absence of an action, the
fact that it never occurred to these (or most) students to
simply count up the number of outcomes, especially when
something about the game seemed troubling, may point to a
lack of an understanding of the importance of the outcome
space in determining probabilities.

Then, consistent with their predictions for the Two-Penny
game, and consistent with their idea that luck means that a
game is fair, for the remainder of the predictions Q and T
stated that the teams will score an approximately equal
number of points, and each of the combinations should
occur equally. They then put the game on the fastest speed,
and quickly played up to two hundred points. When the
game reached two hundred points, they went into conclude



and simply agreed with all their predictions, without
comparing their predictions to the actual results, even
stating that the data is not important (Figure 11). Such
reasoning is based, presumably, on the statements made at
the end of the Two-Penny game, that a game of luck must
be fair, and data is not an important factor.

Typed: THE COINS IS JUST DATA AND THE DATA IN
THIS GAME IS NOT THAT IMPORTANT.

Figure 11: Conclusion—are the combinations in the Three-
Coin game important?

At this point the researcher asked them to play some
more, reminding them of the Reset button that sets the
points back to zero. After playing several more rounds up
to two hundred points, T decided that, because Team B kept
losing, the game must be unfair. Q, however, kept stating
that the game is just luck, and so must be fair (Figure 12).
T did not accept this answer, and continued looking for an
explanation. She finally noticed the difference in the
number of outcomes that scored a point for each team, and
then resorted to a strategy of making the game fair,
contrasting a partitioning of points that would make the
game fair with the actual partitioning (Figure 13). Q then
understood how this partitioning was relevant and agreed that
the game was unfair.

T: See, Team B is losing by a lot. Told you it was unfair

|Q: This game is just luck, it's just a penny game, it’s just
luck

Figure 12: Unfair versus luck

|'T: Why is it fair, Q?

Q: Because it's a game of luck, it's jut throwing pennies

T: I'm not talking about whose got the penny, I'm talking
about right here [pointing to the tree]. They keep losing,
and I'm trying to figure out why...wait a minute! See how
this is AA right here? and this is AB AB AB

R: Mmm-hmmm

T: But shouldn’t it be BB?

R: What do you mean, shouldn’t it be?

T: Right here it says AA AB AB AB

Figure 13: Making the game fair

Summary: Q and T’s analysis of the Two-Penny game
began with them stating several different, often competing
or conflicting, intuitions about probability, few of which
seemed to carry any deep commitment. And, although
representativeness could be used to describe some of their
reasoning, it is a far from adequate account, as much of their
reasoning is inconsistent with representativeness. Q and T
then began to consider luck the single most important aspect
of the game, even stating that they did not need data to
determine the fairness of the games. Their commitment to
this position was shown in the Three-Coin game, when Q
explicitly denied the importance of data that showed that this
game was unfair. Note that she did not fall prey to the law
of small numbers, nor did she dismiss the game as
“cheating”, nor did she suffer from confirmation bias,
misinterpreting the data as showing that the games were
tied. Instead, she acknowledged the results of the simulation
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and simply said that these results were not relevant. It was
not until T was able to determine that the partitioning of the
outcome space was unequal that they were able to confirm
that the game was unfair, and it took a notably long time
until this counting strategy was employed by the students,
lending credence to the supposition that the outcome space
was not a salient feature of this situation. Note that most of
this behavior is not consistent with the heuristics and biases
view of probabilistic reasoning. It seems as though we need
another view of students’ conceptions of probability that is
different from that offered by the traditional literature,

Results: A Framework for Understanding
Probabilistic Reasoning

The main finding from this research is that students display
a wide variety of ideas, some of which approach normative
reasoning in probability, and others of which interfere with
normative reasoning. In this study, instead of analyzing
students’ statements in an attempt to derive misconceptions,
we will compare students’ reasoning and normative
probabilistic reasoning.

To make this comparison, we must first have an
understanding of what we mean by normative reasoning.
The version of normative reasoning used here is an idealized
reasoning process used by someone with an understanding of
elementary probability who is faced with a novel situation.
The novel situation in this case is determining if the games
of chance described previously are fair.

Such normative reasoning will first determine what is
meant by “fair”, which will not be addressed in this paper.
After this, any of the several different reasoning processes
that can be considered “normative” will have the
characteristics that they will be based on (1) determining that
the game is based on a non-determinable mechanism (i.e.
understanding some aspects of randomness); (ii) determining
the outcomes that score points for each team (i.e.
understanding the outcome space); (iii) determining the
probabilities of the outcomes that score a point for each
team (i.e. understanding the probability distribution), and
combining these probabilities with the outcome space to
derive a theoretical expectation of fairness; and (iv)
comparing the expected fairness of the games to the actual
fairness after playing for some large number of points to
determine if the theoretical expectations are accurate. In order
to understand how students' reasoning differs from, and is
similar to, normative reasoning, we will compare student
reasoning to this idealized view of probabilistic reasoning.

Randomness

During the course of the study, every pair of students made
reference to the fact that randomness was an important factor
in analyzing the outcomes of coin flips. This reference
typically came through students talking about the game
being based on “luck” or “chance”, and also by contrasting
these games with games of skill. Additionally, students
stated that the random process of coin flips would result in
variation between trials (Figure 14), which is consistent
with the normative view of randomness,



K: It won’t be totally even
U: ... when you flip 2 coins you don’t know what they are

going to be. Sometimes you win, sometimes you lose.
| X: The tides can change.

Figure 14: Randomness has variability

M: ... see, like, there's three of HHT, and 3 of TTH, but
only one of HHH and one of TTT, so it’s hard to get
HHH, it's easier to get HHT

Figure 16: Not differentiating outcomes based on order

K (typed): 1 THINK THIS GAME IS FAIR BECAUSE IT'S

O: Anything can happen, so that's why 1 think it's fair

Figure 15: Luck implies fairness

However, as illustrated in the case study of Q and T, three
of the eight pairs of students stated that luck or randomness
meant that nothing could be predicted about the games (see
Figure 15). This result may be consistent with the
“outcome approach” as described by Konold et al. (1993), as
the students were replying to a question about a series of
events as if the answer depended upon being able to predict
any single event. These students did not accept that the
Three-Coin game was unfair until they noticed the difference
in the number of paths, and only then were able to create a
new understanding that could explain the data.

The Outcome Space and Probability Distribution

In formal probability theory, determining the probability of
a compound event is a multi-step process: one determines
the relevant outcomes and, creating or using a probability
distribution, one determines the likelihood of each of these
outcomes. Combining these likelihoods determines the
probability of specific events (such as Team A scoring a
point). Using this process, one can clearly differentiate
between the outcome space and the probability distribution,
and these two entities are often introduced at different times
in probability textbooks (e.g. Pitman, 1993). Although the
students in this study did invoke ideas similar to the
outcome space and the probability distribution, they often
reasoned in a way that made it difficult to distinguish
between the two.

Many students had trouble in differentiating the individual
outcomes from the ser of all outcomes that could score a
point for a team. So, when asked the probability of a
specific outcome occurring, many of the students stated that
each of the outcomes that score a point for Team A were
more probable, because they expected Team A to win. That
is, the students had a difficult time understanding how to
differentiate between the outcomes space and the probability
of a complex event such as a team scoring a point.

Several of the students explicitly stated that order did not
matter when differentiating between outcomes, and then
discussed a probability distribution over combinations of
outcomes (Figure 16). This behavior could easily be seen as
representativeness, however, this behavior is based on not
fully understanding how to properly enumerate and partition
the outcome space. This is in contrast with students who
don’t expect “patterns” in data (Figure 17). The latter is
closer to the traditional definition of representativeness, and
is based upon applying a non-normative probability
distribution to a normative enumeration of the outcome
space,
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D: Umm, I chose those I guess cause it’s like too much of a
pattern, like Tails tails tail uh...yeah, seems like less of a
chance for it to go on that same one all three times, and
like tails heads tails, like, in a pattern like that, and like
heads tails heads

Figure 17: Representativeness based on a non-normative
probability distribution

Finally, although most students did reference the outcome
space in the Two-Penny game, only two pairs of students
referenced the outcome space when making predictions in the
Three-Coin Game, with only one of these pairs explicitly
counting the outcomes. This may be because it was easy for
students to understand and verbalize the outcome space for
the Two-Penny game, whereas the outcome space of the
Three-Coin game was more complex, making it harder to
discuss. As a result, even though the outcome space was
always on the screen for both games, students were rarely
able to use the outcome space to reason normatively about
the games.

The Validity of Evidence

It is in documenting people’s beliefs about the validity of
data that the misconceptions literature in probability is least
controversial: it is well known that people, including trained
statisticians, often fall prey to the law of small numbers
(Tversky & Kahneman, 1982) (an interesting exception is
found in the illusionary correlation literature, Chapman &
Chapman, 1967). However, the data from our study
presents a picture that is not as clear-cut as the existing
literature would lead one to believe. Although many of the
students did exhibit behavior consistent with the law of
small numbers at some times, students also expected
variability between different trials of a random process, and
several students did not fall prey to the law of small
numbers: in fact, they explicitly denied the relevance of data
that was in contradiction to their theories, not accepting the
data as relevant until they had created a scenario that could fit
the data (note that this behavior is consistent with the
science education literature (Chinn & Brewer, 1993)).
Although this paper is not the forum for an in-depth
analysis of the interaction between students’ prior
expectations and the role they gave to evidence, it is worth
mentioning that students can be roughly characterized as
behaving in a manner that was either data-driven or theory-
driven. Data-driven students were characterized either by their
unwillingness to create a theory in the absence of data, or by
their willingness to give up their theory after only a small
number of points had been played (typically 10 points or
less). Theory-driven students were characterized by an
unwillingness to believe the data when it was in conflict
with their theory. When theory-driven students first saw
that the data was inconsistent with their theory, they
explicitly denied the relevance of the data, and stated that the
computer was cheating, or they just ignored the data and



claimed the truth of their predictions (Figure 19). The
students abandoned their contention that the Three-Coin
game was fair only after they were able to construct an
understanding of the importance of the outcome space.

|_l:ln real life it would be fair...the computer is cheating

Figure 19: Theory-driven discussions of evidence

Summary

Middle school students do have productive ideas about
probability, and these can be seen as a source of normative
probabilistic reasoning. When discussing randomness, many
of the students explicitly stated that variation is to be
expected from trial to trial. However, some students also
believe that a random event means that nothing at all can be
predicted about future events. It is important to note,
though, that this can be viewed as a normative understanding
of randomness that has been over-extended. That is, a
frequentist understanding of probability maintains that it is
meaningless to apply probabilities to specific events, so
these students are in many ways “correct” when applying
this idea to short-run data, It is only when extending this
idea to long-run data that this reasoning is non-normative.

When discussing the outcome space and the probability
distribution, students exhibited many different ideas, making
any generalizations difficult. We can say, however, that
many students have difficulty in distinguishing between
outcomes, and many students have difficulty in
distinguishing between the outcome space and the
probability distribution. And, once the relevance of the
outcome space becomes apparent, many students display
reasoning that is consistent with normative probability.

The research literature shows that many people fall prey to
the law of small numbers, and this study is no exception.
However, this study illustrates subtleties that have not been
fully appreciated in the literature. In particular, the theory-
driven subjects in this study did not believe data that was in
conflict with a theory that they had proposed. This suggests
that there is an interaction between people’s expectations and
the validity that they are willing to attribute to data. We
posit that this has not been appreciated in the past due to the
artificial nature of the tasks that subjects were given,
whereas in our tasks students were engaged and felt
ownership of their predictions and conclusions,

Finally, the understanding of student intuitions presented
here shows that, even when students do behave in a manner
consistent with representativeness, different students may be
using different reasoning strategies. Using the framework in
this paper, we can see that there are two very different causes
behind similar behavior: in some cases, the student may not
have a full appreciation for the outcome space, and may not
be differentiating between outcomes based on order, whereas
in other cases, the student may be using a non-uniform
probability distribution, and may believe that certain
outcomes are more likely than others.

Conclusions

Students have many ideas about probability, and these ideas
are not adequately described by simply stating that students

are using heuristics such as representativeness. Instead,
students invoke a large number of intuitions about
probability, and these intuitions can be seen to roughly
correspond to randomness, the outcome space, probability
distribution, and the role of data. By viewing students’
probabilistic intuitions in this way we expect that, although
many of the misconceptions found in the literature are
adequate ways of describing the behavior of some students
some of the time, students will exhibit great variation in
behaviors, based on their understanding of these four related
areas. In fact, this variation is exactly what is observed in
this study as well as in the research literature. We feel that
by viewing student ideas about probability as consisting of
four interrelated sets of intuitions, we can come to a more
thorough understanding of probabilistic reasoning.
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