
UCLA
UCLA Electronic Theses and Dissertations

Title
Teamwork and Exploration in Reinforcement Learning

Permalink
https://escholarship.org/uc/item/9b29203s

Author
Cassano, Lucas

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/9b29203s#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b29203s
https://escholarship.org/uc/item/9b29203s#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Teamwork and Exploration in Reinforcement Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Lucas Cesar Eduardo Cassano

2020

© Copyright by

Lucas Cesar Eduardo Cassano

2020

ABSTRACT OF THE DISSERTATION

Teamwork and Exploration in Reinforcement Learning

by

Lucas Cesar Eduardo Cassano

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2020

Professor Ali H. Sayed, Chair

Reinforcement learning (RL) is a powerful machine learning paradigm that studies the in-

teraction between a single agent with an unknown environment. A plethora of applications

fit into the RL framework, however, in many cases of interest, a team of agents will need to

interact with the environment and with each other to achieve a common goal. This is the

object study of collaborative multi-agent RL (MARL).

Several challenges arise when considering collaborative MARL. One of these challenges is

decentralization. In many cases, due to design constraints, it is undesirable or inconvenient to

constantly relay data between agents and a centralized location. Therefore, fully distributed

solutions become preferable. The first part of this dissertation addresses the challenge of

designing fully decentralized MARL algorithms. We consider two problems: policy evalua-

tion and policy optimization. In the policy evaluation problem, the objective is to estimate

the performance of a target team policy in a particular environment. This problem has

been studied before for the case with streaming data, however, in most implementations the

target policy is evaluated using a finite data set. For this case, existing algorithms guarantee

convergence at a sub-linear rate. In this dissertation we introduce Fast Diffusion for Policy

Evaluation (FDPE), an algorithm that converges at linear rate for the finite data set case.

We then consider the policy optimization problem, where the objective is for all agents to

learn an optimal team policy. This problem has also been studied recently, however, existing

solutions are data inefficient and converge to Nash equilibria (whose performance can be

ii

catastrophically bad) as opposed to team optimal policies. For this case we introduce the

Diffusion for Team Policy Optimization (DTPO) algorithm. DTPO is more data efficient

than previous algorithms and does not converge to Nash equilibria. For both of these cases,

we provide experimental studies that show the effectiveness of the proposed methods.

Another challenge that arises in collaborative MARL, which is orthogonal to the decen-

tralization problem, is that of scalability. The parameters that need to be estimated when

full team policies are learned, grow exponentially with the number of agents. Hence, algo-

rithms that learn joint team policies quickly become intractable. A solution to this problem

is for each agent to learn an individual policy, such that the resulting joint team policy is

optimal. This problem has been the object of much research lately. However, most solu-

tion methods are data inefficient and often make unrealistic assumptions that greatly limit

the applicability of these approaches. To address this problem we introduce Logical Team

Q-learning (LTQL), an algorithm that learns factored policies in a data efficient manner

and is applicable to any cooperative MARL environment. We show that LTQL outperforms

previous methods in a challenging predator-prey task.

Another challenge is that of efficient exploration. This is a problem both in the single-

agent and multi-agent settings, although in MARL it becomes more severe due to the larger

state-action space. The challenge of deriving policies that are efficient at exploring the state

space has been addressed in many recent works. However, most of these approaches rely

on heuristics, and more importantly, they consider the problem of exploring the state space

separately from that of learning an optimal policy (even though they are related, since the

state-space is explored to collect data to learn an optimal policy). To address this challenge,

we introduce the Information Seeking Learner (ISL), an algorithm that displays state of the

art performance in difficult exploration benchmarks. The fundamental value of our work

on exploration is that we take a fundamentally different approach from previous works. As

opposed to earlier methods we consider the problem of exploring the state space and learning

an optimal policy jointly. The main insight of our approach is that in RL, obtaining point

estimates of the quantities of interest is not sufficient and confidence bound estimates are

also necessary.

iii

The dissertation of Lucas Cesar Eduardo Cassano is approved.

Lieven Vandenberghe

Jonathan C. Kao

Christina Fragouli

Ali H. Sayed, Committee Chair

University of California, Los Angeles

2020

iv

To my Family.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Reinforcement Learning . 1

1.2 Background . 2

1.2.1 Notation . 2

1.2.2 The RL problem . 3

1.2.3 The Policy Gradient Approach . 3

1.2.4 The Bellman Optimality Equation and Q-learning 5

1.2.5 Soft RL . 7

1.3 Multi-Agent RL (MARL) . 8

1.3.1 Cooperative MARL . 8

1.4 Organization and Contributions . 10

2 Fully Decentralized Policy Evaluation . 12

2.1 Related Works . 13

2.2 Problem Setting . 16

2.2.1 Definition of cost function . 18

2.2.2 Optimization problem . 23

2.3 Distributed Policy Evaluation . 25

2.3.1 Distributed Setting . 25

2.3.2 Algorithm Derivation . 26

2.4 Multi-Agent Reinforcement Learning . 35

2.5 Experiments . 37

2.5.1 Experiment I . 37

vi

2.5.2 Experiment II . 39

2.6 Summary . 41

2.A Proof of theorem 2.1 . 44

2.B Proof of Theorem 2.2 . 47

2.B.1 Proof of Lemma 2.8. 51

2.B.2 Proof of Lemma 2.9 . 53

2.B.3 Proof of Lemma 2.10 . 53

2.B.4 Proof of Lemma 2.12 . 57

2.B.5 Proof Lemma 2.11 . 60

2.B.6 Bound for wej . 65

2.B.7 Proof Theorem 2.3 . 70

2.C Proof of Lemma 2.1 . 72

2.D Proof of Lemma 2.2 . 74

2.E Proof Lemma 2.3 . 77

2.F Proof of Lemma 2.4 . 78

2.G Proof of Lemma 2.5 . 79

2.H Proof of Lemma 2.6 . 80

2.I Proof of Lemma 2.7 . 82

3 Distributed Optimal Policy Learning in MARL 84

3.1 Related Works . 84

3.2 Problem Setting . 85

3.3 Algorithm Derivation . 88

3.4 Experiments . 93

3.5 Summary . 94

vii

3.A Nash Equilibria . 96

4 Logical Team Q-learning . 98

4.1 Related Works . 99

4.2 Problem Setting . 101

4.3 Algorithm Derivation . 103

4.3.1 Factored Bellman Relations and Dynamic Programming 103

4.3.2 Reinforcement Learning Setting . 107

4.4 Experiments . 108

4.4.1 Matrix Game . 108

4.4.2 Stochastic Finite TMDP . 111

4.4.3 Cowboy Bull Game . 116

4.5 Summary . 119

4.A Proof of Lemma 4.1 . 120

4.B Proof of remark 4.1 . 121

4.C Proof of Theorem 4.1 . 122

4.D Proof of Lemma 4.3 . 123

4.E Proof of Lemma 4.4 . 126

4.F Tabular Logical Team Q-Learning . 129

4.G Bull’s policy . 130

5 ISL: A Novel Approach for Deep Exploration 131

5.1 Related Works . 132

5.2 Problem Setting . 134

5.3 Algorithm Derivation . 136

5.3.1 Uncertainty Constrained Value Iteration 139

viii

5.3.2 Uncertainty Estimation . 140

5.3.3 Information Seeking Learner . 140

5.4 Experiments . 142

5.4.1 Sparse Cartpole Swingup . 144

5.4.2 Deep Sea and Deep Sea Stochastic 144

5.4.3 Ablation Study . 145

5.5 Summary . 147

5.A Proof of Lemma 5.1 . 147

5.B Proof Lemma 5.2 . 148

5.C Proof Theorem 5.1 . 152

5.D Proof Lemma 5.4 . 153

5.E Proof Lemma 5.5 . 154

5.F Cartpole Swingup Implementation Details 154

5.G Deep Sea Implementation Details . 155

5.H Deep Sea Stochastic Implementation Details 156

5.I Ablation Study Figures . 158

5.I.1 Ablation study for κ . 158

5.I.2 Ablation study for η1 . 159

5.I.3 Ablation study for η2 . 160

6 Concluding Remarks and Future Work . 161

References . 164

ix

LIST OF FIGURES

1.1 Reinforcement Learning loop. 1

2.1 Sample network. 26

2.2 In (b) and (c) the red curves are the approximations from lemmas 2.1 and 2.2. In

(e) and (f), the blue curve corresponds to FDPE and red and yellow correspond

to Diffusion GTD2 and ALG2, respectively. In (f) the dotted line is at ‖θ̂(H, λ =

0)− θ?‖2 while the dashed line is at ‖θ̂(H, λ = 0.6)− θ?‖2. 42

2.3 In (b) and (c) the red curves are the approximations from lemmas 2.1 and 2.2.

In (d) and (e) the blue, purple, yellow and red curves correspond to FDPE,

Diffusion GTD2, ALG2 and PD-distIAG, respectively. In (e) the dotted line is

at ‖θ̂(H, λ = 0)− θ?‖2 while the dashed line is at ‖θ̂(H,λ = 0.6)− θ?‖2. 43

3.1 In (c), the dashed line is the performance of the optimal policy, blue is DTPO

and red is DAC. 95

4.1 Matrix game. In all figures the red curves correspond to the three actions of agent

2, while the blue curves correspond to the two actions from agent 1. 110

4.2 The dark curves show the mean over all seeds while the shaded regions show the

min and max limits over the seeds. 112

4.3 Learning curves for agent 2 of Logical Team Q-learning for a random seed. . . . 113

4.4 Learning curves for agent 2 of DistQ for a random seed. 114

4.5 Learning curves for agent 2 of HystQ for a random seed. 115

4.6 Learning curves for agent 2 of Qmix. 116

4.7 Cowboy bull game . 117

4.8 In (a) and (b) the blue, green and red curves correspond to LTQL, HystQ and

Qmix, respectively. The dark curves show the mean over all seeds while the

shaded regions show the min and max limits over the seeds. 118

x

5.1 Blue, red, purple and green curves correspond to ISL, BSP, UBE and SBEED,

respectively. In all cases we ran 10 experiments with different seeds, the plots

show the median and first and third quartiles. In figures 5.1(b) and 5.1(c) we

used dots are markers when the goal was accomplished (at least 10 visits where

made to the desired state) for all seeds, square markers denote that the goal was

accomplished for some seeds and the cross markers denote failure for all seeds. . 143

5.2 In all cases we ran 10 experiments with different seeds, the plots show the median

and first and third quartiles. 146

5.3 Ablation study for κ. 158

5.4 Ablation study for η1. 159

5.5 Ablation study for η2. 160

xi

LIST OF TABLES

3.1 Reward structure . 97

4.1 Payoff matrix . 109

4.2 Qmix full results . 111

4.3 Reward structure . 121

4.4 q†(a1, a2) . 122

4.5 π†(a1, a2) . 122

4.6 q?(a) . 122

4.7 π?(a) . 122

5.1 Hyperparameters for Cartpole Swingup. Where |R| is the size of the replay buffer,

B is the mini-batch size, µq is the step-size for q-network (and similarly for µρ,

µ`, µv, µπ and µu) and tup stands for the target update period. 155

5.2 Hyperparameters for Deep Sea. Where |R| is the size of the replay buffer, B is

the mini-batch size, µq is the step-size for q-network (and similarly for µρ, µ`, µv,

µπ and µu) and tup stands for the target update period. 156

5.3 Hyperparameters for Deep Sea Stochastic. Where |R| is the size of the replay

buffer, B is the mini-batch size, µq is the step-size for q-network (and similarly

for µρ, µ`, µv, µπ and µu) and tup stands for the target update period. 157

xii

ACKNOWLEDGMENTS

I would like to start by thanking Professor Ali H. Sayed for giving me the opportunity to be

a member of the Adaptive Systems Laboratory. I would like to thank him for his guidance

through my studies. His tireless and meticulous approach to scientific research has been,

and still is, an inspiration to me.

I would also like to thank Professor Christina Fragouli, Professor Jonathan C. Kao and

Professor Lieven Vandenberghe for agreeing to be a part of my committee.

I am also thankful to Deeona Columbia, Ryo Arreola, Mandy Smith and Patricia Von-

lanthen for their help during my time at UCLA and EPFL. During my studies I am lucky to

have met good friends, colleagues and collaborators who I also thank: Sulaiman Alghunaim,

Stefan Vlaski, Kun Yuan, Chung-Kai Yu, Hawraa Salami, Bicheng Ying, Chengcheng Wang,

Roula Nassif, Augusto Santos, Virginia Bordignon, Elsa Rizk, Guillermo Ortiz Jimenez,

Mert Kayaalp, Konstantinos Ntemos and Professor Ricardo Merched.

I am thankful to my family, Daniel, Maria, Mat́ıas and Tomás, for their support.

This dissertation is based upon work partially supported by the National Science Founda-

tion under grants CCF-1524250 and ECCS-1407712. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation, the Department of Defense or the U.S.

Government.

xiii

VITA

2012 Electronics Engineer, Buenos Aires Institute of Technology, Argentina.

2013 Freelance Engineer, Argentina.

2014 Signal Processing Engineer, Satellogic S. A., Buenos Aires City, Argentina.

2015 M.S. in Electrical Engineering, University of California, Los Angeles, CA,

USA.

2015 Intern, Mojix Inc., Los Angeles, CA, USA.

2015–2018 Research and Teaching Assistant, Department of Electrical Engineering,

University of California, Los Angeles, CA, USA.

2018–2020 Visiting Doctoral Assistant, École Polytechnique Fédérale de Lausanne,

Switzerland.

PUBLICATIONS

Lucas Cassano and Ali H. Sayed, “Logical Team Q-learning: An approach towards optimal

factored policies in cooperative MARL,” submitted for publication, available as arXiv:2006.03553,

June 2020.

Lucas Cassano and Ali H. Sayed, “ISL: A novel approach for deep exploration”, submitted

for publication, available as arXiv:1909.06293, January 2020.

Lucas Cassano and Ali H. Sayed, “ISL: Optimal Policy Learning With Optimal Exploration-

Exploitation Trade-Off”, NeurIPS Optimization Foundations of Reinforcement Learning

xiv

Workshop, Vancouver, Canada, December 2019.

Lucas Cassano, Kun Yuan and Ali H. Sayed, “Multi-Agent Fully Decentralized Value Func-

tion Learning with Linear Convergence Rates”, in IEEE Transactions on Automatic Control,

December 2021, to appear.

Lucas Cassano, Kun Yuan and Ali H. Sayed, “Distributed value-function learning with linear

convergence rates”, in Proceedings of the European Control Conference (ECC), pp. 505–511,

Naples, Italy, June 2019.

Lucas Cassano, Sulaiman Alghunaim and Ali H. Sayed, “Team Policy Learning for Multi-

agent Reinforcement Learning”, in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 3062–3066, Brighton, UK, May

2019.

xv

CHAPTER 1

Introduction

In this chapter we introduce necessary background on reinforcement learning (RL), and

provide an outline of the dissertation and its contributions.

1.1 Reinforcement Learning

Reinforcement learning (RL) research goes back to the early works [1–4], it studies the

interaction between an agent with an environment that has unknown dynamics. The way

this interaction works is as follows: the agent finds itself in a state and has a number of

actions to choose from, it then choses an action, obtains a reward and transitions to a new

state (see Figure 1.1). This interaction may go on forever or for a limited amount of time.

The goal of the agent is to select the actions so as to maximize the long term cumulative

rewards.

Figure 1.1: Reinforcement Learning loop.

Note that this is a very general model and therefore RL has a plethora of real world

applications, considering that most daily activities we perform can be cast in this setting.

Some examples of applications are: robots that learn to perform different types of physical

tasks (arranging boxes, harvesting fruit, cooking, self-driving, etc.), performing financial

1

operations (buying/selling stock), playing games (chess, GO, StarCraft, football, etc.). It is

this great diversity of high impact applications that motivates RL research. Recent years

have seen an explosion in popularity in RL research. One of the main drivers of this interest

has been high profile successes [5–11] in games and robotics, made possible by deep RL

(which refers to the combination of RL algorithms with deep learning techniques).

Traditional RL considers a unique agent interacting with the environment. However, in

many cases of interest, a multiplicity of agents will need to interact with the environment

and with each other. This is the object of study of Multi-agent RL (MARL), which goes

back to the work [12, 13]. Within MARL, there are three distinct categories: cooperative,

competitive and mixed. Cooperative MARL considers the case where all agents form a team

and collaborate to accomplish a unique shared goal (for example, a group of firemen robots

trying to put out a fire). In competitive MARL, the agents have individual goals and have

to compete to accomplish them (for example, animals competing over food sources). The

mixed scenario is one in which some agents form teams and these teams compete against

each other. In this dissertation we focus on the cooperative MARL scenario.

1.2 Background

We provide background material on RL and introduce the notation used throughout this

manuscript. The background material presented is not intended to be exhaustive, but rather

covers the concepts necessary to put into context the contributions introduced in this dis-

sertation.

1.2.1 Notation

Matrices are denoted by upper case letters, while vectors are denoted with lower case. Ran-

dom variables and sets are denoted with bold font and calligraphic font, respectively. ρ(A)

indicates the spectral radius of matrix A. IM is the identity matrix of size M . E g is the

expected value with respect to distribution g. ‖ · ‖D refers to the weighted matrix norm,

where D is a diagonal positive definite matrix. We use � to denote entry-wise inequality.

2

col{v(n)}Nn=1 is a column vector with elements v(1) through v(N) (where v(N) is at the

bottom). The indicator function is denoted as I. And finally R and N represent the sets of

real and natural numbers, respectively.

1.2.2 The RL problem

As is customary, we model the agent-environment interaction as a Markov Decision Process

(MDP). An MDP is defined by (S,A,P ,r), where S is a set of states, A is a set of actions of

size A = |A|, the transition kernel P(s′|s, a) specifies the probability of transitioning to state

s′ ∈ S from state s ∈ S having taken action a ∈ A, and r : S × A × S → R is the reward

function. Specifically, r(s, a, s′) is the reward when the agent transitions to state s′ ∈ S from

state s ∈ S having taken action a ∈ A. The reward r(s, a, s′) can be a random variable with

distribution ns,a,s′(r). The objective is to find a policy π(a|s) that maximizes the discounted

cumulative reward (we will refer to such policy as an optimal policy π†(a|s)):

π† = arg max
π

J(π) (1.1)

J(π) = EP,π,n,d
(∞∑

t=0

γtr(st,at, st+1)

)
(1.2)

where d is the distribution of initial states s0, γ ∈ [0, 1) is some discount factor, and st

and at are the state and action at time t, respectively. We clarify that the notation π(a|s)

specifies the probability of selecting action a at state s. Most RL algorithms whose aim is to

learn π† follow one of three possible approaches: the policy gradient approach, the Bellman

optimality equation approach, or the soft RL approach. In the following sections we provide

a brief introduction to these approaches.

1.2.3 The Policy Gradient Approach

One strategy to obtain an optimal policy π† is the policy gradient approach. Assume we

parameterize the policy via some parameter vector θ (we denote the parameterized policy by

π(a|s; θ)). The idea then is to estimate the gradient of the objective with respect to θ and

3

then improve the policy by taking small steps in the ascent direction in parameter space.

More specifically,

θi+1 = θi + µ∇θJ(θ) (1.3)

where we write J(θ) instead of J(π(a|s; θ)). The gradient is given by the following equivalent

expressions [14]:

∇θJ(π) = Eπ,dπ(r(s,a, s′) + γvπ(s)− vπ(s′))∇θ log π(a|s; θ) (1.4)

∇θJ(π) = Eπ,dπ(qπ(s,a)− vπ(s))∇θ log π(a|s; θ) (1.5)

vπ(s) = EP,π,n
(∞∑

t=0

γtr(st,at, st+1)
∣∣s0 = s

)
(1.6)

qπ(s, a) = EP,n(r(s, a, s′) + γvπ(s′)) (1.7)

dπ(s) = (1− γ)Eπ,d

∞∑
t=0

γtPr(st = s) (1.8)

where dπ(s) is the stationary state distribution induced on the MDP by π, and vπ(s) and

qπ(s, a) are known as the state value function and the state-action value function, respec-

tively.1 In simple terms, vπ(s) is the return that is expected if the agent starts at state s

and chooses actions according to policy π, while qπ(s, a) is the return that is expected if

the agent starts at state s, chooses action a and then chooses future actions according to

policy π. Notice that expressions (1.4) and (1.5) require knowledge of vπ(s) (and possibly

qπ(s, a)), which are unknown. Therefore, to implement a policy gradient loop it is necessary

to estimate the state value function. The estimation of the value functions is known as Policy

Evaluation. Algorithm 1.1 shows a typical policy gradient loop.

There are many algorithms that fall into the policy gradient category [15–21]. Generally

speaking, the difference among these is how they estimate the gradient. Algorithms that

maintain estimates of both the policy and the value function are often referred to as actor-

1From now on, when no confusion arises, we will use the term value function to refer to either vπ(s) or
qπ(s, a).

4

Algorithm 1.1 Policy gradient loop

Initialize: the parameters θ.
for Epochs e = 0, . . . , E do

Collect transitions (s, a, r, s′) by interacting with the environment following the current
policy π(a|s; θ).
Use the collected transitions to estimate the value function corresponding to the current
policy (running a policy evaluation algorithm).
Update the policy parameters θ using (1.3).

end for

critic algorithms, where actor refers to the policy and the critic is the value function. Policy

gradient algorithms have the quality that they are very stable and have shown impressive

performance in very challenging tasks [9–11], however, they have the inconvenience that they

are very sample inefficient. Note in algorithm (1.1) that for every gradient step a lot of data

has to be collected, which is then discarded in the following iteration.

1.2.4 The Bellman Optimality Equation and Q-learning

The algorithms we introduced in the previous section work by alternating between estimating

how good the current policy is and then improving it. A different approach to learn an

optimal policy could be to check if there exists some identity that is only satisfied by the

optimal policy, and then leverage such property to learn the optimal policy directly. Indeed

one such identity exists. The optimal state-action value function q†(s, a) (which is the state-

action value function that corresponds to an optimal policy π†) satisfies relation (1.9).

q†(s, a) = EP,n
(
r(s, a, s′) + γmax

a′
q†(s′, a′)

)
(1.9)

Equation (1.9) is known as the Bellman optimality equation. One important feature of this

relation is that, as opposed to (1.7), it does not have any expectation taken with respect

to any policy π. It is this characteristic that will allow us to derive an algorithm that can

use samples collected following any policy. It is easy to check that any policy that assigns

positive probability only to actions that maximize q†(s, a) (i.e. q†(s, a) = maxa′ q
†(s, a′)) is

an optimal policy [22]. Since the optimal policy can be extracted from q†, the problem of

5

finding π† can be replaced by the problem of finding q†.

From (1.9) we can define the Bellman optimality operator B as follows

Bq(s, a) = EP,n
(
r(s, a, s′) + γmax

a′
q(s′, a′)

)
(1.10)

Operator B is a γ-contraction whose fixed point is q†. Therefore, repeated application of this

operator to any initial q(s, a) function converges to q† with γ-linear rate [22]. Note though

that in RL, the dynamics of the environment are assumed to be unknown. Therefore, in

an RL setting, this procedure to obtain q† is not feasible. However, we can obtain an RL

algorithm by performing a stochastic approximation to (1.10) that relies on samples. This

algorithm is known as Q-learning and is due to [23] (see algorithm 1.2). Note that this

algorithm utilizes a replay buffer, the purpose of this buffer is simply to be able to reuse

samples (as opposed to just using them once to update q(s, a) and then discarding them).

Using a replay buffer greatly improves the sample efficiency of the algorithm.2

Algorithm 1.2 Q-learning with replay buffer

Initialize: q-function and an empty replay buffer R.
for epochs e = 0, . . . , E do

Collect transitions (s, a, r, s′) by interacting with the environment following any policy
which assigns strictly positive probability to all actions and store them in the R.
for iterations i = 0, . . . , I do

Sample a transition (s, a, r, s′) from the replay buffer.
Update q(s, a) = q(s, a) + µ(r + γmaxa′ q(s

′, a′)− q(s, a))
end for

end for

There are several variants of Q-learning [5,24–26]. These algorithms have the advantage

over policy gradient schemes that they are much more sample efficient. In other words, they

require less interactions with the environment to achieve the same level of performance. The

disadvantage of thise algorithms is that when combined with function approximators (like

neural networks for example), convergence cannot be guaranteed and therefore they can

diverge [27].

2The more sample efficient an algorithm is, the less interactions with the environment it requires.

6

1.2.5 Soft RL

Recently, a new approach termed soft RL has developed, which aims at deriving algorithms

that combine the stability of policy gradient schemes with the sample efficiency of Q-learning.

They do so by adding the policy’s entropy as a regularizer to the original RL objective (1.2).

More specifically,

J(π) = EP,π,f,d

(
∞∑
t=0

γt
(
r(st,at, st+1)− λ log π(at|st)

))
(1.11)

where λ > 0 is a temperature parameter. The optimal value functions for this modified cost

become:

v?λ(s) = λ log

(∑
a

exp
(
λ−1EP,n

(
r(s, a, s′) + γv?λ(s

′)
)))

(1.12)

q?λ(s, a) = EP,n
(
r(s, a, s′) + γv?λ(s

′)
)

(1.13)

= EP,n
(
r(s, a, s′) + γλ log

∑
a

exp(λ−1q?λ(s, a))

)
(1.14)

π?λ(a|s) =
exp [λ−1EP,n (r(s, a, s′) + γv?λ(s

′))]∑
a exp [λ−1EP,n (r(s, a, s′) + γv?λ(s

′))]
(1.15)

Notice that the effect of adding the entropy as a regularizer is that the max operator in

(1.9) is substituted by a soft approximation (this gives rise to the term soft RL). The key

is that expressions (1.12) and (1.15) are the only pair that satisfy the following relation for

every (s, a) pair:

v?λ(s) + λ log π?λ(a|s) = EP,n
(
r(s, a, s′) + γv?λ(s

′)
)

(1.16)

Note that relation (1.16) has the same feature as (1.9), it does not have an expectation with

respect to any policy π. It is this feature that allows soft RL to derive algorithms that are

as sample efficient as Q-learning. Several algorithms have been introduced based on this

maximum-entropy formulation [28–34]. In algorithm 1.3 we show a simplified version of the

SBEED algorithm [33].

7

Algorithm 1.3 simplified SBEED

Initialize: v(s), π(a|s) and ρ(s, a), and an empty replay buffer R.
for Epochs e = 0, . . . , E do

Collect transitions (s, a, r, s′) by interacting with the environment following any policy
which assigns strictly positive probability to all actions and store them in the R.
for Iterations i = 0, . . . , I do

Sample a transition (s, a, r, s′) from the replay buffer.
Update ρ(s, a) = ρ(s, a) + µ(r + γv(s′)− v(s)− λ log π(a|s)− ρ(s, a))
Update log π(s, a) = log π(s, a) + µρ(s, a)
Update v(s) = v(s) + µρ(s, a)

end for
end for

Note that algorithm 1.3 is similar to Q-learning in that it is able to re-use data using a

replay buffer and is similar to actor-critic schemes in that it learns simultaneously a policy

(an actor) and a value function (the critic).

1.3 Multi-Agent RL (MARL)

In this section we introduce the fundamentals of MARL; for a recent survey see [35]. Within

the context of MARL, three main categories can be enumerated: cooperative, competitive

and mixed. Like we clarified before, in this dissertation we study the cooperative case.

1.3.1 Cooperative MARL

We consider a team of K agents that form a network. The network is represented by a graph

in which the edges represent the communication links. Agent k communicates only with a

subset of the agents in the network which we refer to as the neighborhood of k (denoted

by Nk). The topology of the network is determined by some combination matrix L whose

kn-th entry (denoted by `kn) is a scalar with which agent n weights information incoming

from agent k (note that `kn 6= 0 ⇐⇒ k ∈ Nn). The agents interact with an environment

and with each other. We model this interaction as a Multi-agent MDP (MA-MDP), which

we define by the tuple (K,S,Ak,P ,rk). Here, K is the number of agents; S denotes a set

of global states shared by all agents of size S = |S|, and Ak is the set of actions available

8

to agent k. We refer to Ā = A1 × · · · × AK as the set of team actions. Furthermore, we

clarify that we use the notation ā to refer to the team’s action (i.e., the collection of all

individual actions), while ak refers to the individual action of agent k and a−k refers to the

collection of all actions except for agent k’s action. The transition kernel P(s′|s, ā) specifies

the probability of transitioning to global state s′ ∈ S from global state s ∈ S having taken

team action ā ∈ Ā, and rk : S × Ā × S → R is the reward function of agent k. We assume

that reward rk is only visible by its corresponding agent k. It is possible though, that each

reward function rk is composed of a local component and a global component shared by

all agents (i.e., rk(s, ā, s′) = rklocal(s, ā, s
′) + rglobal(s, ā, s

′)). The global component of the

reward can be associated with team events (for example, a football team scoring a goal)

while the local component with individual events (for instance, spending too much energy

due to excessive effort). It is important to highlight that the transition probabilities of the

global state and the reward functions of the individual agents depend on the actions of all

agents. The team’s goal is to maximize the aggregated return defined as:

J(π̄) =
∞∑
t=0

γt

K

(
K∑
k=1

E π̄,P,n,d
[
rk(st, āt, st+1)

])
(1.17)

where π̄(ā|s) denotes the team’s policy. Note that (1.17) is a simple extension of (1.2) that

aggregates the reward functions of all agents. It is well known that in this scenario the team

can be regarded as one single agent where the team action consists of the joint actions by

all agents [36]. Hence, one possible approach to address cooperative MARL is simply to

centralize training and execution, and apply one of the single-agent methods reviewed in the

previous section. However, this approach has two fundamental issues:

• Centralization might be undesirable or even unfeasible due to implementation con-

straints. Then the question arises, whether a fully decentralized approach can be

derived that matches the performance of the centralized approach. We address this

challenge in Chapters 2 and 3.

• Another issue is that of scalability. Assume that centralized training is a feasible option,

9

or that a decentralized approach that matches the centralized scheme is available.

These approaches require estimation of variables (q(s, a1, · · · , aK) or π(a1, · · · , aK |s))

that depend upon the join action space which is exponential with the number of agents.

For instance, consider a small team with 4 agents each of which has 5 actions to

choose from, then the team’s action space is of size 54 = 625. This quickly becomes

computationally intractable. So the question that arises is whether it is possible to

learn factored functions instead of joint functions (i.e., learn K qk(s, ak) functions

as opposed to learning one q(s, a1, · · · , aK) function). We address this challenge in

Chapter 4.

1.4 Organization and Contributions

In this dissertation we make contributions to both the single-agent and multi-agent settings.

The manuscript is organized as follows:

• Chapter 2: In this chapter we consider the policy evaluation problem when multiple

agents are involved. The contribution of this chapter is the introduction of Fast Diffu-

sion for Policy Evaluation (FDPE), a fully decentralized policy evaluation algorithm

for the finite data set case, under which all agents have a guaranteed linear convergence

rate to the minimizer of the global cost function. The work in this chapter is based on

material from references [37,38].

• Chapter 3: We consider the problem of learning an optimal team policy in the co-

operative MARL setting and introduce Diffusion Team Policy Optimization (DTPO).

This is a fully distributed algorithm that allows agents to converge to optimal team

policies. The algorithm achieves this by relying on local communication among the

agents. This chapter is based on [39]. Form the work we present in this chapter two

new problems are naturally raised, which we consider in the following two chapters.

• Chapter 4: In this chapter we address the challenge of learning factored policies in

cooperative MARL scenarios. The goal is to obtain factored policies that determine the

10

individual behavior of each agent so that the resulting joint policy is optimal. In this

chapter we make contributions to both the dynamic programming and RL settings.

In the dynamic programming case we provide a number of lemmas that prove the

existence of such factored policies and we introduce an algorithm (along with proof of

convergence) that provably leads to them. Then we introduce Logical Team Q-learning

(LTQL), which is a stochastic version of the algorithm for the RL case. This chapter

is based on [40]. Our method exhibits state of the art performance on a challenging

MARL game.

• Chapter 5: From our work in Chapter 3, another challenge becomes apparent, namely,

that of exploration. That is, when the team interacts with the environment, how should

the agents choose their actions so as to maximize the information learned about the

environment? In other words, how should actions be chosen in order to learn an

optimal policy with the least amount of interactions with the environment as possible.

In this chapter we address this exploration problem. We introduce the Information

Seeking Learner (ISL) algorithm, which is efficient at exploring the state space of the

MDP. Similarly to soft RL, we derive the algorithm by augmenting the traditional

RL objective with a novel regularization term. We provide convergence results for the

dynamic programming case and empirically show that our method exhibits state of the

art performance on a range of challenging deep-exploration benchmarks. This work in

based on [41].

• Chapter 6: In this final chapter we provide a brief summary of the contributions

introduced in this dissertation. We then conclude by discussing future research avenues

that naturally follow from the work we introduce.

11

CHAPTER 2

Fully Decentralized Policy Evaluation

The goal of a policy evaluation algorithm is to estimate the performance that an agent will

achieve when it follows a particular policy to interact with an environment. Policy evaluation

algorithms are important because, as we briefly mentioned in the previous chapter, they are

often key parts of more elaborate solution methods where the ultimate goal is to find an

optimal policy for a particular task (one such example is the class of actor-critic algorithms

– see [42] for a survey). This chapter studies the problem of policy evaluation in a fully

decentralized setting. We consider two distinct scenarios.

In the first case, K independent agents interact with independent instances of the same

environment following potentially different behavior policies1 to collect data and the objective

is for the agents to cooperate. In this scenario, each agent only has knowledge of its own

states and rewards, which are independent of the states and rewards of the other agents.

Various practical situations give rise to this scenario. For example, consider a task that

takes place in a large geographic area. The area can be divided into smaller sections, each

of which can be explored by a separate agent. This framework is also useful for collective

robot learning (see, [43–45]). We clarify that this first scenario is not classified as MARL

because the agents do not interact with each other.

The second scenario we consider is that of MARL. In this case a group of agents interact

simultaneously with a unique MDP and with each other to attain a common goal. In this

setting, there is a unique global state known to all agents and each agent receives distinct

local rewards, which are unknown to the other agents.

1The behavior policy is the policy that is followed while interacting with the environment with the purpose
of collecting data. This stands in contrast with the target policy, which is the policy whose corresponding
value function we wish to estimate.

12

The contribution of this chapter is twofold. In the first place, we introduce Fast Diffusion

for Policy Evaluation, a fully decentralized policy evaluation algorithm under which all agents

have a guaranteed linear convergence rate to the minimizer of the global cost function. The

algorithm is designed for the finite data set case and combines off-policy learning, eligibility

traces, and linear function approximation. The eligibility traces are derived from the use

of a more general cost function and they allow the control of the bias-variance trade-off

we mentioned previously. In our distributed model, a fusion center is not required and

communication is only allowed between immediate neighbors. The algorithm is applicable

both to distributed situations with independent MDPs (i.e., independent states and rewards)

and to MARL scenarios (i.e., global state and independent rewards). To the best of our

knowledge, this is the first algorithm that combines all these characteristics. Our second

contribution is a novel proof of convergence for the algorithm. This proof is challenging due

to the combination of three factors: the distributed nature of the algorithm, the primal-dual

structure of the cost function we optimize, and the use of stochastic biased gradients as

opposed to exact gradients.

2.1 Related Works

The material we present in this chapter is related to the class of works that study policy

evaluation, distributed reinforcement learning, and multi-agent reinforcement learning.

There exist a plethora of algorithms for single-agent policy evaluation such as GTD [46],

TDC [47], GTD2 [47], GTD-MP/GTD2-MP [48], GTD(λ) [49], and True Online GTD(λ)

[50]. The main feature of these algorithms is that they have guaranteed convergence (for small

enough step-sizes) while combining off-policy learning and linear function approximation;

and are applicable to scenarios with streaming data. They are also applicable to cases with

a finite amount of data. However, in this latter situation, they have the drawback that

they converge at a sub-linear rate because a decaying step-size is necessary to guarantee

convergence to the minimizer. In most current applications, policy evaluation is actually

carried out after collecting a finite amount of data (one example is the recent success in

13

the game of GO [51]). Therefore, deriving algorithms with better convergence properties for

the finite sample case becomes necessary. By leveraging recent developments in variance-

reduced algorithms, such as SVRG [52] and SAGA [53], the work [54] presented SVRG and

SAGA-type algorithms for policy evaluation. These algorithms combine GTD2 with SVRG

and SAGA and they have the advantage over GTD2 in that linear convergence is guaranteed

for fixed data sets. The algorithm we present in this chapter is related to [54] in that we too

use a variance-reduced strategy, however we base our algorithm in the AVRG strategy [55]

which is more convenient for distributed implementations because of an important balanced

gradient calculation feature.

Another interesting line of work in the context of distributed policy evaluation is [56], [57].

In [56] and [57] the authors introduce Diffusion GTD2 and ALG2 ; which are extensions of

GTD2 and TDC to the fully decentralized case, respectively. These algorithms consider the

situation where independent agents interact with independent instances of the same MDP.

These strategies allow individual agents to converge through collaboration even in situations

where convergence is infeasible without such collaboration. The FDPE algorithm we in-

troduce in this chapter can be applied to this setting as well and has two main advantages

over [56] and [57]. First, the proposed algorithm has guaranteed linear convergence, while

the previous algorithms converge at a sub-linear rate. Second, while in some instances, the

solutions in [56] and [57] may be biased due to the use of the Mean Square Projected Bell-

man Error (MSPBE) as a surrogate cost (this point is further clarified in Section 2.2), the

proposed method allows better control of the bias term due to a modification in the cost

function.

There is also a good body of work on MARL. However, most works in this area focus

on the policy optimization problem instead of the policy evaluation problem. The work

that is closer to the current contribution is [58], which was pursued simultaneously and

independently. The goal of the formulation in [58] is to derive a linearly-convergent dis-

tributed policy evaluation procedure for MARL. The work [58] does not consider the case

where independent agents interact with independent MDPs. In the context of MARL, our

proposed FDPE technique has three advantages in comparison to the approach from [58].

14

First, the memory requirement of the algorithm in [58] scales linearly with the amount of

data (i.e., O(N)), while the memory requirement for the proposed method in this manuscript

is O(1)), i.e., it is independent of the amount of data. Second, the algorithm of [58] does

not include the use of eligibility traces; a feature that is often necessary to reach state of

the art performance (see, for example, [59, 60]). Finally, the algorithm from [58] requires

all agents in the network to sample their data points in a synchronized manner, while the

algorithm we propose in this work does not require this type of synchronization. Another

paper that is related to the current work is [61], which considers the same distributed MARL

as we do; although their contribution is different from ours. The main contribution in [61]

is to extend the policy gradient theorem to the MARL case and derive two fully distributed

actor-critic algorithms with linear function approximation for policy optimization. The con-

nection between [61] and our work is that their actor-critic algorithms require a distributed

policy evaluation algorithm. The algorithm they use is similar to [56] and [57] (they combine

diffusion learning [62] with standard TD instead of GTD2 and TDC as was the case in [56]

and [57]). The algorithm we present in this chapter is compatible with their actor-critic

schemes (i.e., it could be used as the critic), and hence could potentially be used to augment

their performance and convergence rate.

Our work is also related to the literature on distributed optimization. Some notable works

in this area include [62–72]. Consensus [63] and Diffusion [62] constitute some of the earliest

work in this area. These methods can converge to a neighborhood around, but not exactly

to, the global minimizer when constant step-sizes are employed [64, 72]. Another family of

methods is based on distributed alternating direction method of multipliers (ADMM) [65].

While these methods can converge linearly fast to the exact global minimizer, they are

computationally more expensive than previous methods since they need to optimize a sub-

problem at each iteration. An exact first-order algorithm (EXTRA) was proposed in [66] for

undirected networks to correct the bias suffered by consensus, (this work was later extended

for the case of directed networks [69]). EXTRA and DEXTRA [69] can also converge linearly

to the global minimizer while maintaining the same computational efficiency as consensus and

diffusion. Several other works employ instead a gradient tracking strategy [67,68,73]. These

15

works guarantee linear convergence to the global minimizer even when they operate over time-

varying networks. Recently, the Exact Diffusion algorithm [70, 71] has been introduced for

static undirected graphs. This algorithm has a wider stability range than EXTRA (and hence

exhibits faster convergence [71]), and for the case of static graphs is more communication

efficient than gradient tracking methods since the gradient vectors are not shared among

agents. FDPE is related to Exact Diffusion since our MARL model is based on static

undirected graphs and our distributed strategy is derived in a similar manner to Exact

Diffusion. We remark that there is a fundamental difference between the FDPE algorithm

we present and the works in [62–72], namely, our algorithm finds the global saddle-point in

a primal dual formulation while the cited works solve convex minimization problems.

2.2 Problem Setting

We consider the problem of policy evaluation within the traditional reinforcement learning

framework we introduced in the previous chapter. We recall that the objective of a policy

evaluation algorithm is to estimate the performance of a known target policy using data

generated by either the same policy (this case is referred as on-policy), or a different policy

that is also known (this case is referred as off-policy). As we mentioned in the introduction,

we model our setting as an MDP defined by the tuple (S,A,P ,r). Even though in this

chapter we analyze the distributed scenario, in this section we motivate the cost function

for the single agent case for clarity of exposition and in the next section we generalize it to

the distributed setting. We thus consider an agent that wishes to learn the value function,

vπ(s), for a target policy of interest π(a|s), while following a potentially different behavior

policy φ(a|s). We recall that the value function for a target policy π, starting from some

initial state s ∈ S at time i, is defined as follows:

vπ(s) = EP,π,n
(∞∑

t=i

γt−ir(st,at, st+1)
∣∣∣si = s

)
(2.1)

16

we recall that En is the expectation with respect to the reward distributions ns,a,s′(r) and

0 ≤ γ < 1 is the discount factor. Note that since we are dealing with a constant target

policy π, the transition probabilities between states, which are given by pπs,s′ = EπP(s′|s,a),

are fixed and hence the MDP reduces to a Markov Rewards Process. In this case, the state

evolution of the agent can be modeled with a Markov Chain with transition matrix P π whose

entries are given by (P π)ij = pπi,j.

Assumption 2.1. We assume that the Markov Chain induced by the behavior policy φ(a|s)

is aperiodic and irreducible. In view of the Perron-Frobenius Theorem [72], this condition

guarantees that the Markov Chain under φ(a|s) will have a steady-state distribution in which

every state has a strictly positive probability of visitation [72].

Using the matrix P π and defining:

rπ(s) = Eπ,P,n
(
r(s,a, s′)

)
(2.2)

rπ = [rπ(1), · · · , rπ(S)]T (2.3)

vπ = [vπ(1), · · · , vπ(S)]T (2.4)

we can rewrite (2.1) in matrix form as:

vπ =
∞∑
n=0

(γP π)nrπ = (I − γP π)−1rπ (2.5)

Note that the inverse (I − γP π)−1 always exists; this is because γ < 1 and the matrix P π is

right stochastic with spectral radius equal to one. We further note that vπ also satisfies the

following h−stage Bellman equation for any h ∈ N:

vπ = (γP π)hvπ +
h−1∑
n=0

(γP π)nrπ (2.6)

17

2.2.1 Definition of cost function

We are interested in applications where the state space is too large (or even infinite) and

hence some form of function approximation is necessary to reduce the dimensionality of the

parameters to be learned. As we anticipated in the introduction, in this work we use linear

approximations.2 More formally, for every state s ∈ S, we approximate vπ(s) ≈ xTs θ
? where

xs ∈ RM is a feature vector corresponding to state s and θ? ∈ RM is a parameter vector such

that M � S. Defining X = [x1, x2, · · · , xS]T ∈ RS×M , we can write a vector approximation

for vπ as vπ ≈ Xθ?. We assume that X is a full rank matrix; this is not a restrictive

assumption since the feature matrix is a design choice. It is important to note though that

the true vπ need not be in the range space of X. If vπ is in the range space of X, an equality

of the form vπ = Xθ? holds exactly and the value of θ? is unique (because X is full rank)

and given by θ? = (XTX)−1XTvπ. For the more general case where vπ is not in the range

space of X, then one sensible choice for θ? is:

θ? = arg min
θ
‖Xθ − vπ‖2

D = (XTDX)−1XTDvπ (2.7)

where D is some positive definite weighting matrix to be defined later. Although (2.7) is a

reasonable cost to define θ?, it is not useful to derive a learning algorithm since vπ is not

known beforehand. As a result, for the purposes of deriving a learning algorithm, another

cost (one whose gradients can be sampled) needs to be used as a surrogate for (2.7). One

popular choice for the surrogate cost is the MSPBE (see, e.g., [47, 48, 56, 57]); this cost has

the inconvenience that its minimizer θo is different from (2.7) and some bias is incurred [47].

In order to control the magnitude of the bias, we shall derive a generalization of the MSPBE

which we refer to as H−truncated λ-weighted Mean Square Projected Bellman Error (Hλ-

MSPBE). To introduce this cost, we start by writing a convex combination of equation (2.6)

2We choose linear function approximation, not just because it is mathematically convenient (since with
this approximation our cost function is strongly convex) but because there are theoretical justifications for
this choice. In the first place, in some domains (for example Linear Quadratic Regulator problems) the value
function is a linear function of known features. Secondly, when policy evaluation is used to estimate the
gradient of a policy in a policy gradient algorithm, the policy gradient theorem [14] assures that the exact
gradient can be obtained even when a linear function is used to estimate vπ.

18

with different h’s ranging from 1 to H (we choose H to be a finite amount instead of H →∞

because in this chapter we deal with finite data instead of streaming data) as follows:

vπ = (1− λ)
H−1∑
h=1

λh−1

(
(γP π)hvπ +

h−1∑
n=0

(γP π)nrπ
)

+ λH−1

(
(γP π)Hvπ +

H−1∑
n=0

(γP π)nrπ
)

= Γ2(λ,H)rπ + ρ1(λ,H)Γ1(λ,H)vπ (2.8)

where we introduced:

ρ1(λ,H) =
(1− λ)γ + (1− γ)(γλ)H

1− γλ
(2.9)

Γ2(λ,H) =
H−1∑
n=0

(γλP π)n =
(
I − (γλP π)H

)
(I − γλP π)−1 (2.10)

Γ1(λ,H) =
1

ρ1(λ,H)

(
(1− λ)γP π

H−1∑
n=0

(γλP π)n + (γλP π)H
)

(2.11)

and 0 ≤ λ ≤ 1 is a parameter that controls the bias.

Remark 2.1. Note that 0 < ρ1(λ,H) ≤ γ < 1.

Remark 2.2. Γ1(λ,H) is a right stochastic matrix because it is defined as a convex combi-

nation of powers of P π (which are right stochastic matrices).

Note that from now on for the purpose of simplifying the notation, we refer to ρ1(λ,H),

Γ1(λ,H) and Γ2(λ,H) as ρ1, Γ1 and Γ2, respectively. Replacing vπ in (2.8) by its linear

approximation we get:

Xθ ≈ Γ2r
π + ρ1Γ1Xθ (2.12)

Projecting the right hand side onto the range space of X so that an equality holds, we arrive

at:

Xθ = Π [Γ2r
π + ρ1Γ1Xθ] (2.13)

19

where Π ∈ RS×S is the weighted projection matrix onto the space spanned by X, (i.e.,

Π = X(XTDX)−1XTD). We can now use (2.13) to define our surrogate cost function:

S(θ) =
1

2

∥∥∥Π
(
Γ2r

π + ρ1Γ1Xθ
)
−Xθ

∥∥∥2

D
+
η

2

∥∥θ − θp

∥∥2

U
(2.14)

where the first term on the right hand side is the Hλ-MSPBE, η ≥ 0 is a regularization

parameter, U > 0 is a symmetric positive-definite weighting matrix, and θp reflects prior

knowledge about θ. Two sensible choices for U are U = I and U = XTDX = C, which

reflect previous knowledge about θ or the value function Xθ, respectively. The regularization

term can be particularly useful when the policy evaluation algorithm is used as part of a

policy gradient loop (since subsequent policies are expected to have similar value functions

and the value of θ learned in one iteration can be used as θp in the next iteration) like, for

example, in [74]. One main advantage of using the proposed cost (2.14) instead of the more

traditional MSPBE cost is that the magnitude of the bias between its minimizer (denoted

as θo(H,λ)) and the desired solution θ? can be controlled through λ and H. To see this, we

first rewrite S(θ) in the following equivalent form:

S(θ) =
1

2

∥∥XTD(I − ρ1Γ1)Xθ −XTDΓ2r
π
∥∥2

(XTDX)−1 +
η

2

∥∥θ − θp

∥∥2

U
(2.15)

Next, we introduce the quantities:

A = XTD(I − ρ1Γ1)X (2.16)

b = XTDΓ2r
π (2.17)

C = XTDX (2.18)

Remark 2.3. A is an invertible matrix.

Proof. Due to remarks 1 and 2 we have that the spectral radius of ρ1(λ,H)Γ1(λ,H) is strictly

smaller than one, and hence I−ρ1(λ,H)Γ1(λ,H) is invertible. The result follows by recalling

that X and D are full rank matrices.

20

The minimizer of (2.15) is given by:

θo(H, λ) = (ATC−1A+ ηU)−1(ηUθp + ATC−1b) (2.19)

where (ATC−1A + ηU)−1 exists and hence θo(H,λ) is well defined. This is because ηU is

positive-definite and A is invertible. Also note that when λ = 1, H →∞ and η = 0, θo(H,λ)

reduces to (2.7) and hence the bias is removed. We do not fix λ = 1 because while the bias

diminishes as λ→ 1, the estimate of the value function approaches a Monte Carlo estimate

and hence the variance of the estimate increases. Note from (2.8) and (2.15) that in the

particular case where the value function vπ lies in the range space of X (and there is no

regularization, i.e., η = 0) there is no bias
(
i.e., θ? = θo(H,λ)

)
independently of the values

of λ and H. This observation shows that when there is bias between θ? and θo(H,λ), the bias

arises from the fact that the value function being estimated does not lie in the range space

of X. In practice, λ offers a valuable bias-variance trade-off, and its optimal value depends

on each particular problem. Note that since we are dealing with finite data samples, in

practice, H will always be finite. Therefore, eliminating the bias completely is not possible

(even when λ = 1). The exact expression for the bias is obtained by subtracting (2.19) from

(2.7). However, this expression does not easily indicate how the bias behaves as a function

of γ, λ and H. Lemma 2.1 provides a simplified expression.

Lemma 2.1. The bias ‖θo(H,λ)− θ?‖2 is approximated by:

‖θo(H,λ)− θ?‖2 ≈
(
I
(
vπ 6= Πvπ

) κ2ρ1

(1 + κ1η)(κ3 − ρ1)
+
κ1η‖θp − θ?‖

1 + κ1η

)2

(2.20)

where I is the indicator function and

ρ1

κ3 − ρ1

=
(1− λ)γ + (1− γ)(γλ)H

κ3(1− γλ)− (1− λ)γ − (1− γ)(γλ)H
(2.21)

for some constants κ1, κ2 and κ3. See Appendix A for conditions under which the approxi-

mation becomes tighter.

21

Proof. See Appendix 2.C.

Note that expression (2.20) agrees with our previous discussion and with several intuitive

facts. First, due to the indicator function, if vπ lies in the range space of X there is no bias

independently of the values of γ, λ and H (as long as η = 0). Second, if λ = 0, the bias is

independent of H (because when λ = 0 all terms that depend on H are zeroed). Third, if

H = 1 then the bias is independent of the value of λ (because when H = 1 all terms that

depend on λ are zeroed). Furthermore, the expression is monotone decreasing in λ (for the

case where H > 1) which agrees with the intuition that the bias diminishes as λ increases.

Finally, we note that the bias is minimized for λ = 1 and in this case there is still a bias,

which if η = 0, is on the order of O
(
γH/(κ3 − γH)

)
. This explicitly shows the effect on the

bias of having a finite H. The following lemma describes the behavior of the variance.

Lemma 2.2. The variance of the estimate θ̂o(H,λ) is approximated by (2.22), for some

constants κ1 and κ4.

E
∥∥θ̂o(H,λ)− θo(H,λ)

∥∥2 ≈ κ4

(1 + κ1η)2(N −H)

(
1− (γλ)2H

1− (γλ)2

)
(2.22)

Proof. See Appendix 2.D.

Note that (2.22) is monotone increasing as a function of λ (for H > 1) and as a function

of H (for λ > 0). Adding expressions (2.20) and (2.22) shows explicitly the bias-variance

trade-off handled by the parameter λ and the finite horizon H. We remark that the idea

of an eligibility trace parameter λ as a bias-variance trade-off is not novel to this work and

has been previously used in algorithms such as TD(λ) [4], TD(λ) with replacing traces [75],

GTD(λ) [49] and True Online GTD(λ) [50]. Note however, that these works derive algorithms

for the on-line case (as opposed to the batch setting) using different cost functions. Therefore,

the expressions we present in this chapter are different from previous works, which is why

we derive them in detail. Moreover, the expressions corresponding to Lemmas 2.1 and 2.2

that quantify such bias-variance trade-off are new and specific for our batch model.

At this point, all that is left to fully define the surrogate cost function S(θ) is to choose the

22

positive definite matrix D. The algorithm that we derive in this chapter is of the stochastic

gradient type. With this in mind, we shall choose D such that the quantities A, b and C

turn out to be expectations that can be sampled from data realizations. Thus, we start by

setting D to be a diagonal matrix with positive entries; we collect these entries into a vector

dφ and write Dφ instead of D, i.e., D = Dφ = diag(dφ). We shall select dφ to correspond

to the steady-state distribution of the Markov chain induced by the behavior policy, φ(a|s).

This choice for D not only is convenient in terms of algorithm derivation, it is also physically

meaningful; since with this choice for D, states that are visited more often are weighted

more heavily while states which are rarely visited receive lower weights. As a consequence of

Assumption 1 and the Perron-Frobenius Theorem [72], the vector dφ is guaranteed to exist

and all its entries will be strictly positive and add up to one. Moreover, this vector satisfies

dφ
T
P φ = dφ

T
where P φ is the transition probability matrix defined in a manner similar to

P π.

Lemma 2.3. Setting D = diag(dφ), the matrices A, b and C can be written as expectations

as follows:

A = E dφ,P,π

[
xt

(
xt − γ(1− λ)

H−1∑
n=0

(γλ)nxt+n+1 − (γλ)Hxt+H

)T]
(2.23a)

b = E dφ,P,π

[
xt

H−1∑
n=0

(γλ)nrt+n

]
(2.23b)

C = E dφ
[
xtx

T
t

]
(2.23c)

where, with a little abuse of notation, we defined xt = xst and rt = rπ(st), where st is the

state visited at time t.

Proof. See Appendix 2.E.

2.2.2 Optimization problem

Since the signal distributions are not known beforehand and we are working with a finite

amount of data, say, of size N , we need to rely on empirical approximations to estimate the

23

expectations in {A, b, C}. We thus let Â, b̂, Ĉ and Û denote estimates for A, b, C and U

from data and replace them in (2.15) to define the following empirical optimization problem:

min
θ
Jemp(θ) =

1

2

∥∥Âθ − b̂∥∥2

Ĉ−1 +
η

2

∥∥θ − θp

∥∥2

Û
(2.24)

Note that whether an empirical estimate for U is required depends on the choice for U .

For instance, if U = I then obviously no estimate is needed. However, if U = C then an

empirical estimate is needed, (i.e., Û = Ĉ).

To fully characterize the empirical optimization problem, expressions for the empirical

estimates still need to be provided. The following lemma provides the necessary estimates.

Lemma 2.4. For the general off-policy case, the following expressions provide unbiased

estimates for A, b and C:

Ân = xn

(
ρHn,0xn − γ(1− λ)

H−1∑
h=0

(γλ)hξn,n+h+1xn+h+1 − (γλ)Hξn,n+Hxn+H

)T
(2.25a)

Â =
1

N −H

N−H∑
n=1

Ân (2.25b)

b̂n = xn

H−1∑
h=0

(γλ)hρHn,hrn+h, b̂ =
1

N −H

N−H∑
n=1

b̂n (2.25c)

Ĉn = xnx
T
n (2.25d)

Ĉ =
1

N −H

N−H∑
n=1

Ĉn (2.25e)

where

ρHt,n = (1− λ)
H−1∑
h=n

λh−nξt,t+h+1 + λH−nξt,t+H (2.26)

ξt,t+h =
t+h−1∏
j=t

π(aj|sj)
φ(aj|sj)

(2.27)

Proof. See Appendix 2.F.

24

Note that ξt,t+h is the importance sample weight corresponding to the trajectory that

started at some state st and took h steps before arriving at some other state st+h. Note

that even if we have N transitions, we can only use N −H training samples because every

estimate of x̂n and b̂n looks H steps into the future.

2.3 Distributed Policy Evaluation

In this section we present the distributed framework and use (2.24) to derive Fast Diffusion

for Policy Evaluation. The purpose of this algorithm is to deal with situations where data

is dispersed among a number of nodes and the goal is to solve the policy evaluation problem

in a fully decentralized manner.

2.3.1 Distributed Setting

We consider a situation in which there are K agents that wish to evaluate a target policy

π(a|s) for a common MDP. Each agent has N samples, which are collected following its

own behavior policy φk (with steady state distribution matrix Dφk). Note that the behavior

policies can be potentially different from each other. The goal for all agents is to estimate

the value function of the target policy π(a|s) leveraging all the data from all other agents in

a fully decentralized manner.

To do this, they form a network in which each agent can only communicate with other

agents in its immediate neighborhood. The network is represented by a graph in which the

nodes and edges represent the agents and communication links, respectively. The topology of

the graph is defined by a combination matrix L whose kn-th entry (i.e., `kn) is a scalar with

which agent n scales information arriving from agent k. If agent k is not in the neighborhood

of agent n, then `kn = 0.

Assumption 2.2. We assume that the network is strongly connected. This implies that

there is at least one path from any node to any other node and that at least one node has a

self-loop (i.e. that at least one agent uses its own information). We further assume that the

25

combination matrix L is symmetric and doubly-stochastic.

Remark 2.4. In view of the Perron-Frobenius Theorem, assumption 2.2 implies that the

matrix L can be diagonalized as L = HΛHT , where one element of Λ is equal to 1 and its

corresponding eigenvector is given by 1/
√
K (where 1 is the all ones vector). The remaining

eigenvalues of L lie strictly inside the unit circle.

A combination matrix satisfying assumption 2 can be generated using the Laplacian rule,

the maximum-degree rule, or the Metropolis rule (see Table 14.1 in [72]). A sample network

is shown in Figure 2.1.

Figure 2.1: Sample network.

2.3.2 Algorithm Derivation

Mathematically, the goal for all agents is to minimize the following aggregate cost:

SM(θ) =
K∑
k=1

τk

(
1

2

∥∥∥Π
(
Γ2r

π + ρ1Γ1Xθ
)
−Xθ

∥∥∥2

Dφk
+
η

2

∥∥θ − θp

∥∥2

Uk

)
(2.28)

where the purpose of the nonnegative coefficients τk is to scale the costs of the different

agents; this is useful since the costs of agents whose behavior policy is closer to the target

26

policy might be assigned higher weights. For (2.28), we define the matrices D and U to be:

D =
K∑
k=1

τkD
φk (2.29)

U =
K∑
k=1

τkUk (2.30)

so that equation (2.28) becomes:

SM(θ) =
1

2

∥∥∥Π
(
Γ2r

π + ρ1Γ1Xθ
)
−Xθ

∥∥∥2

D
+
η

2

∥∥θ − θp

∥∥2

U
(2.31)

Note that (2.31) has the same form as (2.15); the only difference is that in (2.31) the

matrices D and U are defined by linear combinations of the individual matrices Dφk and

Uk, respectively. Matrices Dφk are therefore not required to be positive definite, only D is

required to be a positive definite diagonal matrix. Since the matrices Dφk are given by the

steady-state probabilities of the behavior policies, this implies that each agent does not need

to explore the entire state-space by itself, but rather all agents collectively need to explore

the state-space. This is one of the advantages of our multi-agent setting. In practice, this

could be useful since the agents can divide the entire state-space into sections, each of which

can be explored by a different agent in parallel.

Assumption 2.3. We assume that the behavior policies are such that the aggregated steady

state probabilities
(
i.e.,

∑K
k=1 τkD

φk
)

are strictly positive for every state.

The empirical problem for the multi-agent case is then given by:

min
θ
Jemp(θ) = min

θ

1

2

∥∥Âθ − b̂∥∥2

Ĉ−1 +
η

2

∥∥θ − θp

∥∥2

Û
(2.32)

27

Âk =
N−H∑
n=1

Âk,n
N −H

, b̂k =
N−H∑
n=1

b̂k,n
N −H

, Ĉk =
N−H∑
n=1

Ĉk,n
N −H

(2.33a)

Â =
K∑
k=1

τkÂk, b̂ =
K∑
k=1

τkb̂k, Ĉ =
K∑
k=1

τkĈk (2.33b)

Assumption 2.4. We assume that Ĉ and Â are positive definite and invertible, respectively.

It is easy to show that Assumption 2.4 is equivalent to assuming that each state has been

visited at least once while collecting data. Intuitively, this assumption is necessary for any

policy evaluation algorithm since one cannot expect to estimate the value function of states

that have never been visited. Since we are interested in deriving a distributed algorithm we

define local copies {θk} and rewrite (2.32) equivalently in the form:

min
θ

1

2

∥∥∥∥ K∑
k=1

τk
(
Âkθk − b̂k

)∥∥∥∥2

(
∑K
k=1 τkĈk)

−1
+

K∑
k=1

τk
η

2

∥∥θk − θp

∥∥2

Ûk

s.t θ1 = θ2 = · · · = θK (2.34)

The above formulation although correct is not useful because the gradient with respect to

any individual θk depends on all the data from all agents and we want to derive an algorithm

that only relies on local data. To circumvent this inconvenience, we reformulate (2.32) into

an equivalent problem. To this end, we note that every quadratic function can be expressed

in terms of its conjugate function as:

1

2
‖Aθ − b‖2

C−1 = max
ω

(
−(Aθ − b)Tω − 1

2
‖ω‖2

C

)
(2.35)

Therefore, expression (2.32) can equivalently be rewritten as:

min
θ

max
ω

K∑
k=1

τk

(
η

2
‖θ − θp‖2

Ûk
− ωT (Âkθ − b̂k)−

1

2
‖ω‖2

Ĉk

)
(2.36)

28

Remark 2.5. The saddle-point of (2.36) is given by

 θ̂o

ω̂o

 =

 (ÂT Ĉ−1Â+ ηÛ
)−1 (

ηÛθp + ÂT Ĉ−1b̂
)

Ĉ−1b̂− Ĉ−1Âθ̂o

 (2.37)

Proof. θ̂o and ω̂o are obtained by equating the gradient of (2.36) to zero and solving for θ

and ω.

Defining local copies for the primal and dual variables we can write:

min
θ

max
ω

K∑
k=1

τk

(
η

2
‖θk − θp‖2

Ûk
− ωTk (Âkθk − b̂k)−

1

2
‖ωk‖2

Ĉk

)
s.t θ1 = θ2 = · · · = θK ω1 = ω2 = · · · = ωK (2.38)

Now to derive a learning algorithm we rewrite (2.38) in an equivalent more convenient manner

(the following steps can be seen as an extension to the primal-dual case of similar steps used

in [70]). We start by defining the following network-wide magnitudes:

θ̌ = col{θk}Kk=1, ω̌ = col{ωk}Kk=1, b̌ = col{τkb̂k}Kk=1

Ǎ = diag{τkÂk}Kk=1, Č = diag{τkĈk}Kk=1, θ̌p = 1⊗ θp

Ľ = L⊗ IM , V = H(IK − Λ)1/2HT/
√

2, V̌ = V ⊗ IM (2.39)

We remind the reader that H and Λ were defined in Remark 2.4. We further clarify that

(IK − Λ)
1
2 is the entrywise square root of the positive definite diagonal matrix IK − Λ. The

notation col{y}Kk=1 refers to stacking vectors yk from 1 to K into one larger vector. Moreover,

diag{Yk}Kk=1 is a block diagonal matrix with matrices Yk as its diagonal elements.

Remark 2.6. Due to Remark 2.4, it follows that the bases of the null-spaces of V and V̌

29

are given by {1} and {1⊗ IM}, respectively. Therefore, we get:

θ1 = θ2 = · · · = θK ⇐⇒ V̌ θ̌ = 0 (2.40a)

ω1 = ω2 = · · · = ωK ⇐⇒ V̌ ω̌ = 0 (2.40b)

Using (2.40) we transform (2.38) into the following equivalent formulation:

min
θ

max
ω

η

2
‖θ̌ − θ̌p‖2

Ǔ
− ω̌T (Ǎθ̌ − b̌)− 1

2
‖ω‖2

Č︸ ︷︷ ︸
=F (θ̌,ω̌)

s.t V̌ θ̌ = 0 V̌ ω̌ = 0 (2.41)

We next introduce the constraints into the cost by using Lagrangian and extended Lagrangian

terms as follows:

min
θ̌,yω

max
ω̌,yθ

F (θ̌, ω̌) + yθ
T
V̌ θ̌ − yωT V̌ ω̌ +

‖V̌ θ̌‖2

2
− ‖V̌ ω̌‖

2

2
(2.42)

where yω and yθ are the dual variables of ω̌ and θ̌, respectively. Now we perform incremental

gradient ascent on ω̌ and gradient descent on yω to obtain the following updates:3

ψωi+1 = ω̌i + µω∇ω̌F (θ̌i, ω̌i) (2.43a)

φωi+1 = ψωi+1 − µω,2V̌ 2ψωi+1

µω,2=1
= (I + Ľ)/2ψωi+1 (2.43b)

ω̌i+1 = φωi+1 − µω,3V̌ yω
µω,3=1

= φωi+1 − V̌ yωi (2.43c)

yωi+1 = yωi + µω,4V̌ ω̌i+1
µω,4=1

= yωi + V̌ ω̌i+1 (2.43d)

3In incremental gradient ascent, a gradient update is performed per term of (2.42) instead of doing only
one update with the full gradient. We perform incremental updates in our distributed setting because it
provides better stability than regular gradient ascent [70,71].

30

where in (2.43b) we used V̌ 2 = I − Ľ. Combining (2.43b) and (2.43c) we get:

ψωi+1 = ω̌i + µω∇ω̌F (θ̌i, ω̌i) (2.44a)

ω̌i+1 = (I + Ľ)ψωi+1/2− V̌ yωi (2.44b)

yωi+1 = yωi + V̌ ω̌i+1 (2.44c)

Using (2.44b) to calculate ω̌i+1 − ω̌i we get:

ω̌i+1 − ω̌i = (I + Ľ)
(
ψωi+1 − ψωi

)
/2− V̌

(
yωi − yωi−1

)
(2.45)

Substituting (2.44c) into (2.45) we get:

ω̌i+1 = (I + Ľ)
(
ψωi+1 + ω̌i − ψωi

)
/2 (2.46)

Which we rewrite as:

ψωi+1 = ω̌i + µω∇ω̌F (θ̌i, ω̌i) (2.47a)

φωi+1 = ψωi+1 + ω̌i − ψωi (2.47b)

ω̌i+1 = (I + Ľ)φωi+1/2 (2.47c)

Notice that steps (2.43)-(2.47) allow us to get rid of yωi . Performing incremental gradient

descent on θ̌ and gradient ascent on yθ and following equivalently (2.43)-(2.47) we get:

ψθi+1 = θ̌i − µθ∇θ̌F (θ̌i, ω̌i) (2.48a)

φθi+1 = ψθi+1 + θ̌i − ψθi (2.48b)

θ̌i+1 = (I + Ľ)φθi+1/2 (2.48c)

Combining (2.47) and (2.48) and defining ψ = col{ψω, ψθ} (and similarly for φ) we arrive at

algorithm (2.1), which is a fully distributed algorithm.

31

Algorithm 2.1 Processing steps at node k

Initialize: θk,0 and ωk,0 arbitrarily and let ψk,0 = [θk,0
T , ωk,0

T]T .
for i = 0, 1, 2 . . .: do

ψk,i+1 =

[
ωk,i + τkµω

(̂
bk − Âkθk,i − Ĉkωk,i

)
θk,i − τkµθ

(
ηÛk(θk,i − θp)− Âkωk,i

)] (2.50a)

φk,i+1 = ψk,i+1 +

[
ωk,i
θk,i

]
− ψk,i (2.50b)[

ωk,i+1

θk,i+1

]
=
(
φk,i+1 +

∑
n∈Nk

lnkφn,i+1

)
/2 (2.50c)

end for

Theorem 2.1. If Assumption 2.4 is satisfied and the step-sizes µω and µθ are small enough

while satisfying the following inequality:

µω
µθ

> η
λmax(Û)

λmax(Ĉ)
+ 2

√
µω
µθ

λmax(ÂĈ−1ÂT)

λmax(Ĉ)
(2.49)

then the iterates θk,i and ωk,i generated by algorithm 2.1 converge linearly to (2.37).

Proof. See appendix 2.A.

Condition (2.49) can always be satisfied by making µω/µθ sufficiently large. Note that

when the step-size is small enough, the convergence rate α depends on two factors: the spec-

trum of ρ(I −µK−1ΛG) (which is also the convergence rate of a centralized gradient descent

implementation) and the second biggest eigenvalue of the combination matrix. This implies

that when the network is densely connected, the factor that determines the convergence rate

of the algorithm is the eigenstructure of the saddle-point matrix G. On the contrary, when

the network is sparsely connected, the rate at which the agents’ information diffuses across

the network is the factor that determines the convergence rate of the algorithm.

Algorithm 2.1 has the inconvenience that at every iteration each agent has to calculate the

exact local gradient (i.e., all data samples have to be used), which computationally might be

demanding for cases with big data. Therefore we add a variance reduced gradient strategy

32

Algorithm 2.2 AVRG for N data points and loss function Q

Initialize: θ0
0 arbitrarily; g0 = 0; ∇Qn(θ0

0)← 0, 1 ≤ n ≤ N .
for e = 0, 1, . . .: do

Generate a random permutation function σe and set ge+1= 0
for i = 0, 1, . . . , N − 1: do

n = σe(i) (2.52)

θei+1 = θek,i − µ
(
∇Qn(θei)−∇Qn(θe0) + ge

)
(2.53)

ge+1 ← ge+1 +∇Qn(θei)/N (2.54)

end for
θe+1

0 = θeN
end for

to Algorithm 2.1. More specifically, we use the AVRG [55] (amortized variance-reduced

gradient) technique (Algorithm 2.2).

The AVRG strategy is a single agent algorithm designed to minimize functions of the

form:

min
θ

N∑
n=1

Qn(θ) (2.51)

where Qn is some loss function evaluated at the n−th data point. The main difference

between standard stochastic gradient descent and AVRG is that in AVRG at every epoch

the estimated gradients are collected in a vector g, which is used in the following epoch to

reduce the variance of the gradient estimates. In the listing corresponding to Algorithm 2

we introduced an epoch index e and a uniform random permutation function σe. The epoch

index is due to the fact that AVRG relies on random reshuffling (which is why the permuta-

tion function is necessary) and sampling without replacement (hence, one epoch is one pass

over each data point). The gradient estimates produced by the AVRG strategy are subject

to both bias and variance, however both decay over time and therefore do not jeopardize

convergence. The resulting algorithm from the combination of algorithm 2.1 and AVRG

(which we refer to as Fast Diffusion for Policy Evaluation) relies on stochastic gradients

(as opposed to exact gradient calculations) and as a consequence is more computationally

efficient than Algorithm 2.1, while still retaining the convergence guarantees.

33

Algorithm 2.3 Fast Diffusion for Policy Evaluation at node k

Distribute the N − H data points into J mini-batches of size |Jj|; where Jj is the j-th
mini-batch.
Initialize: θ0

k,0 and ω0
k,0 arbitrarily; let ψ0

k,0 = [θ0
k,0

T
, ω0

k,0
T

]T , g0
k = 0; βk,n(θ0

k,0, ω
0
k,0) ← 0,

1 ≤ n ≤ N −H
for e = 0, 1, . . .: do

Generate a random permutation function of the mini-batches σek
Set ge+1

k = 0
for i = 0, 1, . . . , N − 1: do

Generate the local stochastic gradients:

j = σek(i) (2.55a)

βk(θ
e
k,i, ω

e
k,i) = gek+

1

|Jj|
∑
l∈Jj

(
βk,l(θ

e
k,i, ω

e
k,i)−βk,l(θek,0, ωek,0)

)
(2.55b)

ge+1
k ← ge+1

k +
1

N −H
∑
l∈Jj

βk,l(θ
e
k,i, ω

e
k,i) (2.55c)

Update [θek,i+1, ω
e
k,i+1]T with exact diffusion:

ψek,i+1 =

[
θek,i
ωek,i

]
− τk

[
µθ 0
0 µω

]
βk(θ

e
k,i, ω

e
k,i) (2.56a)

φek,i+1 = ψek,i+1 +

[
θek,i
ωek,i

]
− ψek,i (2.56b)[

θek,i+1

ωek,i+1

]
=

(
φek,i+1 +

∑
n∈Nk

lnkφ
e
n,i+1

)
/2 (2.56c)

end for

[
θe+1
k,0

ωe+1
k,0

]
=

[
θek,J
ωek,J

]
(2.57)

end for

In the listing of FDPE, we introduce σek, Jj, and βk,j(θ, ω), where σek indicates a random

permutation of the J mini-batches of the k-th agent, which is generated at the beginning of

34

epoch e; Jj is the j-th mini-batch and βk,l(θ, ω) is defined as follows:

βk,l(θ, ω) =

 ∇θFk,l(θ, ω)

−∇ωFk,l(θ, ω)

 =

 ηÛk,l(θ − θp)− ÂTk,lω

Âk,lθ − b̂k,l + Ĉk,lω

 (2.58)

We remark that algorithm 2.1 is a special case of FDPE, which corresponds to the case

where the mini-batch size is selected equal to the whole batch of data. Note that the choice

of the mini-batch size provides a communication-computation trade-off. As the number of

mini-batches diminishes so do the communication requirements per epoch. However, more

gradients need to be calculated per update and hence more gradient calculations might be

required to achieve a desired error. Obviously the optimal amount of mini-batches J to

minimize the overall time of the optimization process depends on the particular hardware

availability for each implementation. Note that the only difference between update equations

(2.50) and (2.56) is that the updates which correspond to algorithm 2.1 use exact local

gradients, while (2.56) use stochastic approximations obtained through equations (2.55).

Theorem 2.2. If Assumption 2.4 is satisfied and the step-sizes µω and µθ are small enough

while satisfying inequality (2.49), then the iterates θek,i and ωek,i generated by FDPE converge

linearly to (2.37).

Proof. See appendix 2.B.

The main difference between theorems 2.1 and 2.2 is that there are more constraints on

the step sizes due to the gradient noise (i.e., smaller step sizes might be necessary). We

clarify that the proof of theorem 2.1 included in appendix 2.A is a special case of the proof

of theorem 2.2. We include both of them for convenience of the reader, because the proof of

2.2 is long a demanding, while the other one is much shorter.

2.4 Multi-Agent Reinforcement Learning

In this section we derive a cost for the MARL case that has the same form as (2.32) and

therefore shows that algorithms 2.1 and 2.3 are also applicable for this scenario.

35

The network structure is the same as in the previous section. The difference with the

previous section is that in the MARL case the agents interact with a unique environment

and with each other, and have a common goal. Therefore, in this section we refer to the

collection of all agents as a team. This setup is modeled as a MA-MDP defined by the tuple

(K,S,Ak,P ,rk). We recall that S is a set of global states shared by all agents and Ak is the

set of actions available to agent k of size Ak = |Ak|. We refer to Ā =
∏K

k=1Ak as the set

of team actions. P(s′|s, a) is the defined as before but considering global states and team

actions, and rk : S × Ā × S → R is the reward function of agent k. Specifically, rk(s, ā, s′)

is the expected reward of decision maker k when the team transitions to state s′ ∈ S from

state s ∈ S having taken team action ā ∈ Ā. What distinguishes this model from the one

in the previous section is that the transition probabilities and the reward functions of the

individual agents depend not only on their own actions but on the actions of all other agents.

The goal of all the agents is to maximize the aggregated return and hence in this case the

value function is defined as:

vπ(s) =
∞∑
t=i

γt−i

K

(
K∑
k=1

E
[
rk(st, āt, st+1)|si = s

])
(2.59)

introducing a global reward as r(st, āt, st+1) = K−1
∑K

k=1 r
k(st, āt, st+1) equation (2.59)

becomes identical to (2.1). Therefore, with the understanding that in this case the states

and the policies, π(ā|s) = π(a1, · · · , aK |s) and φ(a1, · · · , aK |s), are global (and hence also

the feature vectors and sampling weights are global4), the rest of the derivation follows

identically to Section 2.2. Therefore, the empirical problem becomes like (2.24) with the

4Note that in this case if sampling weights were to be used for off-policy operation, every agent would
require knowledge of the teams behavior policy.

36

following estimates:

Â =
N−H∑
n=1

Ân
N −H

(2.60)

b̂ =
N−H∑
n=1

K∑
k=1

b̂k,n
K(N −H)

(2.61)

Ĉ =
N−H∑
n=1

Ĉn
N −H

(2.62)

Defining Âk,n = Ân we can write Ân =
∑K

k=1 Âk,n/K (and similarly for Ĉn). Equations

(2.60) become exactly like (2.33) with τK = K−1, and therefore both algorithms can be

applied to MARL scenarios without changes. We clarify that in this setting the algorithms

are still fully decentralized where agents only use their local rewards and are able to leverage

all agent’s data due to the combination step (2.50c), (2.56c).

2.5 Experiments

In this section we show two simulations corresponding to the two distinct scenarios that

FDPE can be applied to.

2.5.1 Experiment I

This experiment corresponds to the scenario of Section 2.3. We consider a situation in which

the MDP’s state space is divided among the agents for exploration.

The MDP’s specifications are as follows. The state space is given by a 15× 15 grid and

the possible actions are: UP, DOWN, LEFT and RIGHT. The reward structure of the MDP

and the target policy were generated randomly. We consider a network of 9 agents that

divide the state space in 9 regions. The topology of the network and the regions assigned

to the agents for exploration are shown in Figure 2.2(a). The feature vectors consist of 26

37

features, 25 given by radial basis functions5 (RBF) centered in the red marks show in Figure

2.2(a) plus one bias feature fixed at +1. The behavior policy of every agent is equal to the

target policy, except in the edges of its exploration region, where the probabilities of the

actions that would take the agent beyond its exploration region are zeroed (the policy is

further re-normalized).

In this experiment we show the bias-variance trade-off handled by the eligibility trace

parameter λ, the communication-computation trade-off handled by the mini-batch size, and

the performance of FDPE compared to the existing algorithms that can be applied to this

scenario (namely Diffusion GTD2 and ALG2). The hyper-parameters chosen for FDPE are

τk = 1/9, H = 20, η = 0 and Nk = 215 +H − 1.

In figures 2.2(b) and 2.2(c) we show the bias and bias+variance curves as functions of λ

and its approximations using lemmas 2.1 and 2.2, respectively6. Note that the expressions

provided in Lemmas 2.1 and 2.2 accurately capture the dependence of the bias and variance

as functions of λ. The bias curve was calculated using (2.7) and (2.19). To estimate the

combined effects of the bias and variance we calculated ‖θ̂o(H,λ)− θ?‖2 (using expressions

(2.25)) 20 times with independently generated data and averaged the results. Note that

the obtained curves agree with our previous discussion on the effect of the parameter λ.

In this experiment, the optimal value is approximately λ = 0.6. Figure 2.2(d) shows how

communication and computation can be traded through the use of the mini-batch size. To

obtain this figure, we fixed λ = 0.6 and run FDPE until an error smaller than 10−10 was

obtained for the different batch sizes. For each case, the step-sizes were adjusted to maximize

performance for a fair comparison. Note that all points are Pareto optimal, and hence the

optimal choice of mini-batch size depends on every particular implementation. The y-axis

displays the amount of communication rounds that took place over the entire optimization

process, while the x-axis shows the amount of sample gradients calculated. Figure 2.2(e)

shows the empirical squared error for the three algorithms (each curve was obtained by

5Each RBF is given by exp
(
0.5
(
(x−xc)2 + (y− yc)2

))
, where xc and yc are the coordinates of the center

of that feature and x and y are the coordinates of the agent.

6The constants κ1, κ2, κ3 and κ4 were chosen to better fit the curves.

38

averaging the squared errors from all the agents), where clearly the linear convergence of

our algorithm can be seen. Finally, Figure 2.2(f) shows the mean square deviation (MSD),

i.e., ‖θek,0 − θ?‖2. As can be seen, our algorithm still outperforms the other algorithms in

terms of convergence speed. It also has the advantage that it converges to a lower error

(the dashed line) versus the other algorithms which converge to the dotted line, although

in this case since the variance is high this advantage is not very significant. Note that as

more data becomes available the variance of θ̂o(H,λ) becomes smaller (see Lemma 2.2) and

hence the advantages (in terms of convergence speed and the minimizer that the algorithms

converges to) of using FDPE over the other algorithms becomes more pronounced. The

remaining hyper-parameters for FDPE were: τk = 1/9, J = 210 (i.e., batch size equal to 32),

µθ = 6 and µω = 15. For Diffusion GTD2 and ALG2 decaying step-sizes were employed to

guarantee convergence. The step-sizes decayed as µ(1+0.01e)−1, where e is the epoch number

(we used this decaying rule because it provided the best results). The initial step-sizes were

µθ = 1.1 and µω = 2.75 for Diffusion GTD2, and µθ = 2.5 and µω = 4 for ALG2.

2.5.2 Experiment II

The second experiment relates to the MARL scenario of section 2.4. Similarly to [76], we

consider randomly generated MDP’s. We consider a random network of K = 15 agents. To

construct the network, K agents are randomly distributed in a unit square (using a uniform

distribution) and agents that are within a distance smaller than r = 0.27 become neighbors,

which results in a sparsely connected network. The resulting network is shown in Figure

2.3(a). The combination weights are determined according to the Metropolis rule which is

given by:

`nk =


1

max[|Nn|,|Nk|]
n ∈ Nk\{k}

1−
∑

m∈Nk\{k}
`mk n = k

(2.63)

The generated MDP’s have 50 states and 10 actions. The transition probabilities p(s′|s, a)

are zero with 0.98 probability and otherwise are sampled from a uniform distribution from

39

the interval [0,1]. The probabilities are further normalized. With this sampling strategy, we

produce realistic MDPs in which from any given state it is only possible to transition to a

small subset of the total states. The rewards r(s′|s, a) are zero with 0.99 probability and

otherwise are sampled from a Gaussian distribution with zero mean and standard deviation

equal to 10. This sampling strategy is also devised to produce more realistic MDPs where

rewards are obtained occasionally in specific state-action pairs. The entries of the target

policy π(a|s) are sampled from a uniform distribution and subsequently normalized. The

transition probabilities and target policy are sampled until Assumption 1 is satisfied. We set

the discount factor γ = 0.93 and the length of the feature vectors M = 5, where one feature

is set to 1 and the remaining ones are sampled from a uniform distribution with interval

[0, 1]. We generated N = 218 + H − 1 team transitions. The remaining parameters for the

learning algorithm are the following: H = 20, η = 10−3, U = I, θp = θo(H,λ) + θn (where θn

is a noise vector whose entries are sampled from a uniform distribution with variance equal

to 2.5× 10−5) and τk = 1/15.

We compare our algorithm with PD-distIAG from [58], Diffusion GTD2 and ALG2. In

this experiment, we test the on-policy case because PD-distIAG only works for this scenario.

In Figures 2.3(b) and 2.3(c), we show the bias variance trade-off as a function of λ (the

curves were obtained in the same manner as done in the previous experiment). Results are

consistent with the ones obtained in the previous section. In this particular case the most

convenient value is approximately λ = 0.8. In Figure 2.3(d) we compare the convergence

rates of the different algorithms to solve the empirical problem. The hyper-parameters of all

algorithms were tunned to maximize performance. The parameters for FDPE were: J = 212

(i.e., batch size equal to 64), µθ = 10 and µω = 10. For PD-distIAG we used the same

batch size, and the step-sizes were µθ = 1.15 and µω = 23. For Diffusion GTD2 and ALG2

decaying step-sizes were employed to guarantee convergence. The step-sizes decayed as

µ(1 + 0.01e)−1, where e is the epoch number (we used this decaying rule because it provided

the best results). The initial step-sizes were µθ = 15 and µω = 7.5 for Diffusion GTD2,

and the same values for ALG2. In this experiment FDPE, Diffusion GTD2 and ALG2 show

performance in accordance to our theory and the results in the previous section. PD-distIAG

40

shows a linear convergence rate in accordance to the theory from [58]. However, the rate

is slower than the one from our algorithm. Finally, in Figure 2.3(e) we show the MSD.

Again, the faster convergence of our algorithm to its empirical minimizer implies a faster

convergence in the MSD plot. In this case, the advantage of the parameter λ becomes more

noticeable. Note indeed that the minimizer obtained by FDPE is approximately one order

of magnitude smaller than the minimizer to which the other algorithms will converge (the

dotted line).

2.6 Summary

In this chapter we introduced the FDPE algorithm, a distributed policy evaluation algo-

rithm applicable to the MARL setting. This algorithm can be used as part of on-policy

algorithms for policy learning in MARL. As we mentioned in the introduction in chapter 1,

the disadvantage of this kind of algorithms is that they are data inefficient. This problems

is compounded in the case of MARL since the state and action spaces are larger. Therefore,

in the next chapter we consider the problem of sample efficient policy learning in MARL.

41

(a) MDP (b) Bias

(c) Bias variance trade-off (d) Communication vs computation

(e) Empirical error (f) Bias variance trade-off

Figure 2.2: In (b) and (c) the red curves are the approximations from lemmas 2.1 and 2.2. In
(e) and (f), the blue curve corresponds to FDPE and red and yellow correspond to Diffusion

GTD2 and ALG2, respectively. In (f) the dotted line is at ‖θ̂(H, λ = 0) − θ?‖2 while the

dashed line is at ‖θ̂(H,λ = 0.6)− θ?‖2.

42

(a) Network (b) Bias

(c) Bias variance trade-off (d) Empirical error

(e) Mean square deviation

Figure 2.3: In (b) and (c) the red curves are the approximations from lemmas 2.1 and 2.2.
In (d) and (e) the blue, purple, yellow and red curves correspond to FDPE, Diffusion GTD2,

ALG2 and PD-distIAG, respectively. In (e) the dotted line is at ‖θ̂(H,λ = 0) − θ?‖2 while

the dashed line is at ‖θ̂(H, λ = 0.6)− θ?‖2.

43

2.A Proof of theorem 2.1

We start by setting µ = µθ and introducing the following definitions:

ζk,i
∆
=

 θk,i

1√
υ
ωk,i

 , ζi
∆
= col{ζk,i}Kk=1, υ

∆
=
µω
µθ

(2.64a)

Gk
∆
= τk

 ηÛk −
√
υÂTk

√
υÂk υĈk

 , G ∆
= diag{Gk}Kk=1 (2.64b)

G
∆
=

K∑
k=1

Gk, pk
∆
= τk

 ηÛkθp

√
υbk

 , p
∆
= col{pk}Kk=1 (2.64c)

L̄
∆
= (L+ IK)/2, L̄ ∆

= L̄⊗ I2M , V ∆
= V ⊗ I2M (2.64d)

With these definitions, we write the update equations of Algorithm 1 in the form of equations

(2.44) (for both the primal and dual) in the following first order network-wide recursion:

ζi+1 = L̄ (ζi − µ (Gζi − p))− VYi (2.65a)

Yi+1 = Yi + Vζi+1 (2.65b)

for which Y0 = 0. Note that the variable Yi is a network-wide variable that includes both

yω and yθ.

Lemma 2.5. Recursion (2.65) has a unique fixed point (ζo,Yo), where Yo lies in the range

space of V. This fixed point satisfies the following conditions:

µL̄ (Gζo − p) + VYo = 0 (2.66a)

Vζo = 0 (2.66b)

It further holds that ζo = 1K ⊗ [θ̂oT , ω̂oT]T , where θ̂o and ω̂o are given by (2.37).

Proof. See appendix 2.G.

Subtracting ζo and Yo from (2.65) and defining the error quantities ζ̃i = ζo − ζi and

44

Ỹi = Yo − Yi we get:

 I 0

−V I

 ζ̃i+1

Ỹi+1

 =

 L̄ (I − µG) −V

0 I

 ζ̃i

Ỹi

 (2.67)

Multiplying by the inverse of the leftmost matrix we get:

 ζ̃i+1

Ỹi+1

 =

 L̄ (I − µG) −V

VL̄ (I − µG) L̄

 ζ̃i

Ỹi

 (2.68)

Lemma 2.6. Through a coordinate transformation applied to (2.68) we obtain the following

error recursion: x̄i+1

x̂i+1

 =

 I2M − µK−1G −µK− 1
2ITGHu

− µ√
K

(HT
l +HT

r V)L̄GI D1 − µ(HT
l +HT

r V)L̄GHu

 x̄i

x̂i

 (2.69)

where Hl,Hr,Hu,Hd ∈ R2KM×4KM−4M are some constant matrices, x̄i ∈ R2M , x̂i ∈ R2M

and D1 is a diagonal matrix with ‖D1‖2
2 = λ2(L̄) < 1. Furthermore x̄i and x̂i satisfy:

‖ζ̃i‖2 ≤ ‖x̄i‖2 + ‖Hu‖2‖x̂i‖2, ‖Ỹi‖2 ≤ ‖Hd‖2‖x̂i‖2 (2.70)

Proof. See Appendix 2.H.

Due to Theorem 2.1 from [77], if Assumption 2.4 and the following condition are satisfied:

υλmin(Ĉ) > ηλmax(Û) + 2

√
υλmin(Ĉ)λmax(ÂĈ−1ÂT) (2.71)

then matrix G is diagonalizable with strictly positive eigenvalues. Hence, we can write

45

G = ZΛGZ
−1. Therefore, defining x̌i = Z−1x̄i we can transform (2.69) into:

 x̌i+1

x̂i+1

 =

 I2M − µK−1ΛG −µK− 1
2Z−1ITGHu

−µ√
K

(HT
l +HT

r V)L̄GIZ D1 − µ(HT
l +HT

r V)L̄GHu

 x̌i

x̂i

 (2.72)

Lemma 2.7. If µ < K/ρ(ΛG) then the following inequality holds:

 ‖x̌i+1‖2

‖x̂i+1‖2


︸ ︷︷ ︸

∆
=zi+1

�

 ρ(I2M − µK−1ΛG) µa2

µ2a3

√
λ2(L̄) + µ2a4


︸ ︷︷ ︸

∆
=B(µ)

 ‖x̌i‖2

‖x̂i‖2

 (2.73)

where a2, a3 and a4 are positive constants.

Proof. See Appendix 2.I.

Computing the 1−norm on both sides of the above inequality and using the fact that

‖B(µ)zi‖1 ≤ ‖B(µ)‖1‖zi‖1 we get:

‖x̌i+1‖2 + ‖x̂i+1‖2 ≤ ‖B(µ)‖1(‖x̌i‖2 + ‖x̂i‖2) (2.74)

Iterating we get:

‖x̌i‖2 + ‖x̂i‖2 ≤ αi(‖x̌0‖2 + ‖x̂0‖2) (2.75)

α= max{ρ(I−µK−1ΛG) + µ2a3, λ2(L̄)
1
2 + µa2 + µ2a4} (2.76)

Recalling that x̌i = Z−1x̄i and (2.70) we get:

‖ζ̃i‖2 ≤ max{‖Z‖2, ‖Hu‖2}
(
‖x̌i‖2 + ‖x̂i‖2

)
≤ αiκ (2.77)

where κ = max{‖Z‖2, ‖Hu‖2} (‖x̌0‖2 + ‖x̂0‖2). Since α < 1 (for small enough µ) we conclude

that the iterates θk,i and ωk,i generated by Algorithm 2.1 converge linearly to (2.37) for every

agent k; which completes the proof.

46

2.B Proof of Theorem 2.2

We start by making a simplification in terms of notation for the sake of clarity. Since it is

clear that at this point we are dealing with the empirical problem (2.38) we will drop the

hat and refer to Âk,l, b̂k,l and Ĉk,l as Ak,l, bk,l and Ck,l respectively. We now rewrite the

equations the FDPE Algorithm as a unique network recursion as follows:

ζei+1 = L̄
(
ζ0

0 − µ
(
G0

0ζ
0
0 − t00

))
, for i = 0 and e = 0 (2.78a)

ζei+1 = L̄
(
2ζei − ζei−1 − µ

(
Ge
iζ

e
i − Ge

i−1ζ
e
i−1 − t0i + t0i−1

))
, for i > 0 and e = 0 (2.78b)

ζei+1 = L̄
(
2ζei − ζei−1 − µ

(
T (ζei)− G0

J−1ζ
0
J−1 − p+ t0J−1

))
, for i = 0 and e = 1 (2.78c)

ζei+1 = L̄
(
2ζei − ζei−1 − µ

(
T (ζei)− T (ζei−1)

))
, else (2.78d)

where we defined υ, µ, L̄ and L̄ are defined in the main document and we further define:

ζek,i
∆
=

 θek,i
1√
υ
ωek,i

 , φek,i
∆
=

 φθ,ek,i
1√
υ
φω,ek,i

 , ψe
k,i

∆
=

 ψθ,e
k,i

1√
υ
ψω,e
k,i

 (2.79a)

Gk
∆
= τk

 ηUk −
√
υATk

√
υAk υCk

 , G
∆
=

K∑
k=1

GK , pk
∆
= τk

 ηUkθp

√
υbk

 (2.79b)

tek,i
∆
= τk

 Uk,σe
k(i)θp

√
υbk,σe

k(i)

 , Ge
k,i

∆
= τk

 ηUk,σe
k(i) −

√
υATk,σe

k(i)

√
υAk,σe

k(i) υCk,σe
k(i)

 (2.79c)

T (ζek,i)
∆
= Ge

k,i(ζ
e
k,i − ζek,0) +

1

J

J∑
n=1

Ge−1
k,n ζ

e−1
k,n (2.79d)

ζei
∆
= col{ζe1,i, . . . , ζeK,i}, φei

∆
= col{φe1,i, . . . ,φeK,i}, ψe

i
∆
= col{ψe

1,i, . . . ,ψ
e
K,i} (2.79e)

G ∆
= diag{G1, · · · , GK}, p

∆
= col{p1, p2, · · · , pK} (2.79f)

Ge
i

∆
= diag{Ge

1,i, · · · ,Ge
K,i}, T (ζei)

∆
= col{T (ζe1,i), · · · ,T (ζeK,i)} (2.79g)

tei
∆
= col{te1,i, te2,i, · · · , teK,i} (2.79h)

we further clarify that the notation Ak,σe
k(i) refers to the k-th agent’s estimate of A using

all the samples from the σek(i)-th mini-batch (if no mini-batches are being used, Ak,σe
k(i) is

47

just a sample estimate, otherwise it’s the empirical average using the samples corresponding

to the σek(i)-th mini-batch). There are two reasons why we are getting four different update

equations in (2.78). In the first place, during the very first iteration (i.e., e = 0 and i = 0)

there’s no variance reduction or correction step, which accounts for (2.78a). In the rest of

the iterations within the first epoch (i.e., (2.78b)) there is a correction step, however there

is still no variance reduction. Update equation (2.78c) reflects the fact that during the

first iterate of the second epoch the old gradients in the correction step don’t have variance

reduction (yet the new ones do). Equation (2.78d) is for the rest of the recursions where

both the correction step and variance reduction are present. Note that (2.78) describes a

second order recursion. From here we take steps to rewrite the update equations as a first

order recursion driven by gradient noise.

Lemma 2.8. If Y0
0 is initialized to Y0

0 = 0, then recursion (2.78) is equivalent to:

ζei+1 =


L̄ (ζei − µ (Gζei − tei))− VYe

i , for e = 0

L̄ (ζei − µ (T (ζei)− p))− VYe
i , else

(2.80a)

Ye
i+1 = Ye

i + Vζei+1 (2.80b)

Proof. See subsection 2.B.1.

Note that (2.80) is analogous to equation (2.65) from the main document, with the

difference that in this case the gradients are subject to gradient noise. The first line in

(2.80a) accounts only for a finite number of updates. Therefore, to analyze the convergence

properties of the algorithm we only need to focus on the second line of (2.80a). In other

words, for the purpose of proving convergence we will only consider updates for e > 0.

Now we define the following error quantities and gradient noise:

ζ̃
e

i+1 = ζo − ζei+1 (2.81)

Ỹ
e

i+1 = Yo −Ye
i+1 (2.82)

s(ζei) = T (ζei)− Gζei (2.83)

48

Following steps (2.65) through (2.68) from the main document we get:

 ζ̃
e

i+1

Ỹ
e

i+1

 =

 L̄ (I − µG) −KV

VL̄ (I − µG) L̄

 ζ̃
e

i

Ỹ
e

i

+ µ

 L̄s(ζei)

VL̄s(ζei)

 (2.84)

Note that (2.84) has the same form as (2.68) from the main document plus a term due to the

gradient noise. Since the driving matrix in (2.84) has a structure that makes it difficult to

calculate its eigenstructure. We circumvent this issue by doing a coordinate transformation

as the following lemma indicates.

Lemma 2.9. Through a coordinate transformation, recursion (2.84) can be transformed to

obtain the following recursion:

 x̄ei+1

x̂ei+1

 =

 I2M − µGK−1 −K−1/2µITGHu

−µK−1/2(HT
l +HT

r V)L̄GI D1 − µ(HT
l +HT

r V)L̄GHu

 x̄ei
x̂ei


+ µ

 ITK−1/2

(HT
l +HT

r V)L̄

 s(ζei) (2.85)

where Hl,Hr,Hu,Hd ∈ R2KM×4KM−4M are some constant matrices and D1 is a diagonal

matrix with ‖D1‖2
2 = λ2(L̄) < 1. And also we have:

x̄ei
∆
= K−1/2IT ζ̃

e

i (2.86a)

x̂ei
∆
= HT

l ζ̃
e

i +HT
r Ỹ

e

i (2.86b)

I ∆
= 1K ⊗ I2M (2.86c)

Proof. See subsection 2.B.2.

Due to Theorem 2.1 from [77], if Assumption 4 and the following condition are satisfied:

υλmin(C) > ηλmax(U) + 2
√
υλmin(C)λmax(AC−1AT) (2.87)

then matrix G is diagonalizable with strictly positive eigenvalues. Hence, we can write

49

G = ZΛGZ
−1. Therefore, defining x̌i = Z−1x̄i we can transform (2.85) into:

 x̌ei+1

x̂ei+1

 =

 I2M − µK−1ΛG −µK− 1
2Z−1ITGHu

−µ√
K

(HT
l +HT

r V)L̄GIZ D1−µ(HT
l +HT

r V)L̄GHu

 x̌ei
x̂ei


+ µ

 Z−1ITK−1/2

(HT
l +HT

r V)L̄

 s(ζei) (2.88)

Lemma 2.10. If µ ≤ K/ρ(ΛG) then the following inequality holds:

 ‖x̄ei+1‖2

‖x̂ei+1‖2

 �
 1− µa1K

−1 µa2

µ2a6

√
λ2(L̄) + µ2a5

 ‖x̄ei‖2

‖x̂ei‖2


+ µ

 a3 ‖Hu‖2a3

µa7 µ‖Hu‖2a7

 ‖x̄ei − x̄e0‖2

‖x̂ei − x̂
e
0‖2


+ µ

 a4 ‖Hu‖2a4

µa8 µ‖Hu‖2a8

 1

J

J∑
n=1

 ‖x̄e−1
J − x̄e−1

n−1‖2

‖x̂e−1
J − x̂e−1

n−1‖2

 (2.89)

where a1 is the smallest eigenvalue of G and a2, a3, a4, a5, a6, a7 and a8 are positive

constants.

Proof. See Appendix 2.B.3.

Note that (2.89) is still not sufficient to prove convergence since we have no bounds for

the evolution of the norms of differences (for instance ‖x̄ei − x̄e0‖). The following lemma

solves this inconvenience.

Lemma 2.11. There exists a µ0 such that if the step-size µ satisfies µ < µ0 then it holds:


‖x̄e+1

0 ‖2

‖x̂e+1
0 ‖2

we

 �
 MJ

1 + µf1JM2M4(I −M1)−1 µJ

 a4 + µ2f2a3

µa8 + µ3f2a7


f1

[
1 ‖Hu‖2

]
M4(I −M1)−1 µ2f2



‖x̄e0‖2

‖x̂e0‖2

we−1


(2.90)

50

where f1 and f2 are positive scalars and we also defined:

we =
1

N

J−1∑
n=0

(
‖x̄eJ − x̄ej‖2 + ‖Hu‖2‖x̂eJ − x̂

e
j‖2
)

(2.91a)

M1 =

 1− µK−1a1 µa2

µ2a6

√
λ2(L̄) + µ2a5

 (2.91b)

M2 =

 a3 ‖Hu‖2a3

µa7 µ‖Hu‖2a7

 (2.91c)

M4 =

 3µ2K−2‖ΛG‖2 3µ2K−1‖Z−1ITGHu‖2

µ2a6 1−
√
λ2(L̄) + µ2a5

 (2.91d)

Proof. See Appendix 2.B.5.

Theorem 2.3. If the step-size µ is small enough then the iterates
[
‖x̄e+1

0 ‖2 ‖x̂e+1
0 ‖2 we

]
and ωek,0 generated by (2.90) converge linearly to

[
0 0 0

]
, with a rate upper bounded by

max[ρ(I − µK−1ΛG) +O(µ2),
√
λ2(L̄) +O(µ)].

Proof. See Appendix 2.B.7.

Finally definitions (2.86a), (2.81), (2.82) and the definitions of ζek,i and ζei in (2.79)

combined with Theorem 2.3 imply that the iterates θek,0 and ωek,0 generated by Fast Diffusion

for Policy Evaluation converge linearly to the saddle point of problem (2.38) for every agent

k; which completes the proof.

2.B.1 Proof of Lemma 2.8.

We initialize ζ0
0 in (2.80) to the same value used in (2.78) and Y0

0 = 0, hence for i = 0 and

e = 0 the claim is trivially true. Replacing the initial conditions in (2.78) and (2.80) for

e = 0 and i = 1 we get in both cases the same update, which is:

ζ0
1 = L̄

(
ζ0

0 − µQ
(
Gζ0

0 − t00
))

(2.92)

51

which proves the claim for e = 0 and i = 1. Now we prove the claim for e = 0 and i > 1

ζei+1 = L̄ (ζei − µQ (Gζei − tei))−KVYe
i

= L̄ (ζei − µQ (Gζei − tei))−KVYe
i + ζei − ζei

= L̄
(
ζei − ζei−1 − µQ

(
Gζei − Gζei−1 − tei + tei−1

))
−KV(Ye

i −Ye
i−1) + ζei

= L̄
(
2ζei − ζei−1 − µQ

(
Gζei − Gζei−1 − tei + tei−1

))
−KV(Ye

i −Ye
i−1) + (I − L̄)ζei

(a)
= L̄

(
2ζei − ζei−1 − µQ

(
Gζei − Gζei−1 − tei + tei−1

))
−KV(Ye

i −Ye
i−1) +KV2ζei

(b)
= L̄

(
2ζei − ζei−1 − µQ

(
Gζei − Gζei−1 − tei + tei−1

))
(2.93)

where in (a) we used the definition of V and in (b) we used (2.80b). For ζ1
1 we have

ζ1
1 = L̄

(
ζ1

0 − µQ
(
T (ζ1

0)− p
))
−KVY1

0

= L̄
(
ζ1

0 − µQ
(
T (ζ1

0)− p
))
−KVY1

0 + ζ1
0 − ζ1

0

= L̄
(
ζ1

0 − ζ0
J−1 − µQ

(
T (ζ1

0)− G0
J−1ζ

0
J−1 − p+ t0J−1)

))
−KV(Y1

0 −Y0
J−1) + ζ1

0

= L̄
(
2ζ1

0 − ζ0
J−1 − µQ

(
T (ζ1

0)− G0
J−1ζ

0
J−1 − p+ t0J−1)

))
−KV(Y1

0 −Y0
J−1) + (I − L̄)ζ1

0

= L̄
(
2ζ1

0 − ζ0
J−1 − µQ

(
T (ζ1

0)− G0
J−1ζ

0
J−1 − p+ t0J−1)

))
(2.94)

Finally, for e ≥ 1 we get

ζei+1 = L̄ (ζei − µQ (T (ζei)− p))−KVYe
i

= L̄ (ζei − µQ (T (ζei)− p))−KVYe
i + ζei − ζei

= L̄
(
ζei − ζei−1 − µQ

(
T (ζei)− T (ζei−1)

))
−KV(Ye

i −Ye
i−1) + ζei

= L̄
(
2ζei − ζei−1 − µQ

(
T (ζei)− T (ζei−1)

))
−KV(Ye

i −Ye
i−1) + (I − L̄)ζei

= L̄
(
2ζei − ζei−1 − µQ

(
T (ζei)− T (ζei−1)

))
−KV(Ye

i −Ye
i−1) +KV2ζei

= L̄
(
2ζei − ζei−1 − µQ

(
T (ζei)− T (ζei−1)

))
(2.95)

Note that (2.93), (2.94) and (2.95) coincide with (2.78). This completes the proof.

52

2.B.2 Proof of Lemma 2.9

This proof is a simple extension from the one presented in Appendix F of the main document.

Therefore we use the same matrix decomposition defined in the document to get:

H−1

 ζ̃
e

i+1

Ỹ
e

i+1

 =

(
D − µH−1

 L̄G 02KM×2KM

VL̄G 02KM×2KM


︸ ︷︷ ︸

∆
=T

H

)
H−1

 ζ̃
e

i

Ỹ
e

i

+ µH−1

 L̄
VL̄


︸ ︷︷ ︸

∆
=P

s(ζei)

(2.96)

We now define the new coordinates:

H−1

 ζ̃
e

i+1

Ỹ
e

i+1

 =


x̄ei+1

∆
= K−1/2IT ζ̃

e

i+1

x̃ei+1
∆
= K−1/2IT Ỹ

e

i+1

x̂ei+1
∆
= HT

l ζ̃
e

i+1 +HT
r Ỹ

e

i+1

 (2.97)

Expanding H−1P and following exactly the steps from Appendix F in the main document

we get the desired relation.

 x̄ei+1

x̂ei+1

 =

 I2M − µGK−1 −µITGHuK
−1/2

−µK−1/2(HT
l +HT

r V)L̄GI D1 − µ(HT
l +HT

r V)L̄GHu

 x̄ei
x̂ei


+ µ

 ITK−1/2

(HT
l +HT

r V)L̄

 s(ζei) (2.98)

2.B.3 Proof of Lemma 2.10

We start by stating the following useful Lemma.

53

Lemma 2.12. The following bounds hold:

∥∥ITs(ζei)
∥∥2 ≤ 2K max

k,n

(
‖G̃k,n‖2

)∥∥x̄e0 − x̄ei∥∥2
+ 2K max

k,n

(∥∥Gk,n

∥∥2)
J−1

J∑
n=1

∥∥x̄e−1
J − x̄e−1

n−1

∥∥2

+ 2K‖Hu‖2 max
k,n

(
‖G̃k,n‖2

)
‖x̂e0 − x̂

e
i‖

2

+ 2K‖Hu‖2J−1 max
k,n

(∥∥Gk,n

∥∥2
) J∑
n=1

∥∥x̂e−1
J − x̂e−1

n−1

∥∥2
(2.99)

∥∥(HT
l +HT

r V)L̄s(ζei)
∥∥2 ≤ 2

∥∥(HT
l +HT

r V)L̄
∥∥2

max
k,n

(∥∥G̃k,n

∥∥2)
·
(∥∥x̄e0 − x̄ei∥∥2

+ ‖Hu‖2‖x̂e0 − x̂
e
i‖2
)

+ 2
∥∥(HT

l +HT
r V)L̄

∥∥2
max
k,n

(∥∥Gk,n

∥∥2) 1

J

J∑
n=1

(∥∥x̄e0 − x̄ei∥∥2
+ ‖Hu‖2‖x̂e−1

n−1 − x̂
e−1
J ‖2

)
(2.100)

where G̃k,n =
(
G−Gk,n

)
.

Proof. See Appendix 2.B.4.

Now we expand the top recursion of (2.85) and take the squared norm on both sides of

the equation to get:

‖x̌ei+1‖2 =
∥∥ (I2M − µΛGK

−1
)
x̌ei − µZ−1ITGHuK

−1/2x̂ei + µZ−1ITK−
1
2s(ζei)

∥∥2
(2.101)

‖x̌ei+1‖2 =

∥∥∥∥tt (I2M − µΛGK
−1
)
x̌ei +

(1− t)/2
(1− t)/2

(
− µZ−1ITGHuK

− 1
2 x̂ei
)

+
(1− t)/2
(1− t)/2

µZ−1ITK−
1
2s(ζei)

∥∥∥∥2

(2.102)

‖x̌ei+1‖2
(a)

≤ t−1
∥∥(I2M − µΛGK

−1
)
x̌ei
∥∥2

+ 2(1− t)−1µ2K−1
∥∥Z−1ITGHux̂

e
i

∥∥2

+ 2(1− t)−1µ2K−1
∥∥Z−1ITs(ζei)

∥∥2
(2.103)

‖x̌ei+1‖2
(b)

≤ t−1
∥∥I2M − µΛGK

−1
∥∥2‖x̌ei‖2

+ 2(1− t)−1µ2K−1
∥∥Z−1ITGHux̂

e
i

∥∥2
+ 2(1− t)−1µ2K−1

∥∥Z−1ITs(ζei)
∥∥2

(2.104)

where t ∈ (0, 1). In (a) we used Jensen’s inequality and in (b) we used Schwarz inequality.

54

If µ < K/ρ(ΛG) then we can choose t = ‖I2M − µΛGK
−1‖ = 1 − µa1K

−1 < 1, where a1 is

the minimum eigenvalue of G:

a1 = ΛG,min (2.105)

Hence, we can write:

‖x̌ei+1‖2 ≤ (1− µa1K
−1)‖x̌ei‖2 + 4µa−1

1

∥∥Z−1ITGHux̂
e
i

∥∥2
+ µ4a−1

1

∥∥Z−1ITs(ζei)
∥∥2

(2.106)

≤ (1− µa1K
−1)‖x̌ei‖2 + µ 4a−1

1 ‖Z−1ITGHu‖2︸ ︷︷ ︸
∆
=a2

‖x̂ei‖
2 + µ4a−1

1 ‖Z−1‖2
∥∥ITs(ζei)

∥∥2

(c)

≤ (1− µa1K
−1)‖x̌ei‖2 + µa2 ‖x̂ei‖

2 + µ 8Ka−1
1 ‖Z−1‖2 max

k,n

(
‖G̃k,n‖2

)
︸ ︷︷ ︸

∆
=a3

∥∥x̌e0 − x̌ei∥∥2

+ µ 8Ka−1
1 ‖Z−1‖2 max

k,n

(∥∥Gk,n

∥∥2)︸ ︷︷ ︸
∆
=a4

J−1

J∑
n=1

∥∥x̌e−1
J − x̌e−1

n−1

∥∥2

+ µ8Ka−1
1 ‖Z−1‖2‖Hu‖2 max

k,n

(
‖G̃k,n‖2

)
‖x̂e0 − x̂

e
i‖

2

+ µ8Ka−1
1 ‖Z−1‖2‖Hu‖2 max

k,n

(∥∥Gk,n

∥∥2)
J−1

J∑
n=1

∥∥x̂e−1
J − x̂e−1

n−1

∥∥2

= (1− µa1K
−1)‖x̌ei‖2 + µa2 ‖x̂ei‖

2 + µa3

(∥∥x̌e0 − x̌ei∥∥2
+ ‖Hu‖2 ‖x̂e0 − x̂

e
i‖

2
)

+ µa4J
−1

J∑
n=1

(∥∥x̌e−1
J − x̌e−1

n−1

∥∥2
+ ‖Hu‖2

∥∥x̂e−1
J − x̂e−1

n−1

∥∥2
)

(2.107)

where in (c) we used (2.99). Note that the inequality obtained constitutes the top inequality

of (2.89). We now repeat the procedure for the bottom recursion of (2.89):

‖x̂ei+1‖2 =
∥∥− µK− 1

2 (HT
l +HT

r V)L̄GIZx̌ei +
(
D1 − µ(HT

l +HT
r V)L̄GHu

)
x̂ei

+ µ(HT
l +HT

r V)L̄s(ζei)
∥∥2

=

∥∥∥∥− (1− t)/3
(1− t)/3

µK−
1
2 (HT

l +HT
r V)L̄GIZx̌ei +

t

t
D1x̂

e
i

− (1− t)/3
(1− t)/3

(
µ(HT

l +HT
r V)L̄GHu

)
x̂ei

55

+
(1− t)/3
(1− t)/3

µ(HT
l +HT

r V)L̄s(ζei)

∥∥∥∥2

≤ 3(1− t)−1‖µK−
1
2 (HT

l +HT
r V)L̄GIZx̌ei‖2 + t−1‖D1x̂

e
i‖2

+ 3(1− t)−1‖µ(HT
l +HT

r V)L̄GHux̂
e
i‖2 + 3(1− t)−1‖µ(HT

l +HT
r V)L̄s(ζei)‖2

≤ 3(1− t)−1µ2K−1‖(HT
l +HT

r V)L̄GIZ‖2‖x̌ei‖2 + t−1‖D1‖2‖x̂ei‖2

+ 3(1− t)−1µ2‖(HT
l +HT

r V)L̄GHu‖2‖x̂ei‖2 + 3(1− t)−1µ2‖(HT
l +HT

r V)L̄s(ζei)‖2

(f)

≤
√
λ2(L̄)‖x̂ei‖2 + µ2 3‖(HT

l +HT
r V)L̄GHu‖2(

1−
√
λ2(L̄)

)
︸ ︷︷ ︸

∆
=a5

‖x̂ei‖2

+ µ2 3K−1‖(HT
l +HT

r V)L̄GIZ‖2

1−
√
λ2(L̄)︸ ︷︷ ︸

∆
=a6

‖x̌ei‖2

+ µ2
6
∥∥(HT

l +HT
r V)L̄

∥∥2
maxk,n

(∥∥G̃k,n

∥∥2
)

(
1−

√
λ2(L̄)

)
︸ ︷︷ ︸

∆
=a7

(∥∥x̌e0 − x̌ei∥∥2
+ ‖Hu‖2‖(x̂e0 − x̂

e
i)‖2

)

+ µ2
6
∥∥(HT

l +HT
r V)L̄

∥∥2
maxk,n

(∥∥Gk,n

∥∥2
)

(
1−

√
λ2(L̄)

)
︸ ︷︷ ︸

∆
=a8

J−1

·
J∑
n=1

(∥∥x̌e0 − x̌ei∥∥2
+ ‖Hu‖2‖(x̂e−1

n−1 − x̂
e−1
J)‖2

)
(2.108)

where in (f) we chose t = ‖D1‖ =
√
λ2(L̄) and used (2.100). Noting that the inequality

obtained constitutes the bottom inequality of (2.89) completes the proof.

56

2.B.4 Proof of Lemma 2.12

Now we proceed to bound the gradient noise related terms.

‖ITs(ζei)‖2 =
∥∥IT (T (ζei)− Gζei)

∥∥2
=

∥∥∥∥ K∑
k=1

T (ζek,i)−Gkζ
e
k,i

∥∥∥∥2 (a)

≤
K∑
k=1

K‖T̂ (ζek,i)−Gkζ
e
k,i‖2

(2.109)

where in (a) we used Jensen’s inequality. Next we analyze the individual terms
∥∥T (ζek,i) −

Gkζ
e
k,i

∥∥2
:

∥∥T (ζek,i)−Gkζ
e
k,i

∥∥2
=

∥∥∥∥Ge
k,i(ζ

e
k,i − ζek,0) +

1

J

J∑
n=1

Ge−1
k,n ζ

e−1
k,n−1 −Gkζ

e
k,i

∥∥∥∥2

(b)
=

∥∥∥∥Ge
k,i(ζ

e
k,i − ζek,0) +Gk

(
ζek,0 − ζe−1

k,N̂

)
+

1

J

J∑
n=1

Ge−1
k,n ζ

e−1
k,n−1 −Gkζ

e
k,i

∥∥∥∥2

=

∥∥∥∥Ge
k,i(ζ

e
k,i − ζek,0) +Gk

(
ζek,0 − ζek,i

)
+

1

J

J∑
n=1

Ge−1
k,n

(
ζe−1
k,n−1 − ζ

e−1
k,J

) ∥∥∥∥2

(c)
=

∥∥∥∥ (Gk −Ge
k,i

)
(ζek,0 − ζek,i) +

1

J

J∑
n=1

Ge−1
k,n

(
ζe−1
k,n−1 − ζ

e−1
k,J

) ∥∥∥∥2

(d)

≤ 2
∥∥∥G̃e

k,i(ζ
e
k,0 − ζek,i)

∥∥∥2

+
2

J

J∑
n=1

∥∥∥Ge−1
k,n

(
ζe−1
k,n−1 − ζ

e−1
k,J

) ∥∥∥2

(e)

≤ 2
∥∥G̃e

k,i

∥∥2∥∥ζek,0 − ζek,i∥∥2
+

2

J

J∑
n=1

∥∥Ge−1
k,n

∥∥2∥∥ζe−1
k,n−1 − ζ

e−1
k,J

∥∥2

≤ 2 max
n

(∥∥G̃k,n

∥∥2
)∥∥ζek,0 − ζek,i∥∥2

+ max
n

(∥∥Gk,n

∥∥2) 2

J

J∑
n=1

∥∥ζe−1
k,n−1 − ζ

e−1
k,J

∥∥2
(2.110)

where in (b) we used the fact that ζek,0 = ζe−1

k,N̂
, in (c) we defined Gk −Ge

k,i = G̃
e

k,i, in (d)

we used Jensen’s inequality and in (e) we used Schwarz inequality. Combining (2.109) and

57

(2.110) we get:

‖ITs(ζei)‖2 ≤
K∑
k=1

K

(
2 max

n

(∥∥G̃k,n

∥∥2
)∥∥ζek,0 − ζek,i∥∥2

+ max
n

(∥∥Gk,n

∥∥2
) 2

J

J∑
n=1

∥∥ζe−1
k,n−1 − ζ

e−1
k,J

∥∥2
)

(a)

≤ 2K max
k,n

(
‖G̃k,n‖2

)∥∥ζe0 − ζei∥∥2
+

2K

J
max
k,n

(∥∥Gk,n

∥∥2
) J∑
n=1

∥∥ζe−1
n−1 − ζe−1

J

∥∥2

= 2K max
k,n

(
‖G̃k,n‖2

)∥∥ζ̃ei − ζ̃e0∥∥2
+

2K

J
max
k,n

(∥∥Gk,n

∥∥2
) J∑
n=1

∥∥ζ̃e−1

J − ζ̃
e−1

n−1

∥∥2

(2.111)

where in (a) we used Hölder’s inequality. Now we need an equation relating
∥∥ζ̃ei − ζ̃e0∥∥ with∥∥x̄e0 − x̄ei∥∥ and ‖x̂e0 − x̂

e
i‖ which we get as follows:

∥∥ζ̃ei − ζ̃e0∥∥2 (a)
=
∥∥K−1/2I(x̄e0 − x̄ei) +Hu(x̂

e
0 − x̂

e
i)
∥∥2 (b)

= K−1
∥∥I(x̄e0 − x̄ei)

∥∥2
+
∥∥Hu(x̂

e
0 − x̂

e
i)
∥∥2

(c)

≤
∥∥x̄e0 − x̄ei∥∥2

+ ‖Hu‖2‖(x̂e0 − x̂
e
i)‖2 (2.112)

where in (a) we used (2.97), in (b) we used ITHu = 0, in (c) we used the fact that the

maximum eigenvalue of ITI is K. Combining (2.111) and (2.112) we finally get:

‖ITs(ζei)‖2 ≤ 2K max
k,n

(
‖G̃k,n‖2

)∥∥x̄e0 − x̄ei∥∥2
+ 2K max

k,n

(∥∥Gk,n

∥∥2
)
J−1

J∑
n=1

∥∥x̄e−1
J − x̄e−1

n−1

∥∥2

+ 2K‖Hu‖2 max
k,n

(
‖G̃k,n‖2

)
‖x̂e0 − x̂

e
i‖

2

+ 2K‖Hu‖2J−1 max
k,n

(∥∥Gk,n

∥∥2
) J∑
n=1

∥∥x̂e−1
J − x̂e−1

n−1

∥∥2
(2.113)

58

which is (2.99). We now proceed to bound the other noise term.

‖(HT
l +HT

r V)L̄s(ζei)‖2 =
∥∥(HT

l +HT
r V)L̄ (T (ζei)− Gζei)

∥∥2

≤
∥∥(HT

l +HT
r V)L̄

∥∥2 ‖T (ζei)− Gζei‖
2

=
∥∥(HT

l +HT
r V)L̄

∥∥2

∥∥∥∥∥∥∥∥∥


T (ζe1,i)−G1ζ

e
1,i

...

T (ζeK,i)−GKζ
e
K,i


∥∥∥∥∥∥∥∥∥

2

=
∥∥(HT

l +HT
r V)L̄

∥∥2
K∑
k=1

∥∥T (ζek,i)−Gkζ
e
k,i

∥∥2

(a)

≤ 2
∥∥(HT

l +HT
r V)L̄

∥∥2
K∑
k=1

(
max
n

(∥∥G̃k,n

∥∥2
)∥∥ζek,0 − ζek,i∥∥2

+ max
n

(∥∥Gk,n

∥∥2) 1

J

J∑
n=1

∥∥ζe−1
k,n−1 − ζ

e−1
k,J

∥∥2
)

(b)

≤ 2
∥∥(HT

l +HT
r V)L̄

∥∥2
(

max
k,n

(∥∥G̃k,n

∥∥2)∥∥ζe0 − ζei∥∥2
+ max

k,n

(∥∥Gk,n

∥∥2) 1

J

J∑
n=1

∥∥ζe−1
n−1 − ζe−1

J

∥∥2
)

(c)

≤ 2
∥∥(HT

l +HT
r V)L̄

∥∥2

[
max
k,n

(∥∥G̃k,n

∥∥2) (∥∥x̄e0 − x̄ei∥∥2
+ ‖Hu‖2‖(x̂e0 − x̂

e
i)‖2

)
+ max

k,n

(∥∥Gk,n

∥∥2) 1

J

J∑
n=1

(∥∥x̄e0 − x̄ei∥∥2
+ ‖Hu‖2‖(x̂e−1

n−1 − x̂
e−1
J)‖2

)]
(2.114)

where in (a) we used (2.110), in (b) we used Hölder’s inequality and in (c) we used (2.112).

Note that the bound obtained is (2.100).

59

2.B.5 Proof Lemma 2.11

We start by introducing the definitions

yej
∆
=

 ‖x̄ej‖2

‖x̂ej‖2

 (2.115a)

zej
∆
=

 ‖x̄ej − x̄e0‖2

‖x̂ej − x̂
e
0‖2

 (2.115b)

wej
∆
=

 ‖x̄eJ − x̄ej‖2

‖x̂eJ − x̂
e
j‖2

 (2.115c)

M1
∆
=

 1− µa1K
−1 µa2

µ2a6

√
λ2(L̄) + µ2a5

 (2.115d)

M2
∆
=

 a3 ‖Hu‖2a3

µa7 µ‖Hu‖2a7

 =

 a3

µa7

 1

‖Hu‖2

T (2.115e)

M3
∆
=

 a4 ‖Hu‖2a4

µa8 µ‖Hu‖2a8

 =

 a4

µa8

 1

‖Hu‖2

T (2.115f)

2.B.5.1 Bound for yej

We iterate equation (2.89) to get

yej �M1

(
M1y

e
j−2 + µM2z

e
j−2 + µ

1

J

J−1∑
n=0

M3w
e−1
n

)
+ µM2z

e
j−1 + µM3

1

J

J−1∑
n=0

we−1
n

= M2
1 y

e
j−2 + µ

2∑
n=1

Mn−1
1 M2z

e
j−n + µ

1∑
k=0

Mk
1M3

1

J

J−1∑
n=0

we−1
n

�M j
1y

e
0 + µ

j∑
n=1

Mn−1
1 M2z

e
j−n + µ

j−1∑
k=0

Mk
1M3

1

J

J−1∑
n=0

we−1
n (2.116)

60

Now we impose the following conditions on µ:

(1− µK−1a1)a3 + µ2a2a7 ≤ a3 → µ ≤ a1a3

Ka2a7

(2.117a)√
λ2(L̄)a7 + µa3a6 + µ2a5a7 ≤ a7 (2.117b)

(1− µK−1a1)a4 + µ2a2a8 ≤ a4 → µ ≤ a1a4

Ka2a8

(2.117c)√
λ2(L̄)a8 + µa4a6 + µ2a5a8 ≤ a8 (2.117d)

Notice that since constants a1 through a8 are all strictly positive, there’s always a step-size

µ small enough such that the above conditions are satisfied. These conditions imply that

the following entry-wise matrix inequalities hold:

M1M2 =

 1− µK−1a1 µa2

µ2a6

(√
λ2(L̄) + µ2a5

)
 a3

µa7

 1

‖Hu‖2

T

=

 (1− µK−1a1)a3 + µ2a2a7

µ2a3a6 +
(√

λ2(L̄) + µ2a5

)
µa7

 1

‖Hu‖2

T�
 a3

µa7

 1

‖Hu‖2

T = M2

(2.118)

M1M3 =

 1− µK−1a1 µa2

µ2a6

(√
λ2(L̄) + µ2a5

)
 a4

µa8

 1

K

T

=

 (1− µK−1a1)a4 + µ2a2a8

µ2a4a6 +
(√

λ2(L̄) + µ2a5

)
µa8

 1

‖Hu‖2

T�
 a4

µa8

 1

‖Hu‖2

T = M3

(2.119)

and hence we can write:

yej �M j
1y

e
0 + µM2

j−1∑
n=1

zen + µjM3
1

J

J−1∑
n=0

we−1
n (2.120)

61

2.B.5.2 Bound for zej

We can proceed to get a similar inequality for zej . For this we start by using the top equation

of (2.88):

x̌ei+1 − x̌ei = −µΛGK
−1x̌ei − µZ−1ITGHuK

−1/2x̂ei + µZ−1ITK−1/2s(ζei) (2.121)

Using the above equation we can write the following expression for x̌ei+1 − x̌e0:

x̌ei+1 − x̌e0 =
i∑

j=0

x̌ej+1 − x̌ej = µ

i∑
j=0

−ΛGK
−1x̌ej − Z−1ITGHuK

−1/2x̂ej + Z−1ITK−1/2s(ζej)

(2.122)

Taking squared norm on both sides we get:

‖x̌ei+1 − x̌e0‖2 = µ2

∥∥∥∥∥
i∑

j=0

−ΛGK
−1x̌ej − Z−1ITGHuK

−1/2x̂ej + Z−1ITK−1/2s(ζej)

∥∥∥∥∥
2

(a)

≤ 3µ2(i+ 1)
i∑

j=0

(
K−2‖ΛGx̌

e
j‖2 +K−1‖Z−1ITGHu‖2‖x̂ej‖2

+K−1‖Z−1ITs(ζej)‖2
)

(b)

≤ 3µ2(i+ 1)
i∑

j=0

(
K−2‖ΛG‖2‖x̌ej‖2 +K−1‖Z−1ITGHu‖2‖x̂ej‖2

+K−1‖Z−1‖2‖ITs(ζej)‖2
)

(c)

≤ 3µ2(i+ 1)

(
i∑

j=0

K−2‖ΛG‖2‖x̌ej‖2 +K−1‖Z−1ITGHu‖2‖x̂ej‖2

+ 2‖Z−1‖2 max
k,n

(
‖G̃k,n‖2

)∥∥x̌e0 − x̌ej∥∥2

+ 2‖Z−1‖2 max
k,n

(∥∥Gk,n

∥∥2)
J−1

J∑
n=1

∥∥x̌e−1
J − x̌e−1

n−1

∥∥2

+ 2‖Z−1‖2‖Hu‖2 max
k,n

(
‖G̃k,n‖2

) ∥∥x̂e0 − x̂ej∥∥2

62

+ 2‖Z−1‖2‖Hu‖2 max
k,n

(∥∥Gk,n

∥∥2)
J−1

J∑
n=1

∥∥x̂e−1
J − x̂e−1

n−1

∥∥2

)
(2.123)

where in (a) we used the Jensen’s inequality, in (b) Cauchy-Schawrtz inequality and in (c)

we used (2.99). We now proceed in a similar fashion to get an inequality for ‖x̂ei+1 − x̂
e
0‖2.

x̂ei+1 − x̂
e
i = −µK−1/2(HT

l +HT
r V)L̄GIZx̌ei + [D1 − I4M(K−1) − µ(HT

l +HT
r V)L̄GHu]x̂

e
i

+ µ(HT
l +HT

r V)L̄s(ζei) (2.124)

Similarly, as we did before, we get

‖x̂ei+1 − x̂
e
0‖2 =

∥∥∥∥ i∑
j=0

−µK−
1
2 (HT

l +HT
r V)L̄GIZx̌ej + [D1 − I − µ(HT

l +HT
r V)L̄GHu]x̂

e
j

+ µ(HT
l +HT

r V)L̄s(ζei)

∥∥∥∥2

(a)
= (i+ 1)

i∑
j=0

∥∥− µK− 1
2 (HT

l +HT
r V)L̄GIZx̌ej + (D1 − I)x̂ej

− µ(HT
l +HT

r V)L̄GHux̂
e
j + µ(HT

l +HT
r V)L̄s(ζei)

∥∥2

(b)

≤ (i+ 1)

(
1−

√
λ2(L̄) + µ2a5

) i∑
j=0

‖x̂ej‖2 + µ2(i+ 1)a6

i∑
j=0

‖x̌ej‖2

+ µ2(i+ 1)a7

i∑
j=0

(∥∥x̌e0 − x̌ej∥∥2
+ ‖Hu‖2‖(x̂e0 − x̂

e
j)‖2

)
+ µ2a8(i+ 1)2J−1

J∑
n=1

(∥∥x̌e0 − x̌en∥∥2
+ ‖Hu‖2‖(x̂e−1

n−1 − x̂
e−1
J)‖2

)
(2.125)

63

where in (a) we used Jensen’s inequality and in (b) we reused the calculation of the norm in

(2.108). Now combining (2.123) and (2.125) in matrix form we get the following inequality

zei+1 � (i+ 1)

 3µ2K−2‖ΛG‖2 3µ2K−1‖Z−1ITGHu‖2

µ2a6 1−
√
λ2(L̄) + µ2a5


︸ ︷︷ ︸

∆
=M4

i∑
j=0

yej

+ (i+ 1)µ2

 6‖Z−1‖2 maxk,n (‖Gk,n‖2)

a7

 1

‖Hu‖2

T
︸ ︷︷ ︸

∆
=M5

i∑
j=0

zej

+ (i+ 1)2µ2

 6‖Z−1‖2 maxk,n
(∥∥Gk,n

∥∥2)
a8

 1

‖Hu‖2

T
︸ ︷︷ ︸

∆
=M6

J−1

J−1∑
n=0

we−1
n (2.126)

Combining (2.120) and (2.126) we get:

zei+1 � (i+ 1)M4

i∑
j=0

(
M j

1y
e
0 + µM2

j−1∑
n=0

zen + µjM3
1

J

J−1∑
n=0

we−1
n

)
+ (i+ 1)µ2M5

i∑
j=0

zej

+ (i+ 1)2µ2M6
1

J

J−1∑
n=0

we−1
n

= (i+ 1)M4

i∑
j=0

M j
1y

e
0 + (i+ 1)µM4M2

i∑
j=1

j−1∑
n=0

ben + (i+ 1)µ2M5

i∑
j=0

zej

+ (i+ 1)µ

(
(i+ 1)i

2
M4M3 + (i+ 1)µM6

)
1

J

J−1∑
n=0

we−1
n

= (i+ 1)M4

i∑
j=0

M j
1y

e
0 + (i+ 1)µ

i∑
j=0

((i− j)M4M2 + µM5)zej

+ (i+ 1)2µ

(
i

2
M4M3 + µM6

)
1

J

J−1∑
n=0

we−1
n

� (i+ 1)M4

i∑
j=0

M j
1y

e
0 + (i+ 1)µ(iM4M2 + µM5)

i∑
j=0

zej

+ (i+ 1)2µ

(
i

2
M4M3 + µM6

)
1

J

J−1∑
n=0

we−1
n

64

� (i+ 1)M4(I −M1)−1ye0 + (i+ 1)µ(iM4M2 + µM5)
i∑

j=0

zej

+ (i+ 1)2µ

(
i

2
M4M3 + µM6

)
1

J

J−1∑
n=0

we−1
n (2.127)

Summing across all zei terms in an epoch we get:

1

J

J∑
i=1

zei �
J + 1

2
M4(I −M1)−1ye0 + µ(J + 1)

J

2
(µM5 + JM4M2)

1

J

J∑
i=1

zei

+ µ
J + 1

2
J

(
J

2
M4M3 + µM6

)
1

J

J−1∑
n=0

we−1
n (2.128)

2.B.6 Bound for wej

We now proceed to obtain a recursion for wei . Similarly, as we did in (2.126) but summing

from i to J − 1, we write:

wei � (J − i)M4

J−1∑
j=i

yej + (J − i)µ2M5

J−1∑
j=i

zei + (J − i)2µ2M6J
−1

J∑
n=1

we−1
n−1

� (J − i)M4

J−1∑
j=i

(
M j

1y
e
0 + µM2

j−1∑
n=0

zen + µjM3
1

J

J∑
n=1

we−1
n−1

)

+ (J − i)µ2M5

J−1∑
j=i

zej + (J − i)2µ2M6J
−1

J∑
n=1

we−1
n−1

= (J − i)M4

J−1∑
j=i

M j
1y

e
0 + (J − i)µM4M2

J−1∑
j=i

j−1∑
n=0

zen + (J − i)µ2M5

J−1∑
j=i

zej

+ (J − i)2

(
µ2M6 + µ

(J − 1 + i)

2
M4M3

)
J−1

J∑
n=1

we−1
n−1

= (J − i)M4

J−1∑
j=i

M j
1y

e
0 + (J − i)µM4M2

J−2∑
j=1

min(J − i, J − j − 1)zej + (J − i)µ2M5

J−1∑
j=i

zej

+ (J − i)2

(
µ2M6 + µ

(J − 1 + i)

2
M4M3

)
J−1

J∑
n=1

we−1
n−1

� (J − i)M4

J−1∑
j=i

M j
1y

e
0 + (J − i)2µM4M2

J−2∑
j=1

zej + (J − i)µ2M5

J−1∑
j=i

zej

65

+ µ(J − i)2

(
µM6 +

(J − 1 + i)

2
M4M3

)
J−1

J∑
n=1

we−1
n−1

� (J − i)M4(I −M1)−1ye0 + (J − i)2µM4M2

J−2∑
j=1

zej + (J − i)µ2M5

J−1∑
j=i

zej

+ µ(J − i)2

(
µM6 +

(J − 1 + i)

2
M4M3

)
J−1

J∑
n=1

we−1
n−1 (2.129)

Summing we finally get:

1

J

J−1∑
i=0

wei � J−1

J−1∑
i=0

(J − i)M4(I −M1)−1ye0 +
1

J

J−1∑
i=0

(J − i)2µM4M2

J−2∑
j=1

zej

+
1

J

J−1∑
i=0

(J − i)µ2M5

J−1∑
j=i

zej

+ J−1

J−1∑
i=0

µ(J − i)2

(
µM6 +

(J − 1 + i)

2
M4M3

)
1

J

J∑
n=1

we−1
n−1

= J−1

J∑
i=1

iM4(I −M1)−1ye0 +
J∑
i=1

i2µM4M2
1

J

J∑
j=1

zej +
J−1∑
i=0

(J − i)µ2M5
1

J

J−1∑
j=i

zej

+ J−1µ
J∑
i=1

i2 (µM6 + (J − 1)M4M3)
1

J

J∑
n=1

we−1
n−1

� J−1

J∑
i=1

iM4(I −M1)−1ye0 +
J∑
i=1

i2µM4M2
1

J

J∑
j=1

zej +
J∑
i=1

iµ2M5
1

J

J−1∑
j=1

zej

+ J−1µ

J∑
i=1

i2 (µM6 + (J − 1)M4M3)
1

J

J∑
n=1

we−1
n−1

� J + 1

2
M4(I −M1)−1ye0 + µ(J + 1)

J

2

(
µM5 + JM4M2

) 1

J

J∑
j=1

zej

+ µ(J + 1)
J

2
(µM6 + (J − 1)M4M3)

1

J

J∑
n=1

we−1
n−1 (2.130)

At this point we have recursions for ye+1
0 , J−1

∑J
i=1 z

e
i and J−1

∑J−1
i=0 w

e
i which we rewrite

66

for convenience.

ye+1
0 �MJ

1 y
e
0 + µJM2

1

J

J∑
i=1

zei + µJM3
1

J

J−1∑
i=0

we−1
i (2.131)

1

J

J∑
i=1

zei �
J + 1

2
M4(I −M1)−1ye0 + µ(J + 1)

J

2

(
µM5 + JM4M2

) 1

J

J∑
i=1

zei

+ µ(J + 1)
J

2

(
µM6 + JM4M3

) 1

J

J−1∑
i=0

we−1
i (2.132)

1

J

J−1∑
i=0

wei �
J + 1

2
M4(I −M1)−1ye0 + µ(J + 1)

J

2

(
µM5 + JM4M2

) 1

J

J∑
i=1

zei

+ µ(J + 1)
J

2

(
µM6 + JM4M3

) 1

J

J−1∑
i=0

we−1
i (2.133)

We now make the following definitions:

ye
∆
= ye0 ∈ R2 (2.134a)

ze
∆
=
[

1 ‖Hu‖2

]
J−1

J∑
n=1

zen ∈ R (2.134b)

we
∆
=
[

1 ‖Hu‖2

]
J−1

J−1∑
n=0

wen ∈ R (2.134c)

Noting that

µM5 + JM4M2 = µ


6‖Z−1‖2 maxk,n(‖Gk,n‖2)

+3µJ
(
K−2‖ΛG‖2a3 + µa7K

−1‖Z−1ITGHu‖2
)

a7 + J
(
µa3a6 + a7

(
1−

√
λ2(L̄) + µ2a5

))


︸ ︷︷ ︸

∆
=

 t1

t2



 1

‖Hu‖2

T

(2.135)

67

µM6 + JM4M3 = µ


6‖Z−1‖2 maxk,n(‖Gk,n‖2)

+3µJ
(
K−2‖ΛG‖2a4 + µa8K

−1‖Z−1ITGHu‖2
)

a8 + J
(
µa4a6 + a8

(
1−

√
λ2(L̄) + µ2a5

))


︸ ︷︷ ︸

∆
=

 t3

t4



 1

‖Hu‖2

T

(2.136)

using (2.115e) and (2.115f) and multiplying both sides of (2.132) and (2.133) by
[

1 ‖Hu‖2

]
we get:

ye+1 �MJ
1 y

e + µJ

 a3

µa7

 ze + µJ

 a4

µa8

we−1 (2.137)

ze ≤ J + 1

2

 1

‖Hu‖2

T M4(I −M1)−1ye

+ µ2(J + 1)
J

2
(t1 + ‖Hu‖2t2)ze + µ2(J + 1)

J

2
(t3 + ‖Hu‖2t4)we−1 (2.138)

we ≤ J + 1

2

 1

‖Hu‖2

T M4(I −M1)−1ye + µ2(J + 1)
J

2
(t1 + ‖Hu‖2t2)ze

+ µ2(J + 1)
J

2
(t3 + ‖Hu‖2t4)we−1 (2.139)

we now impose the following constraint on µ:

µ <

√
2

(J + 1)J(t1 + ‖Hu‖2t2)
(2.140)

which implies that (1− µ2K−1(J + 1)J(t1 + ‖Hu‖2t2)) > 0 and hence we can derive the

68

following inequality for ze:

(
1− µ22−1(J + 1)J(t1 + ‖Hu‖2t2)

)︸ ︷︷ ︸
∆
=d1

ze ≤ 2−1(J + 1)
([

1 ‖Hu‖2

]
M4(I −M1)−1ye

+ µ2J(t3 + ‖Hu‖2t4)we
)

(2.141)

ze ≤ 2−1(J + 1)

d1

([
1 ‖Hu‖2

]
M4(I −M1)−1ye + µ2J(t3 + ‖Hu‖2t4)we−1

)
(2.142)

Replacing (2.142) into (2.137) and (2.139) we get

ye+1 �
(
MJ

1 + µ(2d1)−1(J + 1)JM2M4(I −M1)−1
)
ye

+ µJ

 a4

µa8

+ µ2J(2d1)−1(J + 1)(t3 + ‖Hu‖2t4)

 a3

µa7

we−1 (2.143)

we ≤ J + 1

2

(
1 + µ2(2d1)−1(J + 1)J(t1 + ‖Hu‖2t2)

) 1

‖Hu‖2

T M4(I −M1)−1ye

+ µ2(J + 1)
J

2
(t3 + ‖Hu‖2t4)

(
1 + µ2(2d1)−1(J + 1)J(t1 + ‖Hu‖2t2)

)
we−1

=
J + 1

2d1


 1

‖Hu‖2

T M4(I −M1)−1ye + µ2J(t3 + ‖Hu‖2t4)we−1

 (2.144)

Or written in matrix form:

 ye+1

we

 �
 MJ

1 + µf1JM2M4(I −M1)−1 µJ

 a4 + µ2f2a3

µa8 + µ3f2a7


f1

[
1 ‖Hu‖2

]
M4(I −M1)−1 µ2f2


 ye

we−1

 (2.145)

where we defined:

f1
∆
= (2d1)−1(J + 1) (2.146a)

f2
∆
= (2d1)−1(J + 1)J(t3 + ‖Hu‖2t4) (2.146b)

which completes the proof.

69

2.B.7 Proof Theorem 2.3

We start by multiplying both sides of (2.145) by
[

1 1 µε
]

as follows


1

1

µε


T 
‖x̌e+1

0 ‖2

‖x̂e+1
0 ‖2

we

 ≤ [b1 b2 µεb3

]
‖x̌e0‖2

‖x̂e0‖2

we−1

 ≤ max(b1, b2, b3)


1

1

µε


T 
‖x̌e0‖2

‖x̂e0‖2

we−1


(2.147)

where ε is positive constant which we will define later and b1, b2 and b3 are:

[
b1 b2

]
=
[

1 1
]
MJ

1 + µf1

(
J
[

1 1
]
M2 + ε

[
1 ‖Hu‖2

])
M4(I −M1)−1

=
[

1 1
]
MJ

1 + µf1 (J(a3 + µa7) + ε)
[

1 ‖Hu‖2

]
M4(I −M1)−1 (2.148)

b3 = ε−1J(a4 + µ2f2a3) + ε−1J(µa8 + µ3f2a7) + µ2f2 = ε−1J(a4 + µa8) +O(µ2)

(2.149)

Note that if we constrain the step-size µ to be small enough so that 1− µK−1a1 + µ2a6 < 1

and
√
λ2(L̄) + µ2a5 + µa2 < 1, we get that

[
1 1

]
MJ

1 �
[

1 1
]
M1 and hence we can

further write:

[
b1 b2

]
�
[

1 1
]
M1 + µf1 (J(a3 + µa7) + ε)

[
1 ‖Hu‖2

]
M4(I −M1)−1 (2.150)

The objective now is to prove that max(b1, b2, b3) < 1 and hence the algorithm converges

linearly to the minimizer. We now proceed to obtain expressions for b1 and b2. For this, we

70

expand the terms in (2.150). For this we expand
[

1 ‖Hu‖2

]
M4(I −M1)−1:

(I −M1)−1 =

 µK−1a1 −µa2

−µ2a6 1−
√
λ2(L̄)− µ2a5

−1

=
1

a1K
−1
(

1−
√
λ2(L̄)− µ2a5

)
− µ2a2a6︸ ︷︷ ︸

∆
=d2

 1−
√
λ2(L̄)

µ
− µa5 a2

µa6 K−1a1

 (2.151)

 1

‖Hu‖2

T M4(I −M1)−1

=
1

d2

 3µ2K−2‖ΛG‖2 + µ2a6‖Hu‖2

3µ2K−1‖Z−1ITGHu‖2 + ‖Hu‖2
(

1−
√
λ2(L̄) + µ2a5

)
T

·

 1−
√
λ2(L̄)

µ
− µa5 a2

µa6 K−1a1



=
1

d2



µ
(

1−
√
λ2(L̄)

)
(3K−2‖ΛG‖2 + 2a6‖Hu‖2)

+3µ3
(
a6K

−1‖Z−1ITGHu‖2 −K−2‖ΛG‖2a5

)
K−1‖Hu‖2

(
1−

√
λ2(L̄)

)
a1 + µ2(3K−2‖ΛG‖2 + a6‖Hu‖2)a2

+µ2
(
K−1‖Z−1ITGHu‖2 + a5‖Hu‖2

)
K−1a1



T

(2.152)

Now using (2.150) and (2.152) and setting ε = J(a4+µa8)
1−µK−1a1+µ2a6

we can write the following

expressions for b1, b2 and b3:

b1 = 1− µK−1a1 +O(µ2) (2.153a)

b2 =
√
λ2(L̄) +O(µ) (2.153b)

b3 = 1− µK−1a1 +O(µ2) (2.153c)

71

From (2.153a) and (2.153c) it is clear that for small enough step-size µ, b1 < 1 and

b3 < 1. Also since limµ→0 b2 =
√
λ2(L̄), then it is clear that there is a step-size µ small

enough such that b2 < 1. Like we said before since max(b1, b2, b3) < 1 this implies that[
‖x̌e+1

0 ‖2 ‖x̂e+1
0 ‖2 we

]
converges linearly to

[
0 0 0

]
with a rate bounded by max[1−

µK−1a1 +O(µ2),
√
λ2(L̄)+O(µ)]. Remembering the definition of a1 in (2.105) we can equiv-

alently bound the convergence rate by max[ρ(I − µK−1ΛG) +O(µ2),
√
λ2(L̄) +O(µ)].

2.C Proof of Lemma 2.1

To simplify the notation we refer to θo(H,λ) as θo. Using (2.19) and definingR = A−1CA−TU ,

we can write θo = (I+ηR)−1(ηRθp +A−1b). Using the Jordan decomposition R = JRΛRJ
−1
R

we get:

θo = JR(I + ηΛR)−1J−1
R A−1b+ JR(I + η−1Λ−1

R)−1J−1
R θp (2.154)

Note that all the eigenvalues of (I + ηΛR)−1 and (I + η−1Λ−1
R)−1 have the forms (1 + ηΛR,i)

−1

and ηΛR,i/(1 + ηΛR,i), respectively (where ΛR,i is the i-th eigenvalue). Therefore, to be able

to obtain an approximation of the bias that depends only on the design parameters, we make

the following approximation:

θo ≈ (1 + κ1η)−1A−1b+ κ1η(1 + κ1η)−1θp (2.155)

for some constant κ1. Note that expression (2.155) is an equality for η = 0, since the

regularization constant is typically small in practice and (2.155) is a useful approximation.

We proceed to calculate the bias of θ• = A−1b with respect to θ?. Using (2.8) and (2.13) we

72

can write:

vπ = Γ2r
π + ρ1Γ1v

π =
∞∑
n=0

(ρ1Γ1)nΓ2r
π (2.156)

Xθ• = Π (Γ2r
π + ρ1Γ1Xθ

•) = Π
∞∑
n=0

(ρ1Γ1Π)nΓ2r
π (2.157)

Xθ? = Πvπ = Π
∞∑
n=0

(ρ1Γ1)nΓ2r
π (2.158)

Combining the expressions from above we get:

X(θ• − θ?) = Π
∞∑
n=0

(
(ρ1Γ1Π)nΓ2r

π − vπ
)

(2.159)

= Π
∞∑
n=1

(
(ρ1Γ1Π)n − (ρ1Γ1)n

)
Γ2r

π (2.160)

Note that if vπ = Πvπ = Xθ?, then (2.156) can be rewritten as:

vπ =
∞∑
n=0

(ρ1Γ1Π)nΓ2r
π (2.161)

Combining (2.161) with (2.159) we get that if vπ = Πvπ, then θ̌− θ? = 0. Therefore, we can

write (2.160) as:

X(θ• − θ?) = I(vπ 6= Πvπ)Π
∞∑
n=1

ρn1
(
(Γ1Π)n − Γn1

)
Γ2r

π (2.162)

where I is the indicator function. We now approximate the right stochastic matrix P π by it’s

steady state limit (given by (P π)∞ = 1pT , where 1 is the all ones vector and p is the vector

with the steady state distribution induced by the transition matrix P π). Consequently, we

73

get:

Γ1 ≈ 1pT (2.163)

Γ2r
π ≈ 1− (γλ)H

1− γλ
1pT rπ =

(
1− ρ1

1− γ

)
1pT rπ (2.164)

ε = pTΠ1 (2.165)

∞∑
n=1

ρn1 ((Γ1Π)n − Γn1) Γ2r
π ≈

∞∑
n=1

ρn1
(
(1pTΠ)n − 1pT

)
Γ2r

π (2.166)

= 1

(
1− (γλ)H

1− γλ

)
pT rπ

∞∑
n=1

ρn1 (εn − 1) (2.167)

We note that the above approximations become tighter as γ → 1, λ→ 1, H →∞ or when

P π has a fast mixing time. Since pT1 = 1 and Π is a projection matrix (and therefore its

eigenvalues are either 0 or 1) we get that |ε| ≤ 1 and therefore we can write:

∞∑
n=1

ρn1 (εn − 1) =
ρ1ε

1− ρ1ε
− ρ1

1− ρ1

=
ρ1(ε− 1)

(1− ρ1ε)(1− ρ1)
(2.168)

∞∑
n=1

ρn1 ((Γ1Π)n − Γn1) Γ2r
π ≈ 1pT rπ = O

(
ρ1(ε− 1)

(1− ρ1ε)(1− γ)

)
(2.169)

Therefore, combining (2.155), (2.162) and (2.169) and grouping constants we can finally

write:

‖θo − θ?‖2 ≈
(
I
(
vπ 6= Πvπ

) κ2ρ1

(1 + κ1η)(κ3 − ρ1)
+
κ1η‖θp − θ?‖

1 + κ1η

)2

(2.170)

2.D Proof of Lemma 2.2

Since the regularization term of (2.155) is not subject to variance, to calculate the variance

in the estimate of θ̂o we need to calculate the variance of θ̂• = Â−1b̂ as follows:

E‖θ̂• − θ•‖2 = E‖Â−1b̂− θ•‖2 = E
∥∥∥Â−1

(
b̂− Âθ•

)∥∥∥2

(2.171)

74

where we are using the squared Euclidean norm. Due to the Rayleigh-Ritz’ Theorem we have

σmin(Â−1) ≤ ‖Â−1‖ ≤ σmax(Â−1) and since σmax(Â) = σmin(Â−1) and σmax(Â−1) = σmin(Â)

we can write:

Eσ2
max(Â)

∥∥b̂− Âθ•∥∥2 ≤ E‖θ̂• − θ•‖2 ≤ Eσ2
min(Â)

∥∥b̂− Âθ•∥∥2
(2.172)

Now using Proposition 9.6.8 of [78] and the fact that Â = Ĉ −XTDΓ̂1X we can write:

σmin(Â) = λmin(Ĉ)± ρ1σmax(Ê) = λmin(Ĉ) +O(ρ1) (2.173)

σmax(Â) = λmax(Ĉ)± ρ1σmax(Ê) = λmax(Ĉ) +O(ρ1) (2.174)

Ê = XTDΓ̂1X (2.175)

Using the above results and the intermediate value theorem we can write:

E‖θ̂• − θ•‖2 = (ε2 +O(ρ1))2
∥∥b̂− Âθ•∥∥2

(2.176)

for some constant ε2. For E
∥∥b̂− Âθ•∥∥2

we can write:

E
∥∥b̂− Âθ•∥∥2

= E
∥∥∑N−H

t=1
b̂t−Âtθ•
N−H

∥∥2 (b)
= E ‖b̂t−Âtθ•‖2

N−H (2.177)

where in (b) we assumed that the total amount of data collected is significantly larger than

the mixing rate of the Markov Chain, and therefore the terms b̂t − Âtθ• corresponding to

different times can be considered independent of each other. Note that this is a standard

assumption (similar to the one stated in Assumption 2.4) in the sense that in practice it

demands that enough data is gathered so that the effect of the policy on every state can be

75

accurately estimated. To approximate E
∥∥b̂t − Âtθ•∥∥2

we proceed as follows:

E
∥∥b̂t − Âtθ•∥∥2

= E‖xt‖2

(
(γλ)H−1(rt+H−1 + γxTt+Hθ

•) +
H−2∑
n=0

(γλ)n
(
rt+n + γ(1− λ)xTt+n+1θ

•)
− xTt θ•

)2

(a)
= E‖xt‖2

(
H−1∑
n=0

(λ)n
(
xTt+nθ

• − rt+n − γxTt+n+1θ
•))2

(b)
≈ E‖xt‖2

(
H−1∑
n=0

(γλ)n (v(st+n)− rt+n − γv(st+n+1))

)2

(c)
= E‖xt‖2

H−1∑
n=0

(γλ)2n (v(st+n)− rt+n − γv(st+n+1))2 (2.178)

where in (a) we simply reorganized the terms, in (b) we used xTt θ
• ≈ v(st) and in (c)

we used the fact that due to the Markov property each term v(st+n) − rt+n − γv(st+n+1)

is conditionally independent from all previous terms (conditioned on st+n) and that by

definition E [v(st+n)− rt+n − γv(st+n+1)|st+n] = 0. Now we lower and upper bound (2.178)

as follows:

m
H−1∑
n=0

(γλ)2n ≤ E
∥∥∥b̂t − Âtθ•∥∥∥2

≤M
H−1∑
n=0

(γλ)2n (2.179)

M = max
t,n
‖xt‖2 (v(st+n)− rt+n − γv(st+n+1))2 (2.180)

m = min
t,n
‖xt‖2 (v(st+n)− rt+n − γv(st+n+1))2 (2.181)

Combining the above result with the intermediate value theorem we get:

E
∥∥b̂t − Âtθ•∥∥2 ≈ ε3

(
1− (γλ)2H

1− (γλ)2

)
(2.182)

76

for some constant ε3. Finally, combining (2.155), (2.182), (2.176) and (2.177) and assuming

N >> H (which in practice should be the case) we get:

E
∥∥θ̂o − θo∥∥2 ≈ κ4

(1 + κ1η)2(N −H)

(
1− (γλ)2H

1− (γλ)2

)
(2.183)

where κ4 = ε2ε3.

2.E Proof Lemma 2.3

To write A, b and C as expectations we use definitions (2.16) and (2.9), and then expand

the matrix operations.

A = XTD(I − ρ1Γ1)X

= XTD

(
I − γ(1− λ)P π

∑H−1
n=0 (γλP π)n + (γλP π)H

)
X

=
∑
st∈S

dφ(st)xst

(
xst− γ(1− λ)

H−1∑
n=0

(γλ)n
∑

st+1+n∈S

pπst,st+1+n
xst+1+n + (γλ)H

∑
st+H∈S

pπst,st+Hxst+H

)T

= E dφ,P,π

[
xt

(
xt − γ(1− λ)

H−1∑
n=0

(γλ)nxt+n+1 − (γλ)Hxt+H

)T]
(2.184)

b = XTD
H−1∑
n=0

(γλP π)nrπ

=
∑
st∈S

dφ(st)xst
∑
a∈L

∑
st+1∈S

π(a|st)P(st+1|st, a)r(st, a, st+1)

+
∑
st∈S

dφ(st)xst

H−1∑
n=1

(γλ)npπst,st+n

∑
st+n∈S

∑
a∈L

∑
st+n+1∈S

π(a|st+n)P(st+n+1|st+n, a)r(st+n, a,st+n+1)

= E dφ,P,π

(
xt

H−1∑
n=0

(γλ)nrt+n

)
(2.185)

C = XTDX =
∑
st∈S

dφ(st)xstxst = E dφ
[
xtx

T
t

]
(2.186)

77

2.F Proof of Lemma 2.4

We start with (2.23a):

A = E dφ,P,π

[
xt

(
xt − γ(1−λ)

H−1∑
h=0

(γλ)hxt+h+1 − (γλ)Hxt+H

)T]
(a)
= (1− λ)

H−1∑
h=0

λhE dφ,P,π

(
xt
(
xt − γh+1xt+h+1

)T)
+ λHE dφ,P,π

(
xt
(
xt − γHxt+H

)T)
(b)
= (1− λ)

H−1∑
h=0

λhE dφ,P,φ,fr

[
ξt,t+h+1xt

(
xt − γh+1xt+h+1

)T]
+ λHE dφ,P,φ,fr

[
ξt,t+Hxt

(
xt − γHxt+H

)T]
(c)
= E dφ,P,φ,fr

[
xt

((
(1− λ)

∑H−1
h=0 λ

hξt,t+h+1 + λHξt,t+H

)
xt

− γ(1− λ)
H−1∑
h=0

(γλ)hξt,t+h+1xt+h+1 − (γλ)Hξt,t+Hxt+H

)T]
(2.187)

where in (a) and (c) we simply rearranged terms. And in (b) we introduced the importance

sampling weights corresponding to the trajectory that started at some state st and took h

steps before arriving at some other state st+h, which are given by:

ξt,t+h =
t+h−1∏
j=t

π(aj|sj)/φ(aj|sj) (2.188)

Hence, by removing the expectation in (2.187), we can get the following estimate of A using

a single H-step trajectory:

Ân = xn
(
ρHn,0xn − γ(1− λ)

H−1∑
h=0

(γλ)hξn,n+h+1xn+h+1 − (γλ)Hξn,n+Hxn+H

)T
(2.189)

where we defined:

ρHt,n =

(
(1− λ)

∑H−1
h=n λ

h−nξt,t+h+1 + λH−nξt,t+H

)
(2.190)

78

Following similar same steps to estimate b, we get:

b̂n = xn

H−1∑
h=0

(γλ)hρHn,hrn+h (2.191)

The estimate for C does not require importance sampling because its expectation only de-

pends on dφ. Hence, the sample estimate is given by Ĉn = xnx
T
n which completes the

proof.

2.G Proof of Lemma 2.5

From Remark 2.6 we know that (2.66b) implies that the consensus constraints are satisfied

by ζo and hence for some θo and ωo:

ζo = 1K ⊗ [θoT , υ−1/2ωoT]T (2.192)

Multiplying (2.66a) by IT ∆
= 1TK ⊗ I2M we get the following condition:

0 = IT
(
L̄ (Gζo − p) + µ−1VYo

) (a)
= IT (Gζo − p) (2.193)

where in (a) we used IT L̄ = IT and ITV = 0. Combining (2.192) and (2.193) we get that

θo and ωo must satisfy:

 ηÛ −ÂT

Â Ĉ

 θo

ωo

 =

 ηÛθp

b

 (2.194)

since the left hand-side matrix is invertible (because Â and Ĉ are invertible) ζo is unique.

Left multiplying by the inverse of such matrix we get (2.37). Therefore, we conclude that

ζo = 1K ⊗ [θ̂oT ω̂oT]T . The fact that IT (Gζo − p) = 0 implies that Gζo − p lies in the range

space of V (because it is orthogonal to I which lies in the null space of V), which in turn

implies that a vector Y that satisfies (2.66a) exists. We conclude the proof by showing that

there is unique Yo that satisfies (2.66a) and lies in the range space of V . We do this by

79

contradiction. Assume that there are two fixed points (ζo,Y1 = Va1) and (ζo,Y2 = Va2)

such that Y1 6= Y2, applying both to (2.66a) and subtracting the resulting equations we get:

V2(a1 − a2) = 0 ⇐⇒ V(a1 − a2) = 0 =⇒ Y1 = Y2 (2.195)

which is a contradiction. This concludes the proof.

2.H Proof of Lemma 2.6

We start by doing the following matrix decomposition:

 L̄ −V

V L̄ L̄

 (a)
=

 H(IK+Λ
2

)HT −H
(
IK−Λ

2

) 1
2 HT

H
(
IK+Λ

2

) (
IK−Λ

2

) 1
2 HT H(IK+Λ

2
)HT


=

 H 0

0 H

 IK+Λ
2

−
(
IK−Λ

2

) 1
2(

IK+Λ
2

) (
IK−Λ

2

) 1
2 IK+Λ

2

 H 0

0 H

T (2.196)

(b)
= Hediag{Ek}Kk=1H

T
e (2.197)

where in (a) we used Remark 2.4 and the definition of V (2.39) and in (b) we rearranged the

order of the eigenvectors and their corresponding eigenvalues through permutations to get

the following matrices:

Ek =

 1+λk
2

−
(

1−λk
2

) 1
2(

1+λk
2

) (
1−λk

2

) 1
2 1+λk

2

 (2.198)

He =

 K−
1
21K 0 h2 0 · · · hK 0

0 K−
1
21K 0 h2 · · · 0 hK

 (2.199)

where λk is the k-th eigenvalue of L and hk its corresponding eigenvector. Note that E1 = I.

Moreover, the matrices Ek have two distinct eigenvalues given by (1 + λk ±
√

1− λ2
k)/2 and

therefore we can diagonalize Ek using its Jordan Canonical Form as Dk = Z−1
k EkZk for

some Zk. Therefore, defining Z = diag{Zk}Kk=1 (where Z1 = I) we arrive at the following

80

diagonalization:

 L̄ −V

V L̄ L̄

 = HeZdiag{I,D2, · · · , DK}Z−1HT
e (2.200)

We can extend this diagonalization to the network-wide matrix:

 L̄ −V

VL̄ L̄

 =

 L̄ −V

V L̄ L̄

⊗ I = (HeZ ⊗ I)︸ ︷︷ ︸
∆
=H

D (Z−1HT
e ⊗ I)︸ ︷︷ ︸

=H−1

(2.201)

D = diag{I,D1},D1 = diag{Dk}Kk=2 ⊗ I (2.202)

Expanding H and H−1 we get:

H =

 K−
1
2I 0 Hu

0 K−
1
2I Hd

 ,H−1 =

 K−
1
2I 0 Hl

0 K−
1
2I Hr

T (2.203)

where Hl,Hr,Hu,Hd ∈ R2KM×4KM−4M are some constant matrices. Now we use this de-

composition to transform recursion (2.68):

H−1

 ζ̃i+1

Ỹi+1


︸ ︷︷ ︸
∆
=[x̄Ti+1,x̃

T
i+1,x̂

T
i+1]T

=

(
D − µH−1

 L̄G 0

VL̄G 0


︸ ︷︷ ︸

∆
=T

H
)
H−1

 ζ̃i

Ỹi

 (2.204)

where x̄i = K
1
2IT ζ̃i and x̂i = HT

l ζ̃i+HT
r Ỹi. Using H we can further write ζ̃i = K

1
2Ix̄i+Hux̂i

and Ỹi = Hdx̂i, from which we get the following bounds:

‖ζ̃i‖2 ≤ ‖x̄i‖2 + ‖Hu‖2‖x̂i‖2, ‖Ỹi‖2 ≤ ‖Hd‖2‖x̂i‖2 (2.205)

81

Expanding H−1T H we get:

H−1T H =


K−1IT L̄GI 0 K−

1
2IT L̄GHu

K−
1
2ITVL̄GI 0 K−

1
2ITVL̄GHu

K−
1
2 (HT

l +HT
r V)L̄GI 0 (HT

l +HT
r V)L̄GHu

 (2.206)

Since ITV = 0 all elements in the mid row in the above equation are equal to zero and

therefore x̃i = x̃0. Also since all the elements in the mid column are equal to zero, it turns

out that x̄i and x̂i are independent of x̃0. Hence, we can disregard variable x̃i and arrive at

the desired recursion, which completes the proof.

2.I Proof of Lemma 2.7

We start by expanding the top recursion of (2.69) and take the squared norm on both sides

of the equation to get:

‖x̌i+1‖2 = ‖
(
I2M − µΛGK

−1
)
x̌i − µK−

1
2Z−1ITGHux̂i‖2

=

∥∥∥∥tt (I2M − µΛGK
−1
)
x̌i −

(1− t)µZ−1ITGHu

(1− t)
√
K

x̂i

∥∥∥∥2

(a)

≤ t−1
∥∥(I2M − µΛGK

−1
)
x̌i
∥∥2

+ µ2‖Z−1ITGHux̂i‖2

(1− t)K
(b)

≤ t−1
∥∥I2M − µΛGK

−1
∥∥2‖x̌i‖2 +

µ2‖Z−1ITGHu‖2

(1− t)K
‖x̂ei‖2 (2.207)

where we defined a scalar t ∈ (0, 1), in (a) we used Jensen’s inequality and in (b) we used

the Cauchy-Schwarz inequality. If µ < K/ρ(ΛG) (where ρ(ΛG) is the spectral radius of ΛG)

then
∥∥I2M − µΛGK

−1
∥∥ < 1 and hence setting t =

∥∥I2M − µΛGK
−1
∥∥ we get:

‖x̌i+1‖2 ≤ ρ(I2M − µK−1ΛG)‖x̌i‖2 + µa2‖x̂i‖2 (2.208)

82

where we defined a2 = ‖Z−1ITGHu‖2/λmin(ΛG). We now repeat the procedure for the

bottom recursion of (2.69):

‖x̂i+1‖2
(d)

≤ 2µ2

(1− t2)K
‖(HT

l +HT
r V)L̄GIZ‖2‖x̌ei‖2 +

‖D1‖2

t2
‖x̂ei‖2

+ 2(1− t2)−1µ2‖(HT
l +HT

r V)L̄GHu‖2‖x̂ei‖2

(f)

≤ µ2a3‖x̌ei‖2 +
√
λ2(L̄)‖x̂ei‖2 + µ2a4‖x̂ei‖2 (2.209)

where in (d) we used Jensen’s and the Cauchy-Schwarz inequalities and we also introduced

t2 ∈ (0, 1) and in (f) we chose t2 = ‖D1‖ =
√
λ2(L̄). We further defined:

a3 =
2‖(HT

l +HT
r V)L̄GIZ‖2

1−
√
λ2(L̄)

(2.210)

a4 =
2‖(HT

l +HT
r V)L̄GHu‖2

1−
√
λ2(L̄)

(2.211)

Writing (2.208) and (2.209) in matrix form completes the proof.

83

CHAPTER 3

Distributed Optimal Policy Learning in MARL

In the previous chapter we addressed the policy evaluation problem in the MARL setting. In

this chapter we consider the problem of finding the optimal team policy in a fully distributed

manner in the same MARL setting. The situation under consideration is one in which all

agents form a team (to solve a common objective) and make decisions independently of one

another based on their local information with the aim of maximizing the team’s performance.

The contribution of this chapter is the introduction of Diffusion Team Policy Optimization

(DTPO), a fully distributed algorithm capable of converging to the same team policy as

its centralized counterpart. DTPO belongs to the family of Soft RL algorithms we briefly

discussed in Section 1.2.5 of Chapter 1.

3.1 Related Works

There is a considerable body of work in MARL [36,61,79–95]. However, most of these works

only consider the case where the reward is global and observed by all agents (i.e. they do not

consider the case where agents observe local rewards). To the best of our knowledge, the only

work that considers the case with local rewards is [61]. In [61] the authors extend the policy

gradient theorem [14] to the MARL case we study and derive to actor-critic algorithms.

These schemes work on-policy and therefore are not data inefficient. More critically, the

algorithms rely on a naive factorization of the team’s policy and therefore are only guaranteed

to converge to Nash equilibrium policies that can be highly suboptimal in environments where

coordination is necessary, (we illustrate this in section 3.4). DTPO works off-policy and is

therefore more sample efficient than the actor-critic algorithms from [61]. Furthermore,

84

DTPO does not rely on such naive factorization and hence does not converge to suboptimal

Nash equilibria. In appendix 3.A we provide a brief introduction to Nash equilibria along

with a discussion of why such equilibria can be undesirable in the context of cooperative

MARL.

3.2 Problem Setting

We address the cooperative MARL problem we introduce in section 1.3.1 of Chapter 1. We

recall that in this scenario we consider a team of K agents that form a network. The network

is represented by a graph in which the edges represent the communication links. Agent k

communicates only with a subset of the agents in the network which we refer to as the

neighborhood of k (denoted as Nk). The topology of the network is determined by some

combination matrix L whose kn-th entry (denoted by `kn) is a scalar with which agent n

weights information incoming from agent k (note that `kn 6= 0 ⇐⇒ k ∈ Nn). We make the

following assumption about the network structure (which will be used in Lemma 3.2).

Assumption 3.1. We assume that the network is strongly-connected. This implies that

there is at least one path from any node to any other node and that at least one node has

a self-loop (i.e., at least one agent uses its own information). We further assume that the

combination matrix L is symmetric and doubly-stochastic.

The agents interact with an environment and with each other, we model their behavior

as a MA-MDP, which is defined by the tuple (K,S,Ak,P ,rk). The goal of all agents is to

maximize the aggregated return:

J(π) =
∞∑
t=0

γt

K

(
K∑
k=1

Eπ,P,d,n
[
rk(st, āt, st+1)

])
(3.1)

Accordingly, the team’s value function is given by:

vπ(s) = Eπ

[
1

K

K∑
k=1

rk(s, ā) + γE s′∼Pvπ(s′)

]
(3.2)

85

where we defined rk(s, ā) = EP,nrk(s, ā, s′). The team’s optimal value function and optimal

policies1 satisfy:

π†(ā|s) = arg max
π(ā|s)

E ā∼π

[
1

K

K∑
k=1

rk(s, ā) + γE s′∼Pv†(s′)

]
(3.3a)

v†(s) = max
π(ā|s)

E ā∼π

[
1

K

K∑
k=1

rk(s, ā) + γE s′∼Pv†(s′)

]
(3.3b)

The max operator in equations (3.3) is inconvenient because it is non-differentiable and in

this chapter we are interested in deriving gradient algorithms. To circumvent this issue we

use a differentiable approximation to the max and define the quasi-optimal value function

as:

v?λ(s) = λ(s) log

{∑
ā

exp

(
K−1

∑K
k=1 r

k(s, ā) + γE s′∼Pv?λ(s′)
λ(s)

)}
(3.4)

where λ(s) > 0 is a temperature parameter that controls the accuracy of the approximation.

Note that v?λ(s) in (3.4) can equivalently be defined using the conjugate of the log-sum-exp

function as [96]:

v?λ(s) = max
π(ā|s)

E ā∼π

[
K∑
k=1

rk(s, ā)

K
− λ(s) log π(ā|s) + γE s′∼Pv?λ(s′)

]
(3.5)

The max in (3.5) can easily be solved by differentiating and equating to zero. Doing so gives

the policy corresponding to (3.5), which we refer to as the quasi-optimal policy:

π?λ(ā|s) =
exp

[
λ(s)−1

(
K−1

∑K
k=1 r

k(s, ā) + γE s′∼Pv?λ(s′)
)]

∑
ā exp

[
λ(s)−1

(
K−1

∑K
k=1 r

k(s, ā) + γE s′∼Pv?λ(s′)
)] (3.6)

Remark 3.1. Note that limλ(s)→0 π
?
λ(ā|s) = π•(ā|s) and limλ(s)→∞ π

?
λ(ā|s) = 1/A.

We defined λ(s) as a function of the state because it provides an effective way of trading

1Note that an MDP may have many optimal policies; at least one of which is deterministic and chooses
an optimal action with probability one. Without loss of generality, we assume that there is a unique optimal
policy.

86

exploration and exploitation [97]. The parameter λ(s) can be initialized at high values to

encourage exploration (since for high values of λ(s) expression (3.6) tends to the uniform

distribution) in unexplored states and slowly decays as those states are explored. As a

consequence of the fact that π?λ(ā|s) is a continuous function of λ(s), a corollary of remark

3.1 is that for small enough λ(s) it holds that:

arg max
ā

π?λ(ā|s) = arg max
ā

π†(ā|s) (3.7)

Since our main goal is to obtain the optimal policy π†(ā|s), expression 3.7 is very important.

This is because the theorem guarantees that for small enough λ(s), an optimal action at every

state can be extracted from π?λ(ā|s) (and hence an optimal policy π†(ā|s) can be extracted).

The following lemma is an extension of [98] to the multi-agent setting:

Lemma 3.1. v?λ(s) and π?λ(a|s) are the only pair that satisfy the following consistency equa-

tion:

v(s)− γE s′∼Pv(s′) =
1

K

K∑
k=1

rk(s, a)− λ(s) log π(a|s) (3.8)

Using (3.8) we can write the following quadratic optimization problem (whose solution

is π?λ(a|s)):

min
π,v

(
1

K

K∑
k=1

rk(s, ā)− λ(s) log π(ā|s) + γE s′∼Pv(s′)− v(s)

)2

(3.9)

Unfortunately (3.9) cannot be used to learn π?λ(ā|s) because rk(s, ā) and the transition kernel

P are unknown and we want to derive a stochastic algorithm that learns from interactions

with the environment. Before we proceed to propose an alternative cost function that relies

on samples we note one key feature of (1.2), which is that there is no expectation taken

with respect to the policy of any of the agents (the only expectation is taken with respect

to P , which depends on the MDP) and therefore transitions obtained following any policy

are useful to learn π?λ(ā|s) (this is what allows us to derive an off-policy algorithm). With

87

this in consideration we propose the following cost:

min
π,v

1

2
E (s,ā)∼ψ

(
1

K

K∑
k=1

rk(s, ā)− λ(s) log π(ā|s) + γE s′∼Pv(s′)− v(s)

)2

(3.10)

where the minimization variables π and v refer to π(ā|s) and v(s) for all states and actions

and ψ is some distribution under which (s, ā) pairs are sampled. Distribution ψ is determined

by two factors: the individual behavior policies of the agents under which data is collected

and the experience selection strategy set for the replay buffers [99] of each of the agents.

Replay buffers store past data collected by the agents which is later sampled by the learning

algorithm and have been shown to be essential to achieve stable and fast learning [99], [5],

[100]. The experience selection strategy refers to the strategy that decides what data samples

are stored in the buffer (not all data can be stored due to the finite memory availability

of the buffer), and the strategy with which data is sampled from the buffer for training.

A uniformly sampled First In First Out (FIFO) buffer is a popular experience selection

strategy. An important characteristic of ψ is that the behavior policies used by the agents

for data collection are potentially independent of one another, the only requirement for these

policies is that every possible transition in the MA-MDP has a positive probability of being

sampled. This is a key feature for multi-agent learning because it means that data collection

can be done in a fully distributed manner without any communication or synchronization

requirements among the decision makers. Also different agents can have different replay

buffer sizes with different experience selection strategies.

3.3 Algorithm Derivation

We now proceed to derive the algorithm. To derive a distributed algorithm in which each

agent uses only local information, we let vk(s) and πk(ā|s) denotes the local copies of v(s)

88

and π(ā|s) available at k and instead solve the equivalent problem:

min
πk,vk

1

2
Eψ

(K∑
k=1

EP,nrk(s, ā, s′) + γEPvk(s′)− λ(s) log πk(ā|s)− vk(s)

)2


s.t. π1 = · · · = πK v1 = · · · = vK (3.11)

We are interested in deriving a stochastic gradient algorithm that relies on samples. Prob-

lem (3.11) is not suitable for this because the gradient with respect to the variables that

parameterize the value function is a product of expectations, and therefore a stochastic ap-

proximation of the gradient obtained with samples by removing such expectations would be

biased. Notice that this is the same difficulty we had in the previous chapter, and we go

around it in the same way, using the conjugate of the quadratic function. We thus obtain

the following saddle-point formulation:

min
πk,vk

Eψ

[
K∑
k=1

max
ρ
ρ(s, ā)

(
EP,nrk(s, ā, s′) + γEPvk(s′)− λ(s) log πk(ā|s)− vk(s)

)
− 1

2
ρ(s, ā)2

]
s.t. π1 = · · · = πK v1 = · · · = vK (3.12)

Remark 3.2. The order of the expectation and max operator in (3.12) can be interchanged.

Proof. The lemma can easily be proved by solving for both cases and checking that both

solutions are equal.

Making use of remark 3.2 results in the following optimization problem:

min
πk,vk

max
ρ

Eψ,P,n

[
K∑
k=1

ρ(s, ā)
(
rk(s, ā, s′) + γvk(s′)− λ(s) log πk(ā|s)− vk(s)

)
− 1

2
ρ(s, ā)2

]
s.t. π1 = · · · = πK v1 = · · · = vK (3.13)

89

Finally creating local copies ρk we can write (3.13) in the following equivalent form:

min
πk,vk

max
ρk

K∑
k=1

Eψ,P,n

[
ρk(s, ā)

(
rk(s, ā, s′) + γvk(s′)− λ(s) log πk(ā|s)− vk(s)

)
− 1

2K
ρk(s, ā)2

]
s.t. π1 = · · · = πK v1 = · · · = vK ρ1 = · · · = ρK (3.14)

Note that up to this point no approximations have been made and hence problems (3.14)

and (3.10) are equivalent in the sense that the value of the optimizing variables πk and π

are the same. A similar saddle-point problem to (3.13) appears in [59], however, [59] deals

with a single-agent scenario and has a constant λ (i.e. λ(s) = λ).

Lemma 3.2. We introduce the eigenvalue decomposition:

0.5(I − L) = UΣUT (3.15)

and define:

B
∆
= UΣ1/2UT (3.16)

v̄(s)
∆
= [v1(s), · · · , vK(s)]T (3.17)

ρ̄(s)
∆
= [ρ1(s), · · · , ρK(s)]T (3.18)

π̄(ā|s) ∆
= [π1(ā|s), · · · , πK(ā|s)]T (3.19)

where U is an orthogonal matrix and Σ1/2 is the element-wise square root of Σ, which is a

diagonal matrix with non-negative entries, then under Assumption 3.1 it holds that [70]:

Bv̄(s) = 0 ⇐⇒ v1(s) = · · · = vK(s) (3.21)

Bρ̄(s) = 0 ⇐⇒ ρ1(s) = · · · = ρK(s) (3.22)

B log π̄(ā|s) = 0 ⇐⇒ log π1(ā|s) = · · · = log πK(ā|s) (3.23)

Finally, we approximate (3.13) by the following penalized formulation (for convenience

90

we write it in vector form):

min
πk,vk

max
ρk

S(πk, vk, ρk) + ηv‖Bv̄(s)‖2 + ηπ‖B log π̄(ā|s)‖2 − ηρ‖Bρ̄(s, ā)‖2

S(πk, vk, ρk) = E
(
ρ̄(s, ā)T

(
r̄(s, ā, s′) + γv̄(s′)− λ(s) log π̄(ā|s)− v̄(s)

)
− ‖ρ̄(s, ā)‖2

2K

)
(3.24)

where ηπ, ηρ and ηv are non-negative constants, the matrix B, v̄(s), ρ̄(s, s) and π̄(a|s) are

defined in Lemma 3.2. Using 2B2 = I − L (from Lemma 3.2), choosing ηπ = µ−1
π , ηρ = µ−1

ρ

and ηv = µ−1
v (where µπ, µρ and µv are two step-sizes that will be used in the update equa-

tions) and applying stochastic gradient descent (and ascent) updates (incremental updates

to π and v), we get our proposed DTPO algorithm. In algorithm 3.1 we show the tabular

version of the algorithm.

Algorithm 3.1 Diffusion Team Policy Optimization at node k (tabular version)

Initialize: (vk,0, log πk,0, ρk,0), λ(s) for all s and en empty replay buffer Rk.
for e = 0, 1, 2 . . .: do

Sample T transitions (s, ā, rk, s′) by following some behavior policy and store them in
Rk.
Anneal λ(s).
for i = 0, 1, 2 . . .: do

Sample a transition (s, ā, rk, s′) from the replay buffer.

φe+1
ρ,k (s, ā) = ρk,e(s, ā) + µρ

(
rk(s, ā, s′) + γvk(s′)− vk(s)− λ(s) log πk(ā|s)− ρk(s, ā)

K

)
φe+1
π,k (ā|s) = log πk,e(ā|s) + µπλ(s)ρk,e+1(s, ā)

φe+1
v,k (s) = vk,e(s) + µvρ

k,e+1(s, ā)(1− γI(s′ = s))

ρk,e+1(s, a) =
∑
n∈Nk

`nkφ
e+1
ρ,n (s, ā)

log πk,e+1(ā|s) =
∑
n∈Nk

`nkφ
e+1
π,n (ā|s)

vk,e+1(s) =
∑
n∈Nk

`nkφ
e+1
v,n (s)

end for
end for

In practical applications, it is often necessary to parameterize functions vk(s), ρk(s, ā)

and πk(ā|s). Furthermore, if this is the case then λ(s) would also require to be parameterized.

91

The question is then how to train the parameters of λ to guarantee a steady annealing. One

simple way is to make λ(s) independent of s (i.e. λ(s) = λ), which is what we use in this

chapter. We will analyze a more sophisticated approach in chapter 5. Parameterizing vk(s),

log πk(ā|s) and ρk(s, ā) with ωk, θk and ζk, respectively, function S(θk, vk, ρk) becomes:

S(θk, ωk, ζk) = E
(
ρ̄(s, ā; ζ)T

(
r̄(s, ā, s′) + γv̄(s′;ω)− λ(s) log π̄(ā|s; θ)− v̄(s;ω)

)
− ‖ρ̄(s, ā; ζ)‖2

2K

)
(3.26)

where ρ̄(s, ā; ζ)
∆
= [ρ1(s, ā; ζk), · · · , ρK(s, ā; ζK)]T and similarly for v̄(s′;ω) and π̄(ā|s; θ). In

algorithm 3.2 we list the version of DTPO with function approximation. We note that in

both listings of DTPO we used a constant step-size and a single transition for each update

(i.e. a mini-batch with only one sample), however this can be replaced with decaying step-

sizes or other schemes such as Adam [101] and mini-batches with more than one sample.

Algorithm 3.2 DTPO with function approximation at node k

Initialize: (ωk,0, θk,0, ζk,0), λ and en empty replay buffer Rk.
for e = 0, 1, 2 . . .: do

Sample T transitions (s, ā, rk, s′) by following some behavior policy and store them in
Rk.
Anneal λ.
for i = 0, 1, 2 . . .: do

Sample a transition (s, ā, rk, s′) from the replay buffer.

φe+1
ζ,k = ζk,e + µρ

(
rk(s, ā, s′) + γvk(s′;ωk)− vk(s;ωk)− λ log πk(ā|s; θk)
−K−1ρk(s, ā; ζk)

)
∇ζkρ

k,e+1(s, ā; ζk)

φe+1
θ,k = θk,e + µπλρ

k,e+1(s, ā; ζk)∇θk log πk,e+1(ā|s; ζk)
φe+1
ω,k = ωk,e + µvρ

k,e+1(s, ā; ζk)∇ωk
(
vk,e+1(s;ωk)− γvk,e+1(s′;ωk)

)
ζk,e+1 =

∑
n∈Nk

`nkφ
e+1
ζ,n

θk,e+1 =
∑
n∈Nk

`nkφ
e+1
θ,n

ωk,e+1 =
∑
n∈Nk

`nkφ
e+1
ω,n

end for
end for

92

3.4 Experiments

In this section we test the performance of DTPO and compare with [61, Algorithm 1],

which we refer to as Distributed Actor-critic (DAC). Note that DAC is the only algorithm

mentioned in the introduction suitable for this problem.

We consider a simple yet challenging team game. In this game, there are two agents (dog

and monkey) who want to collect food (steak and banana) as fast as possible with as little

movements as possible; to achieve this objective, they need to safely cross a river, which can

only be done by collaboration. Figure 1 (a) illustrates the situation. Note that there are

two buttons which when pressed a bridge to safely cross the river appears. In the optimal

strategy, the dog presses the southern button for the monkey to cross the bridge which in

turn presses the northern button so that the dog can cross (see Figure 1 (b)). Finally, each

of the agents walks towards their respective food. At every time step, each of the agents has

five possible actions: move north, east, south, west or stay (if an agent moves against an

edge it just stays in place). When an agent falls into the river or collects its food it spawns

back in the lower left corner. The reward structure for each of the agents is as follows: -1 is

obtained at every time step, -0.5 every time the agent moves in any direction, -100 if it falls

in the river and +50 if it collects its food (these rewards are additive, so if an agent moves

and falls into the river it collects a rewards equal to -101.5). There are a total of 21 positions

and 5 actions for each agent, hence the total state space for the team is (21× 5)2 = 11025.

The discount factor is set to γ = 0.97.

We implemented a game with only 2 agents because we wanted a game that could be

implemented in tabular form (note that in this game, the state space grows exponentially

with the number of agents, hence function approximation becomes necessary to reduce the

dimensionality of the state space) so that the optimal policy would be attainable by the

learning agents and could be calculated exactly to monitor the progress of the algorithm.

Note that even with two agents, this game is extremely challenging to solve for fully dis-

tributed algorithms due to the fact that there is a highly suboptimal (yet easily attainable)

Nash equilibrium, which is for both agents to stay still at all times in the lower left corner

93

(where they start the episode). Therefore, algorithms that only guarantee convergence to

equilibrium point are extremely likely to converge to this very poor strategy (which is what

happens with DAC).2

For the DAC implementation we used βω = 10−3 and βθ = 10−4. The hyper-parameters

of the DTPO implementation are as follows. We set µρ = 1, µV = 1, µπ = 0.01 and λ(s) = 20

for every state and subtracted 0.05 every time the state was visited until λ(s) = 0.5. Since

there are two agents, all combination weights are given by `nk = 0.5. The constants T and

I in Algorithm 1 were set to 1200 and 1 respectively. In our experience selection strategy

transitions were included in the replay buffer if the state-action was selected for the first

time and the replay buffers of all the agents were big enough to hold all these transitions.

The results of DTPO and DAC are shown in Figures 1 (c) and (d). The former shows the

performance of the greedy policy with respect to the learned one for each of the algorithms

for 12 time-steps (enough to collect the food). Figure 1 (d) shows the mean square difference

between (3.6) (for λ(s) = 0.5 for all states) and π1(a|s). Note that DTPO learns the optimal

strategy while DAC converges to the suboptimal Nash equilibrium. A video showing the

evolution of the policy during learning is available online3.

3.5 Summary

In this chapter we introduced the DTPO algorithm. A fully decentralized MARL algo-

rithm for optimal policy learning. The algorithm is of the off-policy kind. We identify two

important limitations with the DTPO algorithm.

1) Note that since it is an off-policy algorithm, any behavior policy can be used to

collect data (as long as it allocates strictly positive probability to all actions). This does

2We clarify that both agents staying still constitute a Nash equilibrium because if any of the two agents
decides to modify its policy unilaterally it will be worst off. This is due to the fact that if any agent moves,
while the other one stays still, it will never be able to cross to the other side and and hence, will only incur
in the negative rewards associated with movement. Therefore, this unilateral deviation would result in lower
cumulative rewards compared to staying still.

3Video available at EPFL’s Adaptive Systems Lab website https://asl.epfl.ch/conferences/.

94

(a) Start state (b)

(c) (d)

Figure 3.1: In (c), the dashed line is the performance of the optimal policy, blue is DTPO
and red is DAC.

not mean though, that all behavior policies are efficient at exploring the state space. For

example a policy which selects actions uniformly satisfies the requirement but is obviously

efficient. Consider how many tries it would take for agents following such policy to collect

the food in the dog-monkey game. Therefore to efficiently explore the state-space of the

game, the behavior policy has to actively search for states it hasn’t visited before (this is

typically referred to as deep exploration). Such behavior policy would need to have two main

characteristics: i- it should have some mechanism which encourages discovery of new state;

and ii- it should act more deterministically in states where it is confident of what the optimal

action is and act more exploratory in states where it has more uncertainty about the optimal

action. In the implementation of DTPO in this chapter we used the learned policy as the

behavior policy. And we achieved the two previous conditions by: i- initializing the value

95

function for all states at values higher than maxs v(s) (therefore when it bootstraps from

the value function of novel states the estimate is very high); and ii- slowly annealed λ(s) as

λ(s) = max(0.5; 20− 0.05 × visitation count). However, this approach is a heuristic that is

only useful for tabular implementations. The question then raises, is there a more principled

way of obtaining a behavior policy that is efficient at performing exploration and that can

be used with function approximation? In chapter 5 we address this question and provide

such a behavior policy.

2) The other limitation is that every agent has to estimate team quantities. More specif-

ically, each agent has to consider the global state and the actions of all agents. Note that

this very quickly becomes computationally intractable since it grows exponentially with the

number of agents. For instance, in the dog-monkey game the team’s state space is given

by (21 × 5)2 = 11025, if there were three agents then the team’s state space would be

(21 × 5)3 = 1157625. The question is then: is there a way where each agent learns only

its policy πk conditioned on its observation of the state oks (i.e. πk(ak|oks)) while still learn-

ing optimal team policies? In the next chapter we address this issue and provide one such

algorithm.

3.A Nash Equilibria

In stochastic games, agents’ strategies constitute Nash equilibria when no agent can benefit

by unilaterally modifying its strategy. In cooperative MARL all agents optimize the same

cost function and, hence, for this particular case it is equivalent to saying that agents’

policies constitute Nash equilibria when the resulting joint team policy cannot be improved

by modifying any single agent’s policy unilaterally. Mathematically, agents’ policies πknash ∈

[1, · · · , K] constitute a Nash equilibrium if

J(π1
nash, · · · , πKnash) ≥ max

πk 6=πknash

J(πk, π−knash), ∀k ∈ [1, · · · , K] (3.28)

96

The equilibrium is said to be strict if the inequality in (3.28) is strict, otherwise it is said to

be weak. We clarify that team optimum policies constitute, by definition, a Nash equilibrium.

However, team policies that constitute a Nash equilibrium can have poor performance. We

show this with a simple example.

Consider the matrix game with two homogeneous agents, each of which has two actions

(A = {α; β}) and the following reward structure:

Table 3.1: Reward structure
Agent 2
α β

Agent 1
α −5 −10
β −10 1

For this game the optimal team policy, which obtains the +1 reward, is given by:

π†(a1, a2) =


1, if a1 = β ∧ a2 = β

0, otherwise

(3.29)

Team policy π†(a1, a2) can be written in terms of the individual policies π†,1(a) =

π†,2(a) = I(a = β), where I is the indicator function. Indeed, policies π†,1 and π†,2 con-

stitute a Nash equilibrium. Note, however, that the following sub-optimal team policy that

obtains the −5 reward (which results from the individual policies π1(a) = π2(a) = I(a = α))

also constitutes a Nash equilibrium:

π(a1, a2) =


1, if a1 = α ∧ a2 = α

0, otherwise

(3.30)

97

CHAPTER 4

Logical Team Q-learning

In this chapter we address the factorization issue we mentioned in the previous chapter. This

problem is fundamental in MARL and is orthogonal to that of distributed rewards. Since in

this chapter we are concerned with addressing the factorization issue, we will consider the

simpler problem were the reward function is global. We consider two scenarios.

In the first scenario, the global state and all actions are visible to all agents. It is well

known that in this scenario the team can be regarded as one single agent where the aggre-

gate action consists of the joint actions by all agents [36]. The fundamental drawback of

this approach is that the joint action space grows exponentially in the number of agents and

the problem quickly becomes intractable [85,86]. Another important inconvenience with this

approach is that it cannot cope with a changing number of agents (for example if the system

is trained with 4 agents, it cannot be executed by a team of 5 agents; we expand on this

point in a later section). One well-known and popular approach to solve these issues, is to

consider each agent as an independent learner (IL) [12]. However, this approach has a num-

ber of issues. First, from the point of view of each IL, the environment is non-stationary (due

to the changing policies of the other agents), which jeopardizes convergence. And second,

replay buffers cannot be used due to the changing nature of the environment and therefore

even in cases where this approach might work, the data efficiency of the algorithm is nega-

tively affected. Ideally, it is desirable to derive an algorithm with the following features: i)

it learns individual policies (and is therefore scalable), ii) local actions chosen greedily with

respect to these individual policies result in an optimal team action iii) can be combined

with NNs, iv) works off-policy and can leverage replay buffers (for data efficiency), v) and

enjoys theoretical guarantees to team optimal policies at least in the dynamic programming

98

scenario. Indeed, the main contribution of this chapter is the introduction of Logical Team

Q-learning (LTQL), an algorithm that has all these properties. We start in the dynamic pro-

graming setting and derive equations that characterize the desired solution. We use these

equations to define the Factored Team Optimality Bellman Operator and provide a Theorem

that characterizes the convergence properties of this operator. A stochastic approximation

of the dynamic programming setting is used to obtain the tabular and deep versions of our

algorithm. For the single agent setting, these steps reduce to: the Bellman optimality equa-

tion, the Bellman optimality operator (and the theorem which states the linear convergence

of repeated application of this operator) and Q-learning (in its tabular form and DQN).

In the second scenario, we consider the centralized training and decentralized execution

paradigm. During execution, agents only have access to observations which we assume

provide enough information to play an optimal team policy. An example of this case would

be a soccer team in which the attackers have the ball and see each other but do not see the

goalkeeper or the defenders of their own team (arguably this information is enough to play

optimally and score a goal). The techniques we develop for the previous scenario can be

applied to this case without modification.

4.1 Related Works

Some of the earliest works on MARL are [12, 13]. Independent Q-learning (IQL) was first

studied by [12] where it was identified that IQL learners in a MARL setting may fail to

converge due to the non-stationarity of the perceived environment. Later [13] compared the

performance of IQL and joint action learners (JAL) where all agents learn the Q-values for all

the joint actions, and identified the problem of coordination during decentralized execution

when multiple optimal policies are available. A proof of convergence for JALs was provided

by [36]. Recently, [94] did an experimental study of ILs using DQNS in the Atari game Pong.

All these mentioned approaches cannot use experience replay due to the non-stationarity of

the perceived environment. Following Hyper Q-learning [81], [95] addressed this issue to

some extent using fingerprints as proxys to model other agents’ strategies.

99

The Distributed Q-learning (DistQ) algorithm was introduced in [79], which in the tabular

setting has guaranteed convergence to an optimal policy for deterministic MDPs. However,

this algorithm performs very poorly in stochastic scenarios and becomes divergent when

combined with function approximation. Later Hysteretic Q-learning (HystQ) was introduced

in [83] to improve these two limitations. HystQ is based on a heuristic and can be thought

of as a generalization of DistQ. These works also consider the scenario where agents cannot

perceive the actions of other agents. They are related to LTQL (from this work) in that

they can be considered approximations to our algorithm in the scenario where agents do not

have information about other agents’ actions. Recently [93] introduced Dec-HDRQNs for

multi-task MARL, which combines HystQ with Recurrent NNs and experience replay (which

they recognize is important to achieve high sample efficiency) through the use of Concurrent

Experience Replay Trajectories.

OAB was introduced by [82], the first algorithm that converges to an optimal Nash equi-

librium with probability one in any team Markov game. OAB considers the team scenario

where agents observe the full state and joint actions. The main disadvantage of this algorithm

is that it requires estimation of the transition kernel and rewards for the joint action state

space and also relies on keeping count of state-action visitation, which makes it impractical

for MDPs of even moderate size and cannot be combined with function approximators.

The idea of factoring the joint Q-function to handle the scalability issue was first intro-

duced in [84–86]. These papers have the disadvantage that they require coordination graphs

that specify how agents affect each other (the graphs require significant domain knowledge).

The main shortcoming of these papers is the factoring model they use, in particular they

model the optimal Q-function (which depends on the joint actions) as a sum of K local Q-

functions (where K is the number of agents, and each Q-function considers only the action

of its corresponding agent). The main issue with this factorization model is that the optimal

Q-function cannot always be factored in this way, in fact, the tasks for which this model does

not hold are typically the ones that require a high degree of coordination, which happen to

be the tasks where one is most interested in applying specific MARL approaches as opposed

to ILs. Moreover, even if the Q-function can be accurately modeled in this way, there is

100

no guarantee that if individual agents select their optimum strategies by maximizing their

local Q-functions the resulting joint action maximizes the global Q-function. The approach

we introduce in this chapter also considers learning factored Q-functions. However, the

fundamental difference is that the factored relations we estimate always exist and the joint

action that results from maximizing these individual Q-functions is optimal. VDN [91] and

QMIX [92] are two recent deep methods that also factorize the optimal Q-function assum-

ing additivity and monotonicity, respectively. This factoring is their main limitation since

many MARL problems of interest do not satisfy any of these two assumptions. Indeed, [90]

showed that these methods are unable to solve a simple matrix game. Furthermore, the indi-

vidual policies cannot be used for prediction, since the individual Q values are not estimates

of the return. To improve on the representation limitation due to the factoring assump-

tion, [90] introduced QTRAN which factors the Q-function in a more general manner and

therefore allows for a wider applicability. The main issue with QTRAN is that although it

can approximate a wider class of Q-functions than VDN and QMIX, the algorithm resorts

to other approximations, which degrade its performance in complex environments (see [89]).

Recently, actor-critic strategies have been explored [87, 88]. However, these methods have

the inconvenience that they are on-policy and therefore do not enjoy the data efficiency that

off-policy methods can achieve. This is of significant importance in practical MARL settings

since the state-action space is very large.

4.2 Problem Setting

As in the previous chapter we consider a situation where multiple agents form a team and

interact with an environment and with each other. However, in this chapter we consider

a slightly different formulation in which the reward function is global and furthermore we

introduce the concept of type of agent and individual observations of the global state. We

model our current setting as a Team Markov Decision Process (TMDP),1 which we define by

1Prior works use definitions such as Dec-POMDP [102], Multi-agent MDPs (MAMDP) [79] or Team
Markov Games [82]. However, these definitions are different from ours, which is why we opted for the
alternative name of TMDP. In particular, TMDPs include the notion of types of agents.

101

the tuple (S,T ,K,oτ ,Aτ ,P ,r). Here, S is a set of global states shared by all agents; T is the

set of types of agents; K is the total amount of agents, each of type τk ∈ T ; oτ : S → Oτ is the

observation function for agents of type τ ∈ T , whose output lies in some set of observations

Oτ ;2 Aτ is the set of actions available to agents of type τ ; P(s′|s, ā) specifies the probability

of transitioning to state s′ ∈ S from state s ∈ S having taken joint actions ak ∈ Aτk ; and

r : S × Ā × S → R is a global reward function, which can be a random variable following

some distribution ns,ā,s′(r). The goal of the team is to maximize the team’s return:

J(π) =
∞∑
t=0

γtEπ,P,d,n [r(st, āt, st+1)] (4.1)

Accordingly, for our current setting, the team’s optimal state-action value function (q†) and

optimal policy (π†) are given by:

π†(ā|s) = arg max
π(ā|s)

E ā∼π,s′∼P,r∼n
[
r(s, ā, s′) + γmax

ā′
q†(s′, ā′)

]
(4.2a)

q†(s, ā) = E s′∼P,r∼n
[
r(s, ā, s′) + γmax

ā′
q†(s′, ā′)

]
(4.2b)

As already mentioned, a team problem of this form can be addressed with any single-agent

algorithm. The fundamental inconvenience with this approach is that the joint action space

scales exponentially with the number of agents, more specifically |Ā| =
∏K

k=1 |Aτk |. An-

other problem with this approach is that the learned Q-function cannot be executed in a

decentralized manner using the agents’ observations. Furthermore, the learned quantities

(value functions or policies) are useless if the number of agents changes. However, if factored

policies are learned, then these could be executed by teams with different number of agents

(as long as the extra agents are of the same “type” as the agents used for learning. In section

4.4 we provide one example of this scenario). For these reasons, in this chapter we concern

ourselves with learning factored quantities.

Assumption 4.1. We assume that if for two states s1 and s2 we have oτks1 = oτks2 , then

q†(s1, a
k, a−k)|a−k∼π†(ak,a−k|s1) = q†(s2, a

k, a−k)|a−k∼π†(ak,a−k|s2).

2In other words, oτk(s) = oτks is agent’s k description of the global state s from its own perspective.

102

Assumption 4.2. Agents of the same type are assumed to be homogeneous. Mathematically,

if two agents n and k are homogeneous, then for every state s1 there is another equivalent

state s2 such that:

(
o`s1 = o`s2∀` 6= (n, k)

)
∧
(
oks2 = ons1

)
∧
(
oks1 = ons2

)
→ qπ(s1, ā)|ak=b

an=c
= qπ(s2, ā)|ak=c

an=b
(4.3)

In simple terms assumption 4.1 means that even though observations are not full de-

scriptions of the state, they provide enough information to know the effect of individual

actions assuming everybody else in the team acts optimally (intuitively this is a reasonable

requirement if the agents are expected to be able to play a team optimum strategy using

only their partial observations). Assumption 4.2 means that if two agents of the same type

are swapped (while other agents remain unchanged), then the value functions of the corre-

sponding states are equal independently of the policy being executed by the team (as long

as the agents swap their corresponding policies as well).

4.3 Algorithm Derivation

4.3.1 Factored Bellman Relations and Dynamic Programming

Similarly to the way that relations 4.2 are used to derive Q-learning in the single agent

setting, the goal of this section is to derive relations in the dynamic programming setting

from which we can derive a MARL algorithm. The following two lemmas take the first steps

in this direction.

Lemma 4.1. All TMDPs that satisfy assumptions 4.1 and 4.2 have, for each deterministic

103

team optimal policy, |T | factored functions qτ,? : Oτ ×Aτ → R such that:

max
ā
q†(s, ā) = max

a1
qτ1,?(oτ1s , a

1) = · · · = max
aK

qτK ,?(oτKs , aK) (4.4a)

max
ā
q†(s, ā) = q†

(
s, arg max

a1

qτ1,?(oτ1s , a
1), · · · , arg max

aK
qτK ,?(oτKs , aK)

)
(4.4b)

qτk,?(oτks , a
k) =EP,n

[
r(s, ak, a−k, s′)+γmax

a′,k
qτk,?(oτks′ , a

′,k)
]∣∣
an=arg max

an
qτn,?(oτns ,an)∀n 6=k (4.4c)

Proof. See appendix 4.A.

A simple interpretation of equation (4.4c) is that qτk,?(oτks , a
k) is the expected return

starting from state s when agent k takes action ak while the rest of the team acts in an

optimal manner.

Lemma 4.2. All TMDPs that satisfy assumptions 4.1 and 4.2 have at least one deterministic

team optimal policy that can be factored into |T | deterministic policies πτ,?(a|o), where a ∈ Aτ

and o ∈ Oτ . Such factored deterministic policies can be obtained as follows:

πτ,?(a|o) =


1, if a = arg maxa q

τ,?(o, a)

0, else

(4.5)

Proof. The proof simply follows from equations (4.4a) and (4.4b).

Lemmas 4.2 and 4.2 are important because they show that if the agents learn factored

functions that satisfy (4.4) and act greedily with respect to their corresponding qτk,?, then

the resulting team policy is guaranteed to be optimal and hence they are not subject to

the coordination problem identified in [79]3 (we show this in section 4.4.1). Therefore, an

algorithm that learns qτk,? would satisfy the first two of the five desired properties that were

enumerated in the introduction. As a sanity check, note that for the case where there is

only one agent, equation (4.4c) simplifies to the Bellman optimality equation. Furthermore,

3This problem arises in situations in which the TMDP has multiple deterministic team optimal policies
and the agents learn factored functions of the form maxa−kq†(s,ak,a−k) (we remark that these are not the

same as qτk,?(oτks , a
k)).

104

Lemma 4.2 can be seen as an extension to the TMDP case of the well known result that states

that every MDP has at least one deterministic optimal policy [22]. Although in the single

agent case the Bellman optimality equation can be used to obtain q† (applying repeatedly

the operator of the same name), we cannot do the same with (4.4c). The fundamental reason

for this is that the |T | functions qτ,? are not the only functions that satisfy relation (4.4c).

Remark 4.1. Sub-optimal Nash fixed points: There may exist T functions qτ such

that (4.4c) is satisfied but (4.4b) is not.

Proof. We prove this with an example. See appendix 4.B.

Note that Remark 4.1 implies that relation (4.4c) is not sufficient to derive a learning

algorithm capable of obtaining a team optimal policy because it can find sub-optimal Nash

equilibria. To avoid this inconvenience, it is necessary to find another relation that is only

satisfied by q?. We can obtain one such relation combining (4.4a) and (4.4c):

max
ak

qτk,?(oτks , a
k) = max

ā
EP,n

[
r(s, ā, s′) + γmax

a′,k
qτk,?(oks′ , a

′,k)
]

(4.6)

The sub-optimal Nash fixed points mentioned in Remark 4.1 do not satisfy relation (4.6)

since by definition the right hand side is equal to maxā q
†(s, ā). Intuitively, equation (4.6)

is not satisfied by these suboptimal strategies because the maxā considers all possible team

actions (while Nash equilibria only consider unilateral deviations).

Definition 4.1. Combining equations (4.4c) and (4.6), we define the Factored Team Opti-

mality Bellman operator Bψ as follows:

Bψqτk(oτks , ak) =
[
I(c1)Ba−kqτk(oτks , ak)+I(c̄1) max

{
qτk(oτks , a

k),Ba−kqτk(oτks , ak)
}]∣∣

a−k∼ψ (4.7)

c1
∆
= an == arg max

an
qτn(oτns , a

n) ∀n 6= k (4.8)

Ba−kqτk(oτks , ak) = EP,n
(
r(s, ak, a−k, s′) + γmax

a′
qτk(oτks′ , a

′)
)∣∣
a−k

(4.9)

where I is the indicator function, c1 is a Boolean variable, c̄1 is the logical not operator applied

on c1, and ψ is some distribution that assigns strictly positive probability to every a−k. Note

105

that operator Bψ is stochastic: every time it is applied to qτk , a−k is sampled according to ψ.

A simple interpretation of operator Bψ is the following. Consider a basketball game, in

which player α has the ball and passes the ball to teammate β. If β gets distracted, misses the

ball and the opposing team ends up scoring, should α learn from this experience and modify

its policy to not pass the ball? The answer is no, since the poor outcome was player β’s

fault. In plain English, from the point of view of some player k, what the first term of (4.7)

means is ”I will only learn from experiences in which my teammates acted according to what

I think is the optimal team strategy”. It is easy to see why this kind of stubborn rationale

cannot escape Nash equilibria (i.e., agents do not learn when the team deviates from its

current best strategy, which obviously is a necessary condition to learn better strategies).

The interpretation of the full operator Bψ is ”I will learn from experiences in which: a) my

teammates acted according to what I think is the optimal team strategy; or b) my teammates

deviated from what I believe is the optimal strategy and the outcome of such deviation was

better than I expected if they had acted according to what I thought was optimal”, which

arguably is what a logical player would do (this is the origin of the algorithm’s name).

Theorem 4.1. Repeated application of the operator Bψ to any initial |T | qτ -functions con-

verge to set S with probability one. Mathematically:

P
(

limN→∞(Bψ)Nqτk(oτks , a
k) ∈ S

)
= 1 (4.10)

S=
{
qτk
∣∣qτk,?(oτks , ak) ≤ qτ (oτks , a

k) ≤ max
a−k

q†(s, ak, a−k) ∀(τk, oτks , ak)∈(T ,Oτk,Aτk)
}

(4.11)

The mean convergence rate is exponential with constant lower bounded by γp, where p is the

lowest probability assigned to any a−k by ψ (i.e. p = arg mina−k Pψ(a−k)).

Proof. See appendix 4.C.

As a sanity check, notice that in the single agent case operator Bψ reduces to the Bell-

man optimality operator and Theorem 4.1 reduces to the well known result that repeated

application of the Bellman optimality operator to any initial Q-function converges at an

exponential rate (with constant γ) to q†.

106

4.3.2 Reinforcement Learning Setting

In this section we present LTQL (see algorithm 4.1), which we obtain as a stochastic approx-

imation to operator Bψ. Note that the algorithm utilizes two q estimates for each type τ , a

biased one parameterized by θτ (which we denote qθτ) and an unbiased one parameterized by

ωτ (which we denote qωτ). We clarify that in the listing of algorithm 4.1 we used a constant

step-size, however this can be replaced with decaying step-sizes or other schemes such as

AdaGrad [103] and Adam [101]. Note that the target of the unbiased network is used to

calculate the target values for both functions; this prevents the bias in the estimates qθτ

(which arises due to the c2 condition) from propagating through bootstrapping. The target

parameters of the biased estimates (θτT) are used solely to evaluate condition c1. We have

found that this stabilizes the training of the networks, as opposed to just using θτ . Hyper-

parameter α weights samples that satisfy condition c2 ((r+ maxa qθτkT
(oτks′ , a) > qθτk (oτks , a

k))

differently from those who satisfy c1. Intuitively, since the purpose of condition c2 is to

escape Nash equilibria, α should be chosen as small as possible as long as the algorithm

doesn’t get stuck in such equilibria. As we remarked in the introduction, LTQL reduces to

DQN for the case where there is a unique agent. In appendix 4.F we include the tabular

version of the algorithm along with a brief discussion.

Note that LTQL works off-policy and there is no necessity of synchronization for explo-

ration. Therefore, it can be implemented in a fully decentralized manner as long as all agents

have access to all observations (and therefore to the full state) and actions of other agents (so

that they can evaluate c1). Interestingly, if condition c1 (an = arg maxan qθτkT
(oτns , a

n) ∀n 6= k)

was omitted (to eliminate the requirement that agents have access to all this information),

the resulting algorithm is exactly DistQ [79]. However, as the proof of theorem 4.1 indicates,

the resulting algorithm would only converge in situations where it could be guaranteed that

during learning overestimation of the q values is not possible (i.e., the tabular setting applied

to deterministic MDPs; this remark was already made in [79]). In the case where this con-

dition could not be guaranteed (i.e., when using function approximation and/or stochastic

MDPs), some mechanism to decrease overestimated q values would be necessary, as this is

107

Algorithm 4.1 Logical Team Q-Learning

Initialize: an empty replay buffer R, parameters θτ and ωτ and their corresponding
targets θτT and ωτT for all types τ ∈ T .
for iterations e = 0, . . . , E do

Sample T transitions (oτ1s , · · · , oτKs , ā, r, oτ1s′ , · · · , o
τK
s′) by following some behavior policy

which guarantees all joint actions are sampled with non-zero probability and store them
in R.
for iterations i = 0, . . . , I do

Sample a mini-batch of B transitions (oτ1s , · · · , oτKs , ā, r, oτ1s′ , · · · , o
τK
s′) from R.

Set ∆θτ = 0 and ∆ωτ = 0 for all types τ .
for each transition of the mini-batch b = 1, · · · , B and each agent k = 1, · · · , K do

if an = arg maxan qθτkT
(oτns , a

n) ∀n 6= k then

∆θτk = ∆θτk +
(
r + max

a
qωτkT

(oτks′ , a)− qθτk (oτks , a
k)
)
∇θτk qθτk (oτks , a

k)

∆ωτk = ∆ωτk +
(
r + max

a
qωτkT

(oτks′ , a)− qωτk (oτks , a
k)
)
∇ωτk qωτk (oτks , a

k)

else if
(
r + max

a
qθτkT

(oτks′ , a) > qθτk (oτks , a
k)
)

then

∆θτk = ∆θτk + α
(
r + max

a
qωτkT

(oτks′ , a)− qθτk (oτks , a
k)
)
∇θτk qθτk (oτks , a

k)

end if
end for
θτ = θτ + µ∆θτ ωτ = ωτ + µ∆ωτ

end for
Update targets θτT = θτ and ωτT = ωτ .

end for

the main tasks of updates due to c1. One possible way to do this would be to use all tran-

sitions to update the q estimates but use a smaller step-size for the ones that do not satisfy

c2. Notice that the resulting algorithm would be exactly HystQ [83].

4.4 Experiments

4.4.1 Matrix Game

The first experiment is a simple matrix game (table 4.4.1 shows the payoff structure) with

multiple team optimum policies to evaluate the resilience of the algorithm to the coordination

issue mentioned in section 4.3.1.

In this case, we implemented LTQL and DistQ in tabular form (we do not include HystQ

because in deterministic environments with tabular representation this algorithm is domi-

108

Agent 2

A
gen

t
1

a1 a2 a3

b1 0 2 0
b2 0 1 2

Table 4.1: Payoff matrix

nated by DistQ) and we also implemented Qmix (note that this algorithm cannot be imple-

mented in tabular form due to the use of the mixing network). In all cases we used uniform

exploratory policies (ε = 1) and we did not use replay buffer. DistQ converges to (4.12),

which clearly shows why DistQ has a coordination issue. However, LTQL converges to either

of the two possible solutions shown in (4.13) (depending on the seed) for which individual

greedy policies result in team optimal policies. Qmix converges to (4.14). Note that Qmix

fails at identifying an optimum team policy and the resulting joint Q-function qjt obtained

using the mixing network also fails at predicting the rewards. The full qjt is shown in table

4.4.1.

q1(a1) = max
a2

q†(a1, a2) = [2, 2] q2(a2) = max
a1

q†(a1, a2) = [0, 2, 2] (4.12)

q1,?(a1) = [2, 1] q2,?(a2) = [0, 2, 0] or q1,?(a1) = [0, 2] q2,?(a2) = [0, 1, 2] (4.13)

q1(a1) = [−0.75, 1.09] q2(a2) = [−3.49, 1.83, 0.62] (4.14)

In figure 4.1 we show the convergence curves for Qmix 4.1(f), DistQ 4.1(a) and Logical

Team Q-learning. Figures 4.1(b) and 4.1(c) correspond to the deterministic (algorithm 4.2)

and general version (algorithm 4.3), respectively. Figures 4.1(d) and 4.1(e) also show curves

for LTQL but use different seeds and provide evidence to our claim that this algorithm can

converge to either of the two options in (4.13). One interesting fact to note is that the

suboptimal values of qτB (in figures 4.1(b) and 4.1(d)) do not converge while the same values

do converge in the case of qτU . This is a direct consequence of theorem 4.1. As the theorem

suggests, only the optimal values of the estimates generated by LTQL converge to qτ,?, and

suboptimal values lie in the region between qτk,?(oτks , a
k) and maxa−k q

†(s, ak, a−k). Due to

the bias generated by condition c2, the values corresponding to sub-optimal actions converge

109

to values in between qτ,? and q†. All the values qτU converge because these estimates are not

affected by this bias (because qτU is only updated through c1, see algorithm 4.3).

(a) DistQ (b) qτB (seed=0)

(c) qτU (seed=0) (d) qτB (seed=1)

(e) qτU (seed=1) (f) Qmix

Figure 4.1: Matrix game. In all figures the red curves correspond to the three actions of
agent 2, while the blue curves correspond to the two actions from agent 1.

110

Below we show the joint q values generated by Qmix ’s mixing network.

Agent 2

A
gen

t
1

a1 (−3.49) a2 (1.83) a3 (0.62)
b1 (−0.74) −4.78× 10−2 1.17 6.86× 10−1

b2 (1.09) 1.51× 10−3 1.57 1.09

Table 4.2: Qmix full results

We now specify the hyperparameters. For Logical Team Q-learning and DistQ we used

a step-size equal to 0.1. The α parameter for LTQL is equal to 1. The mixing network in

Qmix has 2 hidden layers with 5 units each, the nonlinearity used was the ELu and the step-

size used was 0.05 (we had to make it smaller than the others to make the SGD optimizer

converge). We finally remark that due to the more complex structure of Qmix (compared to

the other two algorithms) we had to train this algorithm with 100 times more games (notice

the x-axis in figure 4.1).

4.4.2 Stochastic Finite TMDP

In this experiment we use a tabular representation in a stochastic episodic TMDP. The

environment is a linear grid with 4 positions and 2 agents. At the beginning of the episode,

the agents are initialized in the far right. Agent 1 cannot move and has 2 actions (push

button or not push), while agent 2 has 3 actions (stay, move left or move right). If agent 2

is located in the far left and chooses to stay while agent 2 chooses push, the team receives

a +10 reward. If the button is pushed while agent 2 is moving left the team receives a −30

reward. This negative reward is also obtained if agent 2 stays still in the leftmost position

and agent 1 does not push the button. All rewards are subject to additive Gaussian noise

with mean 0 and standard deviation equal to 1. Furthermore if agent 2 tries to move beyond

an edge (left or right), it stays in place and the team receives a Gaussian reward with 0 mean

and standard deviation equal to 3. The TMDP finishes after 5 timesteps or if the team gets

the +10 reward (whichever happens first). We ran the simulation 5 times with different

seeds. The observation corresponding to agent 1 is a vector with two binary elements: the

111

Figure 4.2: The dark curves show the mean over all seeds while the shaded regions show the
min and max limits over the seeds.

first one indicates whether or not agent 2 is in the leftmost position, and the second element

indicates whether or not there is enough time for agent 2 to reach the leftmost position.

The observation corresponding to agent 2 is a vector with two elements: the first one is the

number of the position it occupies and the second one is the same as agent 1 (whether there

is enough time to reach the leftmost position). Note that these observations are not full

descriptions of the state, however they do satisfy assumption 4.1.

All algorithms are implemented in an on-line manner with no replay buffer. ε-greedy

exploration with a decaying schedule is used in all cases (ε = max[0.05, 1− epoch/5× 104]).

The learning rate used is µ = 10−1 and the smaller second rate for HystQ is µsmall = 5.10−2,

in the case of Qmix we used µ = 10−3 to guarantee stability. The α parameter for LTQL is

equal to 1.

Figure 4.4.2 shows the average test return4 (without the added noise) of LTQL, HystQ,

DistQ and Qmix. As can be seen, LTQL is the only algorithm capable of learning the optimal

team policy.

Figures 4.3 show the estimated q-values for Logical Team Q-learning corresponding to 4

different observations at the 4 positions. Note that in all figures the optimum action has the

4The average test return is the return following a greedy policy averaged over 50 games.

112

highest value and correctly estimates the return corresponding to the optimal team policy

(+10).

(a) Leftmost position t = 3 (b) Slot adjacent to leftmost t = 2

(c) Slot adjacent to rightmost t = 1 (d) Rightmost position t = 0

Figure 4.3: Learning curves for agent 2 of Logical Team Q-learning for a random seed.

Figures 4.4 show the learning curves for DistQ. Note that the reason that this algorithm

cannot solve this environment is that it severely overestimates the value of choosing to move

to the right whilst on the rightmost position. It is well known that this is a consequence

of the fact that DistQ only performs updates that increase the estimates of the Q-values

combined with the stochastic reward received when agent 2 ”stumbles” against the right

edge.

Figures 4.5 show the learning curves for HystQ. This algorithm cannot solve this envi-

ronment because it has two issues and the way to solve one makes the other worse. More

113

(a) Leftmost position t = 3 (b) Slot adjacent to leftmost t = 2

(c) Slot adjacent to rightmost t = 1 (d) Rightmost position t = 0

Figure 4.4: Learning curves for agent 2 of DistQ for a random seed.

specifically, one can be solved by increasing the smaller step-size, while the other needs to

decrease it. The first issue is the same one that affects DistQ, i.e., the overestimation of the

move right action in the rightmost position. Note that this can be ameliorated by increasing

the small step-size. The second issue is the penalty incurred due to moving to the left when

agent 1 presses the button. This can be ameliorated by decreasing the small step-size. The

fact that there is no intermediate value for the small step-size to solve both issues is the

reason that this algorithm cannot solve this environment.

Figures 4.6 show the learning curves for Qmix. The architecture used is as follows: we

used tabular representation for the individual q functions, and for the mixing and hyper-

networks we used the architecture specified in [89]. More specifically, the mixing network is

114

(a) Leftmost position t = 3 (b) Slot adjacent to leftmost t = 2

(c) Slot adjacent to rightmost t = 1 (d) Rightmost position t = 0

Figure 4.5: Learning curves for agent 2 of HystQ for a random seed.

composed of two hidden layers (with 10 units each) with ELu nonlinearities in the first layer

while the second layer is linear. The hypernetworks that output the weights of the mixing

network consist of two layers with ReLU nonlinearities followed by an activation function

that takes the absolute value to ensure that the mixing network weights are non-negative.

The bias of the first mixing layer is produced by a network with a unique linear layer and

the other bias is produced by a two layer hypernetwork with a ReLU nonlinearity. All

hypernetwork layers are fully connected and have 5 units.

115

(a) Leftmost position t = 3 (b) Slot adjacent to leftmost t = 2

(c) Slot adjacent to rightmost t = 1 (d) Rightmost position t = 0

Figure 4.6: Learning curves for agent 2 of Qmix.

4.4.3 Cowboy Bull Game

In this experiment we use a more complex environment. The TMDP is a challenging

predator-prey type game, in which 4 (homogeneous) cowboys try to catch a bull (see figure

4.4.3). The position of all players is a continuous variable (and hence the state space is

continuous). The space is unbounded and the bull can move 20% faster than the cowboys.

The bull follows a fixed stochastic policy, which is handcrafted to mimic natural behavior

and evade capture. In appendix 4.G we specify the bull’s policy. Due to the unbounded

space and the fact that the bull moves faster than the cowboys, it cannot be captured unless

all agents develop a coordinated strategy (the bull can only be caught if the agents first

116

Figure 4.7: Cowboy bull game

surround it and then close in evenly). The task is episodic and ends after 75 timesteps or

when the bull is caught. Each agent has 5 actions (the four moves plus stay). When the bull

is caught a +1 reward is obtained and the team also receives a small penalty (−1/(4× 75))

for every agent that moves. Note that due to the reward structure there is a very easily

attainable Nash equilibrium, which is for every agent to stay still (since in this way they

do not incur in the penalties associated with movement). In this game, since all agents are

homogeneous, only one Q-function is learned whose input is the agent’s observation and the

output are the Q-values corresponding to the 5 possible actions. Figure 4.8(a) shows the

test win percentage5 and figure 4.8(b) shows the average test return for LTQL, HystQ and

Qmix. The best performing algorithm is LTQL. HystQ learns a policy that catches the bull

80% of the times, although it fails at obtaining returns higher than zero. We believe that the

poor performance of Qmix in this task is a consequence of its limited representation capacity

due to its monotonic factoring model. As we mentioned in the introduction, we can test the

learned policy on teams with different number of agents, figure 4.8(c) shows the results. The

policy scores above 70% for teams of all sizes bigger than 4. Note that the policy can be

improved for any particular team size by further training if necessary.

5Percentage of games, out of 50, in which the team succeeds to catch the bull following a greedy policy.

117

(a) (b)

(c)

Figure 4.8: In (a) and (b) the blue, green and red curves correspond to LTQL, HystQ and
Qmix, respectively. The dark curves show the mean over all seeds while the shaded regions
show the min and max limits over the seeds.

We now specify the hyperparameters for Logical Team Q-learning. All NN’s have two

hidden layers with 50 units and ReLu nonlinearities. However, for each Q-network, instead

of having one network with 5 outputs (one for each action), we have 5 networks each with

1 output. At every epoch the agent collects data data by playing 32 full games and then

performs 50 gradient backpropagation steps. Half of the 32 games are played greedily and

the other half use a Boltzmann policy with temperature bT with decays according to the

following schedule bT = max[0.05, 0.5 × (1 − epoch/15 × 103)]. We use this behavior policy

to ensure that there are sufficient transitions that satisfy condition c1 and that also there

118

are transitions that satisfy c2. The target networks are updated every 50 backprop steps.

The capacity of the replay buffer is 2.105 transitions, the mini-batch size is 1024, we use

a discount factor equal to 0.99 and optimize the networks using the Adam optimizer with

initial step-size 10−5 and α parameter is 1.

The hyperparameters of the HystQ implementation are the same as those of LTQL, the

ratio of the two step-sizes used by HystQ is 0.1.

The architecture used by Qmix is the one suggested in [89] with the exception that,

for fairness, the individual Q-networks used the same architecture as the ones used by the

other algorithms (i.e., 5 networks with a unique output as opposed to 1 network with 5

outputs). All hidden layers of the hypernetworks as well the mixing network have 10 units.

In this case we did 5 backprop iterations per epoch and the target network update period

is 15. We use a batch size of 256, a discount factor equal to 0.98 and optimize the networks

with the Adam optimizer with initial step-size 10−6. In this case the behavior policy is

always Boltzmann with the following annealing schedule for the temperature parameter

bT = max[0.005, 0.05× (1− epoch/25× 103)].

The batch size, Boltzmann temperature value, learning step-size and target update period

were chosen by grid search.

4.5 Summary

In this chapter we have introduced theoretical groundwork for factored cooperative MARL.

We also introduced LTQL, which has the 5 desirable properties mentioned in the introduc-

tion. Furthermore, it does not impose constraints on the learned individual Q-functions

and hence it can solve environments where previous algorithms, which are considered to be

state of the art such as Qmix [89], fail. The algorithm fits in the centralized training and

decentralized execution paradigm. It can also be implemented in a fully distributed manner

in situations where all agents have access to each others’ observations and actions.

119

4.A Proof of Lemma 4.1

We start by rewriting equation (4.2b) for convenience:

q†(s, ā) = E
[
r(s, ā, s′) + γmax

ā′
q†(s′, ā′)

]
(4.15)

Now assume that we have some deterministic team optimal policy π†(ā|s). We define

qk,∗(s, ak) as follows:

qk,∗(s, ak) = q†(s, ak, a−k)|a−k∼π†(ak,a−k|s) (4.16)

In simple terms qk,∗(s, ak) is the q-value if agent k takes action ak while the rest of the agents

act optimally (note that this is not the same as maxa−k q
†(s, ak, a−k)). Due to assumption

4.1, qk,∗(s, ak) can be written as a function of the observations. Therefore, we define qk,• as:

qk,•(oτks , a
k) = qk,∗(s, ak) = q†(s, ak, a−k)|a−k∼π†(ak,a−k|s) (4.17)

Note that by construction we get:

max
ak

qk,•(oτks , a
k) = max

ā
q†(s, ā) ∀k (4.18)

arg max
ak

qk,•(oτks , a
k) = ak ∼ π†(ak, a−k|s) ∀k (4.19)

max
ā
q†(s, ā) = q†

(
s, arg max

a1

q1,•(oτ1s , a
1), · · · , arg max

aK
qτ,•(oτKs , aK)

)
∀k (4.20)

Combining (4.15), (4.17) and (4.19) we get the following relation for qk,•:

qk,•(oτks , a
k) = q†(s, ak, a−k)|a−k∼π†(ak,a−k|s) ∀k (4.21)

qk,•(oτks , a
k) = qk,†(s, ak, a−k)|an=arg maxan q

n,•(oτns ,an)∀n6=k ∀k (4.22)

= E
[
r(s, ak, a−k, s′) + γmax

a′,k
qk,•(oτks′ , a

′,k)
]∣∣
an arg maxan q

n,•(oτns ,an)∀n6=k ∀k (4.23)

120

Note that (4.18), (4.20) and (4.23) satisfy equations (4.4a), (4.4b) and (4.4c), respectively.

However, functions qk,• are defined on a per agent basis (which means that there are K

such functions) while functions qτk,? depend on the type (and hence there are |T | such

functions). Therefore, we still have to prove that functions qk,• corresponding to agents of

the same type are equal. From assumption 4.2, it follows that choosing qπ in (4.3) to be

q†(s, ak, a−k)|a−k∼π†(ak,a−k|s) we get:

q†(s1, a
k, a−k)

∣∣∣
ak=b

a−k∼π†(ak,a−k|s1)

= q†(s2, a
n, a−n)| an=b

a−n∼π†(an,a−n|s2)
∀b ∈ Aτ (4.24)

oks1 = ons2 (4.25)

where s1 and s2 are two equivalent states that swap agents k and n such that τk = τn = τ

for some type τ . Since (4.24) holds for any b ∈ Aτ and for all equivalent states, combining

(4.24), (4.25) and (4.17) and setting o = oτks1 = oτns2 we get that:

qτ,?(o, a) = qk,•(o, a) = qn,•(o, a) ∀(k, o, a)
∣∣τk = τ, o ∈ Oτ , a ∈ Aτ (4.26)

which completes the proof.

4.B Proof of remark 4.1

Consider the matrix game with two homogeneous agents, each of which has two actions

(A = {α; β}) and the following reward structure:

Table 4.3: Reward structure
Agent 2
α β

Agent 1
α 0 −1
β −1 1

For this case q†, q?, π† and π? are given by:

121

Table 4.4: q†(a1, a2)
α β

α 0 −1
β −1 1

Table 4.5: π†(a1, a2)
α β

α 0 0
β 0 1

Table 4.6: q?(a)
α β
−1 1

Table 4.7: π?(a)
α β
0 1

Notice that as expected, q? satisfies (4.4c). However, note that (4.4c) is also satisfied by

the following q function which is different from q?.

q(a = α) = 0, q(a = β) = −1 (4.27)

Notice further that the team policy obtained by choosing actions in a greedy fashion with

respect to q constitutes a Nash equilibrium.

4.C Proof of Theorem 4.1

We start defining the following auxiliary constants and operators:

qmax = rmax(1− γ)−1 (4.28)

qmin = rmin(1− γ)−1 (4.29)

BEqτk(oτks , ak) =EP,n
(
r(s, ak, a−k, s′)+γmax

a′
qτk(oτks′ , a

′)
)∣∣
an=arg max

an
qτn (oτns ,an) ∀n6=k (4.30)

BIqτk(oτks , ak) = max
{
qτk(oτks , a

k),max
a−k

EP,n
(
r(s, ak, a−k, s′) + γmax

a′
qτk(oτks′ , a

′)
)}

(4.31)

BψUq
τk(oτks , a

k) =


BEqτk(oτks , ak) with probability p

BIqτk(oτks , ak) else

(4.32)

BψLq
τk(oτks , a

k) =
[
I(c1)BEqτk(oτks , ak) + I(c̄1 ∧ c2)BIqτk(oτks , ak)

+ I(c̄1 ∧ c̄2)qτk(oτks , a
k)
]∣∣
a−k∼ψ (4.33)

c1
∆
=

(
an == arg max

an
qτn(oτns , a

n) ∀n 6= k

)
(4.34)

c2
∆
=

(
a−k == arg max

a−k
Ba−kqτk(oτks , ak)

)
(4.35)

122

where rmax is the maximum mean reward, rmin is the minimum mean reward and p is the

minimum probability assigned to any a−k by the discrete distribution ψ.

Lemma 4.3. Repeated application of operator BψU to any qτkU (oτks , a
k) ≥ qmax converges to set

SU =
{
qτk |qτk(oτks , ak) ≤ maxa−k q

†(s, ak, a−k) ∀oτks ∈ Oτk ∧ ak ∈ Aτk
}

with probability one.

The mean rate of convergence is exponential with Lipschitz constant γp.

Proof. See appendix 4.D.

Lemma 4.4. Repeated application of operator BψL to any qτkL (oτks , a
k) ≤ qmin converges to set

SL =
{
qτk |qτk(oτks , ak) ≥ qτk,?(oτks , a

k) ∀oτks ∈ Oτk∧ak ∈ Aτk
}

with probability one. The mean

rate of convergence is exponential with Lipschitz constant γp.

Proof. See appendix 4.E.

Now assume we have an initial Q-function and define qL(oτks , a
k) = min{qmin, q(o

τk
s , a

k)}

and qU(oτks , a
k) = max{qmax, q(o

τk
s , a

k)}. We conclude the proof by noting that BψLqL(oτks , a
k) ≤

Bψq(oτks , ak) ≤ B
ψ
UqU(oτks , a

k) and making use of lemmas (4.3) and (4.4) and the sandwich

theorem.

4.D Proof of Lemma 4.3

We start defining qτkU (oτks , a
k) = qU ,∀(τk, oτks , ak), where qU ≥ qmax. The first part of the proof

consists in showing that any sequence of the form BKnI BE · · · B
K1
I BEB

K0
I qτkU (oτks , a

k) is equal

to BnI q
τk
U (oτks , a

k) where Kn ∈ N and n ∈ N is the number of times that operator BI is applied

in the aforementioned sequence. Applying operator BI to qτkU (oτks , a
k) we get:

BIqτkU (oτks , a
k) = max

{
qU ,max

a−k
EP,n

(
r(s, ak, a−k, s′) + γqU

)}
= qU (4.36)

123

Therefore, BK0
I qτkU (oτks , a

k) = qτkU (oτks , a
k) for any K0 ∈ N. Applying operator BE we get:

BEqτkU (oτks , a
k) = E s′∼P

(
r(s, ak, a−k) + γqU

)∣∣
an=arg max

an
qU ∀n6=k

≤ max
a−k

r(s, ak, a−k) + γqU (4.37)

B2
Eq

τk
U (oτks , a

k) ≤ E s′∼P
(
r(s, ak, a−k)+γmax

ā′
r(s′, ā′)+γ2qU

)∣∣
an=arg max

an
BEqτnU (oτns ,an) ∀n6=k

≤ max
a−k

E s′∼P
(
r(s, ak, a−k) + γmax

ā′
r(s′, ā′) + γ2qU

)
(4.38)

BK1
E qτkU (oτks , a

k) ≤ max
a−k0 ,ā1,··· ,āK1−1

E

(
K1−1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)
+ γK1qU (4.39)

where to simplify notation we defined EP,nr(s, ak, a−k, s′) = r(s, ak, a−k). Further applica-

tion of BI we get:

BIBK1
E qτkU (oτks , a

k) ≤ max

{
max

a−k0 ,ā1,··· ,āK1−1

E

(
K1−1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)
+ γK1qU ,

max
a−k0 ,ā1,··· ,āK1

E

(
K1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)
+ γK1+1qU

}

= max
a−k0 ,ā1,··· ,āK1−1

E

(
K1−1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)
+ γK1qU (4.40)

Therefore, we conclude that BK2
I B

K1
E B

K0
I qτkU (oτks , a

k) = BK1
E qτkU (oτks , a

k). More generally, we

can write:

BKnI · · · B
K1
E B

K0
I qτkU (oτks , a

k) = BnEq
τk
U (oτks , a

k)

≤ max
ak0 ,ā1,··· ,ān−1

E

(
n−1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)
+ γnqU

≤ max
a−k

q†(s, ak, a−k) + γn
(
qU −min

s
max
ā
q†(s, ā)

)
(4.41)

where n is the number of times that operator BE is applied. Therefore, we get:

(BψU)NqτkU (oτks , a
k) ≤ max

a−k
q†(s, ak, a−k) + γn

(
qU −min

s
max
ā
q†(s, ā)

)
(4.42)

124

where n ∈ N is defined as before (i.e, it is the amount of times that BE was selected out of

N). Now we proceed to show that the probability that n is finite in any infinite sequence

is zero. The probability that operator BE is selected n times in a sequence of N (which we

denote as P(n;N)) can be bounded as follows:

P(n;N)
(b)

≤

N
n

P n(1− P)N−n =

(
1

n!

N∏
k=N−n+1

k

)
P n(1− P)N−n ≤ Nn

n!
P n(1− P)N−n

(4.43)

lim
N→∞

P(n;N) = 0 (4.44)

where in (b) we upper bounded the probability of BE with P , which is the highest probability

assigned to any a−k by ψ (i.e. P = maxa−k Pψ(a−k)) and then calculated the probability

using the binomial distribution6. Since limN→∞ P(n;N) = 0, it follows that the probability

of n being finite in an infinite sequence is also 0 (because it is the finite sum of probabilities

which tend to 0). Therefore we can conclude:

lim
N→∞

(BψU)NqτkU (oτks , a
k)

w.p. 1

≤ max
a−k

q†(s, ak, a−k) (4.45)

We conclude the proof by lower bounding the mean convergence rate as follows:

E (γn)
(c)

≥ γEn
(d)

≥ (γp)N (4.46)

where in (c) we used Jensen’s inequality and in (d) we lower bounded the probability P(n;N)

using a binomial distribution with probability p, where p is the lowest probability assigned

to any a−k by ψ (i.e. p = mina−k Pψ(a−k)).

6n follows a binomial distribution because the sampled a−k ∼ ψ in successive applications of operator BE
are independent of each other.

125

4.E Proof of Lemma 4.4

The first part of the proof consists in showing that any sequence of the form BI · · · BK2
E B

K1
I B

K0
E

qτkL (oτks , a
k) is lower bounded by the sequence BnI q

τk
L (oτks , a

k) where Kk ∈ N and n ∈ N is the

number of times that operator BI is applied in the aforementioned sequence. We start

defining qτkL (oτks , a
k) = qL where qL ≤ qmin. If we apply BE to qL(oτks , a

k) we get:

BEqτkL (oτks , a
k) ≥ qL = qτkL (oτks , a

k) (4.47)

BK0
E qτkL (oτks , a

k) ≥ qτkL (oτks , a
k) (4.48)

Therefore, we get BIBK0
E qτkL (oτks , a

k) ≥ BIqτkL (oτks , a
k). More specifically, we can write:

BIqτkL (oτks , a
k) = max

{
qL,max

a−k
r(s, ak, a−k) + γqL

}
= max

a−k
r(s, ak, a−k) + γqL (4.49)

BK1
I qτkL (oτks , a

k) = max
a−k0 ,ā1,··· ,āK1−1

E

(
K1−1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)
+ γK1qL (4.50)

where like in the previous section we defined EP,nr(s, ak, a−k, s′) = r(s, ak, a−k). Applying

BE we get:

BEBK1
I qτkL (oτks , a

k) = max
ā1,··· ,āK1

E

(
K1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)∣∣∣∣∣ ak0=ak

an0 =arg max
an

BK1
I qτnL (oτns ,a

n)∀n6=k

+ γK1+1qL

(4.51)

B2
EB

K1
I qτkL (oτks , a

k) = max
ā1,··· ,āK1+1

E

(
K1+1∑
i=0

γir(si, a
k
i , a
−k
i)|s0=s

)∣∣∣∣∣ ak0=ak

an0 =arg max
an

BEB
K1
I qτnL (oτns ,a

n)∀n 6=k

+ γK1+2qL

(4.52)

126

Expanding arg max
an

BEBK1
I qτnL (oτns , a

n) ∀n 6= k we get:

arg max
an

BEBK1
I qτnL (oτns , a

n) =

arg max
an0

max
ā1,··· ,āK1−1

E

(
K1∑
i=0

γnr(si, a
n
i , a

−n
i)|s0 = s

)∣∣∣∣∣
a`0=arg max

a`
BK1
I q

τ`
L (o

τ`
s ,a`) ∀` 6=n

(a)
= arg max

an0

max
a−n0 ,ā1,··· ,āK1−1

E

(
K1∑
i=0

γnr(si, a
n
i , a

−n
i)|s0 = s

)
= arg max

an
BK1
I qτnL (oτns , a

n) (4.53)

where in (a) we used equation (4.50). Combining (4.53) with (4.52) we get :

B2
EB

K1
I qτkL (oτks , a

k) = max
ā1,··· ,āK1+1

E

(
K1+1∑
i=0

γir(si, a
k
i , a
−k
i)|s0 = s

)∣∣∣∣∣
an0 =arg max

an
BK1
I qτnL (oτns ,an) ∀n6=k

+ γK1+2qL

≥ BEBK1
I qτkL (oτks , a

k) (4.54)

Therefore, it follows:

BK2
E B

K1
I qτkL (oτks , a

k) ≥ BEBK1
I qτkL (oτks , a

k) (4.55)

≥ max
ā1,··· ,āK1−1

E

(
K1−1∑
i=0

γir(si, a
k
i , a
−k
i)|s0=s

)∣∣∣∣∣
an0 =arg max

an
BK1
I qτnL (oτns ,an) ∀n 6=k

+ γK1qL

(4.56)

Applying BI to (4.56) we get:

BIBK2
E B

K1
I qτkL (oτks , a

k)≥ max
ā0,··· ,āK1

E

(
K1∑
i=0

γir(si, a
k
i , a
−k
i)|s0=s

)
+γK1+1qL = BK1+1

I qτkL (oτks , a
k)

(4.57)

Therefore, we conclude that any sequence of the form BI · · · BK2
E B

K1
I B

K0
E qτkL (oτks , a

k) is lower

bounded by the sequence BnI q
τk
L (oτks , a

k) where n is the number of times that operator BI is

applied in the aforementioned sequence. Furthermore, from equation (4.50) we see that as

n→∞BnI q
τk
L (oτks , a

k) converges to maxa−k q
†(s, ak, a−k) at an exponential rate with Lipschitz

127

constant γ:

lim
n→∞

BnI q
τk
L (oτks , a

k)=lim
n→∞

max
a−k

q†(s, ak, a−k) + γn
(
qL−max

ā
q†(sK1+1, ā)

)
=max

a−k
q†(s, ak, a−k)

(4.58)

A corollary of the previous statement is that any sequence of the form BE · · · BK2
E B

K1
I B

K0
E

qτkL (oτks , a
k) is lower bounded by the sequence BEBnI q

τk
L (oτks , a

k) (note that this sequence ends

with the application of BE as opposed to BI , which is the case for the sequence studied in the

previous paragraph). In this case the sequence still converges at the same rate to q?(oτks , a
k)

as opposed to maxa−k q
†(s, ak, a−k). This can easily be seen as follows:

lim
n→∞

BEBnI q
τk
L (oτks , a

k) = lim
n→∞

BE
[

max
a−k

q†(s, ak, a−k) + γn
(
qL −max

ā
q†(sK1+1, ā)

)]
= BE max

a−k
q†(s, ak, a−k) = qτk,?(oτks , a

k) (4.59)

Since by definition qτk,?(oτks , a
k) ≤ maxa−k q

†(s, ak, a−k) and operator BψL applies BI or BE at

random (and therefore a sequence of composed of several applications of BψL can end with

either BI or BE) we get:

(BψL)NqτkL (oτks , a
k) ≥ BE

[
max
a−k

q†(s, ak, a−k) + γn
(
qL −max

ā
q†(sK1+1, ā)

)]
(4.60)

= qτk,?(oτks , a
k) +O(γn) (4.61)

where n ∈ N is defined as before (i.e, it is the amount of times that BI was selected out of

N). The same arguments we used in the previous section to prove the convergence w.p.1

and lower bound the rate of convergence apply here without modification. Therefore, we

conclude:

lim
N→∞

(BψL)NqL(oτks , a
k)

w.p. 1

≥ qτk,?(oτks , a
k) (4.62)

E (γn) ≥ γEn ≥ γpN (4.63)

128

Algorithm 4.2 Tabular Logical Team Q-Learning for deterministic TMDPs

Initialize: an empty replay buffer R and estimates q̂τk .
for iterations e = 0, . . . , E do

Sample T transitions (oτ1s , · · · , oτKs , ā, r, oτ1s′ , · · · , o
τK
s′) by following some behavior policy

which guarantees all joint actions are sampled with non-zero probability and store them
in R.
for iterations i = 0, . . . , I do

Sample a transition (oτ1s , · · · , oτKs , ā, r, oτ1s′ , · · · , o
τK
s′) from R.

for agent k = 1, · · · , K do
if
(
an = arg maxan q̂

τn(oτns , a
n) ∀n 6= k

)
then

q̂τk(oτks , a
k) = q̂τk(oτks , a

k) + µ
(
r + max

a
q̂τk(oτks′ , a)− q̂τk(oτks , ak)

)
else if

(
r + max

a
q̂τk(oτks′ , a) > q̂τk(oτks , a

k)
)

then

q̂τk(oτks , a
k) = q̂τk(oτks , a

k) + µα
(
r + max

a
q̂τk(oτks′ , a)− q̂τk(oτks , ak)

)
end if

end for
end for

end for

4.F Tabular Logical Team Q-Learning

In the case where the TMDP is deterministic it holds:

E (r(s, ā, s′) + γmax
a′

qτk(oks′ , a
′)) = r(s, ā, s′) + γmax

a′
qτk(oks′ , a

′) (4.64)

For this particular case, the tabular version of LTQL is given by algorithm 4.2.

If algorithm 4.2 were applied to a stochastic TMDP, due to condition c2 (given by r +

max
a
q̂τk(oτks′ , a) > q̂τk(oτks , a

k)), it would be subject to bias, which would propagate through

bootstrapping and hence could compromise its ability to find optimal team policies. This

can be solved by having a second unbiased estimate qU that is updated only when c1 is

satisfied and use this unbiased estimate to bootstrap. The resulting algorithm is shown in

algorithm 4.3.

129

Algorithm 4.3 Tabular Logical Team Q-Learning

Initialize: an empty replay buffer R and estimates q̂τkB and q̂τkU .
for iterations e = 0, . . . , E do

Sample T transitions (oτ1s , · · · , oτKs , ā, r, oτ1s′ , · · · , o
τK
s′) by following some behavior policy

and store them in R.
for iterations i = 0, . . . , I do

Sample a transition (oτ1s , · · · , oτKs , ā, r, oτ1s′ , · · · , o
τK
s′) from R.

for agent k = 1, · · · , K do
if an = arg maxan q̂

τn
B (oτns , a

n) ∀n 6= k then
q̂τkB (oτks , a

k) = q̂τkB (oτks , a
k) + µ

(
r + max

a
q̂τkU (oτks′ , a)− q̂τkB (oτks , a

k)
)

q̂τkU (oτks , a
k) = q̂τkU (oτks , a

k) + µ
(
r + max

a
q̂τkU (oτks′ , a)− q̂τkU (oτks , a

k)
)

end if
if
(
r + max

a
q̂τkU (oτks′ , a) > q̂τkB (oτks , a

k)
)

then

q̂τkB (oτks , a
k) = q̂τkB (oτks , a

k) + µα
(
r + max

a
q̂τkU (oτks′ , a)− q̂τkB (oτks , a

k)
)

end if
end for

end for
end for

4.G Bull’s policy

The bull’s policy is given by the pseudocode shown in algorithm 4.4.

Algorithm 4.4 Bull’s policy.

if distance to all predators ¿ 10 then
Natural foraging behavior: Stay still with 90% probability, otherwise make a small move
in a random direction.

else
if the maximum angle formed by two predators is ¿ 108o then

There’s a hole to escape: Escape through the direction in between these two predators.
else if distance to farthest predator - distance to closest predator ¿ 5 then

There’s no hole, but one predator is much closer than the others so run in the direction
opposite to this predator.

else
No way out (scared): Stay still with 70% probability, otherwise make a fast move in
a random direction.

end if
end if

130

CHAPTER 5

ISL: A Novel Approach for Deep Exploration

In section 3.5 of chapter 3 we identified two main limitations with the DTPO algorithm,

the problem of efficient exploration and the problem of learning factored policies. In this

chapter we address the problem of exploration. The problem of deep exploration is still an

open question in single-agent RL, hence in this chapter we consider the single agent case.

The DTPO algorithm we derived in Chapter 3 is based in the maximum-entropy RL

framework. Several single-agent algorithms have been introduced based on the maximum

entropy framework [28–34]. In maximum-entropy RL, the traditional RL objective is aug-

mented with the entropy of the learned policy, which is weighted by a temperature parameter.

The main benefit of the maximum RL framework is that it allows to derive algorithms that

are more sample efficient (because they operate off-policy) than policy gradients algorithms

like A3C [19], TRPO [20] and PPO [21] and exhibit improved stability over algorithms based

on Q-learning. Furthermore, it has been demonstrated empirically that algorithms based on

the maximum entropy framework have improved exploration capabilities [29]. Although

these recent algorithms have shown state of the art performance in several tasks, they are

not without shortcomings. In the first place, augmenting the original RL objective with the

entropy bonuses biases the solution of the optimization problem. This could be solved by

slowly annealing the temperature parameter, but it is unclear what is the best way to do so

and how this change affects convergence speed. The second, and more important, shortcom-

ing is that although these algorithms have improved exploration capabilities, they are still

unable to perform deep exploration (i.e., they tend to perform poorly in environments with

very sparse reward structures).

These difficulties suggest that there may not be sufficient theoretical justification for

131

the use of the policy’s entropy as the regularizer for the RL objective, which in turn raises

the question of whether another regularizer could help address the two aforementioned chal-

lenges. In this chapter we explore this possibility and connect the problem of deep exploration

with that of maximum entropy RL. Traditionally, the problem of deriving deep exploration

strategies has been treated separately from that of deriving the learning equations [104–108].

In this chapter we show that both the learning equations and the exploration strategy can be

derived in tandem as the solution to a well-posed optimization problem whose minimization

leads to the optimal value function. We do this by augmenting the objective function with

a novel regularizer. Instead of using the policy’s entropy as the regularizer (as maximum-

entropy RL does), we use a function which depends on the uncertainties over the agent’s

estimates of the q values.

The contribution of this chapter is the introduction of an alternative approach to address

deep exploration and the introduction of an algorithm that we refer to as the Information

Seeking Learner (ISL). This algorithm has a similar form to soft RL algorithms like SAC

and SBEED, but the fundamental difference is that it explicitly estimates the uncertainties

of its q estimates and uses these uncertainties to drive deep exploration.

5.1 Related Works

ISL is related to recent work on maximum entropy algorithms [28–33]. All these algorithms

augment the traditional RL objective with a term that aims to maximize the entropy of the

learned policy, which is weighted by a temperature parameter. The consequence of using

this augmented objective is two-fold. First, it allows to derive off-policy algorithms with

improved stability compared to algorithms based on Q-learning. Second, it improves the

exploration properties of the algorithms. However, using this augmented objective has two

main drawbacks. First, the policy to which these algorithms converge is biased away from

the true optimal policy. This point can be handled by annealing the temperature parameter

but this can slow down convergence and compromise exploration. Furthermore, it is unclear

what the optimal schedule to perform annealing is and how it affects the conditioning of

132

the optimization problem. Secondly, although exploration is improved, algorithms derived

from this modified cost are not efficient at performing deep exploration. The reason for

this is that a unique temperature parameter is used for all states. In order to perform deep

exploration it is necessary to have a scheme that allows agents to learn policies that exploit

more in states where the agent has high confidence in the optimal action (in order to be able

to reach further novel states with high probability) and act in a more exploratory manner

in unknown states. In chapter 3 we explored this possibility in a tabular setting making the

temperature parameter state dependent and annealing it progressively as states are explored;

however, the annealing schedule is determined heuristically and it is unclear what would be

an effective way to do so when using function approximation. The relation between ISL and

these works is that we also augment the RL objective with an entropy based regularizer and

as a consequence we derive a an algorithm that relies on a soft backup. Under our scheme,

agents converge to the true optimal policy without the need for annealing any parameter and,

moreover, an exploration strategy is derived that is capable of performing deep exploration.

The work we present in this chapter is also related to works on deep exploration strategies.

One line of research is based on posterior sampling for RL [105,106,108]. The main idea in

these works is to sample the value function from a posterior distribution over such function.

The common point between these works and ISL is that deep exploration is driven by some

measure of the uncertainty on the estimated value function. One difference between these

works and ours is that they rely on Posterior Sampling while our work does not. Another

fundamental difference is that these works treat the exploration problem separately from the

derivation of the learning rules. In other words, they use heuristics based on randomised

value functions to drive exploration but use off-the-shelf learning rules like Q-learning. In our

approach, we use the uncertainty over the learned value function not only to drive exploration

but to formulate a new objective from which we derive a new learning rule. Another line

of work relies on pseudo-counts [109, 110], the fundamental limitation of this approach is

that it only performs good if the generalization of the density model is aligned with the task

objective [108]. Another line of research relies on intrinsic rewards (IRs) [104,111–113], these

rewards are based on some heuristic based proxy that reflects the novelty of a state. ISL can

133

also be seen as utilizing IRs, however there are two main differences with the previous works.

Firstly, we use IRs that depend on the uncertainty of the q function. Secondly, we never

actually compute IRs, but rather we rely on a different backup to update the q estimates

(this point is clarified in section 5.3).

5.2 Problem Setting

We consider the problem of policy optimization within the traditional RL framework. We

model our setting as an MDP defined by (S,A,P ,r), where S is a set of states, A is a set

of actions of size A = |A|, P(s′|s, a) specifies the probability of transitioning to state s′ ∈ S

from state s ∈ S having taken action a ∈ A, and r : S ×A× S → R is the reward mapping

r(s, a, s′), which can be a random variable with distribution ns,a,s′(r).

Assumption 5.1. rmin ≤ Enr(s, a, s′) ≤ rmax, ∀(s, a, s′).

We further recall that the optimal policy is given by:

π†(a|s) = arg max
π

EP,π,n
(∞∑

t=0

γtr(st,at, st+1)
∣∣s0 = s

)
(5.1)

which can also be rewritten as a function of the optimal state-action value function as follows:

q†(s, a) = r(s, a) + γEP max
a′

q†(s′, a′) (5.2a)

π†(a|s) = arg max
π

∑
a

π(a|s)q†(s, a) (5.2b)

where as usual we defined r(s, a) = EP,nr(s, a, s′). Equations (5.2) are useful to derive

algorithms for planning problems (i.e., problems in which the reward function and transition

kernel are known) but may be unfit to derive RL algorithms because they mask the fact that

the agent relies on estimated quantities (which are subject to uncertainty). Hence, in this

work, we modify (5.1) to reflect the fact that an RL agent is constrained by the uncertainty of

its estimates. Intuitively, we change the goal of the agent to not just maximize the discounted

134

cumulative rewards but also to collect information about the MDP in order to minimize the

uncertainty of its estimated quantities. For this purpose, we assume that at any point in

time the agent has some estimate of the optimal value function denoted by q̂(s, a), which is

subject to some error q̃(s, a) = q†(s, a) − q̂(s, a). We model the unknown quantities q̃(s, a)

as random variables. More specifically, for each state-action pair we assume q̃(s, a) follows

a uniform probability distribution with zero mean q̃(s, a) ∼ U(0, `(s, a)) such that:

q̃(s, a) ∈ [q̂(s, a)− `(s, a); q̂(s, a) + `(s, a)] (5.3)

We will refer to the probability density function of q̃(s, a) as d(s,a)(q̃). We assume zero mean

uniform distributions for the following reasons. First, if the mean were different than zero,

it could be used to improve the estimate q̂(s, a) as q̂(s, a)← q̂(s, a) +E q̃(s, a) resulting in a

new estimate whose corresponding error would be zero mean. Secondly, under assumption

1, we know that for any infinitely discounted MDP, a symmetric bound for the error of the

value function exists in the form −`(s, a) < q̃(s, a) < `(s, a).1 Moreover, typically there

is no prior information about the error distribution between these bounds and therefore a

non-informative uniform distribution becomes appropriate.

We further define the state uncertainty distribution uπs (q̃) (which is given by a mixture of

the state-action error distributions) and the Maximum-Uncertainty-Entropy policy π• (which

at every state chooses the action whose corresponding q̃(s, a) has the greatest uncertainty):

uπs (q̃) = Eπd(s,a)(q̃), π•(a|s) =


1, if `(s, a) = maxa `(s, a)

0, else

(5.4)

We thus define the goal of our reinforcement learning agent to be:

π?(a|s) = arg max
π

EP,π,n
(∞∑

t=0

γt
[
r(st,at, st+1)− κDKL(uπst(q̃)||u

•
st(q̃))

]∣∣∣s0 = s

)
(5.5)

1This is due to the fact that the value functions are lower and upper bounded by rmin/(1 − γ) and
rmax/(1− γ).

135

where κ is a positive regularization parameter, DKL is the Kullback-Leibler divergence, and

u•st(q̃) is the state uncertainty distribution corresponding to π•. In this work we refer to

π?(a|s) as the uncertainty constrained optimal policy (or uc-optimal policy). Under this new

objective, we redefine the value functions as:

qπ(s, a) = r(s, a) + γEPvπ(s′) (5.6a)

vπ(s) = E
(∞∑

t=0

γt
[
r(st,at, st+1)− κDKL(uπst(q̃))

]∣∣s0 = s

)
= E

(
r(s, a)− κDKL(uπs (q̃)) + γvπ(s′)

)
(5.6b)

where, with a little abuse of notation, we defined DKL(uπs (q̃))
∆
= DKL(uπs (q̃)||u•s(q̃)). Using

(5.6) we can rewrite (5.5) as:

π? = arg max
π

∑
a

π(a|s)q̂(s, a)− κDKL(uπs (q̃)) (5.7)

Note that the exploration-exploitation trade-off becomes explicit in (5.7). To maximize the

first term of the summation in (5.7), the agent has to exploit its knowledge of q̂, while to

maximize the second term, the agent’s policy needs to match π•, which is a policy that seeks

to maximize the information gathered through exploration.

5.3 Algorithm Derivation

Since the argument being maximized in (5.7) is differentiable with respect to π(a|s) we can

obtain a closed-form expression for π?. Before presenting such closed-form expression we

introduce the following useful remark, lemmas and definitions.

Remark 5.1. In the interest of simplifying equations and notation we clarify that from now

on we will use `i(s)
∆
= `(s, ai) and even `i

∆
= `(s, ai) when the state s is clear from the context.

Lemma 5.1. Assuming the actions are ordered such that `i > `j ⇐⇒ i > j, the KL

136

divergence term in (5.7) for a given state s is given by:

A∑
n=1

(`n − `n−1)

(
A∑
k=n

π(ak|s)
`k

)
log

[
A∑
b=n

π(b|s)`A
`b

]
(5.8)

Proof. The proof is included in appendix 5.A.

Definition 5.1. Pareto dominated action: For a certain state s we say that an action

aj is Pareto dominated by action ai if q̂(s, aj) ≤ q̂(s, ai) and `(s, aj) < `(s, ai).

Definition 5.2. Mixed Pareto dominated action: For a certain state s we say that an

action ak is mixed Pareto dominated if there exist two actions ai and aj that satisfy:

`(s, ai) > `(s, ak) > `(s, aj), 1 <
(`i − `k) `j q̂(s, aj) + (`k − `j) `iq̂(s, ai)

(`i − `j) `kq̂(s, ak)
(5.9)

Definition 5.3. Pareto optimal action: We define an action a as Pareto optimal if it

is not Pareto dominated or mixed Pareto dominated.

Intuitively (mixed) Pareto dominated actions are actions that the agent should not choose

because there is another action (or group of actions) that is better in terms of both explo-

ration and exploitation.

Lemma 5.2. For all Pareto dominated and mixed Pareto dominated actions it holds that

π?(a|s) = 0.

Proof. The proof is included in appendix 5.B.

The statement of Lemma 5.2 is intuitive since choosing a Pareto dominated action lowers

the expected cumulative reward and the information gained, relative to choosing the action

that dominates it. Also note that Lemma 5.2 implies that for all Pareto optimal actions it

must be the case that if q(s, ai) < q(s, aj) then `(s, ai) > `(s, aj). We now introduce the

state dependent set of actions Es with cardinality |Es|, which is formed by all the Pareto

optimal actions corresponding to state s. Furthermore, we introduce the ordering functions

σs(k) : [1, |Es|] → [1, A], which for every state provide an ordering amongst the Pareto

137

optimal actions from lowest uncertainty to highest (i.e., `(s, σs(i)) > `(s, σs(j)) ⇐⇒ i > j).

For instance, σs(1) provides the index of the action at state s that has the lowest uncertainty

amongst the actions contained in Es.

Theorem 5.1. π?(a|s) is given by:

π?(a|s) =


`σ(j)(pj(s)−pj+1(s))

|Es|∑
j=1

(`σ(j)−`σ(j−1))pj(s)

, if a = σs(j) for some j ∈ [1, |Es|]

0, otherwise

(5.10a)

pj(s) = exp

[
`σ(j)(s)q̂(s, σ(j))− `σ(j−1)(s)q̂(s, σ(j − 1))

κ
(
`σ(j)(s)− `σ(j−1)(s)

)]
(5.10b)

where to simplify notation we defined `σ(j)(s) = `σs(j)(s) and q̂(s, σ(j)) = q̂(s, σs(j)) and we

also set p|Es|+1(s) = 0, l0(s) = 0.

Proof. The proof is included in appendix 5.C.

Note that as expected, π?(a|s) is always strictly positive for Pareto optimal actions.

Lemma 5.3. The value function corresponding to policy π?(a|s) is given by:

v?(s) = κ log

 |Es|∑
j=1

`σ(j)(s)− `σ(j−1)(s)

`max(s)
pj(s)

 , q?(s, a) = r(s, a) + γEv?(s′) (5.11)

where `max(s) = maxa `(s, a).

Proof. The proof follows by combining (5.10) with (5.6b) and (5.6a).

Remark 5.2. π?(a|s) satisfies the following conditions:

lim
κ→0+

π?(a|s) = π†(a|s), lim
`A→`+A−1···→`

+
1

π?(a|s) = π†(a|s) (5.12)

The first condition is expected since when the relative entropy term is eliminated, (5.1)

and (5.5) become equivalent. The second condition reflects the fact that when the uncertainty

138

is equal for all actions, the distributions uπs (q̃) and u•s(q̃) become equal regardless of π and

therefore DKL(uπs (q̃)) = 0 and hence (5.1) and (5.5) become equivalent. The second condition

of (5.12) is of fundamental importance because it guarantees that as the uncertainties over q̂

diminish (and therefore converge to some required threshold `(s, a)→ `min), policy π? tends

to the desired policy π† (note that annealing of κ is not necessary for this convergence of

π? towards π†). Note that policy (5.10) has the previously discussed qualities that policies

induced by maximum entropy RL do not. Namely, as learning progresses, the effect of the

regularizer also diminishes, and hence so does the bias of π? with respect to π†, without

the need for annealing κ. Furthermore, the effect of the regularizer diminishes over time on

a per state basis, allowing for a high degree of exploration in states where the agent has

high uncertainty and high exploitation in states were the state has high certainty over its

estimates.

5.3.1 Uncertainty Constrained Value Iteration

In a dynamic programing setting q?(s, a) can be found by iteratively applying to any vector

q(s, a) the operator T ` defined by:

T `q(s, a) = r(s, a) + γκE log

[|Es|∑
j=1

`σ(j)(s
′)− `σ(j−1)(s

′)

`max(s′)
pj(s

′)

]
(5.13)

where we make the ` explicit to highlight the fact that q?(s, a) is a function of the uncer-

tainties.

Lemma 5.4. `-Policy Evaluation: For any mapping q0 : S × A :→ R, the sequence

qn+1 = T `qn converges to q?.

Proof. The proof follows by noting that T ` is a contraction mapping and applying Banach’s

fixed point theorem. See appendix 5.D.

Note that Lemma 5.4 provides an algorithm to learn q?, however the ultimate goal of the

RL agent is to learn q†. To accomplish this goal a mechanism to estimate ` is necessary.

139

5.3.2 Uncertainty Estimation

Recalling that q̃(s, a) = q†(s, a)− q̂(s, a) we can write:

q̃(s, a) = r(s, a) + γEs′v†(s′)− q̂(s, a) = Eδ(s, a, s′) + γEP ṽ(s′) (5.14)

where δ(s, a, s′) = r(s, a, s′) + γv̂(s′)− q̂(s, a) and v†(s) = v̂(s) + ṽ(s). Furthermore v̂(s) is

the estimate obtained using (5.11) and q̂(s, a). We can now bound ṽ(s′) as follows:

v†(s)− v̂(s) = max
a
q†(s, a)− v̂(s)

(a)

≤ max
a
q†(s, a)−max

a
q̂(s, a)

(b)

≤ max
a
`(s, a) (5.15)

where (a) follows from Jensen’s inequality applied to v?(s) and in (b) we applied (5.3).

Combining (5.14) and (5.15) we get |q̃(s, a)| ≤ |Eδ(s, a, s′)| + γE maxa `(s
′, a). Therefore

updating `(s, a) as:

`(s, a)← |Eδ(s, a, s′)|+ γE max
a
`(s′, a) (5.16)

guarantees that condition (5.3) is satisfied.

Lemma 5.5. Uncertainty Constrained Policy Evaluation: For any mapping q0 :

S ×A :→ R, repeated application of `-Policy Evaluation and (5.16) converges to q†.

Proof. See Appendix 5.E.

5.3.3 Information Seeking Learner

We now proceed to derive a practical approximation to Uncertainty Constrained Policy

Evaluation. We start by noting that (5.16) is not adequate to design a stochastic algorithm

because the |Eδ(s, a, s′)| term has an expectation inside the absolute value operator. There-

fore a stochastic approximation of the form |δ(st, at, st+1)| would be biased (since the sample

approximation |δ(st, at, st+1)| approximates E |δ(s, a, s′)| instead of |Eδ(s, a, s′)|). In the

particular case where the MDP is deterministic this is not an issue because δ(s, a, s′) is a

140

deterministic quantity and therefore can be calculated with any sample transition (s, a, r, s′).

But in the general case, we can have an estimator ρ̂(s, a) of Eδ(s, a, s′), which then can be

used to estimate |Eδ(s, a, s′)| as |ρ(s, a)|. With this consideration and equations (5.13) and

(5.16) we can define the update equations for the tabular version of the algorithm we present

in this chapter as:

q(st, at) = q(st, at) + µq (δ(st, at, st+1)) (5.17a)

ρ(st, at) = ρ(st, at) + µρ (δ(st, at, st+1)− ρ(st, at)) (5.17b)

`(st, at) = `(st, at) + µ`
(
(1− η1)|δ(st, at, st+1)|+ η1|ρ(st, at)|+ γ`max(st+1)− `(st, at)

)
(5.17c)

δ(st, at, st+1) = r(st, at, st+1) + γv̂(st+1)− q̂(st, at) (5.17d)

where η1 is a tunable hyperparameter. In cases where the MDP is deterministic then η1 = 0.

For stochastic games η1 closer to 1 becomes more convenient. As we mentioned before we

want to derive an approximation to Uncertainty Constrained Policy Evaluation suitable for

practical applications, which typically require that the q, ρ and ` functions are parameterized

using expressive function approximators such as neural networks. In this work we use the

parameters ω, θ and ν to parameterize q, ρ and `, respectively. To extend (5.17) to this

general case, ω, θ and ν can be trained to minimize (5.18).

Jρ(θ) = 2−1E (s,a)∼ψ [δ(s,a;ω)− ρ(s,a; θ)]2 (5.18a)

Jq(ω) = 2−1E (s,a)∼ψ
[
(qT (s,a; ω̃)− q̂(s,a;ω))

·
(
(1− η2)(qT (s,a; ω̃)− q̂(s,a;ω)) + η2ρ(s,a; θ̃)

)]
(5.18b)

J`(ν) = 2−1E (s,a)∼ψ[`T (s,a; ν̃)− `(s,a; ν)]2 (5.18c)

qT (s,a; ω̃) = r(s,a) + κE log

 |Es|∑
j=1

(`σ(j)(s
′)− `σ(j−1)(s

′))

`max(s′)
pj(s

′)

 (5.18d)

`T (s, a; ν̃) = (1− η1)|δ(s, a)|+ η1|ρ(s, a)|+ γEs′`max(s′; ν̃) (5.18e)

141

Algorithm 5.1 Information Seeking Learner (ISL)

Initialize: counter=0, ω, θ and ν randomly, and an empty replay buffer R.
for iterations k = 0, . . . , K do

for environment transitions t = 0, . . . , T do
Sample transitions (s, a, r, s′) by following policy (5.10) and store them in R.

end for
for iterations i = 0, . . . , I do

Sample a minibatch from R and compute stochastic gradients.
ω ← ω − µω∇̂ωJq(ω)

θ ← θ − µθ∇̂θJρ(θ)

ν ← ν − µν∇̂νJ`(ν)
counter += 1
if counter mod targetUpdatePeriod then
ν̃ ← ν
ω̃ ← ω
counter = 0

end if
end for

end for

where ψ is the distribution according to which the (s,a) pairs are sampled, and ω̃ and ν̃ are

used to denote the parameters of the target networks corresponding to q and `, respectively.

Note also that we have added another tunable parameter η2. In the tabular case this is

not necessary, but in the case with neural networks we observed empirically that using the

ρ network to train q helps stabilize training and improves performance. This is similar to

the SAC algorithm where a network is used to estimate the value function v(s) even though

apparently it is not necessary [31]. The resulting algorithm, which we refer to as Information

Seeking Learner, is listed in algorithm 5.1.

5.4 Experiments

The goal of the experiments in this chapter is to evaluate the capacity of ISL to perform deep

exploration. We test our algorithm in the three deep exploration environments provided by

the bsuite benchmark [114] (i.e., Cartpole Swingup, Deep Sea and Deep Sea Stochastic) and

142

compare it against SBEED, UBE [106] and Bootstrap DQN with prior networks (BSP)2

(which provides state of the art results in deep exploration tasks). All three environments

have the common quality that exploration is discouraged (due to negative rewards) and

positive rewards are only obtained by the agent in states that are hard to reach. We used

NNs as function approximators in all cases.

(a) Cartpole swingup (b) Deep sea

(c) Deep sea stochastic

Figure 5.1: Blue, red, purple and green curves correspond to ISL, BSP, UBE and SBEED,
respectively. In all cases we ran 10 experiments with different seeds, the plots show the
median and first and third quartiles. In figures 5.1(b) and 5.1(c) we used dots are markers
when the goal was accomplished (at least 10 visits where made to the desired state) for all
seeds, square markers denote that the goal was accomplished for some seeds and the cross
markers denote failure for all seeds.

2We use the implementation provided by [114].

143

5.4.1 Sparse Cartpole Swingup

This is the classical cartpole swingup task with the added difficulty that positive rewards

are only provided when the pole is ‘almost stabilized’. The action space is {left, stay, right}

and the state space is continuous and given by st = (cos(θt), sin(θt), θ̇t, xt, ẋt), where θ is

the angle of the pole and x is the position of the cart. The feature that makes this task a

challenging exploration task is the reward structure; every move is penalized with a −0.1

reward and a +1 is only observed when the cart is ‘almost’ centered and the pole is ‘almost’

upright and stabilized. More specifically, a +1 reward is obtained when cos(θ) > N/20,

|θ̇| < 1 and |x| < 1−N/20, where N parameterizes the difficulty of the environment. This

is an episodic task where each episode ends when the cart moves too far away from the

center (|x| > 3) or at 103 time-steps, whichever occurs first. We ran each algorithm for

103 episodes for ten random seeds. In this benchmark the performance measure is the best

return attained during training. The results for N from 0 to 19 are shown in figures 5.1(a).

As expected SBEED fails in this task for all values of N due to the lack of a mechanism to

encourage deep exploration. ISL and BSP find close to optimal policies for all values of N up

to 10 approximately. However, for higher values of N ISL outperforms BSP by a significant

margin. For N = 19 all algorithms fail, however ISL is the only algorithm who can obtain

some positive rewards. Implementation details can be found in appendix 5.F.

5.4.2 Deep Sea and Deep Sea Stochastic

Deep Sea is an episodic grid-world type game which consists of an N×N grid with N2 states.

The observation encodes the agent’s row and column as a one-hot vector st ∈ {0, 1}N×N . The

environment has two possible actions {a1, a2} and a maskM ∼ Ber(0.5)N×N . The mask maps

for every state each action to {left, right}. The agent always starts at the top-left corner and

at every step deterministically descends one level and further moves left or right (depending

on the chosen action). Every time the agent moves right it gets a −0.01/N reward, except for

the bottom-right state in which case it gets a +1, while left moves always receive 0 reward.

The game ends after N time steps and we ran each algorithm for 104 episodes. The optimal

144

strategy of the environment is to always move right in which case the total return would be

0.99. Note that the parameter N parameterizes the difficulty of the game. An important

point about this environment is that policies that do not encourage deep exploration take

O(2N) episodes to learn the optimal policy [115], while for policies that explore optimally

it takes at best O(N) episodes (because the state-action space is of size O(N2) and at

every episode N state-action pairs are sampled). The Deep Sea Stochastic environment

has the added complexity that transitions and rewards are stochastic. In particular, the

reward of the last step of the episode is corrupted with additive Gaussian noise with zero

mean and variance equal to 1 and further, agents transition to the right only with 1− 1/N

probability. In these benchmarks the performance measure is the amount of episodes played

before the agent visits the goal state for the 10-th time. Hyperparameters were tuned for

each of the cases, figures 5.1(b) and 5.1(c) show the results. Again SBEED fails at these

tasks as expected. In the deterministic case ISL and BSP perform similarly. Note also that

while ISL shows linear complexity for all values of N , BSP shows linear complexity only

for low values of N . We clarify that the complexity of BSP could probably be improved

for larger values of N by enlarging the ensemble size, however note that this would come

with an added computational cost since the computational cost of BSP scales linearly with

the size of the ensemble. In the stochastic environment ISL performs similarly as it does

in the deterministic environment and outperforms BSP for all values of N . Note further

that ISL is the only algorithm that is able to solve the task for all values of N for all seeds.

Implementations details for deep sea and deep sea stochastic can be found in appendices 5.G

and 5.H, respectively.

5.4.3 Ablation Study

In this section we include an ablation study for the hyperparameters κ, η1 and η2 using

the cartpole task. We sweep κ through 20 × 2[−4,−3,−2,−1,0,1,2,3,4] and η1 and η2 through

[0, 0.1, · · · , 0.9, 1]. Results are shown in figure 5.2; to make these plots more visually clear

we only show three of the curves in each plot; we note though that the effects of the hy-

perparameters on the performance of ISL are clear with these three curves. The rest of the

145

curves can be found in appendix 5.I.

The exploration-exploitation trade-off managed by κ is clear in figure 5.2(a); increasing

κ improves results for high values of N (since more exploration is required in these cases)

but does so at the expense of exploiting less and therefore the best return diminishes for low

values of N (where less exploration is necessary). Figures 5.2(b) and 5.2(c) indicate that the

effect of hyperparameters η1 and η2 on the performance of ISL are less drastic than that of

κ, however in both cases the best performance is obtained for intermediate values of η1 and

η2 as expected.

(a) κ (b) η1

(c) η2

Figure 5.2: In all cases we ran 10 experiments with different seeds, the plots show the median
and first and third quartiles.

146

5.5 Summary

In this chapter we provide a novel and original approach to address the problem of deep

exploration. We also make an interesting connection with the literature on maximum entropy

RL. In contrast to current RL algorithms and deep exploration strategies, where deriving the

learning equations and the deep exploration strategies are treated separately, in our approach,

both the learning equations and the deep exploration strategy are derived in tandem as the

solution to a unique optimization problem. The main insight of our approach, is that in RL,

obtaining point estimates of the quantities of interest is not sufficient, it is also necessary to

estimate confidence bounds. Furthermore, we have introduced a practical way of quantifying

uncertainty over q estimates that is usable with NNs. We hope this ideas might inspire novel

and original research directions.

5.A Proof of Lemma 5.1

In the proof we assume that the actions are ordered following the lemma’s assumption. By

definition, the KL divergence is given by:

DKL(uπs (q̃)) =

∫
q̃

uπs (q̃) log

(
uπs (q̃)

u•s(q̃)

)
dq̃

(b)
=
∑
a

π(a|s)
∫
q̃

d(s,a)(q̃) log

(∑
a′

π(a′|s)d(s,a′)(q̃)

)
dq̃ + log(`A) (5.19)

147

where in (b) we used (5.4). Note that since δπ(s) is a piecewise constant distribution, the

integral in (5.19) has the following closed form expression:

∫
q̃

d(s,aj)(q̃) log

(∑
a′

π(a′|s)d(s,a′)(q̃)

)
dq̃ =

∫ `j

−`j
(2`j)

−1 log

(∑
a′

π(a′|s)d(s,a′)(q̃)

)
dq̃

= `−1
j

∫ `j

`j−1

log

(∑
a′

π(a′|s)d(s,a′)(q̃)

)
dq̃ + `−1

j

∫ `j−1

0

log

(∑
a′

π(a′|s)d(s,a′)(q̃)

)
dq̃

=
`j − `j−1

`j
log

(
A−j∑
b=0

π(A− b|s)`−1
A−b

)
+ `−1

j

∫ `j−1

0

log

(∑
a′

π(a′|s)d(s,a′)(b)

)
dq̃

=

j∑
n=1

`n − `n−1

`j
log

(
A∑
b=n

π(b|s)
`b

)
(5.20)

Combining (5.19) and (5.20) we get:

A∑
k=1

π(ak|s)
`k

k∑
n=1

(`n − `n−1) log

[
A∑
b=n

π(b|s)`A
`b

]
(5.21)

Rearranging the terms in (5.21) we get:

DKL(uπs (q̃)) =
A∑
n=1

(`n − `n−1)

(
A∑
k=n

π(ak|s)
`k

)
log

[
A∑
b=n

π(b|s)`A
`b

]
(5.22)

5.B Proof Lemma 5.2

We start proving that for any action aj that is Pareto dominated by another action ai it must

be the case that π?(aj|s) = 0. We now present an assumption to make notation simpler.

Assumption 5.2. In this section we assume without loss of generality that actions are

ordered such that `i > `j ⇐⇒ i > j.

We prove the lemma by contradiction. Assume that there is a uc-optimal policy π1 for

148

which π1(aj|s1) > 0. We now define policy π2 as:

π2(a|s) =


π1(a|s)− α if (s, a) = (s1, aj)

π1(a|s) + α if (s, a) = (s1, ai)

π1(a|s) else

(5.23)

where 0 < α < π1(a|s). We show that ∂vπ2 (s1)
∂α

∣∣
α=0

> 0 and hence vπ2(s1) > vπ1(s1) for a

small enough α > 0, which contradicts the claim that π1 is a uc-optimal policy.

∂vπ2(s1)

∂α

∣∣∣∣
α=0

=
∂vπ2(s1)

∂π1(aj|s1)

∂π1(aj|s1)

∂α

∣∣∣∣
α=0

+
∂vπ2(s1)

∂π1(ai|s1)

∂π1(ai|s1)

∂α

∣∣∣∣
α=0

=
∂vπ2(s1)

∂π1(ai|s1)
− ∂vπ2(s1)

∂π1(aj|s1)

= q̂π2(s, ai)− q̂π2(s, aj)︸ ︷︷ ︸
>0 (due to Pareto assumption)

+κ

(
∂DKL(uπ2

s1
(q̃))

∂π1(aj|s1)
−
∂DKL(uπ2

s1
(q̃))

∂π1(ai|s1)

)
(5.24)

Using (5.22) we get the following expression for the gradient of the KL term:

∂DKL(uπs (q̃))

∂π(aj|s)
=

j∑
b=1

(`b − `b−1)

`j
log

(
A∑
c=b

π(c|s)
`c

)
+ `−1

j

j∑
b=1

(`b − `b−1)

=

j∑
b=1

(`b − `b−1)

`j
log

(
A∑
c=b

π(c|s)
`c

)
+ 1 (5.25)

Combining (5.25) and (5.24) we get:

∂DKL(uπ2
s1

(q̃))

∂π1(aj|s1)
−
∂DKL(uπ2

s1
(q̃))

∂π1(ai|s1)
=

j∑
b=1

(`b − `b−1)

`j
log

(
A∑
c=b

π(c|s)
`c

)

−
i∑

b=1

(`b − `b−1)

`i
log

(
A∑
c=b

π(c|s)
`c

)

=

j∑
b=1

(`b − `b−1)(`i − `j)
`j`i

log

(
A∑
c=b

π(c|s)
`c

)
−

i∑
b=j+1

(`b − `b−1)

`i
log

(
A∑
c=b

π(c|s)
`c

)
(a)
>

j∑
b=1

(`b − `b−1)(`i − `j)
`j`i

log

(
A∑
c=j

π(c|s)
`c

)
−

i∑
b=j+1

(`b − `b−1)

`i
log

(
A∑
c=j

π(c|s)
`c

)

149

=
(`i − `j)

`i
log

(
A∑
c=j

π(c|s)
`c

)
− (`i − `j)

`i
log

(
A∑
c=j

π(c|s)
`c

)

= 0 (5.26)

where (a) is due to the fact that all terms in
∑A

c=i
π(c|s)
`c

are non-negative and log is a

monotone increasing function. Combining (5.26) with (5.24) we get:

∂vπ2(s1)

∂α

∣∣∣∣
α=0

> q̂π2(s, ai)− q̂π2(s, aj) > 0 (5.27)

which completes the proof.

The proof for the Mixed Pareto case follows similarly. We assume that there is a uc-

optimal policy π1 that assigns non-zero probability to an action ak Mixed Pareto dominated

by ai and aj, π1(ak|s1) > 0. Since ak is assumed to be Mixed Pareto dominated, equations

(5.9) are satisfied. Similarly, as before, we define a new policy π2 as:

π2(a|s) =



π1(a|s)− α if (s, a) = (s1, ak)

π1(a|s) + α
(`k−`j)`i
(`i−`j)`k

if (s, a) = (s1, ai)

π1(a|s) + α
(`i−`k)`j
(`i−`j)`k

if (s, a) = (s1, aj)

π1(a|s) else

(5.28)

150

The gradient of the value function becomes:

∂vπ2(s1)

∂α

∣∣∣∣
α=0

=
∂vπ2(s1)

∂π1(ak|s1)

∂π1(ak|s1)

∂α

∣∣∣∣
α=0

+
∂vπ2(s1)

∂π1(aj|s1)

∂π1(aj|s1)

∂α

∣∣∣∣
α=0

+
∂vπ2(s1)

∂π1(ai|s1)

∂π1(ai|s1)

∂α

∣∣∣∣
α=0

=
∂vπ2(s1)

∂π1(ai|s1)

(`k − `j) `i
(`i − `j) `k

+
∂vπ2(s1)

∂π1(aj|s1)

(`i − `k) `j
(`i − `j) `k

− ∂vπ2(s1)

∂π1(ak|s1)

= q̂π2(s, ai)
(`k − `j) `i
(`i − `j) `k

+ q̂π2(s, aj)
(`i − `k) `j
(`i − `j) `k

− q̂π2(s, ak)︸ ︷︷ ︸
>0 (due to Pareto assumption)

+ κ

(
∂DKL(uπ2

s1
(q̃))

∂π1(ak|s1)
−
∂DKL(uπ2

s1
(q̃))

∂π1(ai|s1)

(`k − `j) `i
(`i − `j) `k

−
∂DKL(uπ2

s1
(q̃))

∂π1(aj|s1)

(`i − `k) `j
(`i − `j) `k

)
(5.29)

And finally:

∂DKL(uπ2
s1

(q̃))

∂π1(ak|s1)
−
∂DKL(uπ2

s1
(q̃))

∂π1(ai|s1)

(`k − `j) `i
(`i − `j) `k

−
∂DKL(uπ2

s1
(q̃))

∂π1(aj|s1)

(`i − `k) `j
(`i − `j) `k

=
k∑
b=1

(`b − `b−1)

`k
log

(
A∑
c=b

π(c|s)
`c

)
− (`k − `j)

(`i − `j) `k

i∑
b=1

(`b − `b−1) log

(
A∑
c=b

π(c|s)
`c

)

− (`i − `k)
(`i − `j) `k

j∑
b=1

(`b − `b−1) log

(
A∑
c=b

π(c|s)
`c

)

=
k∑

b=j+1

(`b − `b−1)

`k
log

(
A∑
c=b

π(c|s)
`c

)
− (`k − `j)

(`i − `j) `k

i∑
b=j+1

(`b − `b−1) log

(
A∑
c=b

π(c|s)
`c

)

=
k∑

b=j+1

(`b − `b−1)(`i − `k)
(`i − `j)`k

log

(
A∑
c=b

π(c|s)
`c

)
− (`k − `j)

(`i − `j) `k

i∑
b=k+1

(`b − `b−1) log

(
A∑
c=b

π(c|s)
`c

)

>

k∑
b=j+1

(`b − `b−1)(`i − `k)
(`i − `j)`k

log

(
A∑
c=k

π(c|s)
`c

)
− (`k − `j)

(`i − `j) `k

i∑
b=k+1

(`b − `b−1) log

(
A∑
c=k

π(c|s)
`c

)

=
(`k − `j)(`i − `k)

(`i − `j)`k
log

(
A∑
c=k

π(c|s)
`c

)
− (`k − `j) (`i − `k)

(`i − `j) `k
log

(
A∑
c=k

π(c|s)
`c

)
= 0 (5.30)

Combining (5.29) with (5.30) we get ∂vπ2 (s1)
∂α

∣∣
α=0

> 0, which completes the proof.

151

5.C Proof Theorem 5.1

Due to Lemma 5.2 we already know that for Pareto dominated actions π?(a|s) = 0. There-

fore, without loss of generality, we assume that all actions are Pareto optimal. Furthermore,

to simplify notation in the proof we assume that σs(aj) = j and hence we will not use the

ordering function σs(a). We start differentiating (5.7) with respect to π(a|s) and equating

to zero:

κ−1q̂(s, a)− ∂DKL(u?s(q̃))

∂π?(a|s)
= 0 (5.31)

Using (5.8) we get the following expression for the gradient of the KL term:

∂DKL(u?s(q̃))

∂π?(aj|s)
=

j∑
b=1

(`b − `b−1)

`j
log

(
A∑
c=b

π?(c|s)
`c

)
+ `−1

j

j∑
b=1

(`b − `b−1)

=

j∑
b=1

(`b − `b−1)

`j
log

(
A∑
c=b

π?(c|s)
`c

)
+ 1

= `−1
j (`j − `j−1) log

(
A∑
c=j

π?(c|s)`−1
c

)
+
`j−1

`j

(
∂DKL(u?s(q̃))

∂π(aj−1|s)
− 1

)
+ 1

= `−1
j (`j − `j−1) log

(
A∑
c=j

π?(c|s)`−1
c

)
+
`j−1

`j

∂DKL(u?s(q̃))

∂π?(aj−1|s)
+
`j − `j−1

`j

(5.32)

Now we can solve for each action combining the recursive form given in (5.32) with (5.31).

Recall that due to the specific numbering of actions we assumed, aA is the action who has

the greatest uncertainty `A. Hence, we can start solving for aA as follows:

0 = κ−1q̂(s, aA)− `−1
A (`A − `A−1) log

(
π?(aA|s)`−1

A

)
− `A−1

`A

∂DKL(u?s(q̃)||u•s(q̃))
∂π?(aA−1|s)

− `A − `A−1

`A

= κ−1q̂(s, aA)− `−1
A (`A − `A−1) log

(
π?(aA|s)`−1

A

)
− κ−1 `A−1

`A
q̂(s, aA−1)− `A − `A−1

`A

→ π?(aA|s) ∝ `ApA(s) (5.33)

152

where we defined:

pj(s) = exp

[
`j(s)q̂(s, aj)− `j−1(s)q̂(s, aj−1)

κ (`j(s)− `j−1(s))

]
(5.34)

Following the same procedure as in (5.33) we can solve for π?(aj|s).

0 = κ−1q̂(j, s)− (`j − `j−1)

`j
log

(
A∑
c=j

π?(c|s)
`c

)
− `j−1

`j

∂DKL(u?s(q̃))

∂π?(aj−1|s)
− `j − `j−1

`j

(a)
= κ−1q̂(s, aj)−

(`j − `j−1)

`j
log

(
A∑
c=j

π?(c|s)
`c

)
− κ−1 `j−1

`j
q̂(s, aj−1)− `j − `j−1

`j

→ π?(aj|s) ∝ `jpj(s)e
−1 − `j

A∑
c=j+1

π?(c|s)`−1
c (5.35)

where in (a) we used (5.31). Starting with j = A − 1, unwinding (5.35) one step of the

recursion at a time, and normalizing we get:

π?(aj|s) =
`j(pj(s)− pj+1(s))∑A
j=1(`j − `j−1)pj(s)

(5.36)

which completes the proof.

5.D Proof Lemma 5.4

We start by showing that T ` is a contraction mapping. For this we define two mappings

q1, q2 : S ×A :→ R. We start assuming T `q1(s, a) ≥ T `q2(s, a), then:

0 ≤ T `q1(s, a)− T `q2(s, a) = r(s, a) + γE s′v?1(s′)− r(s, a)− γE s′v?2(s′) = γE s′ (v?1(s′)− v?2(s′))

(a)
= γE s′

(
max
π

Ea∼π (q1(s′,a)− κDKL(uπs′(q̃)))−max
π

Ea∼π (q2(s′,a)− κDKL(uπs′(q̃)))
)

≤ γE s′ max
π

Ea∼π (q1(s′,a)− κDKL(uπs′(q̃))− q2(s′,a) + κDKL(uπs′(q̃)))

= γE s′ max
π

Ea∼π (q1(s′,a)− q2(s′,a))

≤ γmax
s,a

(q1(s, a)− q2(s, a)) (5.37)

153

→ 0 ≤ T `q1(s, a)− T `q2(s, a) ≤ γmax
s,a

(q1(s, a)− q2(s, a)) (5.38)

where in (a) we used v?(s) = maxπ Ea∼π (q?(s,a)− κDKL(uπs (q̃))). Noting that if T `q1(s, a) <

T `q2(s, a) the same argument applies. Exchanging the roles of q1 and q2 we can conclude

that for any (s, a) pair it holds:

0 ≤ |T `q1(s, a)− T `q2(s, a)| ≤ γmax
s,a
|q1(s, a)− q2(s, a)| (5.39)

which concludes the proof that T ` is a contraction mapping. Applying Banach’s Fixed-Point

Theorem concludes the proof (see Theorem 6.2.3 [22]).

5.E Proof Lemma 5.5

The proof follows by noting that due to Lemma 4 after application of `-Policy Evaluation,

it will hold δ(s, a) = 0 for any (s, a) pair. Therefore,

`(s, a)← |δ(s, a)|+ γEs′ max
a
`(s′, a) = γEs′ max

a
`(s′, a) (5.40)

and hence `(s, a) for any (s, a) pair decays γ-linearly to 0. Combining this result with Remark

5.2 concludes the proof.

5.F Cartpole Swingup Implementation Details

The implementation details are as follows. All implementations used TensorFlow. We used

neural networks as function approximators in all cases. All NN’s are composed of two hidden

layers with fifty units per layer. ReLu’s are used in all hidden layers. All output layers are

linear, except for the outputs of the networks that approximate the ` values whose outputs

pass through sigmoid functions with limits [1e− 12, 100]. We used the ADAM optimizer in

all cases. To approximate the ` values we used one network with only one output per action

instead of one network with A outputs, empirically this provides better performance without

154

making any difference in terms of computation requirements. All hyperparameters were

set by iterating through them and performing individual per-hyperparameter grid-searches;

resulting values are shown in table 5.1.

Table 5.1: Hyperparameters for Cartpole Swingup. Where |R| is the size of the replay buffer,
B is the mini-batch size, µq is the step-size for q-network (and similarly for µρ, µ`, µv, µπ
and µu) and tup stands for the target update period.

ISL BDQN UBE SBEED

γ = 0.99 γ = 0.99 γ = 0.99 γ = 0.99
|R| = 1e5 |R| = 1e5 |R| = 1e5 |R| = 1e5
B = 64 B = 128 B = 128 B = 256

µq = 2e− 4 µq = 5e− 4 µq = 5e− 4 µρ = 1e− 3
µρ = 5e− 6 ε = 0 µu = 1e− 4 µv = 1e− 3
µ` = 2e− 5 mask prob = 0.5 µ = 20 µπ = 1e− 3

tup= 4 tup= 4 tup= 4 κ = 0.5
T = 1 sgd period= 1 T = 1 T = 1
I = 3 I = 1 I = 1
η1 = 0.8 β=1 η = 0
η2 = 0.7
κ = 13

5.G Deep Sea Implementation Details

The architecture of the implementation is the same as the one used for the Cartpole Swingup

task. All hyperparameters were set by iterating through them and performing individual

per-hyperparameter grid-searches; resulting values are shown in table 5.2.

155

Table 5.2: Hyperparameters for Deep Sea. Where |R| is the size of the replay buffer, B is
the mini-batch size, µq is the step-size for q-network (and similarly for µρ, µ`, µv, µπ and
µu) and tup stands for the target update period.

ISL BDQN UBE SBEED

γ = 0.99 γ = 0.99 γ = 0.99 γ = 0.99
|R| = 1e5 |R| = 1e5 |R| = 1e5 |R| = 1e5
B = 256 B = 128 B = 128 B = 256

µq = 2e− 4 qµq = 5e− 4 µq = 5e− 4 µρ = 1e− 2
µρ = 1e− 4 ε = 0 µu = 1e− 4 µv = 1e− 2
µ` = 5e− 5 mask probability = 0.5 µ = 10 µπ = 1e− 2

tup= 2 tup= 5 tup= 4 κ = 0.5
T = 2 sgd period= 1 T = 1 T = 1
I = 1 I = 1 I = 1
η1 = 0.9 β = 2 η = 0
η2 = 0.1
κ = 1

5.H Deep Sea Stochastic Implementation Details

The implementation architecture for the Deep Sea Stochastic game is the same as for Deep

Sea, only some hyperparameters change (see table 5.3).

156

Table 5.3: Hyperparameters for Deep Sea Stochastic. Where |R| is the size of the replay
buffer, B is the mini-batch size, µq is the step-size for q-network (and similarly for µρ, µ`,
µv, µπ and µu) and tup stands for the target update period.

ISL BDQN UBE SBEED

γ = 0.99 γ = 0.99 γ = 0.99 γ = 0.99
|R| = 1e5 |R| = 1e5 |R| = 1e5 |R| = 1e5
B = 256 B = 128 B = 128 B = 256

µq = 1e− 4 µq = 1e− 5 µq = 2e− 5 µρ = 1e− 3
µρ = 1e− 4 ε = 0 µu = 1e− 5 µv = 1e− 3
µ` = 5e− 5 mask probability = 0.5 µ=10 µπ = 1e− 3

tup= 2 tup= 5 tup= 4 κ = 0.5
T = 10 sgd period= 1 T = 1 T = 1
I = 1 I = 1 I = 1
η1 = 1.0 β = 2 η = 0.01
η2 = 0.5
κ = 1

157

5.I Ablation Study Figures

5.I.1 Ablation study for κ

(a) κ = 0.8125 (b) κ = 1.625 (c) κ = 3.25

(d) κ = 6.5 (e) κ = 13 (f) κ = 26

(g) κ = 52 (h) κ = 104 (i) κ = 208

Figure 5.3: Ablation study for κ.

158

5.I.2 Ablation study for η1

(a) η1 = 0 (b) η1 = 0.1 (c) η1 = 0.2

(d) η1 = 0.3 (e) η1 = 0.4 (f) η1 = 0.5

(g) η1 = 0.6 (h) η1 = 0.7 (i) η1 = 0.8

(j) η1 = 0.9 (k) η1 = 1.0

Figure 5.4: Ablation study for η1.

159

5.I.3 Ablation study for η2

(a) η2 = 0 (b) η2 = 0.1 (c) η2 = 0.2

(d) η2 = 0.3 (e) η2 = 0.4 (f) η2 = 0.5

(g) η2 = 0.6 (h) η2 = 0.7 (i) η2 = 0.8

(j) η2 = 0.9 (k) η2 = 1.0

Figure 5.5: Ablation study for η2.

We clarify that figure 5.5(k) shows no progress because the algorithm diverged for the chosen

step-sizes in this ablation study.

160

CHAPTER 6

Concluding Remarks and Future Work

In this dissertation we have addressed four problems and provided solutions to each of them:

• In Chapter 2 we considered the distributed policy evaluation problem and proposed the

Fast Difussion for Policy Evaluation algorithm. FDPE is designed for the finite sample

case and we proved that for this case all agents converge to the correct solution linearly

fast. This algorithm can be applied to two distinct scenarios. In the first scenario,

multiple agents interact with different instances of the same MDP and collaborate to

evaluate the same target policy. Due to the collaboration, all agents still converge

to the correct solution even in cases where each agent’s behavior policy only explores

a portion of the total state-space. The second scenario we considered is the MARL

setting with local rewards. FDPE can be use as part of a policy learning loop whose

goal is to learn the optimal policy. The main disadvantage of this policy learning

approach is that it is not sample efficient, this motivated the work in Chapter 3.

• In Chapter 3 we addressed the problem of learning the optimal team policy in a fully

distributed MARL setting with local rewards. To this end, we introduced the Difussion

Team Policy Optimization algorithm. DTPO is an off-policy algorithm and hence is

sample efficient. Experimentation with this algorithm revealed two important issues.

The first issue is that of scalability. DTPO does not scale gracefully with the number of

agents due to the fact that each agent learns the policy for the team’s state-action space.

The second issue is that of exploration. DTPO can explore the state-space efficiently

only in the tabular setting. In the general case where function approximation is used,

it is unclear how to endow the algorithm with a behavior policy that is efficient at deep

exploration.

161

• In Chapter 4 we studied the scalability issue that was identified in chapter 3. This

scalability issue in MARL is independent of whether a global reward or local rewards

are considered. Hence, in this chapter we considered the MARL setting were the

reward is global. We proposed the Logical Team Q-learning algorithm. Our proposed

solution is off-policy and learns factored functions that only depend on the observation

and action of each individual agent. We proved that in the dynamic programming

setting our LTQL obtains factored quantities that allow all agents to converge to a

team optimal policy.

• Finally, in Chapter 5 we studied the problem of deep exploration. Since deep explo-

ration is still an open question in single-agent RL, in this chapter we considered this

domain. We connected the problem of deep exploration with the soft RL framework and

derived the Information Seeking Learner. We proved that in the dynamic program-

ming setting ISL converges to the optimal q-function. Experimental results showed

that ISL achieves state of the art performance in three challenging deep exploration

benchmarks.

The ideas and algorithms we introduced in this dissertation give rise to the two following

important research problems:

• Derive an algorithm that obtains factored policies in the fully distributed setting where

agents observe local instead of global rewards. Potentially this could be done by

combining the factored relations we derived in Chapter 4 with the techniques we used

in Chapter 3 to obtain DTPO.

• Extend the exploration work we presented in Chapter 5 to the multi-agent setting. In

particular, we believe that the ideas we used to derive ISL could be combined with

those of Chapters 3 and 4 to re-derive versions of DTPO and LTQL that are more

efficient at performing exploration.

• Extend LTQL to the fully distributed case even when agents can only perceive a subset

of the team’s agents and provide answers to the following questions. Can this be

162

accomplished without loss of performance leveraging communication among agents? If

sharing information is not possible, can expressions be derived, which depend on the

TMDPs parameters, to bound the loss of performance?

• Once all the previous research problems are addressed the following natural challenge

would be to put it all together to derive an algorithm for the MARL case that combines

all the aforementioned features. In other words, the resulting algorithm should be ca-

pable of learning off-policy, in a fully distributed manner, perform efficient exploration

and have good scalability properties in th setting where agents only have access to

their own observations and local rewards.

163

REFERENCES

[1] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, vol. 3, no. 3, pp. 210–229, 1959.

[2] D. Michie and R. A. Chambers, “Boxes: An experiment in adaptive control,” Machine
Intelligence, vol. 2, no. 2, pp. 137–152, 1968.

[3] J. H. Holland, “Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems,” Machine Learning: An Artifical
Intelligence Approach, vol. 2, pp. 593–623, 1986.

[4] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, no. 1, pp. 9–44, 1988.

[5] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[6] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[7] D. Silver, J. Schrittwieser, K. Simonyan et al., “Mastering the game of go without
human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[8] D. Silver, T. Hubert, J. Schrittwieser et al., “A general reinforcement learning algo-
rithm that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419,
pp. 1140–1144, 2018.

[9] O. Vinyals, I. Babuschkin, J. Chung et al., “Alphastar: Mastering
the real-time strategy game starcraft ii,” https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[10] C. Berner, G. Brockman, B. Chan et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv:1912.06680, 2019.

[11] O. M. Andrychowicz, B. Baker, M. Chociej et al., “Learning dexterous in-hand ma-
nipulation,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20,
2020.

[12] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in
Proceedings of the International Conference on Machine Learning, 1993, pp. 330–337.

[13] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative
multiagent systems,” AAAI/IAAI, vol. 1998, no. 746-752, p. 2, 1998.

[14] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Advances in Neural
Information Processing Systems, Denver, USA, 2000, pp. 1057–1063.

164

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

[15] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[16] S. M. Kakade, “A natural policy gradient,” in Advances in Neural Information Pro-
cessing Systems, 2002, pp. 1531–1538.

[17] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural
Information Processing Systems, 2000, pp. 1008–1014.

[18] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71, no. 7-9, pp.
1180–1190, 2008.

[19] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods for deep reinforcement
learning,” in Proceedings of the International Conference on Machine Learning, New
York, USA, June 2016, pp. 1928–1937.

[20] J. Schulman, S. Levine, P. Abbeel et al., “Trust region policy optimization,” in Pro-
ceedings of the International Conference on Machine Learning, New York, USA, 2015,
pp. 1889–1897.

[21] J. Schulman, F. Wolski, P. Dhariwal et al., “Proximal policy optimization algorithms,”
arXiv:1707.06347, August 2017.

[22] M. L. Puterman, Markov Decision Processes.: Discrete Stochastic Dynamic Program-
ming. Wiley, NY, 2014.

[23] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[24] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing
Systems, 2010, pp. 2613–2621.

[25] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-
learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, Arizona,
USA, 2016.

[26] Z. Wang, T. Schaul, M. Hessel et al., “Dueling network architectures for deep reinforce-
ment learning,” in Proceedings of the International Conference on Machine Learning,
New York, USA, June 2016, pp. 1995–2003.

[27] T. Lu, D. Schuurmans, and C. Boutilier, “Non-delusional q-learning and value-
iteration,” in Advances in Neural Information Processing Systems, 2018, pp. 9949–
9959.

[28] R. Fox, A. Pakman, and N. Tishby, “Taming the noise in reinforcement learning via soft
updates,” in Proceedings of the Conference on Uncertainty in Artificial Intelligence,
New York, USA, 2016, pp. 202–211.

165

[29] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep
energy-based policies,” in Proceedings of the International Conference on Machine
Learning, Sydney, Australia, 2017, pp. 1352–1361.

[30] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap between
value and policy based reinforcement learning,” in Advances in Neural Information
Processing Systems, Long Beach, USA, 2017, pp. 2775–2785.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor,” in Proceedings
of the International Conference on Machine Learning, Stockholm, Sweden, 2018, pp.
1856–1865.

[32] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Trust-PCL: An off-policy trust
region method for continuous control,” arXiv:1707.01891, February 2018.

[33] B. Dai, A. Shaw, L. Li et al., “SBEED: Convergent reinforcement learning with non-
linear function approximation,” in Proceedings of the International Conference on Ma-
chine Learning, Stockholm, Sweden, 2018, pp. 1133–1142.

[34] T. Haarnoja, A. Zhou, S. Ha et al., “Learning to walk via deep reinforcement learning,”
arXiv:1812.11103, 2018.

[35] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective
overview of theories and algorithms,” arXiv:1911.10635, 2019.

[36] M. L. Littman, “Value-function reinforcement learning in markov games,” Cognitive
Systems Research, vol. 2, no. 1, pp. 55–66, 2001.

[37] L. Cassano, K. Yuan, and A. H. Sayed, “Distributed value-function learning with linear
convergence rates,” in Proceedings of the European Control Conference, Napoli, Italy,
June 2019, pp. 505–511.

[38] L. Cassano, K. Yuan, and A. H. Sayed, “Multi-agent fully decentralized value function
learning with linear convergence rates,” IEEE Transactions on Automatic Control, pp.
1–1, 2020.

[39] L. Cassano, S. A. Alghunaim, and A. H. Sayed, “Team policy learning for multi-
agent reinforcement learning,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019, pp. 3062–3066.

[40] L. Cassano and A. H. Sayed, “Logical team Q-learning: An approach towards factored
policies in cooperative MARL,” arXiv:2006.03553, June 2020.

[41] L. Cassano and A. H. Sayed, “ISL: A novel approach for deep exploration,”
arXiv:1909.06293, December 2019.

166

[42] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic
reinforcement learning: Standard and natural policy gradients,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6,
pp. 1291–1307, 2012.

[43] B. Kehoe, A. Matsukawa, S. Candido et al., “Cloud-based robot grasping with the
Google object recognition engine,” in IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany, May 2013, pp. 4263–4270.

[44] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud robotics
and automation,” IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 2, pp. 398–409, 2015.

[45] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), Singapore, Singapore, May 2017, pp. 3389–
3396.

[46] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent o(n) temporal-difference
algorithm for off-policy learning with linear function approximation,” in Advances in
Neural Information Processing Systems, Vancouver, Canada, 2009, pp. 1609–1616.

[47] R. S. Sutton, H. R. Maei, D. Precup et al., “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,” in Proceedings of
the International Conference on Machine Learning, Montreal, Canada, 2009, pp. 993–
1000.

[48] B. Liu, J. Liu, M. Ghavamzadeh et al., “Finite-sample analysis of proximal gradient td
algorithms.” in Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAI), Amsterdam, Holland, 2015, pp. 504–513.

[49] H. R. Maei, Gradient Temporal-Difference Learning Algorithms. Ph.D. dissertation,
University of Alberta, 20011.

[50] H. van Hasselt, A. R. Mahmood, and R. S. Sutton, “Off-policy TD(λ) with a true online
equivalence,” in Proceedings of the Conference on Uncertainty in Artificial Intelligence,
Quebec City, Canada, 2014, pp. 330–339.

[51] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[52] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predic-
tive variance reduction,” in Advances in Neural Information Processing Systems, Lake
Tahoe, USA, 2013, pp. 315–323.

[53] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives,” in Advances in Neural
Information Processing Systems, Montreal, Canada, 2014, pp. 1646–1654.

167

[54] S. S. Du, J. Chen, L. Li et al., “Stochastic variance reduction methods for policy eval-
uation,” in Proceedings of the International Conference on Machine Learning, Sydney,
Australia, 2017, pp. 1049–1058.

[55] B. Ying, K. Yuan, and A. H. Sayed, “Variance-reduced stochastic learning under ran-
dom reshuffling,” IEEE Transactions on Signal Processing, vol. 68, pp. 1390–1408,
February 2020.

[56] S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed, “Distributed policy evaluation under
multiple behavior strategies,” IEEE Transactions on Automatic Control, vol. 60, no. 5,
pp. 1260–1274, 2015.

[57] M. S. Stanković and S. S. Stanković, “Multi-agent temporal-difference learning with
linear function approximation: Weak convergence under time-varying network topolo-
gies,” in Proceedings of the American Control Conference, Boston, USA, July 2016,
pp. 167–172.

[58] H.-T. Wai, Z. Yang, Z. Wang, and M. Hong, “Multi-agent reinforcement learning
via double averaging primal-dual optimization,” in Advances in Neural Information
Processing Systems, 2018, pp. 9649–9660.

[59] B. Dai, A. Shaw, L. Li et al., “Sbeed: Convergent reinforcement learning with nonlinear
function approximation,” in Proceedings of the International Conference on Machine
Learning, Stockholm, Sweden, 2018, pp. 1133–1142.

[60] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods for deep reinforcement
learning,” in Proceedings of the International Conference on Machine Learning, 2016,
pp. 1928–1937.

[61] K. Zhang, Z. Yang, H. Liu et al., “Fully decentralized multi-agent reinforcement learn-
ing with networked agents,” in Proceedings of the International Conference on Machine
Learning, Stockholm, Sweden, July 2018, pp. 10–15.

[62] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102, no. 4, pp. 460–
497, 2014.

[63] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, p. 48, 2009.

[64] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,”
SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[65] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “D-ADMM: A communication-
efficient distributed algorithm for separable optimization,” IEEE Transactions on Sig-
nal Processing, vol. 61, no. 10, pp. 2718–2723, 2013.

[66] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for
decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2,
pp. 944–966, 2015.

168

[67] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed
optimization over time-varying graphs,” SIAM Journal on Optimization, vol. 27, no. 4,
pp. 2597–2633, 2017.

[68] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,”
IEEE Transactions on Control of Network Systems, vol. 5, no. 3, pp. 1245–1260, 2017.

[69] C. Xi and U. A. Khan, “Dextra: A fast algorithm for optimization over directed
graphs,” IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 4980–4993,
2017.

[70] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed opti-
mization and learning—part I: Algorithm development,” IEEE Transactions on Signal
Processing, vol. 67, no. 3, pp. 708–723, 2019.

[71] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed opti-
mization and learning—part II: Convergence analysis,” IEEE Transactions on Signal
Processing, vol. 67, no. 3, pp. 724–739, 2019.

[72] A. H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations
and Trends in Machine Learning, vol. 7, pp. 311–801, 2014.

[73] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp.
120–136, 2016.

[74] S. V. Macua, A. Tukiainen, D. G.-O. Hernández et al., “Diff-DAC: Distributed actor-
critic for multitask deep reinforcement learning,” arXiv:1710.10363, 2017.

[75] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing eligibility traces,”
Machine Learning, vol. 22, no. 1-3, pp. 123–158, 1996.

[76] C. Dann, G. Neumann, and J. Peters, “Policy evaluation with temporal differences: A
survey and comparison,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 809–883, 2014.

[77] S.-Q. Shen, T.-Z. Huang, and G.-H. Cheng, “A condition for the nonsymmetric saddle
point matrix being diagonalizable and having real and positive eigenvalues,” Journal
of Computational and Applied Mathematics, vol. 220, no. 1-2, pp. 8–12, 2008.

[78] D. S. Bernstein, Matrix Mathematics. Princeton University Press, 2005.

[79] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement learning in
cooperative multi-agent systems,” in Proceedings of the International Conference on
Machine Learning, Palo Alto, USA, 2000, pp. 535–542.

[80] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coordination in coop-
erative multi-agent systems,” in Proceedings of the AAAI Conference on Artificial
Intelligence, Alberta, Canada, 2002, pp. 326–331.

169

[81] G. Tesauro, “Extending Q-learning to general adaptive multi-agent systems,” in Ad-
vances in Neural Information Processing Systems, Vancouver, Canada, 2004, pp. 871–
878.

[82] X. Wang and T. Sandholm, “Reinforcement learning to play an optimal nash equilib-
rium in team markov games,” in Advances in Neural Information Processing Systems,
Vancouver, Canada, 2003, pp. 1603–1610.

[83] L. Matignon, G. Laurent, and N. Le Fort-Piat, “Hysteretic Q-learning: an algorithm for
decentralized reinforcement learning in cooperative multi-agent teams.” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Diego, USA, 2007, pp. 64–69.

[84] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored MDPs,” in
Advances in Neural Information Processing Systems, 2002, pp. 1523–1530.

[85] C. Guestrin, M. Lagoudakis, and R. Parr, “Coordinated reinforcement learning,” in
Proceedings of the International Conference on Machine Learning, vol. 2, 2002, pp.
227–234.

[86] J. R. Kok and N. Vlassis, “Sparse cooperative Q-learning,” in Proceedings of the In-
ternational Conference on Machine Learning, 2004, p. 61.

[87] J. N. Foerster, G. Farquhar, T. Afouras et al., “Counterfactual multi-agent policy
gradients,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[88] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using
deep reinforcement learning,” in International Conference on Autonomous Agents and
Multiagent Systems, Sao Paulo, Brazil, 2017, pp. 66–83.

[89] T. Rashid, M. Samvelyan, C. S. De Witt et al., “Monotonic value function factorisation
for deep multi-agent reinforcement learning,” arXiv:2003.08839, 2020.

[90] K. Son, D. Kim, W. J. Kang et al., “Qtran: Learning to factorize with transformation
for cooperative multi-agent reinforcement learning,” in Proceedings of the International
Conference on Machine Learning, 2019, pp. 5887–5896.

[91] P. Sunehag, G. Lever, A. Gruslys et al., “Value-decomposition networks for cooperative
multi-agent learning based on team reward,” in Proceedings International Conference
on Autonomous Agents and Multiagent Systems, 2018, pp. 2085–2087.

[92] T. Rashid, M. Samvelyan, C. Schroeder et al., “Qmix: Monotonic value function fac-
torisation for deep multi-agent reinforcement learning,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2018, pp. 4295–4304.

[93] S. Omidshafiei, J. Pazis, C. Amato et al., “Deep decentralized multi-task multi-agent
reinforcement learning under partial observability,” in Proceedings of the International
Conference on Machine Learning, 2017, pp. 2681–2690.

170

[94] A. Tampuu, T. Matiisen, D. Kodelja et al., “Multiagent cooperation and competition
with deep reinforcement learning,” PloS one, vol. 12, no. 4, 2017.

[95] J. Foerster, N. Nardelli, G. Farquhar et al., “Stabilising experience replay for deep
multi-agent reinforcement learning,” in Proceedings of the International Conference on
Machine Learning, 2017, pp. 1146–1155.

[96] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press,
2004.

[97] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press,
1998.

[98] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap between
value and policy based reinforcement learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 2775–2785.

[99] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning
and teaching,” Machine Learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[100] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “Experience selection in deep rein-
forcement learning for control,” Journal of Machine Learning Research, vol. 19, no. 9,
pp. 1–56, 2018.

[101] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[102] F. A. Oliehoek, C. Amato et al., A Concise Introduction to Decentralized POMDPs.
Springer, 2016, vol. 1.

[103] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, pp. 2121–2159,
July 2011.

[104] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement
learning with deep predictive models,” arXiv:1507.00814, 2015.

[105] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via bootstrapped
DQN,” in Advances in Neural Information Processing Systems, Barcelona, Spain, 2016,
pp. 4026–4034.

[106] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih, “The Uncertainty Bellman Equa-
tion and Exploration,” in Proceedings of the International Conference on Machine
Learning, Stockholm, Sweden, July 2018, pp. 3839–3848.

[107] Y. Burda, H. Edwards, D. Pathak et al., “Large-scale study of curiosity-driven learn-
ing,” arXiv:1808.04355, 2018.

171

[108] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions for deep rein-
forcement learning,” in Advances in Neural Information Processing Systems, Montréal,
Canada, 2018, pp. 8617–8629.

[109] M. Bellemare, S. Srinivasan, G. Ostrovski et al., “Unifying count-based exploration and
intrinsic motivation,” in Advances in Neural Information Processing Systems, 2016, pp.
1471–1479.

[110] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos, “Count-based explo-
ration with neural density models,” in Proceedings of the International Conference on
Machine Learning, 2017, pp. 2721–2730.

[111] R. Houthooft, X. Chen, Y. Duan et al., “Vime: Variational information maximizing
exploration,” in Advances in Neural Information Processing Systems, 2016, pp. 1109–
1117.

[112] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by
self-supervised prediction,” in Proceedings of the International Conference on Machine
Learning, 2017, pp. 2778–2787.

[113] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random network
distillation,” arXiv:1810.12894, 2018.

[114] I. Osband, Y. Doron, M. Hessel et al., “Behaviour suite for reinforcement learning,”
arXiv:1908.03568, August 2019.

[115] I. Osband, B. Van Roy, and Z. Wen, “Generalization and exploration via randomized
value functions,” in Proceedings of the International Conference on Machine Learning,
June 2016, pp. 2377–2386.

172

	Introduction
	Reinforcement Learning
	Background
	Notation
	The RL problem
	The Policy Gradient Approach
	The Bellman Optimality Equation and Q-learning
	Soft RL

	Multi-Agent RL (MARL)
	Cooperative MARL

	Organization and Contributions

	Fully Decentralized Policy Evaluation
	Related Works
	Problem Setting
	Definition of cost function
	Optimization problem

	Distributed Policy Evaluation
	Distributed Setting
	Algorithm Derivation

	Multi-Agent Reinforcement Learning
	Experiments
	Experiment I
	Experiment II

	Summary
	Proof of theorem 2.1
	Proof of Theorem 2.2
	Proof of Lemma 2.8.
	Proof of Lemma 2.9
	Proof of Lemma 2.10
	Proof of Lemma 2.12
	Proof Lemma 2.11
	Bound for wje
	Proof Theorem 2.3

	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof Lemma 2.3
	Proof of Lemma 2.4
	Proof of Lemma 2.5
	Proof of Lemma 2.6
	Proof of Lemma 2.7

	Distributed Optimal Policy Learning in MARL
	Related Works
	Problem Setting
	Algorithm Derivation
	Experiments
	Summary
	Nash Equilibria

	Logical Team Q-learning
	Related Works
	Problem Setting
	Algorithm Derivation
	Factored Bellman Relations and Dynamic Programming
	Reinforcement Learning Setting

	Experiments
	Matrix Game
	Stochastic Finite TMDP
	Cowboy Bull Game

	Summary
	Proof of Lemma 4.1
	Proof of remark 4.1
	Proof of Theorem 4.1
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Tabular Logical Team Q-Learning
	Bull's policy

	ISL: A Novel Approach for Deep Exploration
	Related Works
	Problem Setting
	Algorithm Derivation
	Uncertainty Constrained Value Iteration
	Uncertainty Estimation
	Information Seeking Learner

	Experiments
	Sparse Cartpole Swingup
	Deep Sea and Deep Sea Stochastic
	Ablation Study

	Summary
	Proof of Lemma 5.1
	Proof Lemma 5.2
	Proof Theorem 5.1
	Proof Lemma 5.4
	Proof Lemma 5.5
	Cartpole Swingup Implementation Details
	Deep Sea Implementation Details
	Deep Sea Stochastic Implementation Details
	Ablation Study Figures
	Ablation study for
	Ablation study for 1
	Ablation study for 2

	Concluding Remarks and Future Work
	References

