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Abstract
Efforts to define the genetic architecture underlying variable statin response have met with limited
success possibly because previous studies were limited to effect based on one-single-dose. We
leveraged electronic medical records (EMRs) to extract potency (ED50) and efficacy (Emax) of
statin dose-response curves and tested them for association with 144 pre-selected variants. Two
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large biobanks were used to construct dose-response curves for 2,026 (simvastatin) and 2,252
subjects (atorvastatin). Atorvastatin was more efficacious, more potent, and demonstrated less
inter-individual variability than simvastatin. A pharmacodynamic variant emerging from
randomized trials (PRDM16) was associated with Emax for both. For atorvastatin, Emax was 51.7
mg/dl in homozygous for the minor allele versus 75.0 mg/dl for those homozygous for the major
allele. We also identified several loci associated with ED50. The extraction of rigorously defined
traits from EMRs for pharmacogenetic studies represents a promising approach to further
understand of genetic factors contributing to drug response.

INTRODUCTION
In 2010, U.S. federal legislators set an aggressive timeline for the widespread
implementation of electronic medical records (EMRs).1 According to the National Center
for Health Statistics, physician adoption rates for basic EMR systems have risen to 72% in
2012 from 48% in 2009 and 42% in 2008.2,3 The deployment of EMRs is not only
improving patient care, it is generating huge clinical practice-based datasets ideal for the
conduct of observational research.4,5 Several EMR-derived observational datasets have been
linked to secure biological repositories containing DNA. 6–9 These clinical practice-based
biobanks offer a previously unavailable opportunity for evaluating genetic findings from
randomized clinical trials (RCTs).10,11

Statins (HMG-CoA reductase inhibitors) reduce circulating levels of low density lipoprotein
cholesterol (LDL-C), and the cardiovascular benefits of these drugs are well-
established.12,13 At present, simvastatin and atorvastatin are the two most commonly
prescribed statins in the U.S.14,15 As such, there is great interest in defining the genetic
architecture underlying treatment outcome for both drugs.16,17 Early studies conducted
using archived DNA from RCTs have revealed a number of candidate gene variants with
small but reproducible effects on treatment-induced change in low density lipoprotein
cholesterol (ΔLDL-C).18,19 Because these efforts were successful for pharmacodynamic
genes (e.g., HMGCR) as well as pharmacokinetic genes (e.g., SLCO1B1), genotyping efforts
have been expanded in an attempt to define additional loci contributing to lipid lowering
response. Genome wide association studies (GWAS) conducted using the same RCTs
indicated that several previously unrecognized loci (e.g., CLMN1 and PRDM16) may
contribute to the lipid lowering response observed during exposure to these drugs.20 To date,
however these findings have not been replicated in a practice-based setting.

EMRs not only provide a powerful approach to the replication and refinement of these
observations21,22, but they also hold a number of distinct advantages over RCTs, including
access to rich environmental data and medication histories stored in structured and
unstructured format.10 We have previously shown that data within EMRs can be used to
define inter-individual variability in statin response, by extracting accurate measures of
potency (ED50) and lipid-lowering efficacy (Emax) from dose-response curves for patients
exposed to atorvastatin during the course of routine clinical care23,24. We now expand this
approach to simvastatin, in a second biobank, and we utilize the resulting dose-response
traits to quantify the reproducibility of candidate gene associations previously identified in
population-based and treatment-based cohorts. We demonstrate a novel benefit of accessing
banked clinical data from EMRs25 to confirm associations of candidate gene loci with ED50
and Emax for statin lipid response in a clinical practice-based setting.

RESULTS
This study includes data from patients exposed to multiple doses of simvastatin or multiple
doses of atorvastatin during the course of routine clinical care. It is a common feature of
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EMR-based studies, that regional differences in prescribing patterns can make it difficult to
study identical traits for two different drugs in a single cohort. The data in the current study
were therefore extracted from two separate biobanks. A total of 2,026 subjects exposed to
two or more doses of simvastatin were identified from BioVU, a biobank located on the
campus of Vanderbilt University Medical Center (VUMC) in central Tennessee. Another
2,252 subjects exposed to two or more doses of atorvastatin were then identified from a
second biobank, the Personalized Medicine Research Project (PMRP) located at Marshfield
Clinic, in central Wisconsin.

The distribution of dose-response traits for simvastatin is shown in Figure 1, and the
distribution of dose-response traits for atorvastatin is shown in Figure 2. Consistent with
results from randomized trials,26 atorvastatin was shown to be more potent and more
efficacious than simvastatin in our two study cohorts drawn from separate biobanks. The
baseline characteristics of our study cohorts are summarized in Table 1. The age, gender,
and race distributions of each cohort reflect those of the surrounding community.7,27

Prior to initiation of statin therapy, baseline LDL-C (E0) was 138.0 ± 34.2 mg/dl in the
simvastatin study subjects extracted from BioVU (n = 2,026) and 158.7 ± 28.7 mg/dl in the
atorvastatin study subjects extracted from PMRP (n = 2,252). Our ability to extract
pretreatment LDL-C levels (prior to the initiation of any statin) reflects subtle differences in
the degree of chart fragmentation between our two EMR-linked biobanks.28 Because
VUMC represents one of the largest tertiary referral centers in the Southeastern United
States, a large fraction of their patient base receives primary care outside the Vanderbilt
system of care. Conversely, Marshfield Clinic provides primary care for nearly all of the
patients served by their EMR. This difference introduces variability in access to
pretreatment lipid levels, and corresponding variability in the power to identify gene variants
associated with E0 for each cohort. Variants at 15 loci were associated with E0 extracted
from the atorvastatin dose-response curves in PMRP (rs12916, rs541041, rs174546,
rs602633, rs635634, rs646776, rs1367117, rs2053302, rs2290159, rs2954029, rs4299376,
rs4686228, rs6511720, rs6588480, rs9987289), whereas only 4 variants (rs514230,
rs6511720, rs17091962, rs12527253) were associated with E0 from the simvastatin dose-
response curves in BioVU. Our observation that a previously described variant in the LDL
receptor gene (rs6511720) was associated with E0 in both of our study cohorts (p < 0.005)
serves as a means of internal validation, since variability in this gene is known to influence
LDL-C levels across multiple geographic settings.29–31

Several variants previously shown to influence statin response in RCTs were associated with
lipid lowering efficacy in our clinical practice-based cohorts. Table 3 lists seven variants
nominally associated with Emax for simvastatin (p < 0.05), and Table 4 lists seven variants
nominally associated with Emax for atorvastatin (p < 0.05). It is noteworthy that rs11807862
in PRDM16 was associated with Emax for both simvastatin and atorvastatin. PRDM16 had
previously been associated with statin-induced change in clinical lipid profiles in our
combined analysis of three randomized treatment trials (p-value of 2.1×10−6).20 Therefore,
our observation validates the previous finding and makes it highly unlikely that the
association of this variant with Emax in our current cohorts has occurred by chance. In
addition, our data further reveal that this variant has a substantial effect size. For
simvastatin, Emax was 53.2 mg/dl in subjects homozygous for the minor allele versus 60.9
mg/dl in subjects homozygous for the major allele (Table 3); for atorvastatin, Emax was 51.7
mg/dl in subjects homozygous for the minor allele versus 75.0 mg/dl in subjects
homozygous for the major allele (Table 4). While our model inherently adjusts for baseline
LDL-C, the difference in magnitude between Emax for simvastatin and Emax for atorvastatin
may be due to biobank-specific differences in our ability to estimate pretreatment LDL-C.
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Table 3 and Table 4 also list all variants nominally associated with statin potency defined as
ED50. This trait has not previously been studied as an endpoint in any genetic assessment of
statin response. In BioVU, eight variants were associated with ED50 for simvastatin (p <
0.05), and in PMRP, eight variants were associated with ED50 for atorvastatin (p < 0.05).
The strongest determinants of atorvastatin ED50 were two variants in partial linkage
disequilibrium near the SORT1 gene locus, rs602633 and rs646776 (p < 0.005). Although
rs646776 was also associated with baseline LDL-C level (E0) in this same study cohort, E0
and ED50 were not correlated in this dataset (r2 = 0.016), supporting the inference that the
observed association between SORT1 and ED50 is specifically related to statin response. In a
meta-analysis of > 100,000 individuals of European ancestry, the SORT1 gene is
significantly associated with plasma LDL-C with p-value 1×10−107.29 Multiple studies on
animal models have also disclosed that the SORT1 gene can influence both hepatic apoB
secretion32 and cellular LDL uptake46 and it therefore represents a plausible candidate for
mediating statin treatment effects on LDL-C.

In BioVU, the strongest determinant of ED50 for simvastatin was rs1555926 in ZNF217 (p <
0.0004), although the effect size for this association was modest (reflecting a shift in the
required dose < 1 mg per day). Two other notable variants associated with simvastatin ED50
were rs4149056 in SLCO1B1, rs35599367 in CYP3A4, and rs8014194 in CLMN. The first
two loci (SLCO1B1 and CYP3A4) are well-known predictors of statin response.33,34

Rs4149056 in SLCO1B1 is significantly associated with statin-induced myopathy in a
previous GWAS of 175 subjects taking 80 mg simvastatin daily (85 cases and 90 controls),
and the observation has been further validated in a 20,000 subject cohort (the odd ratio for
myopathy was 4.5 (95% CI, 2.6–7.7) per copy of C-allele). CYP3A4 is notable in
atorvastatin metabolization. Previous study has reported that an inhibition of CYP3A4 can
result in severe drug-induced myopathy.35 The third locus (CLMN) has also been reported as
a determinant of statin-induced change in total cholesterol (p-value 1.9×10−8) in our prior
combined GWAS using data from RCTs.10

Because BioVU contains study subjects of diverse ancestry, we further stratified our
findings for dose-response using race as a categorical trait. We previously reported that
geographic race is highly accurate in this EMR-linked biobank, when electronically
extracted and compared to a panel of ancestry informative markers.36 When our findings
were stratified by race, the association between simvastatin ED50 and rs8014194 in CLMN1
remained significant only in African Americans (p = 0.015, n = 296). Conversely, the
association between simvastatin ED50 and rs4149056 in SLCO1B1 remained significant only
in European Americans (p = 0.035, n = 1,338). Stratification by race also yielded new
associations not previously recognized in this cohort; for example, in European Americans,
simvastatin ED50 was further associated with rs6708136 in UGT1A1 (p = 0.032). Because of
the known pharmacokinetic importance of genes like UGT1A1 and SLCO1B1, the race
specificity of these associations warrants further study.

In addition, we combined the data from both cohorts and performed a meta analysis. Most
SNPs found in separated analyses (rs646776, rs7584099, rs4149056, rs35599367, and
rs1564348 for ED50; rs11807862, rs6588480, rs2053302, rs7564379, rs9605146,
rs17091962, and rs1800961 for Emax) remained significant at the p<0.05 level, though none
exceeded a Bonferroni correction. Cochran’s Q test showed no statistically different
between outcomes from two cohorts for these SNPs. We also observed even lower P-values
for rs11807862 in PRDM16 (9×10−4) and rs4149056 (0.01) in SLCO1B1 than previous tests.
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DISCUSSION
Leveraging routine care data for pharmacogenetic research offers a previously unavailable
possibility to evaluate treatment effectiveness in contrast to treatment efficacy which is all
that is available from randomized clinical trial. In this study, we demonstrate that EMRs can
be used to efficiently extract dose response traits representing potency (ED50) and efficacy
(Emax) for two commonly used drugs. Our data confirm that atorvastatin is both more potent
and more efficacious than simvastatin using real-world clinical data. We also observed that
the distribution for atorvastatin potency (Fig 2) is much narrower than the distribution for
simvastatin potency (Fig 1). For simvastatin, the wide variability in potency observed in our
clinical practice-based data is consistent with prior observations that some patients do not
get to target LDL-C while using this drug, even if followed up regularly in an effort to titrate
to their LDL-C downward.26 Since high dose simvastatin is no longer recommended as
initial therapy37, this phenomenon cannot simply be overcome by dose escalation. Patients
genetically predisposed to lower potency with simvastatin (Panel C, Fig 1) may in fact need
a more potent statin earlier in the course of their care.

This study also replicates several well-known associations between candidate gene variants
and statin response within the context of routine clinical practice, and it extends our
understanding of these relationships by exploring the use of potency as a novel phenotypic
trait. For example, simvastatin ED50 (the daily dose of simvastatin needed to bring a
subject’s LDL-C level to half maximal effect) is associated with a regulatory variant in
CYP3A4 (rs35599367) and a non-synonymous coding variant in SLCO1B1 (rs4149056)
(Table 2). The pharmacokinetic impact of these variants has been thoroughly evaluated in
vitro and in vivo. For atorvastatin (Table 3), ED50 is associated with a functional variant in
SORT1 (rs646776). While this finding requires replication, studies conducted in humans and
animal models have shown that reduced expression of the SORT1 gene product, sortilin,
preferentially increases levels of very small dense LDL particles32, a particle subclass
known to exhibit decreased binding to LDL receptors.38

Lastly, this study advances our understanding of the biology underlying statin response.
Several genetic loci previously shown to alter statin-mediated lipid changes in randomized
treatment trials now show an association with statin efficacy in EMRs. For example, a
common variant at the PRDM16 gene locus (rs11807862) has previously been associated
with statin-mediated lipid changes in our combined GWAS analysis of 3,932 subjects
exposed to simvastatin, pravastatin, and atorvastatin20. In the current study, this same
variant was associated with Emax for both simvastatin and atorvastatin. Thus, our findings
confirm the relationship between rs11807862 and the lipid-lowering efficacy of statins, and
they underscore the importance of this association in the context of routine clinical care.
PRDM16 may influence adipocyte maturation39, and further studies are needed to
characterize the link between this gene locus and lipid homeostasis in vitro.

In summary, our findings demonstrate that highly informative drug response traits can be
extracted from EMR-linked biobanks, and they indicate these traits can be used to further
our understanding of the genetic determinants of drug response in the context of routine
clinical practice. Unique features of our approach include access to multiple doses, a
reduction in phenotypic misclassification through the extraction of full dose-response
curves, and scale.
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METHODS
Study Settings

This study includes data from patients exposed to multiple doses of simvastatin at VUMC or
multiple doses of atorvastatin at PMRP during the course of routine clinical care.

Simvastatin Cohort—VUMC admits more than 65,000 unique inpatients yearly, and
provides comprehensive longitudinal care for the majority of these patients. In the outpatient
arena, VUMC clinics host ~2 million patient encounters yearly. VUMC has previously
constructed a de-identified version of its integrated (combined inpatient-outpatient) EMR for
epidemiological research in a practice-based setting, and in 2007 this resource began linking
DNA samples to clinical data at a rate of ~500 samples per week7. With DNA linked to the
de-identified EMRs of more than 167,000 unique individuals, BioVU currently represents
on of the nation’s largest clinical practice-based biobanks.7 BioVU reflects the racial
makeup of the surrounding community, and the majority of the records in this database
(80%) are from subjects of European ancestry.40

Atorvastatin Cohort—Marshfield Clinic, in Central Wisconsin, provides healthcare
services for nearly 350,000 unique individuals (also ~2 million clinical visits per year). In
2002, the Center for Human Genetics (CHG) at the Marshfield Clinic began approaching the
surrounding community (initially 19 zip codes around the city of Marshfield, Wisconsin) to
offer participation in the first population-based biobank in the U.S., linking coded clinical
data to DNA samples for large scale studies of genetic epidemiology and treatment
outcome41. At present, this secure encrypted biobank (the PMRP database) provides access
to DNA and comprehensive longitudinal clinical data for over 20,000 adult study subjects42.
The vast majority of the subjects in this database (98%) are of Northern European
ancestry27.

Design
This study was conducted in accordance with the basic principles of the Declaration of
Helsinki, and approved by the Institutional Review Boards of VUMC and Marshfield Clinic.
BioVU (the source of our simvastatin cohort) and PMRP (the source of our atorvastatin
cohort) follow different enrollment procedures, and both approaches to biobanking have
been published7. BioVU follows an “opt-out” approach, using EMR-derived data that are
completely de-identified. Work with the BioVU database has therefore been determined to
represent non-human-subject research by the Federal Office of Human Subject Research
Protection7. By comparison, the PMRP follows an “opt-in” approach, and all data are
coded27. Within the PMRP database, all study subjects have provided written informed
consent for large scale pharmacogenetic association studies.

Phenotyping—EMRs contain medication information in both structured and unstructured
formats. Structured data (e.g., name-value pairs, such as “drug = simvastatin”) can be easily
retrieved and converted into a ready-to-analyze format by computational approaches.
Unstructured data (e.g., free text within clinical narratives, such as “the patient takes
atorvastatin 20 mg tablets, ½ tablet daily”) is inherently rich in content but more difficult to
extract than structured data43. We therefore leveraged our previously validated MedEx
natural language processing (NLP) system44 to extract and reconstruct retrospective drug
exposure histories from unstructured data. This NLP pipeline for medication data has
produced highly accurate output compared to manual chart review in BioVU (F-measures
93%–96%)44 and PMRP (sensitivity 80–97%, specificity 95–99%)45.
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Clinical lipid data were then extracted directly from structured laboratory records. We
extracted all clinical lipid panels, and LDL-C levels were plotted longitudinally alongside
statin exposure so that each lipid panel could be linked to drug and dose23. Because LDL-C
levels typically reach steady state within 4–6 weeks after initiating statin treatment or
changing statin dose), we filtered all lipid data and only accepted LDL-C levels obtained in
window beginning six weeks after the initiation of each dose and ending with the cessation
of the drug or a change to a new dose. We commonly observed that more than one LDL-C
result could be linked to a given statin dose, and a median LDL-C value was therefore
calculated for each drug dose. We then linked statin exposure to lipid data and applied a
maximum-effect model to construct individual dose-response curves as published24. Under
this model, change in LDL-C is a function of statin dose, and each parameter is assumed to
vary for individuals around a population average.

In order to characterize the dose-response relationships in detail, we limited our phenotyping
efforts to individuals exposed to two or more doses of the same drug during the course of
routine care. We also required that each individual had baseline LDL-C levels available
within their electronic record (i.e., at 0 mg daily, prior to initiation of any statin). At the time
of this analysis, BioVU contained 202,813 LDL-C results for 48,583 unique patients ever
exposed to simvastatin, 10,280 of whom have had exposure to two or more doses. VUMC is
a tertiary referral center and only 2,026 (approximately 20%) of these 10,280 patient records
contain pretreatment LDL-C values. We then extracted data for the construction of
atorvastatin dose-response curves from a 2nd biobank, the PMRP in central Wisconsin. In
PMRP, 33,625 LDL-C results have previously been extracted for 3,644 unique patients
exposed to atorvastatin, and 2,252 of these patients have had exposure to two or more doses
(requiring 0 mg daily, prior to initiation of any statin).23,24

In both biobanks, we then derived phenotypic traits, for ED50 (potency) and Emax (maximal
lipid-lowering efficacy), based on our published dose-response equation46,47:

(EQ 1)

LDLDose represents the LDL-C value at each specific statin dose, E0 represents baseline
LDL-C level (prior to the administration of any statin), Emax represents the maximum
modeled reduction in LDL-C level on simvastatin or atorvastatin, and ED50 represents the
dose that causes half maximal reduction.

By applying a non-linear random coefficients model, where parameters from EQ 1 represent
random coefficients, we were able to estimate dose-response parameters (E0, ED50, and
Emax) for simvastatin for 1,953 unique individuals in BioVU using the same approach. Raw
data for these 1,953 patients are plotted in Figure 1, along with the distribution for each trait.
After removing those subjects who opted out of BioVU prior to initiation of this specific
sub-study, 1,852 samples were submitted for genotyping. In PMRP, we were able to
estimate all atorvastatin dose-response parameters for 2,213 unique individuals. Raw data
are plotted for these 2,213 subjects in Figure 2, along with the distribution for each derived
trait. All 2,213 samples were submitted for genotyping.

Genotyping—Single nucleotide polymorphisms (SNPs) were preselected based on three
criteria: (1) variants associated with baseline lipid levels (LDL-C or total cholesterol level)
by the Global Lipids Consortium29, (2) pharmacodynamic variants associated with change
in total cholesterol, change in LDL-C, or change in HDL-C in our prior combined GWAS of
3,932 subjects exposed to either simvastatin, pravastatin or atorvastatin in RCTs 19,20, and
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(3) variants of proven functional relevance in pharmacokinetic candidate genes48. These
candidate gene loci (Table 2) were genotyped for 31 SNPs associated with LDL-C or total
cholesterol (p <10−8) from Global Lipids Consortium, 93 pharmacodynamic SNPs (40 for
Δtotal cholesterol, 36 for ΔLDL-C, 17 for ΔHDL-C), and 20 pharmacokinetic SNPs. Each
variant was genotyped in both cohorts, on an Illumina BeadXpress array (Illumina, San
Diego, CA). Genotyping was successful (call rate >99%) for 137 SNPs in BioVU
(simvastatin dose-response) and 140 SNPs in PMRP (atorvastatin dose-response).

Statistical Analyses
Statistical analyses were conducted using the PLINK genetic analysis toolset version 1.07
(http://pngu.mgh.harvard.edu/~purcell/plink). Minor allele frequency and Hardy-Weinberg
equilibrium (HWE) statistics were calculated for each SNP after stratifying by race40. Two
SNPs in European ancestry subjects (rs7075971 and rs12916) and two SNPs in African
ancestry subjects (rs12916 and rs17645290) deviated from HWE (p-value less than 0.01).
These SNPs were removed from our analyses. Genotype-phenotype association tests were
then conducted using an additive model in PLINK, for E0, ED50 and Emax. Because our goal
was to establish proof of principle, replicating prior findings from randomized trials, our
results are presented with unadjusted p values. Simon et al. previously demonstrated that
race, but not gender, affected change in LDL-C levels in response to simvastatin therapy.49

Thus, we also stratified our results by race. We also combined the data from both cohorts
and performed a meta analysis. The meta analysis was performed using METAL.50
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Study Highlights

1. What is the current knowledge on the topic?

Efforts to define the genetic architecture underlying variable statin response have met
with limited success possibly because previous studies were limited to effect based on a
single dose.

2. What question this study addressed?

This study extracted rigorously defined phenotypes of statin dose-response curves (ED50
and Emax) from electronic medical records (EMRs) and tested them for association with
144 pre-selected variants.

3. What this study adds to our knowledge?

A variant in PRDM16 was associated with Emax for both statins. For atorvastatin, Emax
was 51.7 mg/dl in homozygous for the minor allele versus 75.0 mg/dl for those
homozygous for the major allele. We also identified several loci associated with ED50.

4. How this might change clinical pharmacology and therapeutics?

The extraction of rigorously defined traits from EMRs for pharmacogenetic studies
represents a promising approach to further understand of genetic factors contributing to
drug response.
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Figure 1.
Dose-response curves for simvastatin. Panel A: Raw dose-response data are plotted for
2,026 subjects with data sufficient to fit Equation 1 in BioVU. Panel B: Distribution of Emax
for simvastatin. Panel C: Distribution of ED50 for simvastatin. Panel D: log dose-response
curve showing mean ± standard deviation for each parameter.
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Figure 2.
Dose-response curves for atorvastatin. Panel A: Raw dose-response data are plotted for
2,213 subjects with data sufficient to fit Equation 1 in PMRP. Panel B: Distribution of Emax
for atorvastatin. Panel C: Distribution of ED50 for atorvastatin. Panel D: log dose-response
curve showing mean ± standard deviation for each parameter.
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Table 1

The baseline characteristics of the two identified study cohorts exposed to statins.

Simvastatin (BioVU) Atorvastatin (PMRP)

N 2026 2252

Age 58.8 ± 12.4 62.21±12.84

Ancestry (European Americans) 77.05% 98.20%

Gender (Female) 52.12% 51.82%
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