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Psychiatry (CGC, JW, TCH, FH, OW, SE, RH,DB, TTY), University of California, San Francisco,
San Francisco;Veterans Affairs San Diego Health Care System (MPP, SFT, ANS);Department of
Psychiatry (JEM, MPP, SFT, ANS), University of California,San Diego, La Jolla; Rady Children's
Hospital (JEM), San Diego,California; and Department of Psychiatry (GF), University of
Colorado,Denver, Colorado

Abstract

Background—Very few studies have been performed to understand the underlying neural

substrates of adolescent major depressive disorder (MDD). Studies in depressed adults have

demonstrated that the subgenual anterior cingulate cortex (sgACC) plays a pivotal role in

depression and have revealed aberrant patterns of resting-state functional connectivity (RSFC).

Here, we examine the RSFC of the sgACC in medication-naïve first-episode adolescents with

MDD.

Methods—Twenty-three adolescents with MDD and 36 well-matched control subjects

underwent functional magnetic resonance imaging to assess the RSFC of the sgACC.

Results—We observed elevated connectivity between the sgACC and the insula and between the

sgACC and the amygdala in the MDD group compared with the control subjects. Decreased

connectivity between the sgACC and the precuneus was also found in the MDD group relative to

the control subjects. Within the MDD group, higher levels of depression significantly correlated

with decreased connectivity between the sgACC and left precuneus. Increased rumination was

significantly associated with reduced connectivity between sgACC and the middle and inferior

frontal gyri in the MDD group.

Conclusions—Our study is the first to examine sgACC connectivity in medication-naïve first-

episode adolescents with MDD compared with well-matched control participants. Our results

suggest aberrant functional connectivity among the brain networks responsible for salience

attribution, executive control, and the resting-state in the MDD group compared with the control

participants. Our findings raise the possibility that therapeutic interventions that can restore the
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functional connectivity among these networks to that typical of healthy adolescents might be a

fruitful avenue for future research.

Keywords

Adolescent major depression; amygdala; default mode network; insula; resting-state; subgenual
anterior cingulate

Adolescence is a crucial developmental period when the incidence of psychiatric illnesses,

such as depression and other mood disorders, significantly increases (1). Epidemio-logical

studies indicate that up to 8.3% of adolescents in the United States suffer from depression

(2). Moreover, adolescent-onset depression is often recurrent and persists into adulthood,

leading to elevated rates of divorce, loss of work, illness, and death (2). Vulnerability to the

development of depression might be related to atypical maturational changes in the

adolescent brain (3). Thus, understanding how departure from typical brain development

patterns might influence the incidence of depression is particularly important, because it

might ultimately improve our ability to prevent its emergence or lead to more effective

treatments for those affected.

Despite the significance of this crucial developmental period, few studies have been

performed to understand the underlying neurobiological substrates of adolescent depression.

In contrast, much more work has been done in depressed adults. This work has led to the

development of several models of adult depression. One such model hypothesizes that a

network of cortical regions and associated limbic structures is differentially affected by the

disorder (4,5). Within this network the subgenual region of the anterior cingulate cortex

(sgACC) is thought to be pivotal to affective regulation and depression (6–14).

Another model, the triple network model (TNM), suggests that major neuropsychiatric

disorders including depression might be explained in part by the relationship between three

core intrinsic connectivity networks (ICN) of the brain that can be identified in resting-state

functional magnetic resonance imaging scans (15). The ICNs are interdependent distributed

networks of brain regions observed in the human brain at rest that show strong

correspondence with task-related connectivity patterns (16). The three core ICNs are the

default mode network (DMN), the salience network (SN), and the central executive network

(CEN). The DMN is anchored in the posterior cingulate cortex and ventromedial prefrontal

cortex (PFC) (17,18) and extends into the sgACC (15,16,19,20). In this network, the

ventromedial PFC node is involved in self-referential processing, social cognitive processes,

value-based decision making, and emotion regulation (21–24). The SN involves the

cingulate-frontal operculum system and often the amygdala (25). It is implicated in

detecting, integrating, and filtering relevant interoceptive, autonomic, and emotional

information (25). Finally, the CEN encompasses dorsolateral prefrontal and lateral posterior

parietal cortical regions and is thought to be critical to higher-level cognitive effort (26). A

core hypothesis of the TNM is that neuropsychiatric disorders, such as depression, might be

associated with aberrant functional connectivity (AFC) within and between these three core

networks (15). Of note, although AFC has been reported in many neuropsychiatric disorders
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[see (15) for review], DMN “functional connectivity in depression is disproportionately

driven by activation in the sgACC” (27).

Investigations of sgACC resting-state functional connectivity (RSFC) have been conducted

in adults, adolescents, and children with major depressive disorder (MDD). Studies of adult

depression have demonstrated elevated connectivity between the sgACC and dorsolateral

PFC (28) that moderates with treatment (29) as well as increased connectivity between

sgACC and dorsomedial PFC (30). In adolescents, reduced functional connectivity (FC)

between the sgACC and insula as well as the inferior and superior PFC have been reported

(31). More recently, increased FC between the sgACC and dorsomedial PFC has also been

found in medicated depressed adolescents (32). Finally, in children with preschool-onset

MDD, reduced FC between the sgACC and PFC regions has been documented (33). These

differences in FC displayed by children (33), adolescents (32), and adults (28,30) might be

related to developmental changes. For example, large scale changes in FC have been

reported over the course of development from childhood to adulthood (34), with changes in

the FC of the sgACC being related to maturation (35). Differences among these studies

could also be attributed to medication status. In adults, it has been suggested that

antidepressant medication can affect brain activation (11), with recent preliminary evidence

indicating that medication might affect the FC of the sgACC (36). Finally, the study by

Cullen et al.(31) is unique among those reviewed in that they permitted adolescents to listen

to music of their choice while being scanned. Therefore it is possible that differences in the

“emotional import” of the music selected by each participant might modulate the FC of the

sgACC (31).

The RSFC and task-based studies of depression have identified functional changes that are

associated with clinical measures of relevance in both adults and adolescents. In adults,

sgACC FC was positively correlated with length of depressive episode (27). In adolescents,

the strength of correlation between sgACC and dorsomedial PFC was positively correlated

with depression severity (32). Finally, in a task-based study using psychophysiological

interaction in adolescents with MDD, insula activity was associated with psychosocial

function (37). These results suggest that clinical measures of depression and their

relationship with FC should be investigated in depressed adolescents, given the role played

by the insula and sgACC in depression (37–39).

Rumination is a prominent aspect of depression that might manifest in the resting-state (27).

Recent studies have begun to elucidate the neural substrate of ruminative thought processes

in adult depression. These studies have shown elevated sgACC activity in the DMN in

depressed adults and that the degree of activation is modulated by the level of maladaptive

rumination (40-42). The right anterior insula, a component of the SN, has also been

associated with maladaptive rumination in depressed adults (40). Furthermore, the

amygdala, another element of the SN, has been associated with rumination in depressed

adults, with activation positively correlated with rumination (43,44). These observations are

important, because the insula and the amygdala are thought to play key roles in depression

(37-39). To date, however, no RSFC studies have investigated rumination in adolescents

with MDD.
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The aim of the present study was to examine the RSFC of the sgACC in a large sample of

medication-naïve first-episode depressed adolescents compared with a group of well-

matched healthy control subjects. Furthermore, we wished to examine the relationships

between depression, rumination, and the FC of the sgACC. On the basis of the reviewed

literature and the triple network model, we hypothesized that AFC within and between the

core networks would be observed in the MDD group relative to the healthy control subjects.

More specifically, we hypothesized that AFC in the resting state would manifest in the

MDD group compared with control subjects in a network of brain regions involving the

amygdala and insula. Finally, we hypothesized that these differences in FC in the depressed

adolescents would be significantly correlated with clinical measures of depression and

rumination.

Methods and Materials

Participants

The institutional review boards of University of California San Diego, University of

California San Francisco, Rady Children's Hospital, and the county of San Diego all

approved this study. Seventy-five participants were scanned for the present study: 45 healthy

control subjects; and 30 with MDD. Participants gave written informed assent, and their

parent/legal guardian provided written informed consent. Participants were financially

compensated for their time.

Assessment

All healthy adolescents were administered the computerized Diagnostic Interview Schedule

for Children version 4.0 (45) and the Diagnostic Predictive Scale (46), to determine the

presence of any Axis I disorders.

The Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present

and Lifetime Version (47) was administered to all potentially depressed adolescents.

Depressive symptoms were scored by the Children's Depression Rating Scale-Revised

(CDRS-R) (48) and Beck Depression Inventory-II (BDI-II) (49). Rumination was assessed

by the Ruminative Responses Scale (RRS) of the Response Styles Questionnaire (50).

Psychosocial functioning was assessed with the Children's Global Assessment Scale

(CGAS) (51).

All participants were right-handed, and the groups were well-matched for IQ,

socioeconomic status, age, gender, ethnicity, and pubertal stage. Additional questionnaires

and inclusion/exclusion criteria are detailed in Supplement 1.

MR Data Acquisition and Preprocessing

Scans were acquired on a 3T GE MR750 System (GE Healthcare, Milwaukee, Wisconsin).

One 8-min, 32-sec resting-state scan (256 volumes repetition time/echo time = 2 sec/30

msec, flip angle = 90°, 64 × 64 matrix, 3×3×3 mm voxels, 40 axial slices) was acquired. A

high-resolution T1-weighted scan (repetition time/echo time = 8.1 msec/3.17 msec, flip
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angle = 12°, 256 × 256 matrix, 1×1×1 mm voxels, 168 sagittal slices) was acquired to permit

functional localization.

Analyses were conducted with AFNI (52) and FSL software (53). Detailed methods are in

Supplement 1. The T1-weighted images were skull stripped and transformed to MNI152

space (Montreal Neurological Institute, Montreal, Quebec, Canada) with an affine transform

(54,55) followed by nonlinear refinement (56,57). Tissue components (gray matter, white

matter, and cerebrospinal fluid) were segmented (58). Echo-planar images were motion

corrected and aligned to the T1 images (59), convolved with a 4.2-mm full-width-at-half-

maximal isotropic Gaussian filter, grand-mean scaled, and transformed to MNI152 space at

3 × 3 × 3 mm resolution. Bandpass filtering (.01−.1 Hz), censoring of outlier volumes and

those with excessive motion, and removal of physiological noise (motion and average signal

from white matter and cerebrospinal fluid) were accomplished in a single generalized least

squares regression step, which required that no fewer than 177 time-points remained after

censoring.

FC Analysis

Four subgenual seed locations, two in each hemisphere, were chosen on the basis of a prior

exploration of anterior cingulate connectivity in the resting state (60). Seeds were 3 mm in

radius, occupied 189 μL, and located at ±5, −34, −4 and ±5, −25, −10. For each seed, the

Pearson correlation between the whole brain four-dimensional residuals and the average

seed time-series was computed. Correlation coefficients were converted to Z scores with

Fisher's r-to-z transform (61).

Group Analysis

Voxel-wise between-group analyses for each seed were accomplished with linear mixed

effects models implemented in R software (62) where participant was treated as a random

effect. Voxels were thresholded (F1,58 = 4.01, p = .05) and, to control for multiple

comparisons, were required to be part of a cluster of at least 2000 μL. Bonferroni correction

was used to correct for the number of seeds, and the corrected p was set to .05/4 = .0125. A

Monte Carlo simulation was used to identify the volume threshold and, together with the

voxel-wise threshold, resulted in a 5% probability of a significant cluster surviving due to

chance across all four seeds.

Demographic and Clinical Scales Analysis

All statistical analyses were conducted with R software (62). Between-group differences

were assessed by means of Welch T tests for age, Wechsler Abbreviated Scale of

intelligence, BDI-II, and CDRS-R. Group differences in gender and number of participants/

group were assessed with χ2 test of equal proportions. Effect sizes for these tests were

computed with Hedge's g (63). The Wilcoxon rank-sum test determined group differences in

the Hollingshead socioeconomic scale, CGAS, RRS, and Tanner Stage. Effect sizes for

these tests were computed with the probability of superiority (PS), which ranges from 0 to 1

and represents the probability that a randomly selected control reports a greater value on the

corresponding measure than a randomly selected MDD participant (64).
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Correlational Analysis

Within the MDD group, the relationships between CGAS, CDRS-R, BDI-II, RRS, and the

average Z score within each of the regions of interest identified by the between-group

whole-brain analyses were examined with Spearman's rank correlation test.

Results

Demographic and Clinical Scales

As expected, given the matching criteria, the groups did not significantly differ in age,

gender, socioeconomic status, Tanner pubertal stage, or IQ (all p > .05). Similarly, all of the

depression scales (CDRS-R and BDI-II) showed that the MDD group endorsed significantly

greater levels of depression than the control subjects (Hedge's g for CDRS-R = −4.99 and

for BDI-II = −2.94). Additionally, on the CGAS, the MDD group demonstrated lower

psychosocial function than the healthy adolescents (PS = .99). The MDD adolescents

demonstrated greater rumination than the control subjects as measured by the RRS (PS = .

06) (Table 1).

Rsfc

The regions identified in the whole-brain between-group analysis (Table 2) were consistent

with those identified as being part of the salience, central executive, and default mode

networks (15). The left inferior seed demonstrated greater positive connectivity to bilateral

inferior frontal gyrus (IFG) and bilateral insula in the MDD group compared with control

subjects (Figure 1) as well other regions listed in Table 2. The right inferior seed showed

greater positive connectivity in the MDD group than the control subjects to right cuneus,

right lentiform nucleus, bilateral superior temporal gyrus, and left claustrum.

The left superior seed showed connectivity differences in only one region in the right cuneus

that was more strongly positively connected to the sgACC in the MDD group than the

control participants. The right superior seed displayed negative connectivity to the left

precuneus and middle frontal and middle occipital gyri in the MDD group relative to the

control participants who showed positive connectivity to these three regions. We observed

increased positive connectivity between the right superior seed and the right amygdala

extending caudally into the parahippocampal gyrus in the MDD group relative to control

participants (Figure 2). The right superior seed also demonstrated increased FC with the left

culmen of the cerebellum and the left amygdala extending ventrally into the uncus in the

MDD group compared with the control participants (Figure 2). In the case of these three

regions (the right amygdala/parahippocampa gyrus, left culmen, and left amygdala/uncus),

the MDD group demonstrated positive connectivity to the sgACC, whereas the control

group showed positive connectivity for the right amygdala/parahippocampal gyrus and

negative connectivity for the left culmen and left amygdala/uncus.

Correlational Analysis

Within the MDD group, several regions (Table 3) demonstrated significant relationships

with the clinical scales. Those regions showing negative correlations with measures of

depression (BDI-II and CDRS-R) included left middle frontal and left occipital gyri, left
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precuneus, and the left precentral gyrus (all p < .05). Positive correlations between the

CGAS and regions in the left precuneus and left middle frontal and left occipital gyri were

observed (all p < .05). One region, the left claustrum, showed a negative correlation with the

CGAS (p < .05). Negative correlations with RRS were observed in the right middle frontal

gyrus (MFG) and right IFG (all p < .05).

Discussion

This study compared the RSFC of the sgACC in medication-naïve first-episode adolescents

with a primary diagnosis of MDD with a group of well-matched control subjects. Our study

yielded four main results. Firstly, we observed several brain regions coactive with the

sgACC that are not typically considered part of the DMN. This result might reflect AFC

within and between the ICNs of the brain. Secondly, our results further support the body of

research indicating that the sgACC is an important node in a network of limbic and

paralimbic regions that have previously been shown to be dysfunctional in depressed adults

(9,11,65–70), adolescents (31,32), and children (33). Thirdly, our correlational analysis

suggests that greater connectivity between regions of the DMN might be associated with

better psychosocial function in depressed adolescents and that more severe depression might

be related to reduced connectivity between these nodes. Finally, we observed that increased

levels of rumination were associated with decreased FC between the sgACC and both the

IFG and MFG, which are components of the CEN (15).

We observed elevated positive connectivity with the sgACC in the bilateral insulae (Figure

1) as well as greater negative connectivity between the sgACC and the left precuneus

(Figure 2) in the MDD group compared with the control subjects. These observations might

reflect FC changes between the ICNs of the brain. In the TNM, the SN is thought to be

centered on the anterior cingulate and insular cortex (15). The insula is thought to play a role

in the integration of autonomic, visceral, and hedonic information (71). Indeed, the insula

has been proposed to be critical to selecting from among internally and externally available

homeostatically relevant information to guide behavior (71). Furthermore, the right anterior

insula is thought to play a key role in switching from a predominantly CEN/SN dominated

brain state to the default mode state (72). Our observation of increased connectivity between

the sgACC and both the right anterior insula and left middle insula (Figure 1) in the MDD

group might be significant insofar as it might be indicative of AFC between the SN and

DMN. This AFC might be due to the strong connectivity we observed between the sgACC

and right anterior insula, which might preclude a successful transition into the pattern of

neural activity characteristic of a normal DMN (72).

Although we observed greater positive connectivity between the sgACC and insula in the

depressed adolescents compared with control subjects, Cullen et al.(31) reported decreased

connectivity between these two regions. This difference could be due to issues such as

medication status, sample size, or the “emotional import” of the music participants listened

to while being scanned (31). In the present study, we examined a larger sample (MDD: 23

vs. 12; control: 36 vs. 14) of medication-naïve first-episode participants who were not

permitted to listen to music while being scanned. In the Cullen et al.(31) study, participants

on several different types of psychiatric medications were scanned while listening to music
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of the participants' choice. Although playing music during the scan might be regarded as

uncommon (32), recent evidence suggests that this might not appreciably affect the topology

of the DMN but rather might enhance connectivity among the nodes thereof (73). Therefore,

it is possible that medicated depressed adolescents scanned while listening to music might

demonstrate elevated FC between the sgACC and insula, whereas unmedicated depressed

adolescents scanned while not listening to music might show reduced FC between these two

structures.

We also observed increased FC between the sgACC and right amygdala in the MDD group

relative to the control subjects (Figure 2). Previous studies have reported hyperactivation of

the amygdala in both adults (39,44,74–76) and adolescents (37,77–81) with major

depression. Amygdalar activation has been shown to predict likelihood of positive treatment

outcome in depressed adults (82). Consequently, the amygdala has been proposed to play a

key role in depression (38,39). Similarly, sgACC hyperactivation has also been observed in

both depressed adults (10,66) and adolescents (83). Therefore, it has been hypothesized that

the sgACC plays a pivotal role in depression (38,67,84). Effective treatment has been shown

to reduce activity levels toward that typical of healthy individuals in both the amygdala (66)

and sgACC (11). However, it is unclear whether the FC between these two regions might

alter with treatment. Future longitudinal studies are necessary to address this question and

identify whether the connectivity between these regions might be a potential biomarker of

depression and an apt target for treatment. Our results also suggest that these two regions are

functionally connected. Consistent with our FC findings, it has been shown that the

amygdala and sgACC are anatomically connected by white matter fibers in the uncinate

fasciculus (85). Furthermore, structural alterations in the connection between sgACC and

amygdala have been reported in depressed adolescents (86), but whether these predate

development of depression and might have a causative effect or are a consequence of the

illness is unclear. Future studies in adolescents at risk for depression might help to address

these issues.

Within the MDD group, we hypothesized that the clinical measures of depression would be

associated with the strength of connectivity between the sgACC and other brain regions. We

observed that higher BDI-II scores were significantly correlated with decreased FC in the

MDD group between the sgACC and left precuneus, which are components of the DMN

(15,19,87) (Table 3). Consistent with this observation, greater psychosocial function was

significantly correlated with increased connectivity between the sgACC and left precuneus.

We also observed that greater CDRS-R scores were significantly correlated with decreased

connectivity between the sgACC and left MFG in the MDD group. Because the MFG is a

component of the CEN (15), this observation might indicate an impairment of top-down

regulation of emotion by the CEN. These findings suggest that increased depression and

decreased psychosocial functioning are associated with AFC of the sgACC and are

consistent with our hypothesis that differences in FC within the depressed adolescents would

be significantly correlated with measures of clinical depression. Overall, the MDD group

displayed more negative connectivity than the control subjects, with respect to the sgACC-

left MFG connectivity. We also found negative correlation between depression scores

(CDRS-R, BDI-II) and sgACC-left MFG FC in the MDD group. These results suggest that

the CEN of depressed adolescents with less negative FC between these regions might be
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more effective at regulating depressive symptoms. Conversely, more negative sgACC-left

MFG FC might indicate inadequate regulation of depressive symptoms.

Finally, within the MDD group, we investigated whether rumination correlated with

connection strength from the sgACC. As shown in Table 3, increased rumination was

associated with decreased FC between the sgACC and both the right MFG and right IFG.

Both the MFG and IFG are thought to be components of the CEN (88–92), with right IFG

important to emotion regulation in both healthy and depressed adults (93–95). Overall, the

MDD group displayed greater positive sgACC-MFG and sgACC-IFG connectivity than the

control subjects. We also observed a negative correlation between rumination and sgACC-

MFG and sgACC-IFG connectivity in the MDD group. These results suggest that the CEN

of depressed adolescents with lower FC between these regions might be inadequately

regulating negative emotional thoughts (96). Conversely, individuals with greater sgACC-

MFG and sgACC-IFG connectivity might be better regulating negative emotional thoughts.

The results of this study must be interpreted in light of its limitations. The current study is

cross-sectional and therefore cannot address whether or not these observations are a

consequence of MDD. Future longitudinal studies should be performed to address this

question. Given the high rates of comorbid diagnoses in this sample of depressed

adolescents, future studies are still required to investigate the specificity of these findings

and how they might be influenced by comorbidity. Notwithstanding, adolescent depression

is a highly comorbid disorder (97–99), and inclusion of participants with comorbid

diagnoses arguably makes our sample more representative of the patients typically seen in

clinics and thus contributes to the generalizability of our results. The issue of gender

differences is important, especially given the higher rates of depression in female

adolescents than male adolescents (1,100). Although we conducted a preliminary

investigation of the effect of gender in the current sample (Supplement 1), we were limited

in this investigation by the small number of depressed male adolescents (n = 7). Future

studies are required to investigate whether and, if so, how FC varies by gender in depressed

adolescents. Finally, we used the TNM as a theoretical basis to explain our findings.

However, it is possible that other theories might be equally applicable to the results reported

herein. Although we have attempted to explain most of our findings with the TNM, the FC

of the depressed adolescent brain might be more complex and involve additional networks

than the three central to the TNM. The application of the TNM might therefore be regarded

as preliminary, and future studies are required to confirm the applicability of the TNM to the

study of adolescent depression.

In summary, the present study examined the RSFC of the sgACC in medication-naïve first-

episode adolescents with MDD compared with a group of well-matched healthy control

participants. Relative to control participants, the depressed adolescents demonstrated greater

sgACC-amygdala and sgACC-insula connectivity, suggesting AFC between the SN and

DMN in the resting state. Furthermore, adolescents with greater levels of depression and

lower levels of psychosocial function demonstrated weaker sgACC-precuneus connectivity.

Taken together, these results suggest that adolescent depression might be related to or

accompanied by AFC between the DMN and SN that might be underpinned by elevated

connectivity between the sgACC and both the insula and amygdala. Our results are
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consistent with and further support prior reports of elevated FC in depressed adolescents

(32) and adults (27,28,30) rather than reduced connectivity (31). We also observed increased

rumination as a function of decreased connectivity between the sgACC and both the right

MFG and right IFG, suggesting impaired top-down modulation by the CEN of negative

emotional thoughts. Finally, our findings further support the model that the sgACC plays a

key role in major depression (4,5) and are consistent with the TNM of neuropsychi-atric

disorders (15). Collectively, our results raise the possibility that potential therapeutic

interventions that can restore the FC within and between the SN, CEN, and DMN to that

typical of healthy adolescents might be a fruitful avenue for future research in the treatment

and prevention of adolescent depression.
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Figure 1.
Regions showing group differences in the correlation with a subgenual anterior cingulate

cortex seed in the left hemisphere. Error bars indicate the SEM. L, left; MDD, major

depressive disorder; NCL, normal control subjects; R, right.
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Figure 2.
Regions showing group differences in the correlation with a subgenual anterior cingulate

cortex seed in the right hemisphere. Error bars indicate the SEM. L, left; MDD, major

depressive disorder; NCL, normal control subjects; R, right.
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Table 3
Table of Regions Showing Correlations with Clinical Rating Scales

Cluster Regression Variable S ρ p

Superior Right Seed

 L precuneus Children's Global Assessment Scale 948.94 .53 <.01

 L middle frontal gyrus Children's Global Assessment Scale 769.10 .62 <.01

 L middle occipital gyrus Children's Global Assessment Scale 649.53 .68 <.001

 L middle frontal gyrus Children's Depression Rating Scale-Revised (Standardized) 2937.71 −.45 <.05

 L middle occipital gyrus Children's Depression Rating Scale-Revised (Standardized) 3183.44 −.57 <.01

 L precuneus Beck Depression Inventory II 2880.06 −.42 <.05

 L middle frontal gyrus Beck Depression Inventory II 3081.31 −.52 <.05

Inferior Left Seed

 R middle frontal gyrus Ruminative Responses Scale 2370.27 −.54 <.05

 L precentral gyrus Children's Depression Rating Scale-Revised (Standardized) 3108.22 −.54 <.01

Inferior Right Seed

 L claustrum Children's Global Assessment Scale 2925.24 −.45 <.05

 R inferior frontal gyrus Ruminative Responses Scale 2227.22 −.45 <.05

L, left; R, right;

ρ
Spearman's correlation coefficient;

S
Spearman's rank sum.
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