
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Optimizing the distance function for nearest neighbors classification

Permalink
https://escholarship.org/uc/item/9b3839xn

Author
Mody, Ravi

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b3839xn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Optimizing the Distance Function for Nearest Neighbors Classification

A thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Computer Science

by

Ravi Mody

Committee in charge:

Professor Garrison Cottrell, Chair
Professor Sanjoy Dasgupta
Professor Lawrence Saul

2009

Copyright

Ravi Mody, 2009

All rights reserved.

The thesis of Ravi Mody is approved and it is accept-

able in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2009

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1. Introduction . 1

Chapter 2. Background . 4
2.1. Classification . 4

2.1.1. K Nearest Neighbors . 4
2.2. Distance Metrics . 6

2.2.1. Euclidean Distance . 6
2.2.2. Mahalanobis Distance . 8
2.2.3. Tangent Distance . 10

2.3. Learning Mahalanobis Metrics for KNN . 15
2.3.1. Neighborhood Components Analysis 16
2.3.2. Large Margin Nearest Neighbors . 17

Chapter 3. Review of Relevant Literature . 21
3.1. Distance Functions . 21

3.1.1. Nominal Attributes . 23
3.2. Efficiency of Nearest Neighbors With Tangent Distance 27
3.3. Combining A Priori and Statistical Information for Classification 29
3.4. Combining Support Vector Machines, Nearest Neighbors, and Tangent

Distance . 32
3.5. Generalizing LMNN . 35

Chapter 4. Approach . 36
4.1. Combining Tangent Distance with a Mahalanobis Metric 37
4.2. Results . 38
4.3. Discussion . 40

4.3.1. Performance . 42
4.4. Extension of Our Method to Regression . 42

Chapter 5. Conclusion . 46

iv

References . 48

v

LIST OF FIGURES

Figure 2.1. The test image of the digit ’9’ on the left has a closer Euclidean distance
to prototype B, a digit 4, than prototype A, a 9. This is because Euclidean distance
cannot account for the interaction between pixels or small variances in position
and rotation. 8

Figure 2.2. The Mahalanobis metric (right) more effectively follows the general
diagonal interaction of the data than the Euclidean metric (left). 9

Figure 2.3. A 2-dimensional example of a manifold and its tangent plane (Px). A
point s is shown parameterized by α, with the corresponding approximation on Px. 12

Figure 2.4. Applying a rotation transformation to the digit ’2’ (top) and its linear
approximation (bottom). The approximation is accurate for small α, but becomes
worse as α increases. [Simard et al., 1993] . 12

Figure 2.5. The shortest tangent vector (visualized in bottom right) has a smaller
norm than the vector between the two points (bottom left) because the images lie
close to the same tangent plane. (see text for detail.) 14

Figure 2.6. LMNN “Pushing Away” Impostors and “Pulling in” Target Neighbors
[Weinberger et al., 2005] . 18

Figure 3.1. A visualization of SVM-KNN. In this example, the black test point
will be classified in the red class. See text for more detail. 33

Figure 4.1. The top set of digits are incorrectly-classified test images by LMNN on
the shortest tangent vectors. The bottom set are the corresponding nearest-image
predictions from the training set. The blue text are the actual labels of the images. 41

Figure 4.2. The blue circles are training points with value equal to their area.
To determine the value of the test red point using kernel regression, we find the
weighted sum of each blue point’s value, where the weight is determined by a
kernel function applied to the distance between the two points. 44

vi

LIST OF TABLES

Table 4.1. Results - % Error on USPS Test Dataset, k=1 39

Table 4.2. Results - % Error on USPS Train Dataset, k=1 39

Table 4.3. Results - % Error of Other Approaches on USPS Test Dataset 39

vii

ACKNOWLEDGEMENTS

I gratefully acknowledge Tim Marks for all his guidance and help during my

research for this thesis. I also appreciate the helpful comments from Gary, Lawrence

and Sanjoy while writing it.

viii

ABSTRACT OF THE THESIS

Optimizing the Distance Function for Nearest Neighbors Classification

by

Ravi Mody

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Garrison Cottrell, Chair

When working with high dimensional data, it is often essential to calculate the

difference or “distance” between two points. One of the most common distance func-

tions is the Euclidean distance; while this method is easy to implement, it often works

poorly. We explore some of its deficiencies, and discuss how they have been overcome

in previous research by taking advantage of statistics of the data and by using a priori

information about the problem space.

We analyze two disparate methods that improve on Euclidean distance for clas-

sification. The first learns a Mahalanobis distance that is optimized on the statistics of

the data to improve classification. The second incorporates a priori information using

tangent distances to account for transformations that we intuitively know the classifi-

cation should be invariant to. We combine these methods in a sequential manner that

takes advantage of their unique strengths, improving the performance of either method

by itself. Our combined method reduces the tangent distance’s error on the USPS hand-

written digit recognition dataset by 10.2% and the Mahalanobis distance method’s error

ix

by 44.6%.

x

Chapter 1

Introduction

When we want to find the distance between two objects, we usually pull out a

tape measure and physically record the distance between them. This intuitively makes

sense - objects that are further apart will show a larger distance on the tape measure. In

machine learning, we often want a “tape measure” that exists in a higher dimensional

space. Instead of two objects, we measure the distance between two pieces of data. And

instead of seeking the physical amount of space between the two data points, we want

to know how different they are. In other words, we seek an abstract tape measure, called

the distance function, that measures the dissimilarity between data.

It is important to keep in mind that there is no “correct” distance function. A dis-

tance function that works well for one problem or dataset may work poorly on another.

Therefore, we want to optimize the distance function for our problem, given what we

know about its domain.

This is an important and well-studied problem in machine learning [Michalski,

Stepp, and Diday, 1981] [Wilson and Martinez, 1997]. Still, many researchers continue

to use the Euclidean distance, which is often a poor choice in practice. In this thesis, we

look at some of the weaknesses of the Euclidean distance and explore ways to improve

on it.

1

2

Application to Non-Parametric Learning

The distance function comes up frequently in non-parametric models of learning.

A non-parametric model involves retaining the entire training dataset, and processing a

test point by comparing it to the training set. This is in contrast to parametric methods,

which throw out the training data after learning some parameters of a fixed model. Dis-

tance functions are important for non-parametric models because test data are usually

classified by assuming they are more similar to training data that are close, i.e. with a

small distance.

Therefore, we seek a distance function that in some way “optimally” brings

points that we consider similar close, and pushes away points that we consider dif-

ferent. For example, if we have a collection of images of animals, a pair of images of

dogs should ideally have a much smaller distance than a picture of a cat and a picture of

a dog.

We look at the problem of classifying data using nearest neighbors, which gives

a test point the same value as the nearest testing point. Obviously, a good distance

measure is critical for good performance when using this simple method.

We approach this problem by combining two different improvements on Eu-

clidean distance. The first improvement, called tangent distance, uses a priori knowl-

edge of the problem to bring similar points closer. We often have some intuitive under-

standing of the problem domain that is difficult for current machine learning methods to

learn. For example, we may know that when classifying whether a specific object exists

in a picture, that object can exist anywhere in the image. This translational invariance

is hard to learn without a very large dataset, but tangent distances allow us to approxi-

mately account for it quite easily. By building this knowledge into the distance measure,

we can “teach” our model information about the problem that it probably could not have

learned from the data alone.

In contrast, the second improvement, which we combine with the tangent dis-

tance, automatically learns statistics on the data that humans may have a difficult time

3

realizing. The method involves learning a Mahalanobis distance function that can ac-

count for the interaction between different dimensions in the data. For example, a certain

pixel in an image may heavily correlate with another pixel in a second image when the

two images contain the same object, but not correlate when they contain different ob-

jects; this pattern can be incorporated into an improved Mahalanobis distance measure

that is learned by various algorithms we look at.

The novel part of our method is how we combine the tangent distance with a

Mahalanobis metric. Normally, in tangent distance, we transform two data points so

similar points will be closer in Euclidean space, and then find the Euclidean distance

between the transformed points. In our method, we bring the two similar data points

closer in Euclidean space, and then apply the learned Mahalanobis metric between the

transformed points. By doing this, we can combine our intuitive knowledge of the prob-

lem with a statistical learning algorithm, which we will show improves on either method

alone.

Chapter 2

Background

The fundamental problem this thesis addresses is optimizing the distance func-

tion for classification using nearest neighbors. We only experimented with image data,

but the process could be used for other problem types if suitable a priori transformations

exist. In this chapter, we will first give background information that will help frame the

problem, and then we will discuss the methods that our method is based on.

2.1 Classification

One of the most fundamental types of problem in machine learning is classifica-

tion. In classification, all data are labeled into a finite number of groups; a data point,

x is classified with its label (also called class) t, where t ∈ C. C is a finite set of

possible labels. For example, in our experiments, we classify hand written digits, so

ti ∈ {0, 1 . . . , 9}.

2.1.1 K Nearest Neighbors

K Nearest neighbors (KNN) is one of the simplest data classification algorithms

that is widely used. Given a set of training data points, xn, and their corresponding

labels, tn, we want to classify a test point, y. In KNN, we classify the test point with

4

5

the labels of the training data that are closest to it (the nearest neighbors). The only

parameter is k, which controls how many nearest neighbors of a point will be used for

the classification.

Given a test point’s k nearest neighbors, we can label it with a vote of the most

common label from its neighbors. To break ties, various heuristics can be used, such as

using the closest point, or an average of distances from each label.

The value of k can greatly influence the behavior of KNN. Small values of k

search the space around a point more locally, whereas large values look further. Small

values of k run the risk of falsely classifying a point in a set with noisy or quickly

varying data. Large values of k essentially smooth the classification, but run the risk

of averaging points that are far from the point. The optimal choice of k is therefore

dependent on the density of the data. A good value of k can often be experimentally

determined; in our experiments, we found k = 1 to work the best.

While often effective, KNN has some issues that should be considered. It re-

quires the training data to be sampled evenly and densely enough to accurately cover

the domain of possible test points. A hole in this sampling can cause test points to be

classified ineffectively. As mentioned above, k should be chosen to reflect the sampling

of data.

Another issue is how to work with image data when using nearest neighbors.

We run into the problem that images are a 2-dimensional grouping of pixels, but KNN

(and many other machine learning methods) work on vectors, which represent points

in high dimensional space. We use the commonly accepted solution - simply vectorize

the images. The order of the mapping from two dimensions to one dimension is not

important, as long as it is consistent for each image.

The nearest neighbor classification can use any distance measure, including Eu-

clidean, Mahalanobis, and tangent distance. The choice of distance function is critical

to the performance of nearest neighbors, because the classification is based solely on

what distances are returned. In the next section we give a more formal treatment to dis-

tance functions, and then discuss existing methods to optimize the function for nearest

6

neighbors.

2.2 Distance Metrics

A distance metric (also called distance function or distance measure) is a func-

tion that takes two vectors as input, and returns a real positive number - the distance

between the two vectors. Intuitively, in machine learning, we want the distance to indi-

cate how “different” two vectors (or data points) are. The distance function should be

small between similar data points, and large between dissimilar points. The mathemati-

cal definition of a distance function is any function that takes two inputs and follows the

following rules, where x, y, z ∈ Rd [Munkres, 2000]:

1. d(x, y) ≥ 0

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

We will now discuss a few examples of distance metrics, and their properties.

2.2.1 Euclidean Distance

The Euclidean distance is perhaps one of the simplest and most intuitive distance

measures. It is used often in machine learning, despite some weaknesses (which will be

discussed below). One reason for its intuitiveness is that Euclidean geometry describes

the 3-dimensional space we live in - a ruler measures the Euclidean distance between

two objects.

The Euclidean distance is defined as

d(x, y) =
√

(x− y)T(x− y) (2.1)

7

There are a few issues with Euclidean distance that make it a poor choice for

many applications in machine learning. The first is the independence of dimensions in

the calculation. We can rewrite 2.1 as

d(x, y) =

√√√√ d∑
i=1

(x(i) − y(i))2 (2.2)

where x(i) is the ith element of x. Notice that the distance is a sum of terms which are

independent of each other, and that each term is only dependent on a single dimension.

This can present some problems if the dimensions are not chosen carefully. For example,

if we want to compare models of cars, we may choose one dimension to be the number

of windows, and another dimension to be the number of doors. If, in every model of

car, the number of windows and doors is the same, we are essentially double counting a

single attribute of the car. This is usually not what we want. Euclidean distance has no

way of taking the correlation between variables into account.

Another similar problem with Euclidean distance is the scaling of dimensions.

If the only two attributes of cars we are looking at is weight in grams and number of

doors, the weight of the car will dwarf the number of doors. In the typical car, the

number of doors will essentially not be taken into account. Even changes in units (e.g.

using pounds instead of kilograms) will change the meaning of the distance. We want a

distance measure that can scale the dimensions independently.

The first two issues can be solved using a Mahalanobis metric, which will be

discussed in section 2.2.2. A third issue is that the Euclidean distance does not allow

us to use a priori knowledge about the problem space. In our experiments, we have a

set of images with handwritten digits (0 to 9); we want to classify these by what by

their digit. With a distance function and a labeled training dataset, we use nearest neigh-

bors to classify the images. A problem arises due to the complexity of the problem,

however. The number of possible images for even a single digit is huge. Each digit

could be rotated, translated, stretched, etc. Each of these transformations drastically

affects the Euclidean distance without changing what digit is written on the image. We

8

Figure 2.1: The test image of the digit ’9’ on the left has a closer Euclidean distance to

prototype B, a digit 4, than prototype A, a 9. This is because Euclidean distance cannot

account for the interaction between pixels or small variances in position and rotation.

could increase the number of training images to cover the entire domain of transforma-

tions (either by manually transforming the original training images or by gathering more

data), but the combination of transformations will lead to an exponential increase in the

required number of training images required.

Instead, we use tangent distance, which is a distance measure that linearly esti-

mates all a priori transformations, to tractably emulate transforming the data. This will

be discussed in section 2.2.3

2.2.2 Mahalanobis Distance

The Mahalanobis distance is a distance metric that can account for the correla-

tions between different dimensions in the data. It is a powerful metric because it can

normalize data that is skewed over multiple variables, and introduces scale invariance

amongst the variables. This can be useful in real-world problems where we want to use

variables with different units of measure in our calculations - for example, if we want

to know the “difference” between two models of cars, we can use both the numbers of

windows and the lengths of the cars. A Mahalanobis metric can normalize the units so

the difference in number of windows isn’t weighted more or less than the difference in

length. It can also be useful in image data, where some pixels may be correlated with

9

each other more than others.

The intuition behind why the Mahalnobis distance can be better than the Eu-

clidean distance is visualized in figure 2.2. The colors represent different labels of two

dimensional data. On the left, the circle represents the contour of an Euclidean metric,

and on the right a Mahalanobis metric. The Mahalanobis metric can separate the classes

more effectively by following the general diagonal interaction of the two dimensions.

Figure 2.2: The Mahalanobis metric (right) more effectively follows the general diago-

nal interaction of the data than the Euclidean metric (left).

For two data points x and y ∈ Rd, we define their Mahalanobis distance as:

D(x, y) =
√

(x− y)TM(x− y) (2.3)

where M is the Mahalanobis matrix ∈ Rdxd. The Mahalanobis distance reduces to

the Euclidean distance if M is identity. M can be used to independently scale the di-

mensions if it is a diagonal matrix with scaled entries. Sometimes, it will be useful to

decompose M as M = LTL and write 2.3 as:

D(x, y) = ‖L(x− y)‖ =
√

(x− y)T(LTL)(x− y) (2.4)

Given a dataset, we can use the distribution of the data to generate a Mahalanobis

matrix that corrects for both scaled differences within the variables and the covariances

between different variables. We do this by setting M = Σ−1 where Σ is the covariance

matrix of the data. Alternatively, it is possible to learn a Mahalanobis matrix to optimize

some other function of the data, as we will see in Neighborhood Components Analysis

(section 2.3.1) and Large Margin Nearest Neighbors Classification (section 2.3.2).

10

To understand the methods discussed in this thesis, it is helpful to remember a

few properties of the Mahalanobis metric. To be a proper distance metric, (x−y)TM(x−

y) must be positive for any vectors x and y. Therefore, aTMa ≥ 0 for all a, which means

M is positive semidefinite. The second property of the Mahalanobis metric we look at

is a result of the symmetric constraint of distance functions :(x− y)TM(x− y) = (y −

x)TM(y−x). Simplifying this formula leads to cTMd = dTMc = (dTMc)T = cTMTd

where c = (x−y) and d = (y−x). Therefore,M = MT, which impliesM is symmetric.

Another important property is that the squared Mahalanobis distance is a linear function

of the elements of M , which will be useful when learning the Mahalanobis metric.

2.2.3 Tangent Distance

As discussed in section 2.2.1, Euclidean distance is highly sensitive to small

transformations that can affect many dimensions; translating an image just a few pixels

can change a large percentage of the pixels in the image. This is not the expected behav-

ior of a distance function that should return values that correspond to how “similar” or

“dissimilar” two data points are. Tangent distance [Simard, LeCun, and Denker, 1993]

allows us to determine what transformations the classification should be invariant to,

and then build them into the function.

To understand tangent distance, it helps to first understand the theoretical moti-

vation, starting with the idea of modeling possible transformations as a manifold. If we

have N continuous, smooth transformations that can be applied to any D-dimensional

data point, each data point exists on an (at most) N dimensional manifold that consists

of all possible transformed points. For example, an image and the same image rotated

30 degrees both exist on the same 1-dimensional manifold of rotations in<D whereD is

the number of pixels in the image. This manifold can be pictured as a string that curves

around high dimensional space (and eventually closes in on itself because rotation is a

closed transformation). As we rotate the original image more and more, we move along

the manifold.

11

Formally, a manifold is a subspace that is not necessarily Euclidean, but locally

at any point resembles Euclidean space [Munkres, 2000]. For example, the manifold

of rotations will curve around <D, but it and its closest neighbors (the image rotated

clockwise and counterclockwise) will form a 1-dimensional Euclidean subspace - they

exist on the same line. If we have N possible transformations, the manifold will locally

resemble an N dimensional hyperplane.

A brute force distance that takes into account our invariant transformations would,

given two points and their respective manifolds, return the closest Euclidean distance

between the two manifolds. Using the rotation example from above, this would be the

equivalent of looking at every possible rotation of each image, and finding the pair of

images from the two manifolds that have the least Euclidean distance. The digit ’3’ and

another digit ’3’ that is slanted will return a small distance, as we would expect. Of

course, this becomes intractable as the complexity of our transformations increase; the

number of images we would need to generate is exponential in N .

We can drastically reduce this complexity by approximating the N -dimensional

manifold by fitting an N -dimensional tangent plane to it, at the data point of interest. In

doing so, we are assuming the local Euclidean structure of the manifold is approximately

accurate as we transform the data point by a non-infinitesimal amount. Instead of finding

the shortest Euclidean distance between the two manifolds, we find the shortest distance

between the two tangent planes, which is called the tangent distance. The benefit of this

is tractability - we will show a closed form solution to the tangent distance below.

If we have a set of N smooth, continuous, transformations, we can define a

parametric equation, s(x, α) for the data points generated by transforming a data point

x with parameter α ∈ <N . For example, α1 may parametrize horizontal translation

while α2 parameterizes vertical translation, so if α1, α2 > 0, the image s(x, α) will be

image x translated up and right. The manifold of points created by this parameterization

is:

Sx = {y|∃α for which y = s(x, α)} (2.5)

12

We are interested in the tangent plane, Px, to Sx at x. Px is the first-order Taylor expan-

sion of Sx when α is near 0:

Px = s(x, 0) + [
∂s(x, α)

∂α1

, . . . ,
∂s(x, α)

∂αN
]α = x+ Txα (2.6)

where Tx = [∂s(x,α)
∂α1

, . . . , ∂s(x,α)
∂αN

] is called the tangent vector, and is the Jacobian matrix

of the manifold with respect to α. Figure 2.3 shows this linear approximation with

a one-dimensional manifold in <2. Figure 2.4 shows a 256-dimensional example of

image data, which shows that the tangent plane gives a good approximation to rotation

when α is small.

Figure 2.3: A 2-dimensional example of a manifold and its tangent plane (Px). A point

s is shown parameterized by α, with the corresponding approximation on Px.

Figure 2.4: Applying a rotation transformation to the digit ’2’ (top) and its linear ap-

proximation (bottom). The approximation is accurate for small α, but becomes worse

as α increases. [Simard et al., 1993]

Traditional tangent distance only seeks the shortest Euclidean distance between

two tangent planes, Px and Py. We are also interested in the shortest (Euclidean) vector

13

between the planes, which we call the shortest tangent vector. To calculate this vector,

we find where the tangent planes are closest, and then return the vector between them:

arg min
αx,αy

||Px(αx)− Py(αy)|| (2.7)

Finding αx and αy is a fairly straightforward linear least squares problem. We minimize

2.7 by setting its partial derivatives with respect to αx and αy to 0:

∂||Px(αx)− Py(αy)||
∂αx

= 2(Px − Py)TTx = 0 (2.8)

∂||Px(αx)− Py(αy)||
∂αx

= 2(Py − Px)TTy = 0 (2.9)

We can substitute Px and Py in 2.8 and 2.9 using 2.6:

TT
y (x− y − Tyαy + Txαx) = 0 (2.10)

TT
x (x− y − Tyαy + Txαx) = 0 (2.11)

This linear system of questions has the following solution [Simard et al., 1993]:

αy =
((TT

y Tx)(T
T
x Ty)

−1(TT
y)− (TT

x))(x− y)

(TT
y Tx)(T

T
x Tx)

−1(TT
x Ty)− (TT

y Ty)
(2.12)

αx =
((TT

x Ty)(T
T
y Ty)

−1(TT
x)− (TT

x))(x− y)

(TT
x Tx)− (TT

x Ty)(T
T
y Ty)

−1(TT
y Tx)

(2.13)

The tangent distance is ||Px(αx)− Py(αy)||, but in our method we instead apply a Ma-

halanobis metric directly to the shortest tangent vector, (Px(αx)− Py(αy)).

An example of two images transformed using the tangent distance can be seen

in figure 2.5. In this figure, two hand-written digit 1s (Image 1 and Image 2) are slight

translations of each other - Image 2 is Image 1 translated left. The translation is large

enough that only a few pixels overlap, leading to a high Euclidean distance. After trans-

forming the images so they are as close as possible on their respective tangent planes,

we get an approximate translation of the digits (second column) so they are closer to

each other. The resulting L1 difference between the images, pictured in the bottom row,

reflects the fact that tangent distance transforms the digits to be ”closer.” The Euclidean

distance of the images is 3.8549 units, while the tangent distance is 2.6881 units

14

Figure 2.5: The shortest tangent vector (visualized in bottom right) has a smaller norm

than the vector between the two points (bottom left) because the images lie close to the

same tangent plane. (see text for detail.)

15

Note that the tangent distance is not a proper distance function, because d(x, y) =

0 when x 6= y if x and y exist on the same tangent plane. This is fine because that is the

expected behavior of the algorithm - if two data points are the same after an invariant

transformation, we really do want their distance to be zero.

In practice, the tangent vectors Tx and Ty are found by transforming x and y

by a small amount with each possible transformation, vectorizing the resulting points,

and then placing them side-by-side into a matrix. Then, 2.12 and 2.13 are applied to all

training images with the test image. The training tangent vectors, as well as TT
x Tx and

(TT
x Tx)

−1 can be saved in memory to save computation time.

In our experiments, we used the following six transformations: horizontal and

vertical translation, scaling, rotation, and two hyperbolic transformations (see [Simard,

LeCun, Denker, and Victorri, 1998] for more detail). We also experimented with line

thickness and brightness transformations, but found they have no effect on performance.

2.3 Learning Mahalanobis Metrics for KNN

In KNN, a test point is classified by a vote of the k closest training points. Op-

timally, we want a test point to be close to at least a few training points with the same

target value, and far from any training points with different target values. We seek a

transformed metric space that naturally leads to this.

We will look at two different methods to optimize a Mahalanobis metric for near-

est neighbors. The first, Neighborhood Components Analysis, optimizes an intuitive and

direct objective function by gradient ascent in the space of Mahalanobis matrices. The

second, Large Margin Nearest Neighbors, uses a less direct, but still intuitive objective

function that allows the problem to be formulated as a convex optimization.

16

2.3.1 Neighborhood Components Analysis

Neighborhood Components Analysis (NCA) [Goldberger, Roweis, Hinton, and

Salakhutdinov, 2005] is a simple algorithm to optimize a Mahalanobis metric for KNN

classification. The objective function in NCA seeks to maximize the probability a test

point would be classified correctly by 1-NN with the Mahalanobis metric. In the ap-

proach, the authors iterate through each training point, using the current Mahalanobis

distance with all other points to determine a probability of correct classification. They

then find the gradient of this probability with respect to the Mahalanobis matrix.

There are a couple of issues with calculating the gradient. When finding the

probability of correct classification, the current training point must be excluded from

the search for nearest neighbors; otherwise, every point would be classified correctly

leading to a zero gradient. Another issue is that KNN is a discontinuous function that is

not differentiable; to calculate the gradient of the objective function, the authors have to

use a differentiable approximation to nearest neighbors. They assign a probability that

each pair of points would be considered a neighbor, rather than assuming that only the

closest point is a neighbor. They do this with the softmax function in the transformed

Mahalanobis space

pij =
exp(−(xi − xj)M(xi − xj))∑
k 6=i exp(−(xi − xk)M(xi − xk))

(2.14)

where pij is the probability that training points xi and xj are assigned as neighbors. The

softmax function provides a smooth approximation to the step function.

If the target class of xi is ti, the set of all points in the same class as xi is defined

as Ci = {xj|ti = tj}. The probability that xi will be correctly classified can be denoted

as:

pi =
∑

j∈Ci,xj 6=xi

pij (2.15)

The objective function is the expected number of points correctly classified:

f(M) =
∑
i

pi (2.16)

17

As mentioned in section 2.2.2, the optimization is over a matrix L instead of M ,

where M = LTL. The authors differentiate f with respect to L to find the gradient rule

(where xij = xi − xj:

∂f

∂L
= −2L

∑
i

∑
j∈Ci

pij(xijx
T
ij −

∑
k

pikxikx
T
ik) (2.17)

They reorder the equation to increase the calculation efficiency:

∂f

∂L
= −2L

∑
i

(
pi
∑
k

pikxikx
T
ik −

∑
j∈Ci

pijxijx
T
ij

)
(2.18)

Any gradient optimizer can be used with this equation. In our tests, we used online

gradient ascent, with a randomly initialized value of L.

2.3.2 Large Margin Nearest Neighbors

Large Margin Nearest Neighbors (LMNN) [Weinberger, Blitzer, and Saul, 2005],

as in NCA, seeks a Mahalanobis metric to optimize for nearest neighbors. Unlike NCA,

whose objective function is an optimization over the number of points that would be cor-

rectly classified, LMNN seeks to create locally favorable conditions for nearest neigh-

bors.

There are a couple of intuitions to motivate the differences between the objective

functions in NCA and LMNN. In NCA, every point is compared to every other point

during the optimization. Realistically, in KNN, only training points that are close to a

test point influence its classification; k points from the same class should be near, but

any more than k points will not help classification; in fact, optimizing over more than k

neighbors could potentially be harmful by transforming the metric too much. Therefore,

in LMNN, each point is designated k “target neighbors” that are optimized over.

Another difference between NCA and LMNN is how they treat points with dif-

ferent labels. In NCA, every pair of points with different labels influences the error

function. Again, this global optimization is unnecessary because distant points will not

influence classification. In LMNN, the authors only optimize over nearby points with

18

different target labels, which are referred to as “impostors”. They define a “margin”

around each point that impostor points should remain out of. The process of “pushing

out” impostor points and pulling in target neighbors is visualized in figure 2.6.

As mentioned above, each data point has a set of k “target neighbors” that should

be as close as possible to the point. The target neighbors must be provided to the algo-

rithm; they are generally chosen as the k nearest neighbors using some fixed metric,

such as Euclidean distance. As the Mahalanobis matrix is optimized, the identity of the

target neighbors (which points are target neighbors) remains fixed. Each point has a

margin that ideally are free from impostors. This margin is a radius around the point

whose size is determined by the distance from its target neighbors. Therefore, as target

neighbors get further away, the margin increases in size. The optimization only factors

differently-labeled points that enter the margin, because these are the points that threaten

to be classified as a nearest neighbor.

Figure 2.6: LMNN “Pushing Away” Impostors and “Pulling in” Target Neighbors

[Weinberger et al., 2005]

LMNN’s objective function, 2.19, has two competing terms based on the above

intuitions. The first penalizes large distances from the target neighbors, and the second

penalizes differently labeled points that enter the margin. While the first term tries to

19

bring some points closer, the second tries to push others out.

ε(L) =
∑
ij

ηij||L(xi−xj)||2 + c
∑
ijl

ηij(1−Til)[1 + ||L(xi−xj)||2−||L(xi−xl)||2]+

(2.19)

Where [z]+ = max(z, 0) is the hinge loss. ηij ∈ 0, 1 is a binary indicator that xj is a

target neighbor of xi. Tij ∈ 0, 1 is a binary indicator that xi and xj have the same labels:

ti = tj . c > 0 is a parameter that weighs the cost of distant target neighbors with nearby

impostors and can be found empirically (using cross-validation).

The first term in 2.19 simply sums the distances of all target neighbors, penaliz-

ing any that drift away. The second term penalizes only differently labeled points that

enter the margin, equal to their distance from the margin.

2.19 cannot directly be optimized due to the discontinuous hinge function. In-

stead, the authors reformulate it as a semidefinite programming (SDP) problem - a con-

vex optimization. SDPs are an optimization of symmetric semidefinite matrices over a

linear cost function with linear constraints. As shown in section 2.2.2, the Mahalanobis

metric is symmetric and positive semidefinite, and the squared Mahalanobis distance is

a linear combination of the elements of the matrix. The first term of 2.19 is linear in the

squared Mahalanobis distance, and is therefore a linear combination of the Mahalanobis

matrix, M . The second term’s hinge loss can be reformulated with slack variables to

be linear in M . Therefore, we can reformulate the optimization to be over a linear

combination of a semidefinite matrix with linear constraints, an SDP optimization.

Minimize:∑
ij

ηij(xi − xj)TM(xi − xj) + c
∑
ijl

ηij(1− Til)ξijl (2.20)

Subject to:

(xi − xl)TM(xi − xl)− (xi − xj)TM(xi − xj) ≥ 1− ξijl (2.21)

ξijl ≥ 0 (2.22)

M � 0 (2.23)

20

where M � 0 indicates that M is positive semidefinite, and ξ are slack variables. The

slack variables mimic the hinge distance because they are set to 0, negating the second

term in the minimization, unless an impostor enters the margin. When an impostor

enters the margin, the slack variable equals the distance of the impostor from the margin,

and is added to the error. This allows us to re-form the hinge loss as a linear function

with linear constraints.

This optimization can be solved with any SDP solver, but the performance of

most solvers scales badly as the number of constraints increase; in this optimization,

the slack variables ξijl each require an additional constraint. In our tests, we used a

specialized solver provided by [Weinberger et al., 2005] that takes advantage of the fact

that most ξ = 0 (because impostors are relatively rare.)

Chapter 3

Review of Relevant Literature

3.1 Distance Functions

As mentioned in sections 2.1 and 2.1.1, distance functions are critical to near-

est neighbors classification and other non-parametric methods. Distance functions have

been studied extensively in machine learning. An early example is [Michalski, Stepp,

and Diday, 1981], which discusses the importance of using distance functions as a quan-

titative measure of similarity between objects. They use distance functions to group

objects into clusters that are “similar” to each other. In doing so, they make the assump-

tion that input objects that belong in the same cluster will be close to each other in input

space using the chosen distance function. This is very similar to the assumption made in

classification that input objects that are members of the same class will be close to each

other in input space using the chosen distance function. In their clustering algorithm,

the objects are clustered using a “cluster representation” in conjunction with a distance

function. A cluster representation is a simple and general description of a cluster - for

example, the centroid of a cluster can represent the entire cluster if it is assumed that

each point belongs to the cluster with the closest centroid. A locally-optimal cluster-

ing is then found iteratively with two steps: the first, called the representation function,

finds the optimal representation given the current cluster of each object. For example,

21

22

if the cluster’s centroid is the representation, each cluster’s representation will be rede-

fined as the centroid of the objects that are currently in that cluster. The second step,

called the allocation function, is the inverse of the first step - given the new cluster rep-

resentations, the objects are redistributed to the optimal clusters. In the cluster centroid

example, moving the cluster centroids may have caused some objects to belong to new

clusters. In the allocation step, these points are reallocated to their new clusters. By

repeating these two steps, a locally optimal clustering of the points converges with the

chosen distance function. One major difference from our approach is that they use a

fixed distance function during the training, whereas we learn the distance function dur-

ing training. This is due to the fact that our method allows the use of training labels,

while their clustering is entirely unsupervised; we fix the representation and learn the

distance function, whereas they fix the distance function and learn the representation.

They discuss several distance functions, all of which are statistically derived. One such

function, the “City Block” distance function, is simply a weighted sum of the difference

of each dimension:

d(x, y) =
n∑
i=1

w(i)|x(i) − y(i)| (3.1)

where x(i) is the ith element of x and w(i) is a predefined weight on the ith dimension.

This distance function gets its name from a real-world example in the two dimensional

case; if we want to find the shortest distance between two points in a city grid, we are

forced to walk down one dimension, then the next (e.g. first take the east-west streets,

then the north-south avenues), because it is usually impossible to walk through a block

in a city. Another similar distance function mentioned in [Michalski et al., 1981] is the

Chebyshev distance function:

d(x, y) = max
i
|x(i) − y(i)| (3.2)

The Chebyshev function is mostly useful when the dimensions are normalized, because

it only uses the dimension with the maximum difference between the two points. This

function can be useful if we are only interested in using a single attribute to compare

two objects, but do not know which a priori. For example, if we are comparing models

23

of cars, we may be interested in both the price and the quality of the car. If the quality

of two models of cars is very different but the price is similar, we may still consider the

two models to be very different, and vice versa. Of course, we would have to normalize

the two attributes to ensure that one does not dwarf the other. Many other distance

functions are mentioned, including the “quadratic” distance function, which is the same

as the Mahalanobis distance function discussed in section 2.2.2.

3.1.1 Nominal Attributes

[Stanfill and Waltz, 1986] discuss distance metrics that take data points with only

nominal (categorical, non-continuous) attributes, as opposed to continuous attributes. A

nominal attribute is discrete and has no intuitive ordering. For example, if our data are

cars, possible nominal attributes are make, model, and color. Because there is no intu-

itive order or magnitude to these attributes, traditional distance metrics (which depend

on the sum and difference of values) cannot be used. The authors begin by introducing

the “overlap metric”, which is simply the number of attributes that are different between

two data points:

d(x, y) =
n∑
i=1

(x(i) 6= y(i)) (3.3)

For example, if two cars are of different make, model, and color, their overlap dissimi-

larity would be 3. If they were the same color, it would be 2. Although simple, this is a

poor metric because it assigns an equal weight to all attributes and classes. The authors

take a statistical approach to the problem with the Value Difference Metric (VDM):

d(x, y) =
n∑
i=1

C∑
k=1

∣∣∣∣Ni,x,k

Ni,x

− Ni,y,k

Ni,y

∣∣∣∣ (3.4)

where:

• i enumerates over all attributes (dimensions) of the data

• k enumerates over the set of all possible output classes, C

24

• Ni,x is the number of points in the training dataset that have value x from at-

tribute i

• Ni,x,k is the number of points in the training dataset that have value x from

attribute i and output class k

VDM statistically determines the similarity of two objects’ based on the proportion of

the number of times their particular attributes are in the same class. For example, our

goal may be to classify whether a car is a sports car or family car based on its color; the

two possible classes are sports and family, and its attribute is color. If we are comparing

a red car with a beige car, we will see a big distance if most red cars in our training

set are sports cars, and most beige cars in our training set are family cars. On the other

hand, a beige car and pink car will have a small distance if the training set reflects

that both are seen in family cars more than sports cars. VDM and the overlap metric

expect nominal attributes, and generally fail for continuous attributes. This makes sense

- in many continuous attributes, there are very few overlaps. This is especially true for

non-integral values - for example, car mileage (what are the chances that two cars have

exactly the same mileage?)

[Wilson and Martinez, 1997] explore extending these distance functions for situ-

ations when continuous and nominal attributes are mixed. We may be interested in both

the color of a car and its mileage. They extend the overlap metric with the Heteroge-

neous Euclidean-Overlap Metric (HEOM). If an attribute is nominal, its contribution to

the distance is the same as in equation 3.3, but if it is continuous its contribution to the

distance is defined by the normdiff function:

d(x, y) =
n∑
i=1

 overlap(x, y) if attribute i is nominal

normdiff(x, y)2 if attribute i is continuous
(3.5)

where

overlap(x, y) =

 0 if x = y

1 if x 6= y
(3.6)

25

and

normdiff(x, y) =
|x− y|
rangei

(3.7)

In equation 3.7, rangei denotes the ranges of values of the attribute i:

rangei = maxi −mini (3.8)

Note that equations 3.3 and 3.6 are the same; HEOM only differs from the overlap

metric when an attribute is continuous. To mix continuous and nominal attributes, we

must normalize the continuous attributes so they do not have more or less weight than

the nominal attributes. In the overlap metric, no attribute could contribute more than 1

to the distance, so we normalize the difference in eq 3.7 with the range of that attribute.

This way, an attribute with typically high values (e.g. mileage on a car) will have the

same min and max values as one with small values (e.g. number of windows). HEOM

suffers from the same deficiencies as the overlap metric.

Wilson and Martinez discuss several possible ways to extend VDM to the con-

tinuous case to overcome these issues. One - discretization, involves splitting each con-

tinuous attribute into discrete bins so that each bin represents a nominal value. After this

discretization, VDM can be run on the data. This approach cannot take advantage of the

ordering of the bins - the first bin and the last bin are likely more ”different” than neigh-

boring bins. Another problem with discretization is that values on the two extremes of

each bin are considered just as similar as two identical values. By treating continuous

variables as nominal, we lose a lot of information. Another alternative to VDM is the

heterogeneous value difference metric (HVDM). HVDM, like HEOM, normalizes the

continuous attributes to fit into the nominal framework; we first normalize the continu-

ous attributes, then treat them as nominal in the original algorithm. HVDM is calculated

as:

d(x, y) =
n∑
i=1

 normalized vdm(x, y)2 if attribute i is nominal

normalized diff(x, y)2 if attribute i is continuous
(3.9)

Normalizing these values requires some careful thought, because nominal attribute dis-

tances are calculated differently from continuous attribute distances. Continuous at-

26

tribute distances are computed by subtracting the two input values, whereas nominal

attributes distances are sums of probabilities over the classes. This is in contrast to the

overlap metric and HEOM, where both the continuous and nominal attribute distances

were computed by subtraction of values. Therefore, the results of normalized diff need

to be distributed similarly to normalized vdm. This means its range should be close

to 0 to 1. We cannot simply divide |x − y| by rangei as in equation 3.7, because this

can cause the distribution of normalized diff to be squeezed mostly into a small range.

Instead, we assume that normalized diff is normally distributed, and that we want most

of its values to fall into the range 0 to 1; the authors chose:

normalized diff(x, y) =
|x− y|

4σi
(3.10)

where σi is the standard deviation of the values in attribute i. In a normal distribution,

95% of values fall within two standard deviations of the mean - therefore, normalizing

the distribution by 4σi should bring most values within the range 0 to 1 (of course |x−y|

cannot be exactly normally distributed because it is always a positive value). The authors

studied several possibilities for normalized vdm, which can be as simple as the term

from eq 3.4:

normalized vdm 1(x, y) =
C∑
k=1

∣∣∣∣Ni,x,k

Ni,x

− Ni,y,k

Ni,y

∣∣∣∣ (3.11)

A few other possibilities:

normalized vdm 2(x, y) =

√√√√ C∑
k=1

∣∣∣∣Ni,x,k

Ni,x

− Ni,y,k

Ni,y

∣∣∣∣2 (3.12)

normalized vdm 3(x, y) =

√√√√|C| ∗ C∑
k=1

∣∣∣∣Ni,x,k

Ni,x

− Ni,y,k

Ni,y

∣∣∣∣2 (3.13)

where |C| is the number of classes. Over 15 different datasets, the authors experimen-

tally found normalized vdm 2 to generalize the best, and normalized vdm 1 the least.

The authors also compared HVDM with Euclidean and HOEM by implementing a near-

est neighbors classifier with each, and running them on a set of 15 machine learning

27

datasets. They found HVDM to be superior to both Euclidean and HOEM. A few con-

clusions can be drawn from their experiments concerning classification using nominal

and continuous data: treating nominal values as continuous (Euclidean) is a bad idea, as

is treating continuous values as nominal, which requires discretization. Additionally, a

statistical approach (VDM and HVDM) is superior to counting the number of different

attributes (overlap metric and HOEM).

In our research, we only looked at continuous attributes - pixel values - for clas-

sification. Modifying our method to deal with nominal values would be difficult because

there is no intuitive tangent subspace for nominal values. Even if we fixed the values

of the nominal attributes in the first tangent step, learning a Mahalanobis metric would

be difficult on nominal variables. One possible solution could be to use our approach

to find a distance over all the continuous attributes, and then combine this term with all

nominal attributes in a weighted HVDM step; in this approach, our continuous distance

would replace the |x− y| term in equation 3.10.

3.2 Efficiency of Nearest Neighbors With Tangent Dis-

tance

[Hastie and Simard, 1995] point out that nearest neighbors is expensive because

a test point must be compared to every training point; this is especially costly with

complex distance functions such as the tangent distance, as we discuss in section 4.3.1.

They explore using clustering to improve the efficiency of nearest neighbors when using

tangent distance.

They discuss two methods. The first, called the tangent centroid, clusters a group

of training points (one group for each label, for example) into a single point that seeks

to minimize loss in classification accuracy. Specifically, the tangent centroid, MT , of

a set of points x, minimizes the average squared tangent distance between the centroid

28

and the points:

MT = arg min
M

N∑
i=1

d(xi,M)2 (3.14)

where d is the tangent distance. The cost function to be minimized is

C(M) =
N∑
i=1

min
αi,γi
‖M + T (M)γi − xi − Tiαi‖2 (3.15)

where Ti is the tangent subspace of xi, T (M) is a function that returns the tangent

subspace of M , αi is the tangent plane parameterization of xi and γi is the tangent plane

parameterization of M when computing the tangent distance to xi (see section 2.2.3 for

more detail). We optimize 3.15 by initializing M as the Euclidean centroid of x, then

iteratively performing the following steps until D converges:

1. Find the αi and γi for all xi that minimizes ‖M + T (M)γi − xi − Tiαi‖

2. Set M ← 1
N

∑N
i=1(xi + Tiαi − T (M)γi)

3. Compute D =
∑N

i=1 d(xi,M) where d is the tangent distance

The second method that Hastie and Simard discuss, called the tangent subspace, re-

places the a priori tangent subspace computation with a statistical computation, which

eliminates the need to compute the tangent subspace in each iteration of the optimiza-

tion. Instead of choosing m a priori transformations, we now choose a fixed number

(which we also call m) of transformations that will parametrically and statistically be

derived during the optimization. We call this parameterized tangent subspace V . With

this modification, we can simultaneously compute both the cluster centroids and the m

transformations during the optimization. One benefit is that we are no longer limited to

the seven or eight a priori transformations we used in section 2.2.3 - m is now a free

parameter. The downside is that the power of hand picking the a priori transformation is

no longer there - we are now limited to what we can statistically derive. In each iteration

of the tangent subspace algorithm, we recalculate the tangent subspace to be the closest

m-dimensional affine tangent plane to the cluster points (minus the centroid). This m-

dimensional plane can be derived using the SVD: SV D(x−M) = UDW T ; it is simply

29

the first m columns of W . To compute the cluster centroid and tangent subspace, we

first initialize the centroidM to the Euclidean centroid of x and set V as the firstm right

singular vectors of x. We then perform the following steps until the squared sum of the

matrix D (from the SVD in step 3) converges:

1. Find the αi and γi for all xi that minimizes ‖M + V γ − xi − V αi‖

2. Set M ← 1
N

∑N
i=1(xi + V αi)

3. Compute the SVD of xi + V αi −M . Set V to the first m right singular values

of the SVD.

A test point’s distance is compared to each centroid using its corresponding tangent

subspace to find the nearest cluster, which is much quicker than comparing the distance

to each training point.

Hastie and Simard also mention experiments with a similar method to ours: com-

puting the Mahalanobis distance of each point to the tangent clusters. They found this

hurt their performance. Their experiment differs from our method in a few important

ways - first, they are computing the traditional Mahalanobis distance instead of an Ma-

halanobis distance on the shortest vector between the tangent planes. Also, they did not

attempt to learn the Mahalanobis metric.

3.3 Combining A Priori and Statistical Information for

Classification

[Fraser, Hengartner, Vixie, and Wohlberg, 2003b] integrate invariance to known

a priori transformations with a class-based Mahalanobis classifier. This is similar to our

approach because its goal is to classify test points by combining statistical information

on the data with a priori transformations that the data should be invariant to. Our ap-

proach is fundamentally different, however: we learn a Mahalanobis metric between the

test point’s and training points’ first order estimates of the invariant manifold, whereas

30

they modify the inverse-covariance Mahalanobis metric using a second-order estimate

of the invariant manifold. They begin with the classic Mahalanobis distance classifier:

t(y) = arg min
c

(y − µc)TΣ−1
w (y − µc) (3.16)

where y is the point to be classified, t is a function that outputs a class prediction, µk is

the centroid of class c, and Σw is the covariance of all same-class points. In this classic

Mahalanobis classifier, a test point is classified by comparing its Mahalanobis distance

to all class centroids. Their strategy is to augment the Mahalanobis classifier with the

second order approximation to the manifold of the invariant transformations on the class

centroids. The second order Taylor expansion of the manifold s at a point Y is:

s(Y, α) = s(Y, 0) + V α + αTHα +R (3.17)

where R is the remainder, α parameterizes the invariant transformation (as in section

2.2.3) and

(Vc)i =
∂s(Yc, α)

∂α

∣∣∣
α=0

(3.18)

(Hc)i,j =
∂2s(Yc, α)

∂2αiαj

∣∣∣
α=0

(3.19)

To augment 3.16 with the second-order approximation of the invariant transformations

at µc (3.17), they replace Σw with Σc:

Σc = Σw + βVcCα,kV
T
k (3.20)

where Cα,k is a m × m positive semi-definite (PSD) matrix and β is a weighting pa-

rameter. When Σ−1
c is used in 3.16 as a metric, VcCα,cV T

c represents exploration of the

tangent subspace spanned by Vc, with the exploration controlled by Cα,c. They model

αc, the transformation parameter over the tangent subspace around µc, as a Gaussian

distribution. Cα,c is the model of the covariance of αc - as it spreads out more, αc it

deviates from the class mean, µc, more. While this encourages exploration of the tan-

gent subspace, it causes the second order Taylor series 3.17 to deviate from the mean,

and therefore approximate the true manifold worse. Therefore, Cα,c should balance the

31

benefit of exploration with the disadvantage of decreased accuracy. Fraser discusses an

optimization of Cα,c that the authors developed, which will be summarized here; for a

more in-depth proof and further explanation of the procedure, see [Fraser et al., 2003b]

and [Fraser, Hengartner, Vixie, and Wohlberg, 2003a]. For the remainder of this sec-

tion, a single class is considered, so the subscript c is dropped. First, the authors take

the eigen-decomposition of the within-class covariance matrix Σw to quantify the sig-

nificance of the components (which is an estimate of cost of excursions in the direction

of that component):

Σw =
∑
d

edλde
T
d (3.21)

for each component d. They then break the m× n×m tensor H into components:

Hd ≡ eTdH (3.22)

Define:

H̄ ≡
∑
d

√
HT
d Hd × |λd|−

1
2 (3.23)

Define the norm:

|α|H̄ ≡
√
αT H̄α (3.24)

The optimization is:

Maximize determinant |Cα|

Subject to:

E|α|2H̄ ≤ γ (3.25)

where γ is a constant. The solution to the optimization is in [Fraser et al., 2003b]:

Cα = β(H̄)−1 (3.26)

where β is a function of γ and balances the competing goals. As in our approach, [Fraser

et al., 2003b] combines statistical information from the training dataset with an estimate

of the manifold of invariant transformations to realize gains from both.

Our approaches are inherently different, however; while we optimize over the

statistics of the data after they are transformed in the subspace of the first-order estimate

32

of the manifold, they optimize a statistical transformation using both the statistics of

the training data and the second-order estimate of the manifold simultaneously. Their

approach depends on aggregating statistics over classes (or clusters) to combine with the

second order estimate of the manifold. Therefore, they are constrained to the cluster-

level Mahalanobis distance classifier. Our method, in contrast, optimizes a Mahalanobis

metric over all points and classes to create a finer-grained nearest neighbors approach

to classification. This is a benefit when large training sets that effectively represent the

input domain are available (as in digit recognition).

3.4 Combining Support Vector Machines, Nearest Neigh-

bors, and Tangent Distance

[Zhang, Berg, Maire, and Malik, 2006] use support vector machines (SVMs)

for nearest neighbors classification. Instead of transforming the distance metric and

then classifying over the transformed space (as in our approach), they seek to efficiently

classify in one step. They do this by using a multi-class SVM to classify a test point

using only its nearest neighbors. There are a few benefits to this approach: like Large

Margin Nearest Neighbors [Weinberger, Blitzer, and Saul, 2005], the tractability of the

problem is greatly increased by learning locally - because SVM is only applied to the

nearest neighbors of a test point, the classification is limited to only a few classes and

points. The authors argue that this leads to a more natural and better-behaving classifi-

cation function than traditional multi-class SVM. Another benefit is that they can build

a distance function into the kernel of the SVM using the kernel trick:

K(x, y) =
1

2
(< x, x > + < y, y > − < x−y, y−x >) =

1

2
(d(x, 0)+d(y, 0)−d(x, y))

(3.27)

where d is distance function. The location of the origin does not affect SVM. The

algorithm the authors develop, called SVM-KNN, has the following steps:

1. Find the k closest neighbors to the test point using any distance function

33

2. Compute the pairwise distance matrix of the test point and its k neighbors

3. Use the kernel trick to convert the pairwise matrix into a kernel matrix (eq. 3.27)

4. Apply multi-class SVM to the kernel matrix and label the test point with the

resulting classifier

Figure 3.1: A visualization of SVM-KNN. In this example, the black test point will be

classified in the red class. See text for more detail.

The final step involves choosing a multi-class SVM to classify the point. The

authors analyzed several different methods, and chose DAGSVM [Platt, Cristianini, and

Shawe-Taylor, 2000]. DAGSVM uses a directed acyclic graph (DAG) to combine the

results of the 1-1 SVMs (SVM between each pair of classes) on the test point to de-

termine the classification. The DAG is essentially a decision tree that attempts to split

the input space into regions by the 1-1 SVM linear separators. For example, if we are

trying to classify a test point between three classes (1, 2, and 3), we first eliminate class

1 or 2 from the possibilities by using the class 1-2 SVM (the linear separator between

the points in class 1 and class 2). If class 2 is eliminated, we repeat this step using the

class 1-3 SVM. If class 1 is eliminated, we classify the test point as a member of class

3. In [Zhang et al., 2006], DAGSVM is shown to work just as well as other methods,

34

but is much quicker. SVM-KNN can be visualized in figure 3.1. In this figure, the test

point (black point) is compared to its k (eight) closest neighbors. The multi-class SVM

classifies the test point using a combination of the three different 1-1 separators. The

1-1 separators are generated from the kernelized distance matrix between the test point

and its neighbors. In this example, the point will be classified in the red class.

The authors frame SVM-KNN as a compromise between KNN and SVM; when

k is small, the classifier is very similar to nearest neighbors, because the SVM on a

small number of points will usually heavily favor the most frequent class. On the other

extreme, when k = n, SVM-KNN reduces to traditional multi-class SVM. The authors

achieved results similar to K-NN with SVM-KNN (see table 4.3), but improved their

accuracy considerably when they replaced the Euclidean distance with tangent distance.

Using tangent distance with SVM introduces some issues, because the tangent distance

is not a proper distance function (see section 2.2.3). A distance matrix produced using

tangent distances may not produce a positive semi-definite kernel matrix because tangent

distances can break the triangle equality. To get around this, the authors determine if

the kernel matrix is not positive-definite by checking if the smallest eigenvalue of the

kernel matrix is negative. If it is, they subtract this value from the diagonal entries

of the kernel matrix (or add its absolute value) [Pekalska, Paclk, and Duin”]. They

are effectively increasing the ”self-similarity” of all points (which will not affect the

similarity measure between points) while ensuring that the kernel matrix is positive-

definite. SVM-KNN, similar our approach, depends on local methods to classify test

points. Instead of transforming the space and then applying a classifier to the nearest

neighbors, they apply a classifier directly to the nearest neighbors.

As in our approach, they first compute a tangent subspace. While we apply a

Mahalanobis metric to the tangent subspace, they use the tangent distances to produce a

kernel matrix for SVM. Both methods find improvement in nearest neighbors by using

tangent distances to integrate a priori information into the classifier.

35

3.5 Generalizing LMNN

[Sriperumbudur and Lanckriet] generalize large margin nearest neighbors to use

arbitrary metric spaces. They do this by finding a non-linear function that embeds the

points from an arbitrary metric space into an Euclidean space, such that the leave one

out (LOO) error of Euclidean nearest neighbors is minimized. Like LMNN, the problem

is reformulated to be a convex semi-definite programming problem. The benefit to this

approach is the transformation is not constrained to be linear.

Chapter 4

Approach

As we have seen, there are various ways to improve the Euclidean distance if

we have some knowledge of our problem domain. Given a priori knowledge of possible

transformations that our classification should be invariant to, tangent distance can be

used to transform similar data so they are closer. The similarity of the data may not be

evident in the statistics of the data, which is why using a priori knowledge can help the

classification considerably.

In the absence of a priori knowledge, we can look at the statistics of the data to

learn an optimized Mahalanobis metric for our problem. These learning algorithms can

find patterns in the data that humans may not obviously see. They are automatic, in the

sense that a human is not required to instill his own knowledge into the model.

These methods attack the deficiencies of Euclidean distance from different per-

spectives. Tangent distance compensates for sensitivity to small transformations using

human knowledge, while a Mahalanobis metric automatically compensates for scaling

and correlations in the dimensions of the data. Our method takes advantage of the fun-

damental differences in these two approaches by combining them. The key insight is

how we combine them.

36

37

4.1 Combining Tangent Distance with a Mahalanobis

Metric

In chapter 3, we discuss previous research that explores combining tangent dis-

tances with Mahalanobis metrics, including [Macherey et al., 2001] and [Fraser et al.,

2003b]. Unlike previous methods, however, we combine them in a unique two-step pro-

cess to take advantage of their strengths. Tangent distance brings pairs of similar points

closer to each other, and then finds the Euclidean distance between the transformed

points. Its main strength is the process of bringing points that are similar (after possible

a priori transformations) closer. Mahalanobis metrics, on the other hand, simply act on

a vector between two points; how it acts on that vector can be optimized for a particular

model given a training dataset. This possible optimization is its main strength.

In our method, we first use tangent distance to bring similar points closer; we

find the shortest tangent vector, Px(αx) − Py(αy), as outlined in equations 2.12 and

2.13. We then apply a trained Mahalanobis metric to this vector (for example, one

trained with NCA or LMNN, as discussed in sections 2.3.1 and 2.3.2. When training

the Mahalanobis matrix, we optimize over the shortest tangent vector instead of the

original pairs of points.

By combining tangent distance with learned Mahalanobis metrics, we seek to

combine the best of both. We can intuitively see that they work well together: using the

minimum tangent vectors should make the learning of the Mahalanobis matrix easier

because there should be less variation between pairs of points with the same label.

Given a test point, y, and a set of n test data points, {x1, x2, . . . , xn}, we can

classify y using 1-NN with the following steps:

1. For each xi, find the shortest tangent vector between y using eqs. 2.12 and 2.13

2. Apply the Mahalanobis metric to each shortest tangent vector using eq. 2.3

3. Return the label ti of the xi with the shortest Mahalanobis distance

38

This process can take a considerable amount of time, due to the need to find

the n shortest tangent vectors between y and the training points. An idea from [Simard

et al., 1993] that we implemented in our classification algorithm is to only consider the

100 training points with the shortest Euclidean distances to y - all other points are so far

away, it is unlikely that our method would transform them to be the nearest neighbor.

This is considerably faster because finding the Euclidean distance to all training points is

much faster than computing their tangent distances followed by a Mahalanobis transfor-

mation. In our tests we found this optimization rarely affected classification accuracy.

See section 4.3.1 for more discussion on performance.

Obviously, the training has to be slightly modified for this method. Finding the

shortest vector between tangent planes as described in section 2.2.1 remains the same.

Instead of training the Mahalanobis metric on the vectors between the pairwise points,

we train it on the shortest tangent vector. Therefore, the Mahalanobis metric is learned

specifically for this process. It should also be possible to apply a Mahalanobis metric

learned directly on the data (without a tangent transformation), but we found this always

leads to lower accuracy. This may be due to the fact that the within-class variance of

points and point-to-point L2 distance is lowered after transforming the points with the

shortest tangent vector algorithm. Therefore, the Mahalanobis metric may be training

on data that is further away and more ”different” than it will experience during testing.

4.2 Results

We tested our method on the United States Postal Service (USPS) database,

which contains 9298 16× 16 pixel gray-scale images of handwritten digits, with corre-

sponding labels. The digits are evenly distributed from 0 to 9. The dataset is traditionally

split into 7291 training and 2007 test images.

We classified the images using 1-NN using different distance functions. For

comparison, we trained the Mahalanobis metric using both the shortest tangent vector

and the point-to-point vector (x1−x2). We trained the Mahalanobis metric with LMNN

39

Table 4.1: Results - % Error on USPS Test Dataset, k=1

Mahalanobis Training Algorithm Point-to-Point Vector Shortest Tangent Vector

Identity 5.63 3.44
LMNN 5.58 3.09

Table 4.2: Results - % Error on USPS Train Dataset, k=1

Mahalanobis Training Algorithm Point-to-Point Vector Shortest Tangent Vector

Identity 2.83 1.33
LMNN 2.71 1.23

and compared this approach with the Euclidean distance. The identity Mahalanobis

metric applied to the shortest tangent vector is the same as the tangent distance. The

identity Mahalanobis metric applied to the point-to-point vector is the traditional Eu-

clidean distance. We experimented with NCA, but our implementation did not scale

well.

In all experiments, we initialized the matrix with the Identity matrix. This makes

the comparison with the Euclidean distance and tangent distance fair.

Results can be seen in tables 4.1 and 4.2. Some results of other methods on the

same dataset are shown in table 4.3.

Table 4.3: Results - % Error of Other Approaches on USPS Test Dataset

Approach Error

Human 2.50 [Simard et al., 1993]
SVM-KNN (k=10) (On Euclidean Distances) 4.29 [Zhang et al., 2006]
SVM-KNN (k=8) (On Tangent Distances) 2.59 [Zhang et al., 2006]
Convolutional Neural Network (LeNet1) 4.2 [Simard et al., 1998]
Relevance Vector Machine 5.1 [Tipping, 2000]

40

4.3 Discussion

Our method (LMNN on the shortest tangent vector) performs well compared to

other methods, including convolutional neural networks and relevance vector machines.

SVM-KNN with tangent distance performed better than LMNN with tangent distance,

however. While the tangent distance performs well by itself, LMNN offers a slight im-

provement. Given the tough nature of the problem (humans are shown to misclassify

2.5% of the test set [Simard et al., 1993], we consider a 0.3% reduction in error promis-

ing - especially because the additional cost of running the Mahalanobis step is small

compared to computing the shortest tangent vector. Figure 4.1 shows all test images

from LMNN on the shortest tangent vectors that were misclassified. Many of these test

points would be difficult to classify for a human.

A possible problem with applying any Mahalanobis metric for classification is an

averaging effect over the dimensions (pixels) between the different categories (digits).

While pixel A and pixel B may be positively correlated between examples of the digit

0, that correlation may be negative between examples of the digit 1. The Mahalanobis

metric, therefore, would have to compromise over this pair of pixels. This may be

a general problem when learning a single transformation to separate multiple classes

- the transformation has to be sufficiently powerful to distinguish each class from all

others. Nevertheless, we found that it is possible to realize some performance gain,

albeit small, by using Mahalanobis metrics. Note that tangent distance would not have

the same problem because every digit should be invariant to the same transformations,

so the shortest tangent vector really does offer separation from a class and all others.

A consideration when training any statistical algorithm on top of the shortest

tangent vectors is that the shortest tangent vectors do not exist in a true metric space.

For example, the shortest tangent vectors between three points do not have to follow

the triangle inequality, unlike the point-to-point vectors. If an algorithm makes the as-

sumption that the vectors provided to it must follow certain laws such as the triangle

inequality, its application to the shortest tangent vector may be undefined and actually

41

Figure 4.1: The top set of digits are incorrectly-classified test images by LMNN on the

shortest tangent vectors. The bottom set are the corresponding nearest-image predictions

from the training set. The blue text are the actual labels of the images.

42

lower accuracy.

4.3.1 Performance

Performance issues arise with our method during the tangent step: finding the

shortest tangent vector is slow. Each test image must be transformed by six transfor-

mations, and then equations 2.8 and 2.9 must be run on the test images. Even after we

only considered the 100 closest (in Euclidean space) training points (see section 4.1),

it took about ten minutes to classify 2007 test images with 7291 training images on a 3

GHz CPU with 1.5 GB of RAM using unoptimized Matlab code. The Mahalanobis step

performs quickly, with only two vector transformations required per squared distance

calculation.

Training was considerably more time-consuming. When learning the Maha-

lanobis matrix, the shortest tangent vector for each pair of training images is required.

Storing 72912 6x256 element matrices is prohibitive, so these values had to be constantly

recalculated. If enough iterations of the learning algorithm are required, this may make

learning the Mahalanobis matrix impossible.

4.4 Extension of Our Method to Regression

We would like to explore more ways of learning metrics on top of the shortest

tangent vectors, including other Mahalanobis-based methods. Any learning algorithm

that works on only the vectors between the data could have useful potential results on

the shortest tangent vectors.

A possible extension to our method would be using it for regression instead of

classification. In classification, we seek to assign a label t ∈ C to a test point x; in

regression, we assign a real number t ∈ R to the point. For example, if our data are

different cars, we may be interested in assigning a prediction of the resale value of a car.

This is a regression task, because the possible assignments are real, continuous numbers

43

instead of nominal categories. In classification tasks we expect training data with class

labels - in regression, we expect training data with continuous output values.

A possible way to extend our method would be to learn a Mahalanobis metric

for regression. Weinberger and Tesauro (2007) developed a method to do so called

Metric Learning Kernel Regression (MLKR) [Weinberger and Tesauro, 2007]. MLKR

is very similar to NCA; unlike NCA and LMNN, MLKR uses kernel regression instead

of nearest neighbors to assign values to test points. Kernel regression is a non-parametric

regression algorithm that assigns a value to a test point based on a weighted average of

its neighbors:

c(x) =

∑
i yiK(x, xi)∑
iK(x, xi)

(4.1)

where c is the kernel regression function that outputs a real value, x is the test point to be

classified, xi are the training points, yi are their values, and K(a, b) > 0 is the “kernel

function”. Kernel regression is visualized in figure 4.2. In this figure, if we assume the

kernel function weights smaller distances more, the training point represented by the

small blue circle will have a greater weight than the other training points because it is

closer to the red test point. The kernel function is a function that takes two inputs, and

returns a number that weights the contribution of each test point’s value. Closer points

should have a greater influence on the prediction than further points, so the authors

seek a kernel function that returns greater values as the distance between two inputs

decreases, and decays rapidly as the distances become larger. While there are many

kernel functions available to use in MLKR, the authors use the Gaussian kernel:

K(xi, xj) =
1

σ
√

2π
e−

d(xi,xj)

σ2 (4.2)

MLKR seeks to learn an optimal Mahalanobis distance function (eq 2.3) to replace the

distance function in eq 4.2. As in NCA, it optimizes over L, whereM = LTL, instead of

M to avoid optimizing over a PSD constraint. The authors use the quadratic regression

error to penalize predictions that are far from the actual value:

L =
∑
i

(yi − c(xi))2 (4.3)

44

Figure 4.2: The blue circles are training points with value equal to their area. To deter-

mine the value of the test red point using kernel regression, we find the weighted sum of

each blue point’s value, where the weight is determined by a kernel function applied to

the distance between the two points.

As in NCA, the error function must exclude the point being optimized over because the

kernel function in 4.2 will return large values when comparing xi to itself, leading to al-

most perfect predictions in 4.1. This leads to a negligible loss function, which prevents

training. Therefore, 4.1 has to be modified to skip comparing points to themselves dur-

ing training. Optimizing the loss function is performed with a straight-forward gradient

method:

∆A− ε∂L
∂L

(4.4)

The proof to this solution is shown in [Weinberger and Tesauro, 2007]:

∂L
∂L

= 4L
∑
i

(c(xi)− yi)K(xi, xj)(xi − xj)(xi − xj)T (4.5)

While we have not implemented MLKR in our framework, extending our method to

incorporate the Mahalanobis matrix from MLKR should be straightforward and virtually

identical: first find the closest tangent vectors between all training data points, then learn

45

MLKR on these vectors instead of on their direct Euclidean difference. To classify a new

point, find the tangent vector between the test point and all training points, then apply

the learned Mahalanobis metric on this vector when applying 4.1.

Chapter 5

Conclusion

In this thesis, we combine two dissimilar distance functions, both of which the-

oretically improve on Euclidean distance (for classification), in a way that takes advan-

tage of their specific strengths. A tangent space method derived from tangent distances

is first used to bring similar points closer by taking advantage of a priori information

of possible transformations that should not affect the classification. This step applies a

linear estimate of these transformations on the data points, which arguably more accu-

rately reflects their relationship. The transformed points are then statistically grouped

and compared to find a quadratic Mahalanobis metric that is optimized for nearest neigh-

bors classification on a training dataset. We experimented with two different methods to

apply this step: NCA and LMNN (we only obtained results from LMNN due to scaling

concerns with NCA). Because the transformed points from the tangent step still exist in

the original space, any process that optimizes nearest neighbors classification over the

vector x − y could be used instead. Because the tangent step transforms data in pairs,

this optimization must work on pairs of data points simultaneously - global optimiza-

tions (for example, covariance methods) will not work because a point’s transformation

is dependent on which point it is paired with.

We found that applying a Mahalanobis metric on top of tangent distance leads

to only a modest improvement. Tangent distance, a relatively old algorithm, performs

46

47

quite well on digit classification on its own. Due to potential averaging issues discussed

in section 4.3, a single Mahalanobis metric may not be able to differentiate between

classes as well as other methods such as Tangent distance or SVM-KNN.

Still, we do see some improvement, which was the original goal. We present a

way of combining two very different strategies to offer improvement over the individual

methods alone; tangent subspace and Mahalanobis methods are both effective distance

functions for classification, and their inherent differences and strengths make them ef-

fective in combination. Previous research also backs this assertion. For example, Fraser

combines the standard Mahalanobis distance classifier with a second-order estimate of

the a priori transformation Manifold in [Fraser et al., 2003b]. Our main contribution is to

suggest a new way of combining tangent subspace methods with Mahalanobis methods.

Because the performance of tangent distance is still considered impressive, it is useful to

find ways of building on top of it. Previous research that combines Mahalanobis metrics

with tangent subspace methods have not involved learning the Mahalanobis metrics -

instead, they usually involve statistically forming a Mahalanobis metric that fits the data

or manifold. This is probably because learning Mahalanobis metrics is a fairly recent

innovation. Mahalanobis-metric based learning algorithms have been steadily improv-

ing in the past few years [Bar-Hillel et al., 2005] [Xing et al., 2003] [Goldberger et al.,

2005] [Weinberger et al., 2005], so we believe this trend may lead to improved results

in our method.

References

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning a
mahalanobis metric from equivalence constraints. Journal of Machine Learning Re-
search, 6:937–965, 2005. ISSN 1533-7928.

Andy Fraser, Nick Hengartner, Kevin Vixie, and Brendt Wohlberg. Classification mod-
ulo invariance, with application to face recognition. Journal of Computational and
Graphical Statistics, 12(4):829–852, 2003a.

Andy Fraser, Nick Hengartner, Kevin Vixie, and Brendt Wohlberg. Incorporating in-
variants in mahalanobis distance based classifiers: Application to face recognition. In
International Joint Conference on Neural Networks, 2003b.

Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neighbour-
hood components analysis. In Advances in Neural Information Processing Systems,
volume 17, Cambridge, MA, 2005.

Trevor Hastie and Patrice Simard. Learning prototype models for tangent distance. In
Advances in Neural Information Processing Systems, volume 7, 1995.

Wolfgang Macherey, Daniel Keysers, Jörg Dahmen, and Hermann Ney. Improving auto-
matic speech recognition using tangent distance. In European Conference on Speech
Communication and Technology, volume 3, 2001.

Ryszard S. Michalski, Robert E. Stepp, and Edwin Diday. A recent advance in data
analysis: Clustering objects into classes characterized by conjunctive concepts. In
Progress in Pattern Recognition, pages 33–55. North-Holland, 1981.

J. R. Munkres. Topology: A First Course. Prentice-Hall, 2nd edition, 2000.

”E. Pekalska, P. Paclk, and R. Duin”. ”a generalized kernel approach to dissimilarity
based classification”. Journal of Machine Learning Research.

J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classifi-
cation. In Advances in Neural Information Processing Systems, volume 12, 2000.

48

49

Patrice Simard, Yann LeCun, and John S. Denker. Efficient pattern recognition using a
new transformation distance. In Advances in Neural Information Processing Systems,
volume 5, 1993.

Patrice Simard, Yann LeCun, John S. Denker, and Bernard Victorri. Transformation
invariance in pattern recognition-tangent distance and tangent propagation. In Neural
Networks: Tricks of the Trade. Springer, 1998.

Bharath K. Sriperumbudur and Gert Lanckriet. Metric embedding for nearest neighbor
classification. Unpublished.

Craig Stanfill and David Waltz. Toward memory-based reasoning. Communications of
the ACM, 29(12):1213–1228, 1986.

M. Tipping. The relevance vector machine. In Advances in Neural Information Pro-
cessing Systems, volume 12, 2000.

Kilian Weinberger and Gerald Tesauro. Metric learning for kernel regression. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 608–615. 2007.

Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric learning
for large margin nearest neighbor classification. In Advances in Neural Information
Processing Systems, volume 17, 2005.

D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. Journal
of Artificial Intelligence Research, 6, 1997.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application
to clustering with side-information. In Advances in Neural Information Processing
Systems, volume 15, 2003.

H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neigh-
bor classification for visual category recognition. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2006.

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Chapter 1. Introduction
	Chapter 2. Background
	Classification
	K Nearest Neighbors

	Distance Metrics
	Euclidean Distance
	Mahalanobis Distance
	Tangent Distance

	Learning Mahalanobis Metrics for KNN
	Neighborhood Components Analysis
	Large Margin Nearest Neighbors

	Chapter 3. Review of Relevant Literature
	Distance Functions
	Nominal Attributes

	Efficiency of Nearest Neighbors With Tangent Distance
	Combining A Priori and Statistical Information for Classification
	Combining Support Vector Machines, Nearest Neighbors, and Tangent Distance
	Generalizing LMNN

	Chapter 4. Approach
	Combining Tangent Distance with a Mahalanobis Metric
	Results
	Discussion
	Performance

	Extension of Our Method to Regression

	Chapter 5. Conclusion
	References

