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Abstract

Investigation Into Optical Flow Problem in the Presence of Spatially-Varying

Motion Blur

by

Mohammad Hossein Daraei

The problem of optical flow computation has various applications in Computer Vi-

sion, and serves as a key problem that has been well studied over the past decades.

While most of the techniques for inferring optical flow are based on the brightness

constancy assumption, various conditions including the presence of motion blur evi-

dently violate this fundamental presumption. In low illumination scenarios and other

conditions under which the shutter must be kept open for a relatively long interval,

motion blur artifacts are inevitable. If the source image and the target image appear

to be dissimilar due to different blur kernels, traditional methods will fail to achieve

accurate results. After exploring advantages and shortcomings of various optical

flow methods, e.g. CLG [9], Black-Anandan [6], and BlurFlow [19], we address the

problem of optical flow in the presence of motion blur. In particular, we present

a new approach that considers constructing a new pair of blurred frames, followed

by regular optical flow computation. The proposed method, MB-CLG, eliminates

the effect of non-uniform blur levels over the sequence. A proof is also provided to

show the estimated flows are roughly equal to the ground truth flows that match

the latent frames. The key observation is that if we applied the blur functions

of the source image to the target image and vice versa, the brightness constancy

assumption would be valid for the new frames. The proposed method employs a

coarse-to-fine approach, in conjunction with a smoothness matrix to account for

moving objects and occluded regions. Rather than warping frames or precomputing

a large grid of derivatives as in Portz et al [19], MB-CLG directly warps the flows

in the optimization process. This leads to lower computational cost, and requires

less data storage. Based on the results for various synthetic sequences, MB-CLG

outperforms existing optical flow algorithms in the sense of AAE, AEP and MSE.
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Chapter 1

Introduction

After an introduction on optical flow problem in the presence of motion blur,

this chapter gives an overview of previous work and an outline of thesis.

1.1 Background

Optical flow of a sequence captures the dynamics of the underlying scene.

Let us consider a moving camera recording video in a scene with various moving

objects. Given two consequent frames fi and fi+1 in a video sequence, we denote

wi,i+1 as the displacement field (also referred to as the flow field) that warps fi

onto fi+1. The vector field wi,i+1(d) : N2 → R2 assigns to each pixel at position

d = (x, y) a vector (u(x, y), v(x, y)) that describes the motion at that particular

pixel. The problem of optical flow can be addressed as finding the flow field such

fi+1(d) ≈ fi(d + wi,i+1(d)), ∀d

or, fi+1(x, y) ≈ fi(x+ u(x, y), y + v(x, y)), ∀(x, y)

(1.1)

where u(x, y) and v(x, y) denote the horizontal and vertical components of wi,i+1.

Fig. 1.1 explains the right hand side of Eq. 1.1, and how it varies with wi,i+1. This

expression, also regarded as the brightness constancy assumption, can be quantita-

tively evaluated using a criterion like mean squared error. Solving Eq. 1.1 requires

extra constraints, as a single equation per pixel is not sufficient to solve for two

1



(a) fi(d) (b) wi,i+1(d) (c) fi(d + wi,i+1(d)

Figure 1.1: (a) shows a sample image fi(x, y) of size 4 × 4 represented as a grid of
intensity values, (b) depicts an arbitrary flow field wi,i+1(x, y) which corresponds
to scale motion, and (c) demonstrates the warped version of fi according to wi,i+1.
Warping must be followed by interpolation to fill in white circles. For the optimal
flow field, fi(d+wi,i+1(d) will be identical to the next frame fi+1 after interpolation.

unknowns, u(x, y) and v(x, y). This problem is referred to as the aperture problem,

and the extra constraint is usually the smoothness of flow field gradients, i.e. the

smoothness constraint.

Solving the optical flow of a dynamic scene has a wide range of applications

including but not limited to video denoising, deblurring, stereo, and structure-from-

motion. In these applications, optical flow has to be estimated ahead, and generally

on moving cameras with relative motion with respect to the scene or moving objects.

Differential methods belong to the most widely used techniques for optical flow

computation in image sequences. They can be classified into local methods such as

Lucas-Kanade method [17], and global methods such as Horn-Schunck method [14]

and its extensions [9, 8, 22]. However, traditional optical flow algorithms would fail to

generate accurate flow fields if the motion was large enough to introduce motion blur

artifacts. These methods are mostly based on the brightness constancy assumption

in Eq. 1.1. This assumption is likely to be violated in the presence of motion blur

or other unwanted artifacts that independently affect the frames. If the sequence is

corrupted by motion blur, the target image is presumably blurred with a different

blur kernel from the source image. In addition, standard visual tracking algorithms

may fail to track regions of interest because motion blur cannot be modeled neither

by lone geometric deformations, nor by lone photometric deformations. In this work,

we relax the assumptions of Jin et al [15] about constant blur kernels, and consider

2



f1 f2 f3 f4 f5

2τ 2τ 2τ 2τ 2τ

t

Figure 1.2: A moving object (red path) captured by a stationary camera with non-
zero shutter time τ at different instances. If the object moves while the shutter is
open, motion blur artifacts will arise (f1,f2, and f5).

the general case of spatially-varying motion blur.

Motion blur is a common image and video distortion and a result of relative

motion between the camera and the objects in the scene. Despite being regarded as

a major deterioration, motion blur has practical interest in the measurement of the

apparent motion in an image [4, 13, 11]. As the image acquisition model in Fig. 1.2

represents, practical cameras have to keep the shutter open for a finite time interval,

denoted as 2τ . If either the camera or any object (red path) in the scene moves while

shutter is open, a single point in the scene will project as a particular curve onto the

sensor, hence introducing motion blur degradations. The strength of motion blur

increases as either the shutter interval (exposure) or the relative motion between

the camera and the scene increases. As evident in Fig. 1.2, motion blur affects

the frames differently. For instance, an accurate estimate for w3,4, which projects

f3 onto f4, could be simply achieved by employing regular optical flow method.

Because the object was almost stationary in the acquisition interval of both f3 and

f4, it appears similarly on each frame. However, finding w2,3 is challenging, for the

moving object projects differently in f2 and f3 due to dissimilar blur kernels. As a

concrete example, Fig. 1.3 provides two synthetic sequences fi and gi. The former

is referred to as the latent/unblurred sequence (τ = 0), and the latter is corrupted

with motion blur (τ = 8). Evidently, matching frames g3 and g4 is not as trivial as

matching f3 and f4.

Traditionally, motion blur has been treated as an undesirable artifact that

should be removed prior to any processing. Motion blur is in most realistic cases

3



g1 g2 g3 g4

f1 f2 f3 f4

τ = 8

τ = 0

Figure 1.3: Two sets of artificially generated sequences, (top) motion blurred se-
quence gi with τ = 8, and (bottom) latent unblurred sequence fi with τ = 0.

a spatially-varying degradation. In order to remove this artifact, one should either

have a knowledge of the underlying blur kernel or identify and estimate it. In the

spatially-varying case, the identification of the blur is a difficult task, and blind

deconvolution even in the case of shift invariant kernels is an ill-posed problem,

and requires huge amounts of computation. Traditional methods usually couple

optical flow with deblurring in order to correctly account for the effects of motion

blur [24]. Such coupling is usually appropriate, but computationally wasteful when

visual tracking is the lone objective. In order to avoid deblurring, Jin et al [15]

propose to match regions by blurring them. To tackle this problem, one must take

the advantage of the commutativity property of convolution. Although this property

would not hold if the kernels were spatially-varying, it is shown that this property

is still locally valid if the changes in kernels are also locally small. This property

enables us to avoid applying computationally expensive methods for performing

blind deconvolution.

This work particularly studies the problem of optical flow computation in

the presence of spatially-varying motion blur. The proposed approach (MB-CLG)

copes with this problem by filtering the source and the target images in order for the

brightness constancy assumption to hold. For the sake of simplicity, we avoid image

deblurring, warping intermediate frames, or precomputing a large grid of derivatives

4



with respect to warps. Instead, we present the idea of warping a flow at intermedi-

ate levels of pyramid. Given a video sequence with frames fi, the proposed method

constructs a Gaussian pyramid for each image. Starting from the coarsest level,

MB-CLG employs a baseline method to align each image with previous and next

frame. After estimating flows at a single level over the whole sequence, these flows

are warped onto the coordinates of nearby frames and are exploited to blur them

accordingly. We also address how to each flow field a unique motion blur function

is associated. This additional motion blur is to ideally balance the effect of different

spatially-varying blur kernels on different frames, and to compensate for the viola-

tion of brightness constancy assumption. Then, we exploit these artificially blurred

frames when processing finer levels of the pyramid, and readdress the initial problem

as solving optical flow for the new pair of frames. The baseline method we employ is

a modified implementation of the Combined Local-Global (CLG) method proposed

by Bruhn and Weickert [9]. They define a new energy functional incorporating

both the data fidelity and the smoothness terms with nonquadratic penalizers, and

minimize it using Euler-Lagrange equations and Conjugate Gradient (CG) method.

In the results section we use common metrics for the evaluation of estimated

flow fields with respect to the ground truth, e.g. Average Angular Error (AAE),

Average Endpoint Error (AEP) and Mean Squared Error (MSE) between the target

and the warped source frames. Despite Portz et al [19] argue there could be no

unique ground truth flow associated with a sequence corrupted by motion blur, we

investigate and show the existence of such flow. The ground truth flow is defined

as the flow that would match the frames if the exposure time was zero. First, we

synthesize unblurred sequences fi for various scenarios, and generate a ground truth

flow associated with each one. Then we artificially add motion blur, and give as

input the blurred sequence gi to different techniques to estimate flow fields. Then

we compare the results of each method with the ground truth flows that match the

unblurred sequence. We will also visualize flows in conjunction with their divergence,

as we will point out the divergence of a flow field demonstrates potential occluded

regions and matching errors introduced by motion blur. We compare our results

5
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Figure 1.4: Results for CLG, , BA, BlurFlow, MB-CLG, and Ground Truth flows.
Column (1) represents warped images using estimated flows, and a zoomed patch
is depicted in column (2), while column (3) shows MSE between warped frame
and the next frame, column (4) visualizes estimated flows, and column (5) is the
corresponding flow field divergence.
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in each scenario with those of other methods. Fig. 1.4 depicts a sample image

warped based on (a) CLG [9], (e) MB-CLG and (i) ground truth flow fields. Third

column corresponds to absolute error between warped frame and next frame, fourth

column includes flow visualization, and the last column represents the divergence of

the estimated flow fields. As an example of methods that do not consider motion

blur, CLG introduces wrinkles in the estimated flow, as it tries to match sharp

and blurred regions forced by brightness constancy assumption. Second column

depicts magnified patches cropped from the warped images for each method. As

it is evident, traditional methods, e.g. CLG and BA, result in deformed regions

and wrinkle artifacts, while blur-aware methods, e.g. BlurFlow and the proposed

method, MB-CLG, achieve better results.

1.2 Related Work

Many successful techniques have been proposed for optical flow computation

over past decades. In their well-known paper, Lucas and Kanade [17] proposed an

efficient local differential method in order to compute optical flow, parametrized by

either a single translation or a homography. Their method is robust against noise,

but does not generate global and dense flows. Horn and Schunck [14] proposed an-

other differential method that achieves global and dense flow fields. They introduce a

smoothness constraint in order to cope with the aperture problem, and minimize the

Euler-Lagrange equations associated to their objective functional. However, their

method was not as robust as that of Lucas and Kanade against noise. There have

been many extensions to Horn and Schunck [14] in order to improve its robustness

against noise. For an overview of these extensions, we refer the reader to the paper

Secrets of Optical Flow Estimation and Their Principles [22]. Bruhn and Weickert

[9] address how to combine Lucas-Kanade and Horn-Schunck methods, in order to

improve robustness of global algorithms. They modify the regular objective func-

tional of Horn-Schunck by adding non-quadratic penalizers and Gaussian smoothing.

Sun et al [22] derive a novel objective function incorporating median filtering of in-

termediate flow fields for finer results. Brox et al [8] avoid conventional linearizations
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in the brightness constancy assumption, and present a numerical scheme based on

two nested fixed point iteration that results in smaller angular errors. Baker et

al, [2] introduce a new set of benchmarks and evaluation methods, as well as vi-

sualization tools for flow fields. Black and Anandan [6] release the classic single

motion assumption, and address the violation of brightness constancy and smooth-

ness assumptions due to multiple motions. Bhat et al, [5] consider the problem of

piecewise image registration in the presence of multiple large motions. They pro-

ceed by extracting and matching features, fitting fundamental matrices and solving

a multi-label optimization. But, they do not address the effect of motion blur. Sand

and Teller [20] propose a new motion estimation method for videos that exploit a

set of particles. They also efficiently detect and handle occluded regions. Aside

from differential methods, PatchMatch algorithm [3] is an example of feature-based

methods, and finds k nearest neighbor patches in the target image over a range of

different scales, rotations and translations.

Other authors including Chen and Nandhakumar, [11], Dai and Wu [13]

and Schoueri and Scaccia [21], address the problem of estimating motion by looking

at a single motion blurred frame. Despite similarities, their purposes and objective

functions are intuitively different from the problem we address. Ben-Ezra and Nayar

[4] also introduce a new hybrid camera that can measure its own motion during

image acquisition. Then they use these motion information to eliminate motion

blur degradations.

In general, methods that try to cope with the problem of optical flow compu-

tation in the presence of motion blur exploit the relation between motion and motion

blur, but they mostly are coupled with image deconvolution during optimization, e.g.

[24, 7, 28, 12]. Tull and Katsaggelos [24] formulate an objective function that re-

stores motion blurred images as it estimates the underlying flow fields, and point

spread functions. They only consider the case of constant velocity and translational

motion, which cannot be extended to spatially-varying motion blur. Yuan et al, [28]

consider the problem of aligning a pair of blurred and non-blurred images, under the

assumption that the motion blur kernel is spatially invariant and sparse. Using a
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regularizer enforcing sparseness, they keep refining their estimates for both the kernel

and motion parameters at the same time. Jin et al, [15] argue that coupling motion

estimation with image deblurring is computationally wasteful when visual tracking

is the lone objective. They propose a novel method that avoids deconvolution, and

matches regions by blurring them - taking the advantage of commutative property of

convolution. Mei and Reid [18] extend the work of Jin et al, [15] from translational

blur to any constant-velocity blur, and try to improve the overall computation com-

plexity in the minimization process. These methods are aimed to track a blurred

patch, while we are to compute dense optical flow for a video sequence. Portz et

al [19], however, consider the problem of computing a dense optical flow using the

commutative property of convolution. Estimated flows using a baseline method are

computed, and then refined at the next stage. Although they avoid performing

spatially-varying filtering during optimization, they numerically precompute a large

grid of derivatives for the whole sequence and all possible locations with respect to

flow vectors. Creating and computing such large grid not only takes extra time, but

it also requires a big amount of storage.

1.3 Summary of Thesis

This thesis addresses the problem of estimating optical flow for a set of

video frames in the presence of motion blur. The main contribution of this work

is as follows. Instead of estimating numerical estimations of motion derivatives as

in the work of Portz et al [19], we mathematically prove, justify by examples, and

argue that in a coarse-to-fine pyramid one could take the flow estimates of one level

and utilize them to cancel out the effect of motion blur. In order to cancel this

effect, we intend to apply the spatially-varying motion kernel of fi to fi+1 and vice

versa. We take the estimated flows of a particular frame fi, warp them onto the

coordinates of fi+1 and use them to artificially add more blur. Once we add extra

motion blur to each pair of frames, they will look similar despite in occluded regions.

No matter how much sharp or blur they initially were, we argue that after this step

brightness constancy assumption will hold. We argue that unlike most scenarios,
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traditional methods would fail to accurately estimate optical flow when frames are

motion blurred. The second contribution of this work is the idea of warping a flow,

rather than warping frames. We’ll also propose a simple way to account for occluded

regions and handle moving objects.

1.3.1 Organization

Chapter 2 introduces the problem of optical flow, and explores traditional

methods that tackle this problem, including Lucas-Kanade and Horn and Schunck.

Then an overview of Combined Local-Global (CLG) [9] method and penalization of

data term is provided, in addition to a summary of Euler-Lagrange equations and

optimization of objective functions.

Chapter 3 describes the blur model in cameras, the problem statement for

optical flow in the presence of motion blur, and the violation of brightness constancy

assumption in the case of motion blur. Then BlurFlow [19] method is reviewed as a

method with a similar approach for handling motion blur to our proposed method.

Chapter 4 describes the building blocks of the proposed method, and dis-

cusses how applying blur kernels of target and template images to each other would

cancel the effect of different blur sizes. Therefore, brightness constancy assumption

does hold again. Handling and accounting for occluded regions that may or may

not come from the presence of moving objects will also be discussed in this chapter.

Implementation notes for MB-CLG are also included in the last section.

Chapter 5 lists quantitative measures for evaluating estimated flow fields, i.e.

AAE, AEP and MSE, as well as methods for visualizing flow fields for qualitative

assessment. Having defined these metrics, Chapter 6 contains various experiments

and quantitative results based on both synthetic and real datasets, as well as an

investigation of noise effect, pre-processing and parameter tuning. For each sample

video sequence, MB-CLG results are evaluated and compared with those of CLG [9],

BA [6], BlurFlow (BF) [19]. Datasets that include moving objects are also generated

and considered in the last section.

A proof for Theorem 4.8, details of warp-the-flow technique, a description of
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flow interpolation method, the pseudo-code for the proposed method, and instruc-

tions on installing and using the developed software are also given as appendices.
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Chapter 2

The Problem of Optical Flow

In addition to briefly reviewing the basics of optical flow, introducing well-

known Lucas-Kanade and Horn-Schunck methods, this chapter includes an overview

of optimization techniques utilized, and the concept of penalizers that modify regular

objective functions.

2.1 Problem Statement

Let’s assume a video sequence fi(d) of size M × N and length T , where i

represents the frame index, and d = (x, y) denotes the coordinates vector. Then, the

problem of computing optical flow that matches frame i to frame j can be addressed

as the minimization of this objective function,

ŵi,j = argmin
wi,j

∑
d

‖fi(d + wi,j(d))− fj(d)‖2 (2.1)

where ŵi,j is the optimal displacement field that minimizes the mean squared error

criterion. With a change of notation, the objective function can be expressed as

ED(u,v) =
∑
x,y

‖fj(x, y)− fi(x+ u(x, y), y + v(x, y))‖2 (2.2)

where u and v are respectively the horizontal and vertical components of wi,j, and

the summation is over theM×N domain. This objective function - which is exploited
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by various differential methods - comes from the brightness constancy assumption,

denoted as:

fi(x, y) ≈ fi+1(x+ u(x, y), y + v(x, y)) (2.3)

which states that a single point in a scene would move along a trajectory and would

still have the same gray level in the next frame. This important assumption is

of course violated in the case of change in the illumination, occlusion, optics blur,

motion blur, additive noise and other deteriorations. Novel methods [9] cope with

the noise by pre-smoothing the images by a Gaussian kernel, but other deteriorations

that result in violations of brightness constancy assumption are not as easy to deal

with. Assuming the components of the flow field are relatively small in Eq. 2.3, one

can take a first-order Taylor approximation and get,

fi+1(x+ u, y + v) ≈ fi(x, y) +
∂fi
∂x

u+
∂fi
∂y

v +
∂fi
∂t

→∂fi
∂x

u+
∂fi
∂y

v +
∂fi
∂t

= fi,xu+ fi,yv + fi,t = 0

(2.4)

where fi,x and fi,y are derivatives of fi along horizontal and vertical directions,

and can be estimated practically using simple shift-invariant filters. fi,t is also the

derivative along t and is usually served as the difference between fi+1(x, y) and

fi(x, y). Of course, this approximation is valid if and only if u and v are small, while

this might not be the case. Therefore, by establishing a coarse-to-fine approach using

a Gaussian pyramid, we ensure the changes in displacement field from one level to

the next are small enough so this approximation is valid. Eq. 2.4 is called the optics

flow constraint, and would turn Eq. 2.2 into,

ED(u,v) =
∑
x,y

‖fi,xu+ fi,yv + fi,t‖2 (2.5)

which is the data fidelity term in the ultimate objective function. Obviously, this

objective function when minimized would only give the flow component perpendic-

ular to the edges. In fact, this single equation is not sufficient to solve both u and

v, and it could only compute a linear combination of u and v, a vector parallel to
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∇fi = (fi,x, fi,y). This so called aperture problem should be coped with using some

extra constraints on the smoothness of displacement field. In addition, minimizing

ED would not result in any u and v in regions with no or low texture.

2.2 Traditional optical flow algorithms

In this section, brief introductions for various traditional methods are given.

In particular, we study the objective functions proposed by Lucas-Kanade [17], Horn-

Schunck [14], Combined local-global [9], and Black-Anandan [6]. This section is

followed by an overview of optimization procedute for optical flow functionals. Re-

spectively denoted by CLG and BA, Combined local-global and Black-Anandan

methods are employed in Chapter 6 for comparing results and evaluations.

2.2.1 Lucas-Kanade method

Lucas-Kanade method [17] is one of the most widely used methods for optical

flow estimation. In order to cope with the aperture problem, Lucas and Kanade in

their differential method that lies under local techniques, assume that the flow is

essentially small, constant and the same as (ui, vi) in a local neighborhood Ωρ of

size ρ about the pixel pi = (xi, yi). Constructing a Gaussian pyramid and taking

a coarse-to-fine approach helps the assumption of small displacement vectors to be

valid. For each pi, they write Eq. 2.4 for all the pixels in that neighborhood, to form

an over-determined system of N = ρ2 equations and two unknowns, i.e., ui and vi.

Finally, the Lucas-Kanade method obtains a compromise solution according to the

least squares criterion,

Ei,LK(ui, vi) =
∑

q∈Ωρ

[fx(q)ui + fy(q)vi + ft(q)]2 (2.6)

Let us start by writing Eq. 2.4 for all qj where qj is a pixel in the neighbor-

hood of pi. In matrix form,

Av = b (2.7)
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where,

A =



fx(q1) fy(q1)

fx(q2) fy(q2)

...

fx(qN) fy(qN)


, v =

ui
vi

 , b =



−ft(q1)

−ft(q2)

...

−ft(qN)


(2.8)

where fx, fy and ft are the partial derivatives of the image f(d) with respect to x

direction, y direction and time t. A solution for the over-determined system of Eq.

2.7 is given as,

ATAv = ATb

→ v = (ATA)−1ATb

(2.9)

which is the minimizer of the objective function in Eq. 2.6. If Ωρ belongs to a

smooth region of the image, ATA will consequently tend to be singular and non-

invertible, and Eq. 2.9 fails to estimate (ui, vi). This problem turns out to be the

reason Lukas-Kanade method is listed under local techniques for optical flow. In

practice, it is usually better to give more importance to the pixels that are closer to

pi. This modification also makes Lucas-Kanade method more robust against noise

[1]. Therefore, they refine the solution of Eq. 2.9 to get,

v = (ATWA)−1ATWb (2.10)

where W is an N × N diagonal matrix containing weights Wii to be associated

to the equation of qi. The weights are computed by a Gaussian function of the

distance between pi and qj . This is equivalent to filtering the objective function

with a Gaussian kernel,

ELK = Kρ ∗ (fi,xu+ fi,yv + fi,t)
2 (2.11)

where Kρ is a Gaussian kernel and ρ serves as an integration scale over which the

main contribution of the least square fit is computed. When ELK is minimized, a

local flow field is yield which is robust against noise due to the behavior of smooth-
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ing Gaussian kernel. However, Lucas-Kanade method fails to estimate the flow in

smooth regions, and cannot compute a global and dense flow field for a pair of

images.

2.2.2 Horn-Schunck method

As another type of differential techniques, Horn-Schunck [14] method of

estimating optical flow is a global method that computes dense flow field over the

whole image. In order to cope with both the aperture problem and texture-less

regions, they make the assumption that displacement field is smooth. Thus, Horn-

Schunck method tries to minimize distortions in flow and prefers solutions which

show more smoothness. As an important feature, the flow information missing in

inner parts of homogeneous objects is filled in from the motion boundaries. By

introducing a smoothness regularization term of the form,

ES(u,v) =
∑
x,y

‖∇u‖2 + ‖∇v‖2 (2.12)

the algorithm will be robust against aperture problem and would fill in similar u

and v to those of the neighbor pixels in regions without texture. ∇u and ∇v are

respectively gradient vectors of horizontal and vertical components of the flow field.

Minimization of Eq. 2.12 results in smooth discontinuities in the displacement field.

Therefore, the ultimate objective function can be derived as,

EHS(u,v) = ED(u,v) + αES(u,v) (2.13)

where α serves as a regularization parameter that should be tuned in order to main-

tain a compromise between field smoothness and fidelity to data. Larger values of

α lead to a smoother flow. The global energy functional is formulated as,

EHS =

∫
Ω
‖fi,xu+ fi,yv + fi,t‖2 + α(‖∇u‖2 + ‖∇v2‖)dxdy (2.14)
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where Ω is the image domain. This functional can be minimized by solving the

associated Euler-Lagrange equations - addressed in upcoming sections. Despite it

yields a high density of flow vectors, Horn-Schunck method (and global methods

in general) is more sensitive to noise than local methods. In order to minimize Eq.

2.14 one should consider the associated Euler-Lagrange equations. The optimization

process in described in detail in Section 2.3.

2.2.3 Combined local-global method

Many authors have tried to improve and extend the objective function of

Horn-Schunck method. In [22], the authors explore some of these modifications, their

advantages and shortcomings. Wedel et al [25], suggest a non-linear pre-filtering of

the images to reduce the influence of illumination changes, and median filtering of

intermediate flow results once after each optimization step. Other extensions include

texture decomposition [25], nonquadratic penalizers [6, 9], temporal averaging of

image derivatives, graduated non-convexity to minimize non-convex energies [6],

and perhaps most importantly coarse-to-fine estimation to deal with large motions

[9]. Combined local-global (CLG) method, introduced by Bruhn and Weickert [9] is

considered as a successful extension of Horn-Schunck method. They aim to combine

different features from local and global methods, to devise a hybrid approach that

benefits both from robustness against noise, and from a densely computed global

flow field. In addition, CLG establishes a coarse-to-fine approach, with nonquadratic

penalizers added to both data and smoothness terms.

Initially, Bruhn and Weickert [9] reformulate the problem with a new nota-

tion. They define,

w = (u, v, 1)T ,

|∇w|2 = |∇u|2 + |∇v|2,

∇3f = (fx, fy, ft)
T ,

Jρ(∇3) = Kρ ∗ (∇3f∇3f
T )

(2.15)

where Kρ is a Gaussian kernel specified by ρ. Then, they use this notation to express
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the objective function of Lucas-Kanade in Eq. 2.11 as,

ELK(w) = wTJρ(∇3f)w, (2.16)

while the Horn-Schunck can be reformulated as minimizing,

EHS(w) =

∫
Ω

(wTJ0(∇3f)w + α|∇w|2)dxdy (2.17)

Comparing Eq. 2.16 and Eq. 2.17 suggests a natural way to extend the Horn-

Schunck functional to the desired CLG functional. They simply replace the ma-

trix J0(∇3f) by the structure tensor Jρ(∇3f) with some integration scale ρ > 0.

Although in their final implementation this filtering is limited to the pixels in a

4-neighborhood, their results outperform those of Lucas-Kanade and Horn-Schunck

methods. Therefore, they propose to minimize the functional

ECLG(w) =

∫
Ω

(wTJρ(∇3f)w + α|∇w|2)dxdy (2.18)

They are actually taking the idea of smoothness term from Horn-Schunck method,

and Gaussian filtering of the data term from Lucas-Kanade method. In our previous

notation, Eq. 2.18 can be expressed as

ECLG =

∫
Ω
Kρ ∗ (fi,xu+ fi,yv + fi,t)

2 + α(‖∇u‖2 + ‖∇v‖2)dxdy (2.19)

which in a similar way as Horn-Schunck functional must be restated as Euler-

Lagrange equations, and numerically minimized by conjugate gradient.

In order to render the method more robust against outliers in both the data

and the smoothness term, CLG replaces the traditional quadratic optimization by

nonquadratic optimization [26]. In this approach, outliers are less severely penalized

than in quadratic approach, and the results are more accurate at locations with

flow discontinuities [9]. Thus, they add nonquadratic penalizers for the data and

the smoothness terms. In order to maintain well-posedness during minimization,

the authors first limit themselves to the set of convex penalizers, then pick the one
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proposed by Charbonnier et al [10], and change the functional as,

ECLG(u, v) =
∑
x,y

ψ(Kρ ∗ (fi,xu+ fi,yv + fi,t)
2) + α

∑
x,y

ψ(‖∇u‖2 + ‖∇v‖)2 (2.20)

where,

Charbonnier : ψ(s2) = 2β2

√
1 +

s2

β2
(2.21)

is the Charbonnier nonquadratic penalizer, and β denotes a scale parameter. Under

a wise choice of β and when coupled with a smoothness term, the objective function

in Eq. 2.20 will be convergent when minimized. For both data conservation and

smoothness terms, we use β = 0.001 as also suggested in many differential methods

[19, 9, 22]. Black and Anandan [6], however, employ a non-convex penalty function,

referred to as Lorentzian or Perona-Malik penalizer,

Lorentzian : ψ(s2) = ε2log(1 +
s2

ε2
) (2.22)

In [22], Sun et al express the superiority of Charbonnier over Lorentzian [6] (non-

convex), and investigate a generalized version of Charbonnier penalty function of

the form

Generalized Charbonnier : ψ(s2) = (s2 + β2)a (2.23)

that is analogous to the Charbonnier penalizer when a = 0.5, and non-convex when

a < 0.5. They optimize the parameters again, and find a slightly non-convex penalty

with a = 0.45 to perform consistently better than the Charbonnier penalty. However,

in our proposed method we exploit the regular Charbonnier penalizer. One reason

is that non-convex functions are more difficult to optimize, causing the optimization

process to find a poor local minimum. Fig. 2.1 depicts different penalty functions for

different parameters. Note, that when n = 0.5, Generalized Charbonnier simplifies

to Charbonnier which is a convex function. It is evident that Lorentzian penalizer

is non-convex regardless of ε, and Generalized Charbonnier is also non-convex for

n = 0.45 and n = 0.25.

A coarse-to-fine approach, as another feature of CLG, will help our assump-
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Figure 2.1: Different nonquadratic penalty functions for the spatial terms: Char-
bonnier [10] (β = 0.0005, β = 0.001, and β = 0.0015), Generalized Charbonnier [22]
(n = 0.35, n = 0.4, and n = 0.45) with β fixed as 0.001, and Lorentzian [6], referred
to as Perona-Malik penalizer (ε = 0.025, ε = 0.03, and ε = 0.035)

tions to hold, and improve the optimization process. As mentioned previously, the

first order Taylor approximation would be valid if u and v are small.

Bruhn and Weickert [9] propose constructing a Gaussian pyramid {fi}l,

where pyramid level l ∈ {0, 1, . . . , L − 1} for each image fi prior to optical flow

computation. Initially, E(u, v) is minimized over the coarsest pyramid level {fi}0,

resulting in an optimal flow field denoted as w0 = (u0, v0). Afterwards, w0 is up-

scaled and used to warp {fi+1}1 for the next level l = 1. While {fi}1 is not modified.

Then, values for partial derivatives are updated, and E(u, v) is minimized for the

new level, resulting in another flow field w1. This step is repeated until the func-

tional is optimized for the finest level l = L−1, and wL−1 is determined. Eventually,

one can compute the global flow field as,

w = w0 + w0 + · · ·+ wL−1 (2.24)

which is the summation of all flow increments. As an implementation note, one

should avoid warping a single image multiple times, as blur artifacts might show up.

Instead, we compute wl
′ =

∑l
i=0, and warp {fi+1}l accordingly.

Combined local-global (CLG) method is served as our baseline method, and

a modified version of an implementation by C. Liu [16] in C++ is at the heart of our

proposed method. Despite superior results and various advantages, CLG does not

consider the case of motion blurred video sequence. In that case, one major assump-
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tion of CLG, the brightness constancy assumption, is no longer valid. Our main

contribution is that we perform additional motion blur using estimated flow fields

prior to moving to the next pyramid level. This additional step, discussed in detail

in Chapter 4, guarantees that despite spatially-varying blur we still have brightness

constancy assumption to hold, as well as its first-order Taylor approximation.

2.2.4 Black and Anandan method

Black and Anandan [6] argue that single motion assumption is violated in

common situations, involving transparency, depth discontinuities, independetly mov-

ing objects, shadows, and specular reflections. Hence, this assumption must be re-

laxed. They provide insight on the reasons behind violation of brightness constancy

and smoothness assumption caused by multiple motions. In particular, they modify

the objective function of Horn-Schunck [14] by adding a Lorentzian penalty function

to get,

E(u, v) =
∑
s∈S

[λDψD((fxus + fyvs + ft)
2)

+λS [
∑
n∈Ωs

ψS((us − un)2) +
∑
n∈Ωs

ψS((vs − vn)2)]]

(2.25)

where λD and λS are data term and smoothness parameters, ψD and ψS denote

the penalty functions for the data and the smoothness terms, respectively, and Ωs

is a 3 × 3 neighborhood about ps. For historical reasons, they set ψD = ψS to

be the Lorentzian error norm. Then, they continue by employing Successive Over-

relaxation (SOR) optimization technique. SOR is a variant of the Gauss-Seidel

method for solving a linear system of equations. Accordingly, they form update

equations for each iteration

u(n+1)
s = u(n)

s − ω
1

T (us)

∂E

∂us

v(n+1)
s = v(n)

s − ω 1

T (vs)

∂E

∂vs

(2.26)
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where ω denotes the over-relaxation parameter, and T (us) and T (vs) are upper

bounds on the second partial derivatives derived as,

T (us) =
λDf

2
x

σ2
D

+
4λS
σ2
S

, T (vs) =
λDf

2
y

σ2
D

+
4λS
σ2
S

(2.27)

with σD and σS denoting Lorentzian parameters for the data and the smoothness

terms, respectively. Partial derivatives of E are also carried out as,

∂E

∂us
=
∑
s∈S

[λDfxψ
′((fxus + fyvs + ft)

2)

+ λS
∑
n∈Ωs

ψ′((us − un)2)]

∂E

∂vs
=
∑
s∈S

[λDfyψ
′((fxus + fyvs + ft)

2)

+ λS
∑
n∈Ωs

ψ′((vs − vn)2)]

(2.28)

which are numerically updated at each SOR iteration. The optimization stops once

variations in us and vs are smaller than a predefined value ε0. Although Black-

Anandan method accounts for multiple motion scenario and different reasons that

might violate the brightness constancy assumption, they do not consider the case of

motion blur deteriorations.

2.3 Optimizing the Objective Function

In order to minimize the aforementioned objective function, we start with

the case of well-known Horn and Schunck [14] global energy functional without

penalizers,

EHS =

∫
Ω
‖fi,xu+ fi,yv + fi,t‖2 + α(‖∇u‖2 + ‖∇v2‖)dxdy (2.29)

In order to minimize EHS over the range of u(x, y) and v(x, y), one should first form

and then solve the corresponding Euler-Lagrange equations. Then, we use some

Conjugate Gradient (CG) iterations in order to optimize the convex functional.
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Theorem 2.3.1 Let F (α, β, γ) be a function with continuous first and second partial

derivatives with respect to (α, β, γ), and let I : C ′[a, b]→ R be a function of form:

I(x) =

∫ b

a
F (x(t), x′(t), t)dt, x ∈ C ′[a, b] (2.30)

if I has a local extremum at x0, then x0 satisfies the Euler-Lagrange equation:

∂F

∂α
(x0(t), x′0(t), t)− d

dt
(
∂F

∂β
(x0(t), x′0(t), t)) = 0, t ∈ [a, b] (2.31)

together with transversality conditions:

∂F

∂β
(x0(t), x′0(t), t)

∣∣∣∣
t=a

= 0,
∂F

∂β
(x0(t), x′0(t), t)

∣∣∣∣
t=b

= 0 (2.32)

The objective function in Eq. 2.29 is consistent with the assumptions of

Theorem 2.3.1, and we’ll have,

F ([u v]T , [∇du ∇dv]T ,d) = [fi,xu+ fi,yv + fi,t]
2 + α(‖∇du‖2 + ‖∇wv

2‖) (2.33)

where ∇d denotes gradient operator with respect to d = (x, y). By writing

out the expression for ∂F
∂α and ∂F

∂β and taking another gradient with respect to d,

the corresponding pair of Euler-Lagrange equations are expressed as,

0 = ∇2u− 1

α
(f2
i,xu+ fi,xfi,yv + fi,xfi,t) (2.34)

0 = ∇2v − 1

α
(fi,xfi,yu+ f2

i,yv + fi,yfi,t) (2.35)

where ∇2 represents the Laplacian operator, ∇2 = ∂xx + ∂yy. As a major advantage

over local methods, this formulation is embed with smoothness regularization and

as mentioned previously, it would handle regions with small ‖∇fi‖. However, since

global methods are deprived of a smoothing kernel Kρ, they are not as robust as local

methods, e.g. Lucas-Kanade [17] against noise. As Bruhn and Weickert [9] argue, we

can introduce such smoothing kernel in the objective function to get Euler-Lagrange
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equations,

0 = ∇2u− 1

α
(Kρ ∗ (f2

i,x)u+Kρ ∗ (fi,xfi,y)v +Kρ ∗ (fi,xfi,t)) (2.36)

0 = ∇2v − 1

α
(Kρ ∗ (fi,xfi,y)u+Kρ ∗ (f2

i,y)v +Kρ ∗ (fi,yfi,t)) (2.37)

which according to Bruhn and Weickert [9] would benefit from robustness against

noise, as an inherent property of local methods. In practice, Kρ is a 3× 3 Gaussian

kernel embedded into minimization process. By introducing the penalizers ψ into

the cost function, the corresponding Euler-Lagrange equation would be of the form,

0 = div{ψ′2(‖∇u‖2 + ‖∇v‖2)∇u}

− 1

α
ψ′1(Q)(Kρ ∗ (f2

i,x)u+Kρ ∗ (fi,xfi,y)v +Kρ ∗ (fi,xfi,t))

0 = div{ψ′2(‖∇u‖2 + ‖∇v‖2)∇v}

− 1

α
ψ′1(Q)(Kρ ∗ (fi,xfi,y)u+Kρ ∗ (f2

i,y)v +Kρ ∗ (fi,yfi,t))

(2.38)

Q =

[
u v 1

]
f2
i,x fi,xfi,y fi,xfi,t

fi,xfi,y f2
i,y fi,yfi,t

fi,xfi,t fi,tfi,y f2
i,t



u

v

1

 (2.39)

which is utilized by Bruhn and Weickert [9] as their combined local and global

(CLG) optical flow Euler-Lagrange equations. We use these functionals at each

pyramid level, and minimize them using a predefined number of conjugate gradient

(CG) iterations. Once minimization of this objective function is done for a specific

pyramid level, we estimate spatially-varying motion blur kernels using estimated

displacement fields, project the flows onto neighbor frame coordinates by warping

them and applying the motion blur kernels. Then, we proceed to the next pyramid

level.
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Chapter 3

Optical Flow in the Presence of

Motion Blur

After giving an overview of the conventional motion blur model in both

continuous and discrete time cases, this chapter strives to justify the violation of

brightness constancy assumption in the presence of motion blur, and readdress the

problem. As a similar approach to our work, the method of Portz et al [19] for

tackling this problem is also discussed in the last section.

3.1 Motion Blur Model

Fig. 3.1 summarizes the acquisition model in the continuous time that results

in motion blur deterioration. Given a frame fi, the exposure time τ , an ideal flow

field wi,i+1 = (ui,i+1, vi,i+1) that projects fi onto fi+1, and wi,i−1 = (ui,i−1, vi,i−1)

ti ti+1ti−1

τ Ts

t

fi−1 fi fi+1

wi,i+1wi,i−1

Figure 3.1: Acquisition model in continuous time domain. Motion blur is a result
of non-zero exposure time τ , and can be expressed in terms of τ , Ts and a set of
forward and backward warps that match neighbor frames
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that projects fi onto fi−1, one can uniquely generate the estimated blurred frame

gi due to motion, and determine the underlying blur kernel. The expression for

motion blur includes two terms: accounting for movements of pixels in fi towards (1)

previous frame fi−1 in (ti−τ, ti), and (2) next frame fi+1 in (ti, ti+τ). By assuming a

linear path for pixel movements, we linearly estimate flow fields for the time interval

between two actual frames. For ti−1 < t < ti, interpolation of fi(d + t−ti−1

Ts
wi,i−1) is

served as the estimate of intermediate frames. When t = ti−1, it is the same as fi(d),

and when t = ti it is fi(d + wi,i+1). Based on the definition of warps, fi(d + wi,i+1)

is identical to fi+1(d), which is the next frame. In the same way, fi(d + t−ti
Ts

wi,i+1)

describes the estimates of intermediate frames for ti < t < ti+1. Fig. 3.2 represents

a general case where an object moves along the trajectory specified by the red curve.

The blue dashed lines are linearized path segments for the moving object, and thick

blue lines represent the blurred integrated image.

In discrete time domain, we use interpolation to generate fictitious frames,

and develop a simple motion blur model. We start by addressing the model in

continuous time domain,

gi(x, y) =

∫ τ

t=0
fi(d +

t

Ts
wi,i−1)dt+

∫ τ

t=0
fi(d +

t

Ts
wi,i+1)dt

=

∫ τ

t=0
fi(x+

t

Ts
ui,i−1, y +

t

Ts
vi,i−1)dt+

∫ τ

t=0
fi(x+

t

Ts
ui,i+1, y +

t

τ
vi,i+1)dt

(3.1)

where Ts denotes the time interval between acquisition of frames, and the exposure

time τ represents half the time the shutter is kept open. Obviously, ui,i−1 and vi,i−1

are also functions of d = (x, y)T . Eq. 3.1 approximates the movement trajectory

of each point by two line sections, along which the integration is performed. This

assumption is not accurate if rather than straight lines, displacement components

are large and points move on trajectories with high curvature. However, it is simple

and satisfactory enough in most practical cases.

For implementing this blur model, we will have to turn the integration into

summation and rather than continuous time domain consider a discrete space. As a

consequence, Ts and τ should necessarily be integers. Fig. 3.3 demonstrates the new
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t

fi

d

fi+1(d + wi,i+1(d))

fi−1(d + wi,i−1(d))

d + wi,i+1(d)

d + wi,i−1(d)

2τ

d + τ
Ts

wi,i+1(d)

d + τ
Ts

wi,i−1(d)

Figure 3.2: As an arbitrary object in the scene moves on a trajectory (red curve),
we take a linear approximation (blue curve). Two thick blue lines are estimated blur
kernels responsible for forward and backward warps.

model. If Ts denotes the number of discrete time instants, we can suppose a set of

Ts − 1 fictitious frames between each actual frame. Line sections that approximate

each point trajectory are again utilized to estimate flow fields for fictitious frames.

Then, the aggregation of 2τ + 1 frames in the neighborhood of actual frames will

serve as the motion blurred frame in the discrete time domain,

gi(x, y) =
τ∑
t=0

fi(d +
t

Ts
wi,i−1) +

τ∑
t=0

fi(d +
t

Ts
wi,i+1)

=

τ∑
t=0

fi(x+
t

Ts
ui,i−1, y +

t

Ts
vi,i−1) +

Ts∑
t=0

fi(x+
t

Ts
ui,i+1, y +

t

Ts
vi,i+1)dt

(3.2)

This can also be expressed with a different notation,

gi(x, y) = Bwi,i−1
(fi(d)) +Bwi,i+1

(fi(d)) (3.3)

where the function Bw(f(d) adds motion blur to frame f(d) according to the inte-

grals in Eq. 3.1 and based on flow field w = (u, v). For a simple notation, Eq. 3.3 can
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t
ti−1

fi−1

ti

fi

ti+1

fi+1

τ Ts

. . . . . .

Figure 3.3: Acquisition model in discrete time domain. Simply, a discrete version of
the model demonstrated in Fig. 3.1. In this case, τ = 5 and Ts = 20 are integers.

g1 g2 g3 g4

f1 f2 f3 f4

τ = 8

τ = 0

Figure 3.4: Generating motion blurred sequence gi (top) from unblurred frames fi
(bottom) by using Bw(fi) blurring functions, with τ = 8 and Ts = 20.

also be expressed as the convolution of the clean image fi(d) with a spatially-varying

kernel Bwi
that is uniquely determined in terms of wi,i+1 and wi,i−1. Therefore,

gi(x, y) = (fi ∗Bwi
)(x, y) (3.4)

Let’s assume for the rest of this discussion that τ and T are constant over the

whole sequence. If we had variable exposure times, the same arguments would hold

unless one should substitute for different values of τ in the expression of Bw(f(d).

Fig. 3.4 portrays a synthetic sequence of unblurred frames and their corresponding

blurred frames computed as Bwi
∗ fi.
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w1,2

w2,1

w2,3

w3,2

f1 f2 f3 . . . fi fi+1

wi,i+1

wi+1,i

. . . fT
t

Figure 3.5: A general representation of the underlying unblurred seuqnece fi, and
the corresponding forward and backward flow fields.

3.2 Optical Flow in the Presence of Motion Blur

In this section, we address the problem of computing optical flow in the pres-

ence of motion blur. When frames are deteriorated with different spatially-varying

blur kernels, brightness constancy assumption of the data term will be violated. For

instance, one frame may still look sharper than the neighbor frame we are trying to

match, even if we ignore occlusion and lighting conditions. For a formal problem

statement, let gi denote a video sequence of T frames with motion blur and shut-

ter time τ , where i ∈ {1, 2, . . . , T}. Let us also assume an ideal video sequence fi

without motion blur, as if τ = 0. Then, given the blurred sequence gi, the problem

is to infer forward and backward flow fields that match the adjacent frames in the

unblurred sequence fi, i.e. wi,i+1, and wi,i−1. In our previous notation, the general

problem can be represented as,

{ŵi,i+1, ŵi+1,i}T−1
i=1 = argmin

{w}

T−1∑
i=1

∑
d

‖Ψwi,i+1
(fi(d))− fi+1(d)‖2

+
T−1∑
i=1

∑
d

‖fi(d)−Ψwi+1,i
(fi+1(d))‖2

(3.5)

where Ψw denotes warping operator followed by interpolation. Eq. 3.5 includes

terms for both forward and backward flows, depending on the underlying fi which

is not given. Fig. 3.5 gives an outline of the latent sequence fi and the associated

flow fields. We aim to minimize Eq. 3.5 by employing an approach that does

not require the direct knowledge of fi. But for evaluation purposes, we utilize

synthetic sequences that come with the latent sequence fi and ground truth flows.

Despite images are of different sharpness levels, traditional methods will try to warp
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the source image to match the appearance of the target image. This will result

in inaccurate estimates of the flow, deformation of flow field, and introduction of

wrinkle artifacts which are better discriminated by looking at the divergence of

estimated flows. In order to account for different blur kernels applied to each frame,

Jin et al [15] and Portz et al [19] argue that the apparent motion blur itself depends

on forward and backward flow fields that align a particular frame to neighbor frames.

This relationship is approximated using Eq. 3.1, by assuming linear motion of all

the points in the scene from one frame to the next. In addition to mean squared

error for matching sequence fi, we also employ metrics that evaluate the flows by

directly comparing them with the ground truth flows, e.g. AAE and AEP. Chapter

5 gives an overview of these quality metrics.

3.2.1 BlurFlow Method

As a novel method to tackle the problem of optical flow in the presence of

spatially-varying motion blur, we study BlurFlow by Portz et al [19] in this section.

Initially, they run a baseline optical flow method on the video sequence to get an

estimate for flow fields. Then, the estimates are refined by optimizing a new data

term for the objective function. Although the commutative property for convolution

does not hold when kernels are spatially-varying, they assume that the motion is

locally smooth, so convolution is approximately commutative.

Let fi and fi+1 denote two ground truth images where fi+1 is a warped

version of fi ignoring lighting, occlusion and interpolation errors, i.e., fi(d) =

fi+1(d + wi+1,i). Then, let gi(d) = fi(d) ∗ Bi and gi+1d = fi+1(d) ∗ Bi+1 be the

observed images where Bi and Bi+1 represent spatially-varying motion blur kernels

described by Eq. 3.1, and ∗ denotes convolution with a spatially-varying kernel, and

rather than a mathematical representation serves only as a notation. Based on the

tracking work of Jin et al [15], they apply the blur functions of each observed image
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to the other image,

ki(d) = (gi ∗Bi+1)(d) ≈ (fi ∗Bi ∗Bi+1)(d)

ki+1(d) = (gi+1 ∗Bi)(d) ≈ (fi+1 ∗Bi+1 ∗Bi)(d)

(3.6)

Then they argue that the blur kernels are themselves functions of d, but they omit

the function notation to avoid confusion with the evaluation of a single element in the

kernel. If the kernels are spatially invariant, then the two convolutions commute. As

mentioned earlier, if the motion is locally smooth, the two convolutions will commute

even if kernels are spatially-varying. In order to form their proposed data term, they

define

kz(d = ki+1(d + wi+1,i)− ki(d) (3.7)

Since there is a connection between the optical flow and the motion blur, the kernels

used to generate ki and ki+1 may vary with u and v. Therefore, we cannot simply

get ∂kz/∂u = kx and ∂kz/∂v = ky. The main contribution of Portz et al [19] then

is to adapt the data term to handle this connection between the flow and the blur.

By writing wi+1,i = (u + du, v + dv) and linearizing about du and dv, the

new data term they consider is,

ED(du, dv) =
∑
d

ΨD((kz +
∂kz
∂u

du+
∂kz
∂v

dv)2) (3.8)

where

∂kz
∂u

∣∣∣∣
d

=
∂

∂u
(ki+1(d + wi+1,i)− ki(d))

= [
∂ki+1

∂u
+
∂ki+1

∂x
]

∣∣∣∣
d+wi+1,i

− [
∂ki
∂u

]

∣∣∣∣
d

(3.9)

The partial derivative ∂ki+1/∂u represents how the blurred image changes with re-

spect to the blur induced by the flow, and the partial derivative ∂ki+1∂x represents

how the value ki+1(d + wi+1,i) changs with respect to the flow for a fixed blur. The

partial derivative with respect to the vertical flow, ∂kz/∂v is similarly defined.
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The minimzation approach they use is the same as the baseline method, but

with new blurred image derivatives, kz, ∂kz/∂u and ∂kz/∂v in place of the standard

image derivatives, fi,t, fi,x, and fi,y. However, in order to actually minimize the

objective function, we need numerical values for the new blurred image derivatives.

They could theoretically compute the blurred images by performing line integrals at

each pixel as in [15] and evaluate the derivatives with respect to the flow by differ-

entiating the parametric kernels. Because this spatially-varying blur functions need

to be repeatedly executed in each iteration of the optimization, they argue it would

be very inefficient. Instead, they manage to precompute a large four-dimensional

grid of kz(u, v, x, y) prior to optimization.

In order to find numerical values for kz and its partial derivatives, Portz et

al [19] in their supplementary attachment show it is sufficient to precompute a four-

dimensional grid for (gi ∗ Bw)(d,w), i.e., a two dimensional space described by u

and v axes, for which each point w0 = (u0, v0) represents a motion blurred version of

gi(d) based on Bw0 . We skip the details of constructing such grid, but mention they

consider a predefined table of u and v values at which numerical values are derived.

With the blurred image grid, one can compute a pixel (gi ∗Bw)(d,w) at any desired

(u, v) by bilinearly interpolating the grid at the point w over the (u, v) plane. After

computing the grid, the minimization is performed with the new blurred images.

BlurFlow [19] proposes a new approach for solving optical flow in the pres-

ence of motion blur. However, not only precomputing such large grid for all of the

frames in the sequence is computationally expensive, but also requires a large mem-

ory to store them. In addition, in order to perform bilinear interpolation over the

grids when optimizing the new objective function, extra computations are required.

For longer video sequences, the size of stored data in the memory is so large that

the algorithm may crash in some experiments.
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Chapter 4

The Proposed Method

This chapter describes the proposed method for solving the problem of op-

tical flow in the presence of motion blur. In brief, Motion Blur Aware Combined A

discussion on the proposed approach for coping with motion blur, an introduction

on handling occlusions, a new method to account for moving objects and implemen-

tation notes for the proposed method are provided in this chapter.

4.1 Discussion

Given the shutter time τ and a set of motion blurred video frames gi where

i ∈ {1, 2, ..., T}, the problem of optical flow in the presence of motion blur is to

find a set of forward and backward warps, wi,i+1 and wi+1,i, that would match

corresponding latent sharp frames fi (as if τ = 0) with their previous and next

neighbor frames.

Let’s start by writing gi and gi+1 in terms of their latent frames,

gi(d) = Bwi,i−1
(fi(d)) +Bwi,i+1

(fi(d))

gi+1(d) = Bwi,i+1
(fi+1(d)) +Bwi+1,i+2

(fi+1(d))

(4.1)

However, we know fi+1(d) could be represented as,

fi+1(d) = Ψwi,i+1
(fi(d)) (4.2)
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where Ψw(fd) simply warps the image fd according to the flow field d = (u, v) and

accompanied by Bilinear or Bicubic interpolation. This representation is only valid

for the latent frames fi and would not align blurred frames gi. Let’s continue by

applying Ψwi,i+1
to both sides of gi(d),

Ψwi,i+1
{gi(d)} = Ψwi,i+1

{Bwi,i−1
(fi(d)) +Bwi,i+1

(fi(d))}

= Ψwi,i+1
{Bwi,i−1

(fi(d))}+ Ψwi,i+1
{Bwi,i+1

(fi(d))}
(4.3)

It is evident that warping a motion blurred frame is equivalent to warping both the

latent frame and the underlying blur kernel, followed by performing motion blur. In

other words,

Ψw1{Bw2(f(d)} = BΨw1 (w2){Ψw1(f(d)} (4.4)

where Ψw1(f(d) is the warped version of f(d) using w1, and Ψw1(w2) denotes a

flow field resulted from warping a two-channel image w2 = (u2, v2) according to

another flow field, w1. Warping a flow field is not as straightforward as warping

a regular image, since w1 might have different values at the start point and the

endpoint of vector field w2. First, a regular M ×N grid is warped using w1. Then,

the endpoint coordinates of all the vectors in w2 are warped onto a new grid using

w1. Finally, we can compute the resulting flow field by exploiting a non-uniform

interpolation technique. If we use Eq. 4.4 to simplify RHS of Eq. 4.3, we will get,

Ψwi,i+1
{gi(d)} = BΨwi,i+1

(wi,i−1){Ψwi,i+1
(fi(d)}

+BΨwi,i+1
(wi,i+1){Ψwi,i+1

(fi(d)}
(4.5)

which could be further simplified using Eq. 4.2 to yield,

Ψwi,i+1
{gi(d)} = BΨwi,i+1

(wi,i−1){fi+1(d)}+BΨwi,i+1
(wi,i+1){fi+1(d)} (4.6)

which states if we used ground truth flows, warped and projected a motion blurred

frame gi onto the next frame it would be possible to represent it in terms of the latent

frame fi+1 corrupted by some motion blur. Portz et al, [19] use this equation, define
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blurred versions of gi+1(d) and Ψwi,i+1
{gi(d)} and show that they should be equal.

Then they form an objective function that must be minimized in a MSE sense, take

the derivative with respect to flow fields and put it precomputed values. However,

we avoid using Ψwi,i+1
{gi(d)} or formulating a least squared error problem. Rather

we convert the original optical flow problem into a new optical flow problem, that

could be solved using conventional methods.

We define ki+1 to be the motion blurred version of gi+1 using warped blurring

functions in RHS of Eq. 4.6, and k2 to be the motion blurred version of gi(d) using

warped blurring functions in the definition of gi+1(d) in Eq. 4.1,

ki(d) = BΨwi+1,i
(wi+1,i){gi(d)}+BΨwi+1,i

(wi+1,i+2){gi(d)}

ki+1(d) = BΨwi,i+1
(wi,i−1){gi+1(d)}+BΨwi,i+1

(wi,i+1){gi+1(d)}
(4.7)

where Ψwi+1,i
(wi+1,i) and Ψwi+1,i

(wi+1,i+2) are flow fields that would match fi+1

with the previous and next frames, but projected onto the coordinates of fi by

warping them according to wi+1,i. In order to continue, we need to establish a

relation between optical flow problem of ki(d)−ki+1(d) and that of fi(d)−fi+1(d).

Theorem 4.1.1 If ki and ki+1 are constructed based on Eq. 4.7, the problem of

aligning them is the same as aligning latent frames fi and fi+1. If we substitute

for gi and gi+1 from Eq. 4.1 in the expression of Eq. 4.7 and expand, it becomes

apparent that regardless of blur strength, Ψwi,i+1
(ki) and ki+1 will be equal, assuming

functions Bw(f(d) have commutative property.

‖Ψwi,i+1
(ki(d))− ki+1(d)‖2 ≈ 0 (4.8)

which suggests the flow field that aligns ki with ki+1 as defined in Eq. 4.7, happens

to be the same flow field that matches fi with fi+1. A proof for this theorem is given

in Appendix A.

Generally, commutative property is violated for spatially-varying convolu-

tion. However, if the fluctuations in the underlying kernel are locally small, this

property will be locally valid. Adopting a coarse-to-fine approach not only ensures
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our first order Taylor approximation is valid, but it also helps the commutative

property of Bw(f(d).

Finally, the problem can be reformulated as,

{ŵi,i+1, ŵi+1,i}Ti=1 = argmin
{w}

T∑
i=1

∑
d

‖Ψwi,i+1
(ki(d))− ki+1(d)‖2

+
T∑
i=1

∑
d

‖ki(d)−Ψwi+1,i
(ki+1(d))‖2

(4.9)

where the first term in the right hand side represents data fidelity term for forward

flows, and the second term considers backward flows. Since ki’s also depend on

both forward and backward flows in a non-convex manner, direct minimization of

Eq. 4.9 is ill-posed and requires numerical computation of derivatives at certain d’s

throughout the sequence. However, at each level of the pyramid we can compute

ki’s using the estimated and upscaled w’s from the previous level, starting with a

zero field as initialization. By assuming constant ki’s at each level, the objective

function could be split and addressed as a set of regular optical flow computations,

ŵi,i+1 = argmin
wi,i+1

∑
d

‖Ψwi,i+1
(ki(d))− ki+1(d)‖2, ∀i ∈ {1, 2, ..., T}

ŵi+1,i = argmin
wi+1,i

∑
d

‖ki(d)−Ψwi+1,i
(ki+1(d))‖2, ∀i ∈ {1, 2, ..., T}

(4.10)

which is the same as solving 2T optical flow problems for both forward and backward

flows over the whole sequence. If we had negligible exposure time, τ ≈ 0, blurring

operations in Eq. 4.7 would come down to identity functions, and ki’s would reduce

to gi’s. Therefore, the proposed method would be the same as regular optical flow

computation if there were no motion blur. Needless to say that objective functions in

Eq. 4.9 should be optimized over the whole sequence at each pyramid level, embed-

ded with proper smoothness constraints as regularization and penalizing functions

ψ(s2). Then we use these updated warps in order to generate ki’s for the next level,

and keep updating our estimates.
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4.2 Occlusion and Moving Objects

One challenging aspect of optical flow estimation is how to accurately ac-

count for occlusions. In addition to other reasons that violate the brightness con-

stancy assumption, many methods including that of Brox et al [8] use penalty func-

tions Ψ in order to handle occlusions. However, using conventional robust functions

to account for occlusions is not ideal [20, 27]. They are basically allowing the algo-

rithm to fail if producing large errors, instead of designing a mechanism that would

capture and group together the occluded pixels. Sand and Teller [20] use a combina-

tion of flow divergence and pixel projection difference to identify occluded regions.

As pointed out earlier, the divergence of an optical flow reveals information about

different motion boundaries and if a region is likely to be occluded. For an estimated

optical flow w = (u, v),

div(w(x, y)) =
∂

∂x
u(x, y) +

∂

∂y
v(x, y) (4.11)

Sand and Teller [20] exploit a Bilateral filter [23] with predefined coefficients which

incorporate not only Eulidean distance and radiometric difference, but also diver-

gence and flow field differences. They intend to find occluded pixels and give them

less weight when running a weighted moving average window,

w′(x, y) =

∑
x1,y1

w(x1, y1, t)w(x, y, x1, y1, t)∑
x1,y1

w(x, y, x1, y1, t)
(4.12)

Initially, pixels that are more likely to be in the occluded region are determined by

thresholding the magnitude of flow field gradient. Then for a specific patch centered

at (x, y) that includes a 21× 21 neighborhood of (x1, y1), the weights are calculated
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as,

w(x, y, x1, y1, t) = N(
√

(x− x1)2 + (y − y1)2);σx)

×N(I(x, y, t)− I(x1, y1, t);σi)

×N(
√

(u− u1)2 + (v − v1)2;σm)

× r(x1, y1, t)

(4.13)

where the first two terms correspond to geometric and radiometric distance, third

term measures differences in the estimated flow field and the last term includes

weights based on a Gaussian function of flow divergence and pixel projection dif-

ferences. They also argue that negative values in Eq. 4.11 indicate regions that

are to be occluded in the adjacent frame, so they filter positive values in the flow

divergence. However, their proposed method fails to properly spot occluded regions,

since at each level of the pyramid we are matching filtered versions of the images.

One other reason is that applying a bilateral filter directly to the flows would make

it ambiguous for the algorithm to distinguish between occluded regions and regions

that seem to be occluded but actually are motion blurred boundaries. Therefore,

handling motion blur and occlusion simultaneously is not as straightforward as ap-

plying conventional occlusion detection methods.

The proposed method to handle occlusions and moving objects is in brief to

reduce the effect of data term in regions with large divergence, and put more weight

on smoothness term. Therefore, we replace the smoothing parameter α with a M×N

matrix A which varies throughout the frame, and is point-wise multiplicated in the

ultimate objective function,

E(w(x, y)) = ED(w(x, y)) + A(x, y)ES(w(x, y)) (4.14)

where ED and ES are respectively data fidelity and smoothness terms as discussed

earlier. The smoothing matrix A is determined at each level of the pyramid, for
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each pair of frames and prior to updating w,

A(x, y) = α× (K − (K − 1)exp(
−(divw)2(x, y)

2σ2
d

)) (4.15)

where w denotes the estimated flow field at the previous pyramid level, α = 0.012

is the regular smoothing parameter, and we set σd = 0.4 and K = 10 based on

experimental observation of occluded scenarios. According to Eq. 4.15, A produces

values close to default α in regions with low divergence, and results in larger values

in regions with large divergence. Therefore, the algorithm relaxes the data term

in regions that are more likely to be occluded, and looks at the flow field in the

neighborhood to fill in occluded regions. This slight change enables the proposed

method to outperform CLG [9], BA [6] and BlurFlow [19] in an AAE and AEP

sense. In the Results section, we will test video sequences that include a moving and

motion blurred object on a still background. We argue that, unlike other scenarios,

mean squared error (MSE) is not a suitable evaluation metric, since in the presence

of occlusion not even the ground truth flow perfectly matches two adjacent frames.

Obviously, one frame contains regions of the background that are completely absent

in the next frame. Thus, we stick with AAE and AEP as reliable evaluation metrics

for this scenario.

Fig. 4.1 depicts first 8 frames of an artificially generated sequence which in-

cludes the image of a moving astronaut which is motion blurred, and some regions of

each frame is obviously occluded in the next and previous frames. When generating

the sequence, the ground truth forward and backward flows are also available. After

estimating the flow fields using various methods, one can look at Fig. 4.3 which

represents flow divergence maps for the estimated flows for frame # 6 using each

method. The proposed method (MB-CLG) generates flows with the most similar di-

vergence map to the ground truth. Since occluded regions result in large divergence

in the flow, MB-CLG is capable of handling these regions by increasing the diver-

gence and leaving other regions unchanged (the black region inside the astronaut

body.) Fig. 4.2 represents the smoothness matrix A(x, y) for different frames of the

sequence. Evidently, A returns large values at motion boundaries where the pixels
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(a) frame #1 (b) frame #2 (c) frame #3 (d) frame #4

(e) frame #5 (f) frame #6 (g) frame #7 (h) frame #8

Figure 4.1: Sample frames of an artificially generated motion blurred sequence of a
still background and a moving object - an astronaut.
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Figure 4.2: Smoothing matrix A(x, y) for the frames depicted in Fig. 4.1.

are most likely to be occluded. Directly visualizing flows also justifies the superiority

of MB-CLG in terms of generating flows most similar to the ground truth. Fig. 4.4

demonstrates visualized flows generated by CLG [9], BA [6], BlurFlow [19] and the

proposed method MB-CLG. Quantitative evaluations for this sequence and others

are included in the Results section.

4.3 Implementation

In this section we discuss the implementation notes and techniques utilized

to minimize objective functions in Eq. 4.10. As a brief overview, the proposed

method alternates between two stages at each level in a coarse-to-fine pyramid: (1)
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CLG MB−CLG BA BlurFlow Ground Truth

Figure 4.3: Divergence of estimated flow fields for the astronaut sequence, frame #
6

CLG, AE:13.140606 EP:2.916541 MB−CLG, AE:10.500069 EP:1.813202 BA, AE:12.491817 EP:2.151771 BF, AE:28.361640 EP:3.152291 Ground Truth Flow

Figure 4.4: Visualized estimated flow fields for the astronaut sequence, frame # 6

estimating ki’s for all frames, and (2) utilizing them to refine flow fields. We con-

struct a Gaussian pyramid of scale 0.75 for each motion blurred frame gi, denoted as

{gi}l(d) and represented in Fig. 4.5. l denotes the pyramid level, l = 1 corresponds

to the coarsest level, while l = L corresponds to the finest level which is the same

as gi.

Accordingly, we define {ki}l(d) to represent ki’s that we generate at each

level. In a similar way, we define {wi,i+1}l and {wi+1,i}l to respectively denote

forward and backward flows for lth pyramid level. We start by initializing flows for

the first level,

{wi,i+1}1 := 0, {wi+1,i}1 := 0, ∀i ∈ {1, 2, ..., T − 1} (4.16)

At each level l and for each frame i, we check if upscaled flow fields from the previous

level l − 1 would actually result in a visible motion blur. If at a certain level, w(d)

multiplied by exposure time τ
2 is on average smaller than 1 pixel, the resulting motion

blur would have no effect. In order to avoid unnecessary computations, we avoid

applying motion blur at coarser levels if,

τ

Ml ×Nl

∑
d

↑ {wi,i+1}l−1+ ↑ {wi,i−1}l−1 ≤ γ (4.17)
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{wi,i+1}1

{wi+1,i}1

{wi,i+1}2

{wi+1,i}2

{wi,i+1}L

{wi+1,i}L

{gi}l {gi+1}l
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. . .

Figure 4.5: Gaussian pyramids {gi}l and {gi+1}l. Arrows represent forward and
backward flows for each pyramid level. Once the flows for a particular level l are
carried out over the whole sequence, we proceed to the next level l+1 to refine them
in a coarse-to-fine approach.

and rather than computing {ki}l, we use {gi}l in the objective function. In above

notation, Ml and Nl are respectively width and height in lth pyramid level, γ is a

tunable constant, and ↑ denotes upscaling by a factor of 0.75 followed by Bicubic

interpolation, applied on both channels of flow fields. A similar inequality could

be formed to determine either to use {gi+1}l, or to consider generating {ki+1}l by

performing motion blur. Therefore, if the inequality didn’t hold,

{ki}l(d) = BΨ↑{wi+1,i}l−1
(↑{wi+1,i}l−1){gi(d)}l +BΨ↑{wi+1,i}l−1

(↑{wi+1,i+2}l−1){gi(d)}l

{ki+1}l(d) = BΨ↑{wi,i+1}l−1
(↑{wi,i−1}l−1){gi+1(d)}l +BΨ↑{wi,i+1}l−1

(↑{wi,i+1}l−1){gi+1(d)}l

(4.18)

which suggests that in order to generate k’s for lth level, we use g’s from the same

level, but we upscale necessary warps from previous level in order to apply blurring.

Having generated {ki}l for all i’s, we use them to update all forward and backward
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flow fields for level l by minimizing objective functions below,

Ef (wi,f ) =
∑
d

ψ(‖{ki}l,x.uf + {ki}l,y.vf + {ki}l,t‖2) + α
∑
d

ψ(‖∇uf‖2 + ‖∇vf‖2)

Eb(wi,b) =
∑
d

ψ(‖{ki+1}l,x.ub + {ki+1}l,y.vb − {ki}l,t‖2) + α
∑
d

ψ(‖∇ub‖2 + ‖∇vb‖2)

(4.19)

which should be minimized for all i. In above’s notation, wi,f = (uf , vf ) is the for-

ward flow that projects {ki}l onto {ki+1}l, while wi,b = (ub, vb) is the corresponding

backward flow that does the opposite. These objective functions are optimized by

considering their Euler-Lagrange equations and using conjugate gradients method.

We set α = 0.12, and use a Charbonnier penalizing function ψ(s2) with β = 0.001.

Once wi,f and wi,b are found, we update flow fields for level l,

{wi,i+1}l = wi,f , {wi+1,i}l = wi,b, i ∈ {1, 2, . . . , T − 1} (4.20)

Then we can keep alternating between these two steps as we move towards finer

levels of pyramid: (1) estimating {ki}l using {wi,i+1}l−1 and {wi+1,i}l−1, and (2)

exploiting them to refine the flows and get {wi,i+1}l and {wi+1,i}l for the next finer

level. Obviously, this alternation is stopped as we reach the finest level, l = L.

Fig. 4.6 gives a block-diagram of the proposed method for refining flows. We use a

modified version of Liu’s C++ implementation [16] of CLG [9]. The modified version,

referred to as x2-CLG, employs smoothness matrix A to account for occlusions, and

would work only over a specific pyramid level.

43



{gi}

{gi+1}

{gi}l

{gi+1}l

Bw′i+1

Bw′i

ki

ki+1

x2 CLG
{wi,i+1}l
{wi+1,i}l

{wi+1,i+2}l−1

{wi+1,i}l−1wi+1
Ψ{wi+1,i}l−1

warp the flow

↑

w′i+1

{wi,i+1}l−1

{wi,i−1}l−1

wiΨ{wi,i+1}l−1

warp the flow

↑

w′i

Figure 4.6: Block diagram for refining flow estimates of level l − 1, and achieving
new estimates for level l. x2 CLG denotes forward/backward CLG algorithm.

Variable Description Default Value

T The number of fictitious frames between two ac-
tual frames, when generating artificial motion
blur

20

τ Half the number of fictitious frames that lie in
the open shutter interval and contribute to the
motion blur

8

α Smoothness parameter 0.012

ratio Gaussian pyramid ratio, i.e. the ratio of the
width of consequent levels in the pyramid

0.75

bP ixels The number of boundary pixels thrown away
when evaluating estimated flow fields based on
AAE, AEP and MSE.

20

γ The threshold used to decide if prior to flow es-
timation, applying the blur kernels of the other
image is essential.

T
4τ

minWidth Minimum width of a level, when resizing an im-
age and generating the corresponding Gaussian
pyramid.

20

No Number of outer iterations 16

Ncg Number of conjugate gradient iterations 50

β Charbonnier penalizer’s parameter, applied on
both data and smoothness terms.

0.001

σd Smoothness parameter for applying a Gaussian
filter on the divergence map

0.5

K Linear coefficient used in generating the smooth-
ness matrix, A

10

Table 4.1: List of parameters and their default value in MB-CLG.
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Chapter 5

Evaluation

This chapter introduces evaluation metrics that we will be using in the next

chapter, when comparing the results of MB-CLG with other optical flow methods.

It also includes a describtion of a common method for visualizing flows.

5.1 Definition of metrics

In order to evaluate the estimated flow fields we use three different metrics:

(1) average angular error (AAE), (2) average endpoint error (AEP) and (3) mean

squared error (MSE) between Ψŵ(fi) and fi+1 where ŵ is the estimated forward flow

for frame i and fi’s are the unblurred frames. In this section we define these metrics,

as well as divergence for flow fields. First, we need to point out that calculation of

AAE and AEP requires the knowledge of the ground truth flows denoted by w, and

in order to find MSE we need to have the clean sequence fi. We only consider gi when

testing each method, while fi is employed for evaluation. Therefore, quantitative

evaluation of blur-aware optical flow algorithms require synthetic datasets that come

with the underlying ground truth flows and the unblurred sequence.

Given an estimated flow w(d) = (u(d), v(d)) and the ideal ground truth flow

ŵ(d) = (û(d), v̂(d)) that matches the unblurred frames, angular error (AE) at pixel

d is defined as the angle between vectors (u(d), v(d)) and (û(d), v̂(d)). Average
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d1

w(d1)

ŵ(d1)
d2

w(d2)

ŵ(d2)e(d1)

e(d2)

Figure 5.1: A simple example justifying independency of AAE and AEP. While
e(d) = w(d)− ŵ(d) and AEP are equal for d1 and d2, AAE is smaller for d2.

angular error (AAE) is then defined as,

AAE =
1

M ×N
∑
d

cos−1{ ŵ(d).w(d)T

‖w(d)‖.‖ŵ(d)‖
} (5.1)

Endpoint error (EP) at pixel d is defined as norm of the difference between the same

vectors, and average endpoint error (AEP) is then represented as,

AEP =
1

M ×N
∑
d

‖w(d)− ŵ(d)‖ (5.2)

As Fig. 5.1 represents using a an example, AAE and AEP are in general in-

dependent metrics, i.e. if AAE is increased, AEP is necessarily not. AAE mea-

sures the directional error in the field estimates, and AEP considers error vector

e(d) = w(d)− ŵ(d). In most applications, e.g. deblurring, structure-from-motion,

denoising, etc., accurate ending points of flow vectors matter, and AEP gives a better

evaluation of error.

In a same way, MSE for a forward flow that projects fi onto fi+1 is,

MSE =
1

M ×N
∑
d

‖Ψŵ(fi)(d)− fi+1(d)‖2 (5.3)

Occlusions are usually detected by looking at ∇.w, flow field divergence [20]. The

larger the divergence at a point, the larger occluded that region happens to be.

However, applying traditional optical flow algorithms to sequences with motion blur

would result in distorted flows, since the algorithm strives to match sharp regions

from one frame to the corresponding region in another frame that might be blurred.
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Therefore, one way to evaluate an optical flow method is to look how mistakenly

it distorts the flow field, increases the divergence and introduces wrong occluded

regions.

Depending on the motion speed, boundary pixels of a source image are likely

to lie outside of the warped image grid. Therefore, there is no accurate way to handle

motion blur near boundaries in the proposed method. In addition, in most appli-

cations, e.g., tracking and deblurring, pixels close to the margin are of less interest.

Therefore, rather than evaluating estimated flows over the whole image plane, we

only consider pixels that are not closer than bpixels = 20 to the boundary.

In a similar manner to boundary pixels, boundary frames are also likely to

introduce biased error. For instance, the knowledge of backward flow w1,0 is required

for accurately accounting for blur kernels in frame g1. However, we are unaware of

frame g0, and determining such flow field is not feasible. We need to deal with the

same problem regarding the last frame gT . In order to cope with these issues, we

express the unknown warps as

w1,0 = −w1,2, wT,T+1 = −wT,T−1 (5.4)

based on the assumption that all of the points in the scene move along the same

linear path in the previous frame. Needless to clarify that these modifications are

applied to the results of all methods.

5.2 Visualization

In order to visualize estimated flows, we use quiver (quiver() in MAT-

LAB), in addition to color representations. The latter is a color coding for each

displacement vector, and the former is a set of arrows representing vectors on a

grid of pixels. Color coding allows more accurate comparisons, as with a change of

flow vector direction the hue changes. We use MATLAB implementation of [22] for

flowToColor() function. Fig. 5.2 represents two frames of the mequon sequence.

Fig. 5.3 shows quiver and color representations of estimated flows for the frames in
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Fig. 5.2, as well as a color coding guide to interpret flows.

(a) frame # 6 (b) frame # 7

Figure 5.2: Two sample frames in the mequon sequence.
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(c) quiver visualizations

Figure 5.3: (a) color coding guide, (b) color visualizations for the output flows of
various methods, and (c) corresponding quiver representations.
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Chapter 6

Results

A broad set of experiments are performed on various video sequences using

various optical flow algorithms, e.g. CLG [9], Black-Anandan [6], BlurFlow [19], and

the proposed method MB-CLG. In this chapter, the results are carried out in terms

of metrics defined in Chapter 5, and are depicted and compared.Results for different

levels of noise, different types of motion, different motion speed, and different shutter

time τ are represented.

6.1 Homography results

In order to generate synthetic results that could be quantitatively evaluated,

we take grayscale images of size 512×512 and generate a set of T = 20 homographies

along a predefined and tunable trajectory. Then, we warp the sequence according to

homographies, crop images of size 256×256 and save them as the unblurred sequence

fi. In addition, we have the ground truth flow fields for both forward and backward

cases, that could be used for evaluation purposes. It also is possible to apply motion

blur on the sequence according to the underlying flow fields, and save the resulting

motion blurred sequence gi. In order to generate motion blur according to Eq. 3.1,

we change the integral into a summation, use Ts = 20 and exposure time τ = 0.4.

We perform all simulations using a 2.4 GHz Intel Core i5 processor and under Mac

OS 10.7.5 environment. The proposed method (MB-CLG) is implemented partly

in C++ and MATLAB. In each experiment we compare our results with those of
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(a) (b) (c) (d) (e) (f)

Figure 6.1: Sample 512 × 512 grayscale images used to generate a motion blurred
sequence of 20 frames each of size 256 × 256. (a) cameraman, (b) house, (c) lena,
(d) pepper, (e) boat and (f) barbara.

CLG [9], Black and Anandan (BA) [6] and BlurFlow [19]. We use C. Liu’s C++

implementation [16] for CLG, Black’s MATLAB implementation for BA and Portz

et al’s C++ implementation for BlurFlow method which are available online on their

project website.

6.2 Preliminary datasets

Fig. 6.2 shows mean squared error (MSE) for sample datasets portrayed

on Fig. 6.1. The sequences are generated based on the same trajectory, and MSE

is computed for various methods and for each individual frame. Estimated flow

fields are used to warp each frame backward and forward onto the coordinates of

neighbor frames, then mean squared error is calculated. In a similar way, Fig. 6.3

and Fig. 6.4 demonstrate AAE and AEP measures respectively. The dashed lines

represent the average over the sequence, and their numerical values are listed in

Table 6.1. As if it could be anticipated, traditional methods like CLG [9] and BA

[6] that are deprived of a mechanism to handle motion blur would obviously fail

in most cases to produce accurate flows. BlurFlow [19], as a blur-aware method,

produces flows with remarkably less MSE, AAE and AEP. The proposed method

(MB-CLG), however, computes flows with even less error in the sense of all metrics.

Fig. 6.13 depicts the divergence of the estimated flow fields using each method for

three samples. Comparing the divergence results reveals that traditional methods

produce so-called wrinkles and distort the flow as they try to align sharp and blurred

regions. However, blur-aware algorithms and particularly MB-CLG perform better

estimations. A key observation here is that MB-CLG cannot improve the flows
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in regions near the boundary, since it uses the information from nearby frames and

pixels near boundary are likely to lie outside of image coordinates when warped back

and forth. Table 6.2 represents average time in seconds required to compute forward

and backward flows for a single frame. Since the implementation for BA [6] is done

in MATLAB it takes much more time compared to CLG - which is implemented in

C++ [16].

6.3 Noise Results

In this section, we add white Gaussian noise of different variances, and com-

pare the results of various methods. We use the same method as the previous section

to generate a sequence of synthetic frames by warping a single image. Prior to saving

the sequence, we add the noise,

gi = Ψw0,i
(f) ∗Bwi

+ ni, ∀i ∈ {1, 2, ..., T} (6.1)

where gi denotes the generated frame, f represents the still image, ni is a vector of

IID Gaussian noise with standard deviation σ, and Bwi
is a spatially-varying motion

blur kernel based on flow fields that map ith frame to next and previous frames. In

addition, Ψw0,i
(f) is a warped version of f according to w0,i, and w0,i denotes an

arbitrary flow field that generates ith frame based on the still image f . We set

σ ∈ {0, 2.5, 5, 7.5, 10, 12.5}, repeat each experiment 5 times, and look at MSE, AEP

and AAE measures.

Fig. 6.12 represents the robustness against noise for each method in an

MSE sense. Traditional methods, i.e., CLG [9] and BA [6], that are deprived of a

technique to handle motion blur, seem to be less robust against noise. While MSE

increases linearly for MB-CLG and BlurFlow [19], traditional methods seem to be

more sensitive to noise. This might come from the built-in blurring in MB-CLG and

BlurFlow, as they try to cancel the effect of noise by further blurring frames, and

this will result in denoising of the sequence. Fig. 6.5 also represents AEP and AAE

results for estimated flow fields, evaluated with respect to ground truth flows.
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6.4 Trajectory results

In order to generate a synthetic sequence from a still image, we first need

to determine a set of homographies. In this section, we try various homographies

by tuning the trajectory parameters. Then, we evaluate the estimated flows by

each technique to see which one outperforms others in slow/fast movements, pure

translational/rotational movements, etc. Homography Hi is determined as,

Hi = si


cosθi −sinθi Aicosαi

sinθi cosθi Aisinαi

0 0 1

 (6.2)

where si is a scale that accounts for zooming, Ai denotes the magnitude of translation

vector, αi is the angle of translation vector, and θi serves as the rotation angle. For

each i, we construct Hi according to,

Ai = A0sin
2πi

Tm

θi = θ0sin
2πi

Tm

si = 1 + s0sin
2πi

Tm

αi = αi−1 + α0|sin
2πi

Tm
|

(6.3)

where Tm denotes the period of the sinusoidal motion and is set to 10 frames. The

default values are: A0 = 50, θ0 = 2π/72, α0 = 2π/72, and s0 = 0.05. In this section,

we try changing these variables to evaluate different methods using new sequences.

Fig. 6.6 represents both MSE and AEP results, as we change A0. According to Eq.

6.2, video sequences generated with smaller A0 will have smaller displacement field

and less motion blur.

Next, we repeat the same experiment on a synthetically generated sequence

with pure rotational motion. Fig. 6.7 depicts MSE and AEP results for a pure rota-

tional motion. A0 is set to zero, and θ0 is varied in chosen to be {2.5, 3, 3.5, 4, 4.5, 5}×

π/72. As Fig. 6.7(a) demonstrates, MB-CLG (red curve) and BlurFlow (black curve)

52



end up outperforming traditional methods as we increase θ0. As portrayed in Fig.

6.8 which represents estimated flows for θ0 = 5π/72, displacement field is necessarily

spatially-varying when the underlying scene dynamics involve large rotations. Thus,

we conclude blur-aware methods’ superiority is more evident in the case of large and

spatially-varying motions. Although BlurFlow [19] outperforms traditional methods,

MB-CLG gives better results.

Finally, we varied the scale parameter s0 ∈ {0.05, 0.10, 0.15, 0.20, 0.25}, and

gave as input each generated sequence to each optical flow technique. The results

are represented in Fig. 6.9. As it is evident, increasing s0 causes a large gap between

the results of blur-aware and traditional techniques. In other words, MB-CLG and

BlurFlow are more robust against motion blur deterioration. Similar to rotational

and translational motions, MB-CLG achieves the best results. Fig. 6.10 visualizes

the results of each method for s0 = 0.25, in addition to ground truth flows. The

artifacts in estimated flows are perfectly clear by a subjective evaluation.

6.5 Shutter time results

In a different experiment, we varied the shutter time τ ∈ {1, 2, . . . , 10}.

Increasing τ results in more sever motion blur, as the shutter is kept open for longer.

Fig. 6.11 represents the results for (a) MSE, and (b) AEP. Although Black-Anandan

method turns out to achieve better results by increasing τ , other methods produce

larger errors. Denoising contribution of motion blur explains why Black-Anandan,

previously proved to be highly sensitive on noise, actually performs better when the

sequence is blurred. In terms of both MSE and AEP, MB-CLG still achieves best

results for different shutter times.
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(e) boat
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Figure 6.2: Mean squared error results for matching frames using both forward and
backward estimated flow fields. In each dataset we generate 20 synthetically motion
blurred frames, and try to estimate the flows using CLG [9], BA [6], BlurFlow [19]
and the proposed method MB-CLG. MSE values are also calculated for ground truth
flows (GT).
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Figure 6.3: Average angular error (AAE) for a set of sample images, computed with
respect to the underlying ground truth flows. AAE is calculated for each frame
separately, and for each flow field computation technique, e.g. CLG [9], BA [6],
BlurFlow [19] and the proposed method MB-CLG.
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Figure 6.4: Average endpoint error (AEP) for a set of sample images, computed
with respect to the underlying ground truth flows. AEP is calculated for each frame
separately, and for each flow field computation technique, e.g. CLG [9], BA [6],
BlurFlow [19] and the proposed method MB-CLG.
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dataset AAE AEP MSE

method CLG MB-CLG BA BF CLG MB-CLG BA BF CLG MB-CLG BA BF

camera 5.16 1.52 5.26 2.85 1.97 0.86 1.95 1.26 584 125 572 189

house 2.76 0.39 2.80 1.52 1.16 0.30 1.14 0.68 42 6 43 16

lena 4.08 0.55 4.21 1.67 1.00 0.23 1.01 0.45 135 21 148 30

pepper 3.51 0.51 3.45 1.52 1.21 0.25 1.14 0.47 275 38 263 67

boat 2.74 0.73 2.65 1.14 1.01 0.28 1.04 0.44 1052 219 1038 380

barbara 2.86 0.42 2.84 1.32 1.20 0.23 1.15 0.54 237 26 232 58

Table 6.1: Average AAE, AEP and MSE over the whole sequence, computed for
different sample datasets and various algorithms, CLG [9], BA [6], BlurFlow (BF)
[19] and the proposed method MB-CLG.

method CLG MB-CLG BA BF

time (s) 2.72 17.92 29.69 21.71

Table 6.2: Average computation time required to calculate forward and backward
flow fields per frame.

6.6 Multiple Motion Results

In this part, two sample unblurred datasets available on http://vision.

middlebury.edu/flow/ and depicted on Fig. 6.14 are used, as they incorporate

multiple motions. We run a baseline optical flow method, CLG [9] to get ground

truth flows. Then, we add artificial motion blur according to 3.1 and estimated

ground truth flows. Fig. 6.15 shows the corresponding visualized flows for frame 2

for (a) schefflera and (b) urban dataset. We use the conventional method described

in [2] for visualization. Flow fields estimated by BlurFlow are smoother than ground

truth flows, and BA results look sharper and contain square artifacts. For this set

of samples, Fig. 6.16 shows MSE values for aligning frames using forward and

backward flows. It would have been better not to estimate ground truth flows, since

the baseline method is not optimal due to complicated motion in these datasets.

However, MB-CLG still outperforms other traditional or blur-aware techniques in a

mean squared error sense.

6.7 Moving Objects

This section includes the results for synthetic sequences containing a moving

object, i.e. astronaut, and bird. We choose a background, and move the moving

object on a predefined path. Motion blur artifacts are then artificially added based
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on the ground truth flow fields.

Fig. 4.1 depicts some of the frames in the astronaut sequence. Fig. 6.17

represents (a) AAE, and (b) AEP results for different methods. In addition, Fig.

6.18 demonstrates estimated flows for frames i ∈ {1, 2, . . . , 7}. In both objective and

subjective evaluations, MB-CLG achieves the best results. Specifically, the results

for frame i = 4 (represented in the 4th row in Fig. 6.18) prove the superiority of

MB-CLG. The astronaut has the highest motion speed in frame i = 4, hence motion

blur artifacts are more intense. Fig. 6.19 demonstrates some of the frames in the

bird sequence. In this sequence, the moving object is relatively smaller in size. As

a consequence, estimating the flow is more difficult. In a similar way as the astro-

naut sequence, Fig. 6.20 represents quantitative results, and Fig. 6.21 visualizes

estimated flows for the bird sequence. While MB-CLG achieves the best flows, the

results of all methods for frame#4 are far from the ground truth. One major rea-

son is the high speed associated with a small moving object in the scene. Table 6.3

summarizes the average values for AAE and AEP metrics for both datasets.

dataset AAE AEP

method CLG MB-CLG BA BF CLG MB-CLG BA BF

astronaut 8.35 7.55 8.65 24.3 1.53 1.01 1.38 1.71

bird 6.02 5.35 9.58 24.54 1.00 0.61 0.94 1.38

Table 6.3: Average AAE and AEP over the whole sequence, computed for the as-
tronaut and the bird datasets and various algorithms, CLG [9], BA [6], BlurFlow
(BF) [19] and the proposed method MB-CLG.

58



0 2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Noise Stanfard Deviation σ

A
v
e
ra

g
e
 E

n
d
p
o
in

t 
E

rr
o
r 

(A
E

P
)

 

 

CLG

MB−CLG

B&A

BlurFlow

(a) AEP

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Noise Stanfard Deviation σ

A
v
e
ra

g
e
 A

n
g
u
la

r 
E

rr
o
r 

(A
E

P
)

 

 

CLG

MB−CLG

B&A

BlurFlow

(b) AAE

Figure 6.5: Results for (a) AEP and (b) AAE measures, when synthetic input video
sequence is corrupted with additive Gaussian noise of standard deviation σ.
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Figure 6.6: Results for (a) MSE and (b) AEP measures, as the motion speed (con-
trolled by A0) is varying. MB-CLG outperforms other methods regardless of speed.
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Figure 6.7: Pure Rotational Motion. Results for (a) MSE and (b) AEP measures,
as the angular speed (controlled by θ0) is varying. MB-CLG outperforms other
methods regardless of speed.
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Figure 6.8: Estimated flow fields for a pure rotational motion, visualized by (a)
flowToColor() function, and (b) quiver() in MATLAB
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Figure 6.9: Pure Scale Motion. Results for (a) MSE and (b) AEP measures, as
the scale parameter (denoted as s0) is varying. Blur-aware methods, specifically
MB-CLG, are evidently more resilient against motion blur artifacts.
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Figure 6.10: Estimated flow fields for a pure scale motion, visualized by (a)
flowToColor() function, and (b) quiver() in MATLAB
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Figure 6.11: Results for (a) MSE and (b) AEP measures, as the shutter time τ is
varying.
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Figure 6.12: Mean Squared Error (MSE) between matched frames, when input video
sequence is artificially corrupted with additive Gaussian noise of standard deviation
σ. The results are shown for various methods.
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Figure 6.13: Divergence of flow fields for three video sequences, estimated using
CLG [9], BA [6], BlurFlow (BF) [19] and the proposed method MB-CLG.
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Figure 6.14: Sample datasets that contain multiple motions.
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(a) schefflera
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(b) urban

Figure 6.15: Visualized flow fields for datasets containing mutliple motions.
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Figure 6.16: Mean squared error (MSE) results for datasets with multiple motions.
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Figure 6.17: (a) AAE, and (b) AEP results for estimated flows for the astronaut
sequence. Average values are indicated by horizontal lines.
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Figure 6.18: Estimated flows of various methods (columns) for seven frames of the
astronaut sequence (rows).
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(a) frame #1 (b) frame #2 (c) frame #3 (d) frame #4

(e) frame #5 (f) frame #6 (g) frame #7 (h) frame #8

Figure 6.19: Sample frames of an artificially generated motion blurred sequence of
a moving bird in the sky.
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Figure 6.20: (a) AAE, and (b) AEP results for estimated flows for the bird sequence.
Average values are indicated by horizontal lines.
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Figure 6.21: Estimated flows of various methods (columns) for seven frames of the
bird sequence (rows).
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Chapter 7

Conclusion

In this thesis we addressed the problem of optical flow in the presence of

motion blur, and have made two major contributions. The first is applying blur

functions of the source image to the target image, and vice versa. This step turns

out to be balancing the effect of different blur levels in different video frames. For

instance, If the source image happens to be sharper than the target image, they will

have identical levels of blur after this step. We also argue that displacement fields

that match modified source and target images are approximately those that would

match them if there was no motion blur deterioration. The second is the adaptation

of warp-the-flow technique, rather than directly warping images. In particular, flows

are warped by flows and projected onto the coordinates of the target image. Based

upon warped flows, blur functions are carried out and applied on the target image.

The same procedure is repeated for the source image.

Among traditional methods that do not account for motion blur in the se-

quence, we review and discuss their superiorities and shortcomings in Section 2.2.

First we give an overview of Lucas-Kanade method, as a well-known local technique.

It became evident that while local techniques are more robust against noise, they

cannot produce a dense and global displacement field. As a global technique, we

study the objective functional proposed by Horn-Schunck [14], different extensions

for it, and their corresponding Euler-Lagrange equations. Combined local-global

(CLG) method [9] is subsequently reviewed. In brief, CLG serves as a hybrid tech-
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nique that employs a global objective functional, while benefits from robustness

against noise which is an inherent property of local methods. We also review the

advantages of various Horn-Schunck proposed extensions, e.g., adding nonquadratic

penalty functions to both the data and the smoothness terms, employing a coarse-

to-fine approach, etc. Black and Anandan method [6] is also briefly studied, as they

relax the assumption of single motion and adapt a new objective function. However,

none of them consider blur deteriorations caused by motion.

Chapter 3 addresses the motion blur model employed, the effect of motion

blur in estimating flow fields, followed by an overview of a novel blur-aware optical

flow technique, BlurFlow, proposed by Portz et al [19]. It turned out that despite

BlurFlow results in more accurate flows compared to traditional methods, it requires

a large amount of computations and data storage. Portz et al, first apply a baseline

method, then compute a large four dimensional grid for each video frame. Once this

big grid of data is precomputed, they minimize their own criterion over the whole

sequence by interpolating the grid at certain positions in each iteration. Generating

and interpolating such large grid, as experimented as well, is extremely time and

storage consuming.

A detailed discussion for the proposed method, MB-CLG, was given in Chap-

ter 4. We utilize the result of Theorem 4.8 to conclude one can extract the latent

displacement field by pre-filtering both the target and the source images. The pro-

posed method also accounts for independently moving objects and occlusions. We

relaxed the assumption that the smoothing parameter α should be constant over the

whole image. Instead, we defined the smoothing matrix A according to the gradient

map of the estimated flow field. Based on the results of the astronaut sequence, we

observed this slight modification made the proposed method more robust against

moving objects and occlusion.

In Chapter 6, various experiments on different sample sequences were stud-

ied. Furthermore, we have directly compared the results of MB-CLG with those of

three other methods for solving the optical flow: Combined local-global (CLG) [9],

Black-Anandan (BA) [6], and BlurFlow (BF) [19]. In Chapter 5, we defined Average
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Angular Error (AAE) and Average Endpoint Error (AEP) as conventional metrics

to evaluate estimated flows with respect to the ground truth flow. In addition, we

employ Mean Squared Error (MSE) to measure how accurate an estimate of the flow

matches the frames in the sequence. Then we used these metrics for each scenario.

First we generated various sequences out of a single image according to a set of

homographies. Then, we changed homography variables and considered pure trans-

lational, pure rotational and pure scale motions. In each case, motion-blur would

get more severe as the controlling parameters, i.e. θ0, A0 and s0, were increased.

This led to a large gap between the results of blur-aware and traditional methods in

terms of MSE and AEP, and MB-CLG achieved the best flow fields. In a separate

experiment, we varied the shutter time τ , hence generated sequences had different

levels of motion blur. We repeated these experiments for different still images, and

the proposed method, MB-CLG, achieved superior results in terms of MSE, AEP,

and AAE for all of the experiments.

In addition to homography results, we also tested each method on datasets

containing multiple motions, and sequences including a moving object, e.g. astro-

naut, bird. We argue that the ground truth flows for these scenarios can also be

generated. Therefore, we can evaluate flows in terms of AEP and AAE.

70



Appendix A

Proof for Theorem 4.8

We start by expanding the expression for ki(d) by substituting for gi(d)

from Eq. 3.3. Therefore, we get,

ki(d) = BΨwi+1,i
(wi+1,i){gi(d)}+BΨwi+1,i

(wi+1,i+2){gi(d)}

= BΨwi+1,i
(wi+1,i){Bwi,i−1

(fi(d))}

+BΨwi+1,i
(wi+1,i){Bwi,i+1

(fi(d))}

+BΨwi+1,i
(wi+1,i+2){Bwi,i−1

(fi(d))}

+BΨwi+1,i
(wi+1,i+2){Bwi,i+1

(fi(d))}

(A.1)

In the same way we can expand ki+1(d),

ki+1(d) = BΨwi,i−1
(wi,i−1){gi+1(d)}+BΨwi,i+1

(wi,i+1){gi+1(d)}

= BΨwi,i−1
(wi,i−1){Bwi+1,i

(fi+1(d))}

+BΨwi,i−1
(wi,i−1){Bwi+1,i+2

(fi+1(d))}

+BΨwi,i+1
(wi,i+1){Bwi+1,i

(fi+1(d))}

+BΨwi,i+1
(wi,i+1){Bwi+1,i+2

(fi+1(d))}

(A.2)
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We continue by writing and expanding the expression for Ψwi,i+1
(ki(d)) which is the

warped version of ki(d) based on wi,i+1,

Ψwi,i+1
(ki(d)) = Ψwi,i+1

{BΨwi+1,i
(wi+1,i){Bwi,i−1

(fi(d))}}

+ Ψwi,i+1
{BΨwi+1,i

(wi+1,i){Bwi,i+1
(fi(d))}}

+ Ψwi,i+1
{BΨwi+1,i

(wi+1,i+2){Bwi,i−1
(fi(d))}}

+ Ψwi,i+1
{BΨwi+1,i

(wi+1,i+2){Bwi,i+1
(fi(d))}}

(A.3)

According to Eq. 4.4 we get,

Ψwi,i+1
(ki(d)) = BΨwi,i+1

Ψwi+1,i
(wi+1,i){Ψwi,i+1

{Bwi,i−1
(fi(d))}}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i){Ψwi,i+1
{Bwi,i+1

(fi(d))}}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i+2){Ψwi,i+1
{Bwi,i−1

(fi(d))}}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i+2){Ψwi,i+1
{Bwi,i+1

(fi(d))}}

(A.4)

Also, we can expand further to get,

Ψwi,i+1
(ki(d)) = BΨwi,i+1

Ψwi+1,i
(wi+1,i){BΨwi,i+1

(wi,i−1){Ψwi,i+1
(fi(d))}}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i){BΨwi,i+1
(wi,i+1){Ψwi,i+1

(fi(d))}}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i+2){BΨwi,i+1
(wi,i−1){Ψwi,i+1

(fi(d))}}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i+2){BΨwi,i+1
(wi,i+1){Ψwi,i+1

(fi(d))}}

= BΨwi,i+1
Ψwi+1,i

(wi+1,i){BΨwi,i+1
(wi,i−1){fi+1(d)}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i){BΨwi,i+1
(wi,i+1){fi+1(d)}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i+2){BΨwi,i+1
(wi,i−1){fi+1(d)}

+BΨwi,i+1
Ψwi+1,i

(wi+1,i+2){BΨwi,i+1
(wi,i+1){fi+1(d)}

(A.5)

However, one should notice that Ψwi,i+1
and Ψwi+1,i

as consequent operators have

the interpretation of projecting an input image from the coordinates of fi onto fi+1,

and then projecting the result from the coordinates of fi+1 onto fi. Therefore, they
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would cancel each other out,

Ψwi,i+1
(ki(d)) = B(wi+1,i){BΨwi,i+1

(wi,i−1){fi+1(d)}

+B(wi+1,i){BΨwi,i+1
(wi,i+1){fi+1(d)}

+B(wi+1,i+2){BΨwi,i+1
(wi,i−1){fi+1(d)}

+B(wi+1,i+2){BΨwi,i+1
(wi,i+1){fi+1(d)}

(A.6)

If we compare RHS of A.6 with that of A.2, it becomes apparent that the order

of blurring functions is changed. These blurring functions are in essence spatially-

varying convolution operators that in general do not have commutative property.

However, they are locally commutative if the kernel changes locally small. Therefore,

we conclude that under certain conditions,

‖Ψwi,i+1
(ki(d))− ki+1(d)‖2 ≈ 0 (A.7)
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A.1 Pseudocode for MB-CLG

Data: A sequence of T motion blurred frames: {fi}

Result: Forward and backward flow fields: {wi,i+1} , {wi+1,i}

Generate Gaussian pyramid of L levels: {gi}l;

{wi,i+1}1 ← 0, {wi+1,i}1 ← 0; // initialization

for l← 1 to L do

for i← 1 to T do

if mean {wi,i+1}l−1 + {wi,i−1}l−1 > γ then // blurring required

Ψ↑{wi+1,i}l−1
(↑ {wi+1,i}l−1); // warp the flow

Ψ↑{wi+1,i}l−1
(↑ {wi+1,i+2}l−1);

Ψ↑{wi,i+1}l−1
(↑ {wi,i−1}l−1);

Ψ↑{wi,i+1}l−1
(↑ {wi,i+1}l−1);

;

{ki}l ← addblur({gi}l); // according to

{ki+1}l ← addblur({gi+1}l);

end

else // if blurring is not required

{ki}l ← {gi}l;

{ki+1}l ← {gi+1}l;

end

bA = α× (K − (K − 1)exp(
−∇↑{wi+1,i}l−1

2σ2
d

)); // backward A

fA = α× (K − (K − 1)exp(
−∇↑{wi,i+1}l−1

2σ2
d

)); // forward A

;

{wi,i+1}l ← estimateflow({gi}l, {gi+1}l, {wi,i+1}l−1, fA);

{wi+1,i}l ← estimateflow({gi+1}l, {gi}l, {wi+1,i}l−1, bA);

end

end

Algorithm 1: MB-CLG implementation algorithm
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A.2 Frame interpolation details

Unless otherwise specified, we use Bicubic Interpolation for constructing a

warped image g(d), given the original image f(d) of size M × N , and a flow field

w(d) = (u(d), v(d). Vector d = (x, y) is the position vector. Such warping followed

by proper interpolation is then denoted as,

g(d) = Ψw(f(d)) (A.8)

Initially, let’s consider a grid of size M ×N for the warped image g. By definition,

each pixel pi = (xi, yi) in image f is projected onto the grid of g according to,

pi → pi + w(pi)

or, pi : (xi, yi)→ qi : (xi + u(xi, yi), yi + v(xi, yi))

(A.9)

Since transformed pixels do not necessarily fall in integer coordinates, we will need

to perform interpolation on the grid. Thus, we find 16 nearest qis to each integer

position, calculate weights aij according to Bicubic Interpolation to get,

g(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj (A.10)

It is worthwhile to mention in most scenarios, the warped image g will include a

region of NaN values, especially near the boundary that lie outside of the new grid.

However, other stages of the algorithm cannot deal with such region. Therefore,

they need to be detected and replaced with zero. If we happen to have the target

image as well, it would be possible to replace the same region from the target image,

rather than zeros.
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A.3 Warping the flow

In chapter 4, a step in the proposed method, MB-CLG, was briefly described

and referred to as warping the flow. In other words, given wi = (ui, vi) that results

in motion blur, and wt = (ut, vt) that warps source image onto target image, the

task is to warp wi according to wt, denoted as

wf = Ψwt(wi) (A.11)

In general, a flow field can be thought of a set of linked scene points on

image fi where the first set of points are the regular M × N grid of pixels, i.e.

Wi = {(pi,qi)|pi ∈ N2,qi ∈ R2}. When we warp a flow onto another image fj , the

set of linked points should ideally be identical, i.e. the same scene points are linked

by wf in image fj . The set of linked points by wi, therefore, must be separately

warped by wt and be linked again. Let p(x, y) denote the coordinates of the first

point in the paired linked points, and let q(x, y) the coordinates of the second point.

Therefore,

wt(x, y) = q(x, y)− p(x, y) (A.12)

is another expression for the flow field aligning source and target images. Now we

proceed by defining

p′(x, y) = p(x, y) + wt(p(x, y))

q′(x, y) = q(x, y) + wt(q(x, y))

(A.13)

as projected coordinates, respectively for the first and the second points in the linked

set. However, q(x, y) are not necessarily integer coordinates. Therefore, one should

perform interpolation to get values for wt(q(x, y)). Although a nearest neighbor

sounds to be sufficient, we use Bilinear interpolation. Now we can define a new

set of linked points: Wf = {(p′i,q′i)|p′i,q′i ∈ R2}. This new set describes the same

linked scene points, but transformed onto the coordinates of fj . Hence, it is the

same warp wi, warped by wt. Furthermore, p′i are not necessarily integers in the

76



expression for Wf . A practical flow field was defined to be: w : N2 → R2. Therefore,

we need to perform another interpolation on the non-uniform grid of p′i positions.

We employ a Bicubic interpolation on Wf to fill in the grid pi, with interpolated

values q′′i . In particular, we use scatteredInterpolant() function in MATLAB

implementation of MB-CLG. After non-uniform interpolation, the set of new linked

points can be expressed as W′
f = {(pi,q

′′
i }. With our regular notation, this flow

field is represented as,

w′f = q′′(x, y)− pi(x, y) (A.14)

where pi(x, y) = (x, y) is the regular grid of pixels.

Warping a flow is particularly important in applying blur functions of the

source image to the target image. Based on the blur model described in Chapter 3, a

blur functions can be uniquely expressed in terms of the underlying flow field. These

blur functions, when transformed onto the coordinates of another image, must still

produce exact the same blurring artifacts on the target image. Therefore, we warp

the underlying flow fields, and generate new blur functions based on them.
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