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Learning Support Correlation Filters
for Visual Tracking

Wangmeng Zuo, Xiaohe Wu, Liang Lin, Lei Zhang, and Ming-Hsuan Yang

Abstract—Sampling and budgeting training examples are two
essential factors in tracking algorithms based on support vector
machines (SVMs) as a tradeoff between accuracy and efficiency.
Recently, the circulant matrix formed by dense sampling of
translated image patches has been utilized in correlation filters
for fast tracking. In this paper, we derive an equivalent formu-
lation of a SVM model with circulant matrix expression and
present an efficient alternating optimization method for visual
tracking. We incorporate the discrete Fourier transform with the
proposed alternating optimization process, and pose the tracking
problem as an iterative learning of support correlation filters
(SCFs) which find the global optimal solution with real-time
performance. For a given circulant data matrix with n2 samples
of size n × n, the computational complexity of the proposed
algorithm is O(n2 logn) whereas that of the standard SVM-
based approaches is at least O(n4). In addition, we extend
the SCF-based tracking algorithm with multi-channel features,
kernel functions, and scale-adaptive approaches to further im-
prove the tracking performance. Experimental results on a large
benchmark dataset show that the proposed SCF-based algorithms
perform favorably against the state-of-the-art tracking methods
in terms of accuracy and speed.

I. INTRODUCTION

ROBUST visual tracking is a challenging problem due to
the large changes of object appearance caused by pose,

illumination, deformation, occlusion, distractors, as well as
background clutters. Among the state-of-the-art methods, dis-
criminative classifiers with model update and dense sampling
have been demonstrated to perform well in visual tracking.
On the other hand, correlation filters have been shown to be
efficient for locating objects with the use of circulant matrix
and fast Fourier transform. Central to the advances in visual
tracking are the development of effective appearance models
and efficient sampling schemes.

Discriminative appearance models have been extensively
studied in visual tracking and have achieved the state-of-
the-art results. One representative discriminative appearance
model is based on support vector machines (SVMs) [1], [2],
[3], [4]. To learn classifiers for detecting objects within local
regions, SVM-based tracking approaches are developed based
on two modules: a sampler to generate a set of positive and
negative samples and a learner to update the classifier using
the training samples. To reduce the computational load, SVM-
based trackers usually only use a limited set of samples [3],
[4]. As kernel SVM-based tracking methods are susceptible to
the curse of kernelization, a budget mechanism is introduced
for online learning of the structural SVM tracker [3] to restrict
the number of support vectors, or an explicit feature mapping
function is used to approximate the intersection kernel [4].

While sampling and budgeting may improve tracking effi-
ciency at the expense of accuracy, most SVM-based trackers
[2], [3], [4] do not run in real-time.

Correlation filters (CFs) [5], [6], [7], [8] have recently been
utilized for efficient visual tracking. The data matrix formed
by dense sampling of base sample has circulant structures,
which facilitates the use of the discrete Fourier transform
(DFT) for efficient and effective visual tracking [5], [6], [7],
[8]. However, ridge regression or kernel ridge regression are
generally adopted as the predictors in these trackers. Henriques
et al. [9] apply the circulant property for training of support
vector regression efficiently to detect pedestrians. The problem
on how to exploit the circulant property to accelerate SVM-
based trackers remains unaddressed.

In this paper, we propose a novel SVM-based algorithm
via support correlation filters (SCFs) for efficient and accu-
rate visual tracking. Different from the existing SVM-based
trackers, the proposed algorithm based on SCFs deals with the
sampling and budgeting issues by using the data matrix formed
by dense sampling. By exploiting the circulant property, we
formulate the proposed SVM-based tracker as a learning
problem for support correlation filters and propose an efficient
algorithm. By incorporating the discrete Fourier transform in
an alternating optimization process, the SVM classifier can be
efficiently updated by iterative learning of correlation filters.
For an n×n image, there are n2 training sample images of the
same size in the circulant data matrix and the computational
complexity of the proposed algorithm is O(n2 log n) whereas
that of the standard SVM-based approaches is at least O(n4).
Furthermore, we extend the proposed SCF-based algorithm
to multi-channel SCF (MSCF), kernelized SCF (KSCF), and
scale-adaptive KSCF (SKSCF) methods to improve the track-
ing performance.

We evaluate the proposed SCF-based algorithms on a large
benchmark dataset with comparison to the state-of-the-art
methods [10] and analyze the tracking results. First, with
the discriminative strength of SVMs, the proposed KSCF
method performs favorably against the existing regression-
based correlation filter trackers. Second, by exploiting the
circulant structure of training samples, the proposed KSCF
algorithm performs well compared with the existing SVM-
based trackers [3], [4] in terms of efficiency and accuracy.
Third, the proposed KSCF and SKSCF algorithms outperform
the state-of-the-art methods including the ensemble and scale-
adaptive tracking methods [4], [11], [12].
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II. RELATED WORK AND PROBLEM CONTEXT

Visual tracking has long been an active research topic in
computer vision which involves developments of both learning
methods (e.g., feature learning and selection, online learning
and ensemble models) and application domains (e.g., auto-
navigation, visual surveillance and human-computer interac-
tions). Several surveys and performance evaluation on state-
of-the-art tracking algorithms [13], [14], [10], [15] have been
reported in the literature, and in this section we discuss the
most relevant methods to this work.

A. Appearance models for visual tracking

Appearance models play an important role in visual tracking
which can be broadly categorized as generative or discrim-
inative. Generative appearance methods based on holistic
templates [16], subspace representations [17], [18], [19], and
sparse representations [20], [21], [22] have been developed for
object representations. Discriminative appearance methods are
usually based on features learned from a large set of examples
with effective classifiers. Visual tracking is posed as a task to
distinguish the target objects from the backgrounds. Tracking
methods based on discriminative appearance models have been
shown to achieve the state-of-the-art results [10].

Discriminative tracking methods are usually based on object
detection within local search using classifiers such as boosting
methods [23], [24], [25], [26], [27], random forests [28], [29],
and SVMs [1], [2], [3]. Among these classifiers, boosting
methods [23], [24], [25], [26], [27] and random forests [28],
[29] are ensemble learning methods where sampling from
large sets of features is indispensable, and that makes it
difficult to adapt correlation filters in these approaches. In
this work, we exploit the discriminative strength of SVMs and
efficiency of correlation filters for visual tracking.

Label ambiguity has also been studied for visual tracking,
e.g., semi-supervised [26], [27], [30] and multiple instance
[23], [24] learning methods. Considering that classification
based methods are trained to predict the class label rather than
the object location, Hare et al. [3] propose a tracker based on
structured SVM. In this work, we alleviate the label ambiguity
problem by using the assignment scheme in a way similar to
that for object detection and tracking [31], [25], [32].

B. Correlation filters for tracking

A correlation filter uses a designed template to generate
strong response to a region that is similar to the target object
while suppressing responses to distractors. Correlation filters
have been widely applied to numerous problems such as face
recognition [33], [34], object detection [35], [9], [36], object
alignment [37] and action recognition [38], [39]. A number of
correlation filters have been proposed in the literature includ-
ing the minimum average correlation energy (MACF) [36],
optimal trade-off synthetic discriminant filter (OTSDF) [40],
unconstrained minimum average correlation energy (UMACE)
[34], and minimum output sum of squared error (MOSSE) [5]
methods.

Recently, the max-margin CF (MMCF) [41], multi-channel
CF [11], [42], [43], [6], and kernelized CF [6], [7], [44] meth-
ods have been developed for object detection and tracking.
The MMCF [41] scheme combines the localization properties
of correlation filters with good generalization performance of
SVM. The multi-channel correlation filters [11], [42], [43], [6]
are designed to use more effective features, e.g., histogram of
oriented gradients (HOG). In addition, a method that combines
MMCF and multi-channel CF is developed [45] for object
detection and landmark localization. The kernel tricks are also
employed to learn kernelized synthetic discriminant functions
(SDF)[44] with correlation filters. We note that the MMCF
[45], [41] and kernelized SDF [44] schemes are trained off-line
with high computational load, and do not exploit the circulant
structure of data matrix formed by translated images of target
objects.

In visual tracking, Bolme et al. [5] propose the MOSSE
method to learn adaptive correlation filters with high efficiency
and competitive performance. Subsequently, the kernelized
correlation filter (KCF) [6] is developed by exploiting the
circulant property of the kernel matrix. Extensions of CF and
KCF with multi-channel features are introduced for visual
tracking [11], [42], [43], [6]. Within the tracking methods
based on correlation filters, numerous issues such as adaptive
scale estimation [11], [12], [8], limited boundaries [46], zero-
aliasing [47], tracking failure [48], and partial occlusion [49]
have been addressed.

We note existing CF-based tracking methods are developed
with ridge regression schemes for locating the target. On the
other hand, the SVM-based tracking methods, e.g., Struck [3]
and MEEM [4], have been demonstrated to achieve the state-
of-the-art performance. One straightforward extension is to
integrate SVM-based trackers with the MMCF method[41].
Nevertheless, the MMCF scheme is computationally pro-
hibitive for real-time applications. In this work, we develop
novel discriminative tracking algorithms based on SVMs and
correlation filters that perform efficiently and effectively.

III. SUPPORT CORRELATION FILTERING

We first present the problem formulation and propose an
alternating optimization algorithm to learn support correla-
tion filters efficiently. We then develop the MSCF, KSCF
and SKSCF methods to learn multi-channel, nonlinear and
scale-adaptive correlation filters respectively for robust visual
tracking.

A. Problem formulation

Given an image x, the full set of its translated versions
forms a circulant matrix X with several interesting properties
[50], where each row represents one possible observation of
a target object (See Fig. 1). A circulant matrix consists of all
possible cyclic translations of a target image, and tracking is
formulated as determining the most likely row. In general, the
eigenvectors of a circulant matrix X are the base vectors F
of the discrete Fourier transform:

X = FHDiag(x̂)F, (1)
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Fig. 1. Illustration of the proposed SCF learning algorithm at the t-th frame. The proposed algorithm iterates between updating e and updating SVM classifier
{w, b} until convergence. In each iteration, only one DFT and one IDFT are required, which make the proposed algorithm computationally efficient. The
black blocks in e denote support vectors, and our algorithm can adaptively find and exploit difficult samples (i.e., support vectors) to learn support correlation
filters.

where FH is the Hermitian transpose of F and x̂ = F(x)
denotes the Fourier transform of x. In the following, we use
Diag(·) to form a diagonal matrix from a vector, and use
diag(·) to return the diagonal vector of a matrix.

Our goal is to learn a support correlation filter w and a bias
b, to classify any translated image xi by

yi = sgn
(
w>xi + b

)
. (2)

Note that all the translated images xi form a circulant matrix
X. We can classify all the samples in X by

y = sgn
(
F−1(x̂∗ ◦ ŵ) + b

)
, (3)

where F−1(·) denotes the inverse discrete Fourier transform
(IDFT), and x̂∗ denotes the complex conjugate of x̂. Given
the circulant matrix X generated by an n × n image x, the
computational complexity of classifying every xi by (2) is
O(n4), while that of classifying all samples of X by (3) is
O(n2 log n).

Given the training set of a circulant matrix X =
[x1; x2; . . . ; xn2 ] with the corresponding class labels y =
[y1, y2, . . . , yn2 ]>, we use the squared hinge loss and define
the SVM model [51] as follows:

min
w,b
‖w‖2 + C

∑
i

ξ2i

s.t. yi(w>xi + b) ≥ 1− ξi, ∀i

where ξ = [ξ1, ξ2, . . . , ξi . . . , ξn2 ] is the vector of slack
variables.

Based on the circulant property of X, the SVM model can
be equivalently formulated as:

min
w,b
‖w‖2 + C‖ξ‖22

s.t. y ◦ (F−1(x̂∗ ◦ ŵ) + b1)) ≥ 1− ξ.
(4)

where ◦ denotes the element-wise multiplication, and 1 de-
notes a vector of 1s.

Class labels of the translated images. Let p∗ denote the
centre position of the object of interest x∗, and pi as the
position of the translated image xi. In object detection [31],
[32], the overlap function s(p∗,pi) is used to measure the

similarity between x∗ and xi. Specifically, the positive samples
are defined by all ground truth object windows and the
negative samples are defined by those with s(p∗,pi) below
a lower overlap threshold. In the proposed discriminative
tracking model, we need to set upper and lower thresholds
of s(p∗,pi) for assigning binary labels. In Section IV, we
determine the optimal upper and lower thresholds for SCF,
MSCF and KSCF respectively with experiments.

In this work, we use the following confidence map of object
position [8] to define the class label:

m(pi) = γ exp
(
−α‖pi − p∗‖β

)
,

where γ is a normalization constant, α and β are the scale
and shape parameters, respectively. With the confidence map,
we define the class labels as follows:

yi =

 1, if m(pi, p
∗) ≥ θu

−1, if m(pi, p
∗) ≤ θl

0, otherwise
, (5)

where θl and θu are the lower and upper thresholds, respec-
tively. With this formulation, we can use the circulant matrix
formed by all samples to improve training efficiency, and
discard any samples that are not labeled.

Comparisons with existing CF-based trackers. As illus-
trated in Fig. 2(a), existing CF-based trackers generally follow
the ridge regression models. That is, with the continuous con-
fidence map m, CF-based trackers seek the optimal correlation
filter by minimizing the mean squared error (MSE) between
the predefined confidence map and actual output,

min
w

λ‖w‖2 + ‖Xw −m‖22, (6)

which has the closed form solution,

ŵ =
x̂∗ ◦ m̂

x̂∗ ◦ x̂ + λ
. (7)

As shown in Fig. 2(b), the proposed model aims to learn
a max-margin SVM classifier {w, b} to distinguish the object
of interest from the background. Using the label assignment
scheme in (5), we can discard uncertain samples in training
to alleviate the label ambiguity problem. The importance of
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Fig. 2. Differences between the proposed SCF model and existing CF
approaches [5], [7], [8]. (a) Existing CF-based models are designed to learn
correlation filters that make the actual output being close to the predefined
confidence maps. (b) The SCF model aims to learn a support correlation filter
together with the bias b for distinguishing a target object from the background
based on the max margin principle. The peak value in the right response map
of (b) locates the target object well.

SVM and label ambiguity issues have been demonstrated in
object detection [31]. The proposed model copes with both
issues (classification and label ambiguity) for effective visual
tracking.

B. Alternating optimization

In this section, we reformulate the model in (3) and propose
an alternating optimization algorithm to learn SCFs efficiently.
To exploit the property of the circulant matrix for learning
SCFs, we let ξ = e + 1 − y ◦ (F−1(x̂∗ ◦ ŵ) + b1), and the
SVM model in (4) is then reformulated as:

min
w,b,e

‖w‖2 + C||
(
y ◦ (F−1(x̂∗ ◦ ŵ) + b1)− 1− e

)
||2

s.t. e ≥ 0.
(8)

With this formulation, the subproblem on e has a closed
form solution when {w, b} is known, and the subproblem on
{w, b} has a closed form solution when e is known. Thus the
above model can be efficiently solved using the alternating
optimization algorithm by iterating between the following two
steps:

Updating e. Given {w, b}, we let e0 = y ◦ (F−1(x̂∗ ◦ ŵ) +
b1)− 1, and the subproblem on e becomes:

min
e
‖e− e0‖2, s.t. e ≥ 0.

The e subproblem has the closed form solution:

e = max{e0, 0}. (9)

Updating {w, b}. Given e, we let q = y + y ◦ e, and the
subproblem on {w, b} becomes:

min
w,b
‖w‖2 + C||

(
F−1(x̂∗ ◦ ŵ) + b1− q

)
||2.

The subproblem with {w, b} is a quadratic programming
problem. One feasible solution is to let u = [w; b] and derive
the closed form solution on u. However, this approach fails to

Algorithm 1 SCF model training
Input: Training image patch xt (n× n) class labels

yt (n× n)
Output: (ŵ, b).
1: Initialize ŵ0, b0, k = 1.
2: while not converged do
3: // Lines 4-5 : updating ek.
4: d = yt ◦

(
F−1 (x̂∗t ◦ ŵk−1) + b1

)
− 1,

5: ek = max (0,d),
6: // Lines 7-9 : updating qk, bk, pk.
7: qk = yt + yt ◦ ek,
8: bk = mean(qk),
9: pk = qk − bk1,

10: // Line 11 : updating wk.
11: ŵk =

x̂∗
t ◦p̂k

x̂∗
t ◦x̂t+1/C .

12: k ← k + 1
13: end while

exploit the circulant property of X. Thus, we obtain {w, b}
by solving the following system of equations:

ŵ =
x̂∗ ◦ (q̂− b1̂)

x̂∗ ◦ x̂ + 1/C
, (10)

b = 1>(q−F−1(x̂∗ ◦ ŵ)), (11)

where q = y +y ◦e. Combining the two equations above and
with the property of DFT, we have

b = q̄, (12)

where q̄ is the mean of q. Given b, we use (10) to obtain the
closed form solution to w.

As illustrated in Fig. 1, when the t-th frame xt with
class labels yt arrives, the proposed algorithm learns support
correlation filters by iterating between updating e and updating
{w, b} until convergence. Given {xt, yt, w, b}, the update of
e can be computed element-wise, which has the complexity
of O(n2). Given {xt, yt, e}, the complexity of updating
b is O(n2) and that of updating w is O(n2 log n). Thus,
the complexity is O(n2 log n) per iteration which makes our
algorithm efficient in learning support correlation filters. The
main steps of the proposed learning algorithm for support
correlation filters are summarized in Algorithm 1.

Convergence. The proposed algorithm converges to the global
optimum with the q-linear convergence rate. For presentation
clarity, we give the detailed analysis and proof on its opti-
mality condition, global convergence, and convergence rate in
Appendix A. Based on the optimality condition, we define

r1
.
= w + CF−1(x̂ ◦ x̂∗ ◦ ŵ − r̂),

r2(i)
.
= ei+1−(y ◦ (F−1(x̂∗ ◦ ŵ) + b))i, if ei > 0

r3(i)
.
= (y ◦ (F−1(x̂∗ ◦ ŵ) + b))i − 1, if ei = 0

and adopt the following stopping criterion:

max{‖r1‖∞,max
ei>0
{‖r1(i)‖},max

ei=0
{r3(i)}} ≤ ε. (13)

Comparisons with MMCF [41]. The proposed SCF model
and learning algorithm are different from the MMCF approach
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in three aspects. First, the training samples for MMCF are N
images of n×n pixels, while those for SCF are n2 translated
images of n×n pixels. We exploit the circulant property of the
data matrix X to develop an efficient learning algorithm. Sec-
ond, we propose an alternating optimization algorithm to solve
the proposed model, which has the complexity of O(n2 log n).
In contrast, the MMCF method adopts the conventional SMO
algorithm with the complexity of O(N2d) where d is the
dimension of the sample. For visual tracking considered in this
work, we have N = n2 and d = n2, and the complexity of
MMCF is O(n6), which is computationally expensive for real-
time applications. Third, the proposed model has the squared
hinge loss and regularizer terms, while the MMCF method
adopts the hinge loss and includes an extra average correlation
energy term.

C. Multi-channel SCF

Different local descriptors, e.g., color attributes, HOG, and
SIFT [52], [42], [53], provide rich image features for effective
visual tracking. We treat local descriptors as multi-channel
images where multiple measurements are associated to each
pixel. To exploit multi-dimensional features, we propose the
multi-channel SCF as follows:

min
w,b
‖w‖2 + C‖ξ‖22

s.t. y ◦ (F−1(

L∑
l=1

(x̂l)
∗ ◦ ŵl) + b1) ≥ 1− ξ

(14)

where L is the number of channels, and xl and wl denote the
l-th channel of the image and correlation filter, respectively. To
learn the proposed MSCF model, we adopt the same equations
on updating e and b, and compute w by solving the following
problem:

min
w

L∑
l=1

‖ŵl‖2 + C‖
L∑
l=1

(x̂l)
∗ ◦ ŵl − r̂‖2,

where ŵ = [ŵ1; ŵ2, . . . , ŵL], and r̂ = q̂− b1̂.
Let X̂ = [Diag(x̂1) Diag(x̂2) . . . Diag(x̂L)]. The closed

form solution for ŵ can be directly obtained by

ŵ = (X̂HX̂ +
1

C
I)−1X̂H r̂. (15)

where I is the identity matrix. Note that X̂ is an n2 × Ln2
matrix. It is not practical to compute the inverse of X̂HX̂ to
update ŵ. In the multi-channel correlation filters, it is noted
that X̂ has the diagonal block structure, and the j-th element
of r̂ depends only on ŵ(j) = [ŵ1(j); ŵ2(j); . . . ; ŵL(j)] and
x̂(j) = [x̂1(j); x̂2(j); . . . ; x̂L(j)]. Thus, the subproblem on ŵ
can be further decomposed into n2 systems of equations:(

x̂(j)x̂(j)H +
1

C
I

)
ŵ(j) = x̂(j)r̂(j). (16)

In [43], Galoogahi et al. solve these n2 systems of equations
by an algorithm with the complexity of O(n2L3 +Ln2 log n).
We note that the matrix on the left hand of (16) is a rank-one

matrix and a scaled identity matrix. Based on the Sherman-
Morrison formula [54], we have(

x̂(j)x̂(j)H +
1

C
I

)−1
=C

(
I− Cx̂(j)x̂(j)H

1 + Cx̂(j)H x̂(j)

)
.

The closed form solution for ŵ(j) is then obtained by

ŵ(j) =
Cx̂(j)r̂(j)

1 + Cx̂(j)H x̂(j)
. (17)

It should be noted that all x̂ls can be pre-computed with the
complexity of O(n2 log n). As such, the proposed algorithm
only involves one DFT, one IDFT and several element-wise
operations per iteration, and the complexity is O(n2 log n).

D. Kernelized SCF

Given the kernel function K(x,x′) = 〈ψ(x), ψ(x′)〉, the
proposed kernelized SCF model can be extended to learn the
nonlinear decision function:

f(x) = w>ψ(x) + b =
∑
i

αiK(x,xi) + b,

where ψ(x) stands for the nonlinear feature mapping im-
plicitly determined by the kernel function K(x,x′), and
α = [α1, α2, . . . , αn2 ]> is the coefficient vector to be learned.

Denote by K the kernel matrix with Kij = K(xi,xj). As
noted in [7], for some kernel functions (e.g., Gaussian RBF
and polynomial) which are permutation invariant, the kernel
matrix K is circulant. Let kxx be the first row of the circulant
matrix K. Therefore, the matrix-vector multiplication Kα can
be efficiently computed via DFT:

Kα = F−1(k̂xx ◦ α̂), (18)

and we have,

‖w‖2 = α>Kα = α>F−1(k̂xx ◦ α̂). (19)

Based on (18) and (19), the proposed kernelized SCF model
is formulated as

min
α,b

α>F−1(k̂xx ◦ α̂)

+ C(y ◦ (F−1(k̂xx ◦ α̂) + b1)− 1− e)2

s.t. e ≥ 0.

(20)

To learn KSCF, we use the alternating optimization method
by iteratively solving e and {w, b}. The solution of the
subproblem with e is similar to that in the SCF model, and
we update b and w using the closed form solution of kernel
ridge regression. Based on the representation theorem [55],
the optimal solution w in the kernel space can be expressed
as the linear combination of the feature maps of the samples:
w∗ =

∑
i

α∗iϕ (xi). Namely, only the coefficient vector α

needs to be learned. In [55], the solution to the kernelized
ridge regression in the dual space is given by

α = (K + λI)
−1

y.

Thus, the closed form solution to our sub-problem on α can
be formulated as

α = (K + λI)
−1

(q− b1),
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TABLE I
RESULTS OF MSCF AND DCF WITH DIFFERENT FEATURE REPRESENTATIONS.

Algorithms MSCF DCF [6]
Features Raw pixels CN HOG HOG + CN Raw pixels CN HOG HOG + CN

Mean DP (%) 64.9 66.3 78.4 80.6 44.4 48.0 71.9 76.2
Mean AUC (%) 44.6 44.9 53.7 55.5 31.2 34.8 50.1 53.2
Mean FPS (s) 76 62 64 54 278 210 292 151

TABLE II
RESULTS OF KSCF AND KCF WITH DIFFERENT FEATURE REPRESENTATIONS.

Algorithms KSCF KCF [6]
Features Raw pixels CN HOG HOG + CN Raw pixels CN HOG HOG + CN

Mean DP (%) 64.4 68.1 79.3 85.0 55.3 57.3 73.2 75.8
Mean AUC (%) 45.3 46.9 53.2 57.5 40.0 41.8 50.7 53.0
Mean FPS (s) 40 37 44 35 154 120 172 102

where q = y + y ◦ e and 1 denotes a vector of 1s. As
the kernel matrix K is circulant and can be diagonalized, the
optimal solution of α in the Fourier transform domain can be
computed by

α̂∗ =
t̂

k̂xx + 1/C
, (21)

where t̂ = ŷ + ŷ ◦ ê− b1̂, kxx is the kernel correlation of x
with itself in the Fourier domain which is known as the kernel
auto-correlation.

For image features with L channels, the complexity to
compute kernel matrix is O(Ln2 log n). After that, the learning
process only requires element-wise operations, one DFT and
one IDFT per iteration, and the complexity is O(n2 log n).
Thus, the proposed KCSF model leverages rich features from
the nonlinear filters without increasing computational load
significantly.

Furthermore, to handle large scale changes, we develop
the SKSCF model by maintaining a scaling pool in a way
similar to the scale-adaptive CF scheme [12], and the bilinear
interpolation is used to resize samples across scales.

IV. PERFORMANCE EVALUATION

We use the benchmark dataset and protocols [10] to evalu-
ate the proposed SCF algorithms. First, we evaluate several
variants of the proposed method, i.e., SCF, MSCF, KSCF,
and SKSCF, to analyze the effect of feature representations
and kernel functions. Next, comprehensive experiments are
conducted to compare the proposed methods with other CF-
based trackers. Finally, the KSCF and SKSCF algorithms are
compared with existing SVM-based and the state-of-the-art
methods. The tracking results can be found at http://faculty.
ucmerced.edu/project/scf/ and the source code will be made
available to the public.

A. Experimental setup

Datasets and evaluated tracking methods. To assess the
performance of the proposed methods, experiments are carried
out on a benchmark dataset [10] of 50 challenging image
sequences annotated with 11 attributes. For the first frame of

each sequence, the bounding box of the target object is pro-
vided for fair comparisons. For comprehensive comparisons,
we evaluate the baseline SCF, multi-channel SCF, kernelized
SCF and SKSCF methods. The SCF and MSCF methods
are designed in the linear space with raw pixels, and multi-
channel features are based on HOG [52] as well as color names
(CN) [42], respectively. The KSCF and SKSCF algorithms are
evaluated by using the Gaussian kernel on multi-channel fea-
ture representations. Furthermore, we compare the proposed
trackers with the other trackers based on correlation filters
(e.g., MOSSE [5], CSK [7], KCF [6], DCF [6], STC [8] and
CN [42]), existing SVM based trackers (e.g., Struck [3] and
MEEM [4]), and other state-of-the-art methods (e.g., TGPR
[56], SCM [16], TLD [27], L1APG [57], MIL [23], ASLA
[20] and CT [58]).

Evaluation protocols. We use the one-pass evaluation (OPE)
protocol [10] which reports the precision and success plots
based on the position error and bounding box overlap metrics
with respect to the ground truth object locations. For precision
plots, the distance precision at a threshold of 20 pixels (DP) is
reported. For success plots, the area under the curve (AUC) is
computed. In addition, the frames per second (FPS) that each
method is able to process is discussed.

Parameter settings. The experiments are carried out on a
desktop computer with an Intel Xenon 2 core 3.30 GHz CPU
and 32 GB RAM. The proposed SCF-based trackers involve
a few model parameters, i.e., trade-off parameter C, scale
parameter α and shape parameter β of confidence maps, and
lower and upper thresholds (θl, θu) in (5). In addition, the
KSCF method has one extra parameter σ for the Gaussian
RBF kernel function, and SKSCF contains a scaling pool
parameter s. For online tracking, the model is updated by
linear interpolation with the adaption rate ρ [10].

In all experiments, the model parameters are fixed for each
SCF-based tracker. For all SCF-based trackers, the trade-off
C and shape parameter β are fixed to 104 and 2, respectively.
The thresholds (θl, θu) in (5) are set to (0.3, 0.7) for SCF,
(0.4, 0.9) for MSCF and (0.5, 0.7) for KSCF, SKSCF. The
scale parameter α is set to be 50/(mn), which is adaptive to
the size m×n of each target object. The scaling pool s is fixed

http://faculty.ucmerced.edu/project/scf/
http://faculty.ucmerced.edu/project/scf/
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TABLE III
RESULTS OF KSCF WITH DIFFERENT KERNELS.

Kernels Linear Polynomial Gaussian
Mean DP (%) 82.0 84.2 85.0

Mean AUC (%) 56.2 57.1 57.5
Mean FPS (s) 94 55 35

as [0.985, 0.990, 0.995, 1, 1.005, 1.010, 1.015]. The adaption
rate ρ is set to 0.075 for raw pixel features, and 0.02 for
multi-channel features, respectively. The kernel parameter σ of
KSCF is set to 0.2. As for HOG parameters, the orientations
and cell size are set to 9 and 4.

B. Evaluation on SCF-based trackers

In this section, we first evaluate the effect of feature repre-
sentations and kernel functions, and then compare four variants
of the SCF-based trackers, i.e., SCF, MSCF, KSCF, and
SKSCF, in terms of both accuracy and efficiency. The results
of the corresponding CF-based trackers are also reported for
all SCF-based methods.
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Fig. 3. OPE plots of the MSCF and DCF [6] with different feature
representations. the AUC values are shown next to the legends.

We consider three typical feature representations, i.e., raw
pixels, HOG features [52], and color names (CN) [42]. The re-
sults of the MSCF and KSCF methods are listed in Table I and
Table II. The result for each feature representation is optimal
by varying the parameters β, ρ, θl and θu from [0.5, 1, 1.5, 2],
[0.02, 0.04, 0.075], [0.7, 0.8, 0.9] and [0.3, 0.4, 0.5]. These pa-
rameters are then fixed for all the following experiments. For
KSCF, the Gaussian RBF kernel with σ=0.2 is adopted.

The OPE plots of MSCF with linear DCF [6] and KSCF
with nonlinear KCF [6] are shown in Fig. 3 and Fig. 4.
Compared with raw pixels and color features, the method
with HOG representation significantly improves the tracking
performance in terms of mean DP and mean AUC. For MSCF,
the implementation using color names and HOG features
outperforms raw pixels by 1.4% and 13.5% in terms of mean
DP. For KSCF, the tracker using color names and HOG
features outperforms raw pixels by 3.7% and 14.9% in terms
of mean DP.

The MSCF tracker with the combination of color names
and HOG is further improved to 80.6% in terms of DP.
Similarly, the performance of the KSCF method is improved
to 85.0% in terms of DP with the use of color names and HOG
features. Compared with the DCF [6] and KCF [6] methods,
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Fig. 4. OPE plots of the KSCF and KCF [6] methods with different feature
representations.
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Fig. 5. OPE plots of the SCF methods (i.e., SCF, MSCF, KSCF, and SKSCF)
and other CF-based trackers (i.e., MOSSE [5], CSK [7], DCF [6], KCF [6],
STC [8], CN [42], DSST [11] and SAMF [12]).

the proposed MSCF and KSCF algorithms achieve higher DP
and AUC values for each feature representation. Table I and II
show that both KSCF and MSCF methods perform in real-time
even using the representation based on HOG and CN features.
We evaluate the effect of kernel functions on KSCF using

HOG and CN features, including linear kernel K l(xi,xj) =
x>i xj , polynomial kernel Kp(xi,xj) = (x>i xj + 1)d , and
Gaussian RBF kernel Kg(xi,xj) = exp(− 1

2σ2 ‖xi − xj‖2).
For Kp(xi,xj), the degree d is set as 2. For Kg(xi,xj), the
kernel parameter σ is set as 0.2. Table III shows the results of
KSCF with different kernels. Clearly the KSCF method with
a nonlinear kernel outperforms the one with a linear kernel in
terms of mean DP and mean AUC, and the one with Gaussian
RBF kernel achieves the best performance.

We implement the SKSCF method by extending KSCF
with the Gaussian RBF kernel, and compare four variants
of the SCF-based trackers, i.e., SCF, MSCF, KSCF, and
SKSCF. Table IV shows the results of four SCF-based trackers,
where the SKSCF method performs best, followed by the
KSCF approach. On the other hand, the KSCF method is
more efficient than the SKSCF approach. In the following
experiments, we compare both KSCF and SKSCF methods
with the other schemes based on correlation filters, SVMs,
and other state-of-the-art tracking approaches.

C. Comparisons with CF-based trackers

We use the tracking benchmark dataset [10] to evaluate
the proposed SCF-based algorithm against existing CF-based
methods including MOSSE [5], CSK [7], KCF [6], DCF [6],
STC [8], CN [42], DSST [11] and SAMF [12].
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TABLE IV
PERFORMANCE OF TRACKING METHODS BASED ON CORRELATION FILTERS: TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND ORANGE.

Algorithms SKSCF KSCF MSCF SCF SAMF
[12]

DSST
[11]

KCF
[6]

DCF
[6]

CN
[42]

STC
[8]

CSK
[7]

MOSSE
[5]

Mean DP (%) 87.4 85.0 80.6 62.8 77.1 74.8 73.2 71.9 63.7 58.6 55.8 44.4
Mean AUC (%) 62.3 57.5 55.5 48.9 56.5 56.3 50.7 50.1 44.9 37.4 40.6 31.3
Mean FPS (s) 8 35 54 76 14 30 172 292 79 557 151 421
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Fig. 6. Screenshots of tracking results on 8 challenging benchmark sequences. For the sake of clarity, we only show the results of five trackers, i.e., KSCF,
KCF [6], MEEM [4], TGPR [56], Struck [3] and SCM [16].

TABLE V
COMPARISON OF SVM-BASED TRACKERS.

Algorithms SKSCF KSCF MEEM
[4]

Struck
[3]

Mean DP (%) 87.4 85.0 83.3 67.4
Mean AUC (%) 62.3 57.5 57.2 48.6
Mean FPS (s) 8 35 10 10

Classic correlation filters. Fig. 5 shows the OPE plots of
these trackers. The SCF, MOSSE [5], CSK [7] and STC [8]
methods operate on raw pixels in the linear space. We note that
the MOSSE method adopts the ridge regression function while
the SCF algorithm uses the max-margin model. Although the
CSK and STC methods operate on raw pixels, the CSK method
is a kernelized CF-based tracker and the STC approach is a
scale-adaptive tracking method. Overall, the SCF algorithm
performs favorably against these CF-based methods based on
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Fig. 7. OPE plots of the KSCF, SKSCF, DSST [11] and SAMF [12] methods
on sequences with large scale variation.

regression and nonlinear functions.

Multi-channel correlation filters. The MSCF, CN [42], and
DCF [6] methods are based on correlation filters using multi-
channel features. The DCF method is based on HOG features
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TABLE VI
COMPARISON OF KSCF AND SKSCF METHODS WITH THE STATE-OF-THE-ART TRACKERS. THE TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND

ORANGE.

Algorithms SKSCF KSCF MEEM
[4]

KCF
[6]

TGPR
[56]

SCM
[16]

TLD
[27]

ASLA
[20]

L1APG
[57]

MIL
[23]

CT
[58]

Mean DP (%) 87.4 85.0 83.3 73.2 71.8 65.2 60.6 54.5 49.4 48.8 41.5
Mean AUC (%) 62.3 57.5 57.2 50.7 51.1 50.1 43.4 44.2 38.6 36.9 30.8
Mean FPS (s) 8 35 10 172 0.5 1 22 8 3 28 39
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Fig. 8. OPE plots of the KSCF, SKSCF and other SVM-based trackers,
including MEEM [4] and Struck [3].

and the CN approach is operated on color attributes, while
the MSCF scheme uses the combination of HOG and color
representations. Fig. 5 shows that the MSCF method performs
well among these three trackers based on correlation filters.

Kernelized correlation filters. The KSCF method is com-
pared with the corresponding kernelized KCF [6] and CSK
[7] trackers. The CSK and KCF methods are based on raw
pixels and HOG features, respectively. As shown in Table IV
and Fig. 6, the KSCF method based on HOG and CN features
performs favorably against the KCF and CSK appraoches.
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Fig. 9. Precision and success metrics of four top-performing trackers for the
11 attributes.

Scale-adaptive correlation filters. The KSCF and SKSCF
are evaluated against three scale-adaptive trackers: STC [8],
DSST [11] and SAMF [12]. We note that the DSST [11]
and SAMF [12] methods have been shown to perform best
and second best trackers in the recent tracking benchmark
evaluation [59]. Both KSCF and SKSCF trackers perform
significantly better than the STC method. In addition, the
KSCF and SKSCF methods also significantly outperform the
DSST and SAMF approaches by a large margin. Fig. 7 shows
the OPE plots on all the sequences with the attribute of scale
variation where the KSCF method performs favorably against
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Fig. 10. OPE plots of the KSCF, SKSCF and other state-of-the art trackers,
including MEEM [4], TGPR [56], KCF [6], SCM [16], TLD [27], ASLA
[20], L1APG [57], MIL [23] and CT [58].

the DSST and SAMF trackers. Overall, the KSCF algorithm
performs favorably in terms of accuracy and speed.

D. Comparisons with SVM-based trackers

We evaluate the proposed KSCF and SKSCF with two state-
of-the-art SVM-based methods, i.e., Struck [3] and MEEM
[4], based on the structured and ensemble learning. Table V
and Fig. 8 show that both KSCF and SKSCF algorithms
perform favorably against the MEEM and Struck methods
in all aspects. As shown in Fig. 6, the KSCF algorithm can
track target objects more precisely than other methods in the
Singer2, Coke, Suv and Tiger2 sequences. The results show
that dense sampling can be efficiently used with SVMs for
effective visual tracking. Fig. 6 shows that the KSCF algo-
rithm can track the objects more precisely in all challenging
sequences, while the other trackers tend to drift away from the
target objects.

E. Comparisons with state-of-the-art trackers

We evaluate the KSCF algorithm with the other state-of-
the-art trackers, including MEEM [4], KCF [6], TGPR [56],
SCM [16], TLD [27], L1APG [57], MIL [23], ASLA [20] and
CT [58]. Fig. 10 shows the OPE plots, and Table VI presents
the mean DP, AUC and FPS. Overall, the proposed KSCF
and SKSCF algorithms perform favorably against the state-of-
the-art methods including the TLD, SCM, TGPR and MEEM
schemes.

The sequences in the benchmark dataset [10] are annotated
with 11 challenging factors for visual tracking, including illu-
mination variation (IV), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion (FM), in-
plane rotation (IPR), out-of-plane rotation (OPR), out-of-view
(OV), background clutters (BC), and low resolution (LR).
Table VII and Table VIII show the performance of the KSCF
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TABLE VII
PRECISION METRICS OF THE TRACKERS FOR 11 ATTRIBUTES. THE TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND ORANGE.

Attributes FM BC MB DEF IV IPR LR OCC OPR OV SV
SKSCF 0.779 0.859 0.802 0.893 0.841 0.810 0.596 0.872 0.857 0.800 0.809
KSCF 0.680 0.825 0.761 0.854 0.805 0.816 0.555 0.852 0.836 0.697 0.768

MEEM [4] 0.745 0.802 0.721 0.856 0.771 0.796 0.529 0.801 0.840 0.726 0.795
TGPR [56] 0.579 0.763 0.570 0.760 0.695 0.683 0.567 0.668 0.693 0.535 0.637

KCF [6] 0.564 0.752 0.599 0.747 0.687 0.692 0.379 0.735 0.718 0.589 0.680
SCM [16] 0.346 0.578 0.358 0.589 0.613 0.613 0.305 0.646 0.621 0.429 0.672
TLD [27] 0.557 0.428 0.523 0.495 0.540 0.588 0.349 0.556 0.593 0.576 0.606

ASLA [20] 0.255 0.496 0.283 0.473 0.529 0.521 0.156 0.479 0.535 0.333 0.552
L1APG [57] 0.367 0.425 0.379 0.398 0.341 0.524 0.460 0.475 0.490 0.329 0.472

MIL [23] 0.415 0.456 0.381 0.493 0.359 0.465 0.171 0.448 0.484 0.393 0.471
CT [58] 0.330 0.339 0.314 0.463 0.365 0.361 0.152 0.429 0.405 0.336 0.448

TABLE VIII
SUCCESS METRICS OF THE TRACKERS FOR 11 ATTRIBUTES. THE TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND ORANGE.

Attributes FM BC MB DEF IV IPR LR OCC OPR OV SV
SKSCF 0.729 0.795 0.757 0.863 0.743 0.720 0.542 0.788 0.757 0.808 0.682
KSCF 0.629 0.741 0.689 0.779 0.649 0.690 0.389 0.696 0.697 0.705 0.540

MEEM [4] 0.706 0.747 0.692 0.711 0.653 0.648 0.470 0.694 0.694 0.742 0.594
TGPR [56] 0.542 0.713 0.570 0.711 0.632 0.601 0.501 0.592 0.603 0.546 0.505

KCF [6] 0.516 0.669 0.539 0.668 0.534 0.575 0.358 0.593 0.587 0.589 0.477
SCM [16] 0.348 0.550 0.358 0.566 0.586 0.574 0.308 0.602 0.576 0.449 0.635
TLD [27] 0.475 0.388 0.485 0.434 0.461 0.477 0.327 0.455 0.489 0.516 0.494

ASLA [20] 0.261 0.468 0.284 0.485 0.514 0.496 0.163 0.469 0.509 0.359 0.544
L1APG [57] 0.359 0.404 0.363 0.398 0.298 0.445 0.458 0.437 0.423 0.341 0.407

MIL [23] 0.353 0.414 0.261 0.440 0.300 0.339 0.157 0.378 0.369 0.416 0.335
CT [58] 0.327 0.323 0.262 0.420 0.308 0.290 0.143 0.360 0.325 0.405 0.342

and state-of-the-art methods in terms of DP and AUC with
respect to each factor. Fig. 9 shows the precision and success
metrics of the leading trackers (i.e., SKSCF, KSCF, MEEM,
KCF and TGPR) with respect to the attributes. We note that
the MEEM method [4] adopts the multiple experts framework
to deal with model drift , and performs slightly better than
KSCF for attributes FM, LR, OV and SV. Overall, the KSCF
algorithm are among the top 3 trackers for any attribute, and
the SKSCF algorithm performs best in both metrics for all but
one attribute.

V. CONCLUSIONS

We propose an effective and efficient approach to learn
support correlation filters for real time visual tracking. By
reformulating the SVM model with circulant data matrix as
training input, we present a DFT based alternating optimiza-
tion algorithm to learn support correlation filters efficiently.
In addition, we develop the MSCF, KSCF, and SKSCF track-
ing methods to exploit multidimensional features, nonlinear
classifiers, and scale-adaptive schemes. Experiments on a
large benchmark dataset show that the proposed KSCF and
SKSCF algorithms perform favorably against the state-of-the-
art tracking methods in terms of accuracy and speed.
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APPENDIX A
CONVERGENCE ANALYSIS

In the following, we first analyze the optimality condition
of the problem, and then prove the global convergence and
convergence rate of the SCF algorithm.

A. Optimality conditions
In the spatial domain, the SCF model can be expressed as:

(w, b, e)= arg min
w,b,e

1

2
‖w‖2+

C

2

∥∥y◦(X>w+b1)−1−e
∥∥2,

s.t. e ≥ 0

Defining the augmented vector x̃ =
[
x>, 1

]>
with x ∈ Rn,

we compute the augmented weight vector w̃ =
[
w>, b

]>
. The

above problem can then be reformulated as:

(w̃, e) = arg min
w̃,e

1

2
w̃>Ĩw̃ +

C

2

∥∥∥X̃>w̃ − y − y ◦ e
∥∥∥2,

s.t. e ≥ 0

(22)

where X̃ =
[
X>,1

]>
and Ĩ =

[
I 0

0> 0

]
. We introduce

an indicator function δ(ei) =

{
−∞ , if ei < 0

ei , if ei ≥ 0
and the

subdifferential [60] of δ(ei) is:

∂δ(ei) =


1 , if ei > 0

(−∞, 0) , if ei = 0

φ(undefined) , if ei < 0

(23)
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As the loss function (22) is convex, (w̃∗, e∗) is a solution if
and only if the subdifferential of the loss at (w̃∗, e∗) contains
zero [61]. Thus the optimality conditions are:

w̃Ĩ + CX̃(X̃T w̃ − y − y ◦ e) = 0{
ei + 1− yix̃Ti w̃ = 0 , if ei > 0

yix̃
T
i w̃ − 1 < 0 if ei = 0

(24)

where X̃i denotes the i-th training sample. With λ = 1
C , we

have:

det
(
λĨ + X̃X̃>

)
= det



λI + XX>

∑
i

xi∑
i

x>i n2




= n2 det

(
XX>+λI− 1

n2

∑
i

xi
∑
i

x>i

)
= n2 det

(
XcX

>
c + λI

)
,

where Xc = [x1 − x̄, . . . ,xn − x̄] with x̄ = 1
n

∑
i

xi. Thus

the matrix (λĨ + X̃X̃>) is invertible. For simplicity, let M =
Ĩ + CX̃X̃>, from (24) and above equation, we have

w̃ = CM−1X̃ (y + y ◦ e) , (25)

(Cy ◦M−1X̃(y + y ◦ e)− 1)i

{
=ei, if ei>0

<0, if ei=0
(26)

Based on the optimality conditions in (24), we define
r1 = w̃ + CX̃(X̃>w̃ − y − y ◦ e),

r2(i) = ei + 1− yix̃>i w̃ ∀ei > 0,

r3(i) = yix̃
>
i w̃ − 1 ∀ei ≤ 0,

and use the stopping criterion:

max

{
‖r1‖∞,max

ei>0
‖r2(i)‖ ,max

ei=0
‖r3(i)‖

}
≤ ε,

where ε > 0 is a predefined threshold.

B. Global convergence

To compute e, we reformulate the sub-problem for each
entry:

ẑ = arg min
z

1

2
‖z − z0‖2 + δ(z),

where δ(z) =

{
−∞, if z < 0

z, if z ≥ 0
. Its solution is given by:

ẑ = g(z0) =

{
z0, if z0 ≥ 0

0, if z0 < 0

Proposition 1. For any a, b ∈ R, we have:

‖g(a)− g(b)‖2 ≤ ‖a− b‖2,

where the equality holds only if g(a)− g(b) = a− b.

Proof.

1) if a, b ≥ 0, ‖g(a)− g(b)‖2 = ‖a− b‖2, and we also have
g(a)− g(b) = a− b.

2) if a, b < 0, ‖g(a)− g(b)‖2 = 0 ≤ ‖a− b‖2, where the
equality holds only if a = b.

3) if ab < 0, e.g., b < 0, it is easy to see that, a2 <
(|a|+ |b|)2.

For simplicity, let U = X̃Diag(y). We have UU> = X̃X̃>

and then we get two symmetric positive definite matrices as
follows:

M = Ĩ + CX̃X̃> = Ĩ + CUU>,

T = CU>(̃I + CUU>)
−1

U = CU>M−1U,

where ρ(T) < 1 and ρ(T) is the spectral radius of matrix T
[62].

With the definitions of M and T, the updating rules w̃ and
e can be written as:

ek+1 = g(U>w̃k − 1) = g(T(1 + ek)− 1) = g ◦ h(ek),

w̃k+1 = CM−1U(1 + ek+1),

Let h(ek) = T(1+ek)−1, we have the following proposition.

Proposition 2. For any e 6= ê, the following inequality holds:

‖h(e)− h(ê)‖ ≤ ‖e− ê‖ ,

and the equality holds if and only if h(e)− h(ê) = e− ê.

Proof. Note that ρ(T) < 1. From the definition of h(e), we
have:

‖h(e)− h(ê)‖ = ‖T(e− ê)‖ ≤ ρ(T) ‖e− ê‖ < ‖e− ê‖ ,

Denote the eigen-decomposition of T by T =Q>ΛQ, where
Q is a full rank orthogonal matrix, and Λ is a diagonal matrix
with 0 ≤ λi ≤ 1.

The equality ‖h(e)−h(ê)‖ = ‖e−ê‖ can be written as∥∥Q>ΛQ(e−ê)
∥∥ = ‖e−ê‖. Since Q is full-rank orthog-

onal, there is ‖e− ê‖ = ‖Q(e− ê)‖. Thus, we have
‖ΛQ(e− ê)‖ = ‖Q(e− ê)‖. Since Λ is diagonal with 0 ≤
λi ≤ 1, it holds that ΛQ(e− ê) = Q(e− ê). Multiplying both
sides by Q>, we have T(e− ê) = h(e)− h(ê) = e− ê.

Definition 1. (Fixed point) [63] Given a linear operator, a
point x∗ is a fixed point if x∗ = f(x∗). We next provide the
following property for fixed points of the operator g ◦ h.

Lemma 1. Given any fixed point ê of g ◦ h, for any e, we
have:

‖g ◦ h(e)− g ◦ h(ê)‖ < ‖e− ê‖ ,

unless e is a fixed point of g ◦ h.

Proof. From Propositions 1 and 2, it holds:

‖g ◦ h(e)− g ◦ h(ê)‖ < ‖h(e)− h(ê)‖ < ‖e− ê‖ ,

unless g ◦ h(e) − g ◦ h(ê) = h(e) − h(ê) = e − ê. Thus if
g ◦ h(ê) = ê, we have g ◦ h(e) = e.
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Theorem 1. (Global convergence) The sequence
{

(w̃k, ek)
}

generated by our algorithm from any starting point (w̃0, e0)
converges to a solution (w̃∗, e∗) of the optimization problem.

Proof. First we prove that ek converges to a fixed point. Note
that g ◦ h is non-expansive, thus the sequence {ek} lies in
a compact region and ek converges to one limit point e∗ at
least. We assume e∗ = lim

j→∞
ekj and let ê be any fixed point

of g ◦ h with ê = g ◦ h(ê). Then the following formula is
established:∥∥ek − ê

∥∥ =
∥∥g ◦ h(ek−1)− g ◦ h(ê)

∥∥ ≤ ∥∥ek−1 − ê
∥∥ ,

Based on above, we get the limit as below:

lim
k→∞

∥∥ek − ê
∥∥ = lim

j→∞

∥∥ekj − ê
∥∥ = ‖e∗ − ê‖ ,

which shows that more than one of all limit points of {ek}
have an equal distance to ê. Because of the continuity of g◦h,
we have:

g ◦ h(e∗) = lim
j→∞

g ◦ h(ekj ) = lim
j→∞

ekj+1.

Thus, g ◦ h(e∗) is also a limit point of sequence {ek} and it
must have an equal distance to ê:

‖e∗ − ê‖ = ‖g ◦ h(e∗)− ê‖ = ‖g ◦ h(e∗)− g ◦ h(ê)‖

According to Lemma 1, we know g ◦ h(e∗) = e∗. Since ê is
any fixed point of g ◦ h, with the continuity of g ◦ h(e∗), the
convergence: lim

k→∞
ek = e∗ is obtained. We next show that e∗

satisfies the optimization condition in (26). With the definition
of T, g and h, we have:

g ◦ h(e) = g(T(1 + e)− 1)

= g(CU>(̃I+CUU>)
−1

U(1+e)−1)

{
=ei, if ei>0

<0, if ei=0
, (27)

which can be written as e = g◦h(e). Considering g◦h(e∗) =
e∗, the solution e∗ satisfies the optimization conditions and the
proposed algorithm converges to the global optimum.

C. q-linear convergence rate

Theorem 2. (Convergence rate) The sequence
{

(w̃k, ek)
}

generated by our algorithm satisfies the following 3 condi-
tions:

1)
∥∥ek+1 − e∗

∥∥ ≤√ρ(T2)
∥∥ek − e∗

∥∥,
2)
∥∥U>(w̃k+1 − w̃∗)

∥∥ ≤√ρ(T2)
∥∥U>(w̃k − w̃∗)

∥∥,
3)
∥∥w̃k+1 − w̃∗

∥∥
M
≤
√
ρ(T)

∥∥w̃k − w̃∗
∥∥
M

.

Proof. Note that g ◦ h is non-expansive, according to Propo-
sition 1, we have:

w̃k+1 − w̃∗ = CM−1U
(
ek+1 − e∗

)
, (28)

∥∥ek+1−e∗
∥∥2=

∥∥g◦h(ek)−g◦h(e∗)
∥∥2≤∥∥U>(w̃k−w̃∗)

∥∥2 (29)

Under the definition of T, there is:
∥∥U>(w̃k − w̃∗)

∥∥2 =∥∥T(ek − e∗)
∥∥2, and thus∥∥ek+1 − e∗

∥∥2 ≤ ∥∥T(ek − e∗)
∥∥2,

Consequently, we have:∥∥ek+1−e∗
∥∥2≤(ek−e∗

)> (
T2
) (

ek−e∗
)
≤ρ(T2)

∥∥ek−e∗
∥∥2.

By reformulating above, condition 1 can be satisfied:∥∥ek+1 − e∗
∥∥ ≤√ρ(T2)

∥∥ek − e∗
∥∥ . (30)

Multiplying X̃> on both sides of (28), and combining with
(29), we obtain:∥∥U> (w̃k+1−w̃∗

)∥∥2=
∥∥T(ek+1−e∗)

∥∥2≤ρ(T2)
∥∥ek+1−e∗

∥∥2
≤ ρ(T2)

∥∥U> (w̃k−w̃∗
)∥∥2,

which can be reformulated as:∥∥U>(w̃k+1 − w̃∗)
∥∥ ≤√ρ(T2)

∥∥U>(w̃k − w̃∗)
∥∥ ,

and satisfies condition 2. From (28), we have:∥∥w̃k+1−w̃∗
∥∥2
M

=
(
ek+1−e∗

)>
T
(
ek+1−e∗

)
≤ρ(T)

∥∥ek+1−e∗
∥∥2.

Combining (29) and the definition of M, we have:∥∥w̃k+1−w̃∗
∥∥
M
≤
√
ρ(T)

∥∥U>(w̃k−w̃∗)
∥∥≤√ρ(T)

∥∥w̃k−w̃∗
∥∥
M
.

Thus, the third condition 3 holds and w̃k converges to w̃∗

q-linearly [64].
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