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Abstract A search for heavy long-lived multi-charged par-
ticles is performed using the ATLAS detector at the LHC.
Data collected in 2012 at

√
s = 8 TeV from pp collisions cor-

responding to an integrated luminosity of 20.3 fb−1are exam-
ined. Particles producing anomalously high ionisation, con-
sistent with long-lived massive particles with electric charges
from |q| = 2e to |q| = 6e are searched for. No signal can-
didate events are observed, and 95 % confidence level cross-
section upper limits are interpreted as lower mass limits for a
Drell–Yan production model. The mass limits range between
660 and 785 GeV.
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1 Introduction

This article describes a search for heavy long-lived1 multi-
charged particles (MCPs) in

√
s = 8 TeV pp collisions data

collected in 2012 by the ATLAS detector at the CERN Large
Hadron Collider (LHC). Data taken in stable beam condi-
tions and with all ATLAS subsystems operational are used,
resulting in an integrated luminosity of 20.3 fb−1. The search
is performed in the MCP mass range of 50–1000 GeV, for
electric charges2 |q| = ze, with the charge numbers z = 2, 3,
4, 5, and 6. The observation of such particles possessing an
electric charge above the elementary charge e would be a sig-
nature for physics beyond the Standard Model. Several theo-
ries predict such particles, including the almost-commutative
model [1], the walking technicolor model [2], and the left-
right symmetric model [3], which predicts a doubly charged
Higgs boson. Any observation of the particles predicted by
the first two models could have implications for the formation
of composite dark matter: the doubly charged particles (or,
in general, particles with an even charge |q| = 2ne) could
explain many results of experimental searches for dark mat-
ter [4]. No such particles have been observed so far in cosmic
ray [5] or collider searches, including several recent searches
at the Tevatron [6] and the LHC [7–9].

MCPs are highly ionising, and thus leave an abnormally
large ionisation signal, dE/dx . A search for such particles
traversing the ATLAS detector leaving a track in the inner
tracking detector, and producing a signal in the muon spec-
trometer, is reported. A purely electromagnetic coupling,
proportional to the electric charge of the MCPs, is assumed
for the production model. In this model, MCPs are produced
in pairs via the Drell–Yan (DY) process with only photon
exchange included.

This analysis is also sensitive to fractionally charged
(z > 1, non-integer) particles, but has not been interpreted

1 The term long-lived in this paper refers to a particle that does not
decay within the ATLAS detector and penetrates its full depth.
2 Wherever a charge is quoted for the exotic particles, the charge con-
jugate state is also implied.
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explicitly for such charges. The signal efficiency in a search
for MCPs with charge numbers higher than z = 6 is expected
to be less than 5 % due to the signal particle’s low veloc-
ity. Such low efficiencies require a different approach, and
corresponding model interpretations are not covered in this
paper.

2 The ATLAS detector

The ATLAS detector [10] covers nearly the entire solid angle
around the collision point. It consists of an inner tracking
detector (ID) comprising a silicon pixel detector (pixel), a
silicon microstrip detector (SCT) and a transition radiation
tracker (TRT). The pixel detector typically provides one pre-
cise space-point measurement per track from each of its three
layers. The SCT consists of four times two layers of silicon
sensors arranged with small stereo angle, typically provid-
ing eight measurements per track. The TRT, covering the
pseudorapidity range |η| < 2.0,3 is a straw-based tracking
detector capable of particle identification via transition radia-
tion and ionisation energy loss measurements [11]. A typical
track crosses 32 straws. Discriminators are used to compare
the signal from a straw with low and high thresholds (HT)
using the TRT front-end electronics. The HT is designed
to discriminate between energy depositions from transition
radiation photons and the energy loss of minimum ionising
particles. Roughly three times the energy deposition of a min-
imum ionising particle is needed for a HT hit. MCPs would
produce a large number of HT hits along their trajectories
due to their high level of ionisation.

The ID is surrounded by a thin superconducting solenoid
providing a 2 T axial magnetic field, and by high-granularity
lead–liquid argon (LAr) sampling electromagnetic calorime-
ters. An iron–scintillator tile calorimeter provides hadronic
energy measurements in the central pseudorapidity region.
The endcap and forward regions are instrumented with LAr
calorimeters for electromagnetic and hadronic energy mea-
surements. In this analysis, the calorimeters are used only
as passive absorbers. The calorimeter system is surrounded
by a muon spectrometer (MS) incorporating three super-
conducting toroidal magnet assemblies. The MS is instru-
mented with tracking detectors designed to measure the
momenta of muons that traverse the ATLAS calorimeters.
The resistive-plate chambers (RPC) in the barrel region

3 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
�R ≡ √

(�η)2 + (�φ)2.

(|η| < 1.05) and the thin-gap chambers (TGC) in the end-
caps regions (1.05 < |η| < 2.4) provide signals for the trig-
ger. Monitored drift tube (MDT) chambers provide typically
20–25 hits per crossing track in the pseudorapidity range
|η| < 2.7, from which a high precision momentum measure-
ment is derived.

The amount of material in the ID varies from one-half to
two radiation lengths. The overall amount of material tra-
versed by the MCP, which includes the calorimeters and the
MS, may be as high as 75 radiation lengths. Muons typically
lose 3 GeV penetrating the calorimeter system. The energy
loss for MCPs with charge |q| = ze would be z2 times this
value, i.e. up to 110 GeV for z = 6.

All momentum values quoted in this paper are measured
by the MS, after the energy loss in the calorimeters. Charged-
particle trajectories are reconstructed using standard algo-
rithms. Since these assume particles have z = 1, the momenta
of MCPs are underestimated by a factor z, as the track cur-
vature is proportional to pT/z.

3 Simulated Monte Carlo samples

Benchmark samples of simulated events with MCPs are gen-
erated for a mass of 50 GeV and for a range of masses between
100 and 1000 GeV in steps of 100 GeV, with charges ze,
z = 2, 3, 4, 5, and 6. Pairs of MCPs are generated via the
lowest-order DY process implemented in MadGraph5 [12].
The DY production process models the kinematic distribu-
tions and determines the cross-sections used for limit setting.
Typical values for the cross-sections range from hundreds of
picobarns for a mass of 50 GeV down to a hundredth of a fem-
tobarn for a mass of 1000 GeV (Fig. 8). Events are generated
using the CTEQ6L1 [13] parton distribution functions, and
Pythia version 8.170 [14,15] is used for hadronisation and
underlying-event generation. Simulated samples with muons
from Z → μμ decays are generated using Pythia version
8.170 and the CT10 [16] parton distribution functions with
the AU2 tune [17]. A Geant4 simulation [18,19] is used to
model the response of the ATLAS detector. Each simulated
hard scattering event is overlaid with simulated minimum
bias events (“pile-up”) generated with Pythia in order to
reproduce the observed distribution of the number of proton–
proton collisions per bunch crossing. The simulated events
are reconstructed and analysed in the same way as the exper-
imental data.

4 Candidate and event selection

Because the MCPs in this search are assumed to be long-
lived and therefore traverse the entire ATLAS detector, can-
didates are initially selected with the MS. The search, which
is restricted to the |η| < 2.0 pseudorapidity range, is based
on an analysis of specific ionisation losses in several sub-

123



Eur. Phys. J. C (2015) 75 :362 Page 3 of 23 362

S(MDT dE/dx)
-10 -5 0 5 10

1/
N

 d
N

/d
S

(M
D

T 
dE

/d
x)

-610

-510

-410

-310

-210

-110
 Monte Carlo-μ+μ→Z

Data
ATLAS

 = 8 TeVs

-120.3 fb

S(TRT dE/dx)
-10 -5 0 5 10

1/
N

 d
N

/d
S

(T
R

T 
dE

/d
x)

-610

-510

-410

-310

-210

-110
 Monte Carlo-μ+μ→Z

Data
ATLAS

 = 8 TeVs

-120.3 fb

Fig. 1 Normalised distributions of the dE/dx significance in the MDT, S(MDT dE/dx), (left) and in the TRT, S(TRT dE/dx), (right) for muons
from Z → μμ events in data and simulation

detector systems and of the fraction of TRT straws on the
track with a signal amplitude exceeding the HT. The search is
logically divided into four steps: trigger and event selection,
preselection, tight selection and final selection. The tight and
final selection steps rely on the ionisation estimators, which
are introduced in the following section. An event is consid-
ered to be a candidate event if it has at least one candidate
MCP (a reconstructed particle, which satisfies all selection
criteria).

4.1 Ionisation estimators

The average specific energy loss, dE/dx , is described by
the Bethe–Bloch formula [20]. Since a particle’s energy loss
increases quadratically with its charge, an MCP would leave a
very characteristic signature of high ionisation in the detector.
Estimates of dE/dx are evaluated for the pixel, TRT and
MDT sub-detector systems. All three quantities are based on
an underlying measurement of time-over-threshold: the time
interval where a signal amplitude exceeds a certain threshold
is correlated with the deposited energy.

The significance of the dE/dx variable in each sub-
detector is defined by comparing the observed signal,
dE/dx track, with that expected from a highly relativistic
muon:

S(dE/dx) = dE/dx track − 〈dE/dxμ〉
σ(dE/dxμ)

. (1)

Here 〈dE/dxμ〉 and σ(dE/dxμ) represent, respectively,
the mean and the root-mean-square width of the dE/dx
distribution for such muons in data. For this procedure, a con-
trol sample of muons was obtained from Z → μμ events.
Each muon was required to be matched to a good-quality
track in the ID with pT > 24 GeV and |η| < 2.0, be iso-
lated, i.e. to carry at least 90 % of the total pT within the
surrounding �R < 0.2 cone, and belong to an oppositely

charged pair with dimuon mass between 81 GeV and 101
GeV. These requirements effectively suppress muons from
other processes reducing such backgrounds to a negligible
level.

In addition to the dE/dx estimates, the fraction of TRT
hits passing the high threshold, f HT, is another estimator of
energy loss.

In order to investigate whether the relevant variables are
modelled properly, muons from Z → μμ decays are com-
pared between data and simulation. Figure 1 shows the com-
parison for the MDT and TRT dE/dx significances, and
Fig. 2 for the pixel dE/dx significance and f HT.

In general, Figs. 1 and 2 demonstrate good agreement
between simulated and experimental data for the four selec-
tion variables. This is especially true on the high side of
the distributions, which is most relevant for the analysis.
The small differences observed, particularly for the S(MDT
dE/dx) variable, have only minor effects on the analysis,
and are accounted for as systematic uncertainties, described
in Sect. 7. The behaviour of all four selection variables is
found to be stable with respect to η, φ and pT.

Detailed studies of energy loss vs. momentum distribu-
tions were performed for the pixel [21] and TRT [11] detec-
tors, as well as for the relativistic rise domain of the Bethe–
Bloch formula in the MDT. These results assure that the mod-
erate ionisation levels (like for z = 2 particles) are correctly
described in the simulated data. The responses to the higher
charge particles are well above the selection requirements
(conservatively defined for the z = 2 particles), and so the
analysis is not sensitive to the precise mean position of the
distributions, which may be shifted by any potential satura-
tion effects.

4.2 Trigger and event selection

Events collected with a single-muon trigger [22] with a trans-
verse momentum threshold of pT/z = 36 GeV are consid-
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Fig. 2 Normalised distributions of the dE/dx significance in the pixel system, S(pixel dE/dx), (left) and f HT, the fraction of TRT hits passing
the high threshold, (right) for muons from Z → μμ events in data and simulation

ered. This trigger is only sensitive to particles with velocity
β = v/c > 0.6 due to a timing window, in which parti-
cles should reach the MS. To compensate for inefficiencies
in the single-muon trigger, an additional calorimeter-based
trigger with a missing transverse momentum (Emiss

T ) thresh-
old of 80 GeV is employed. Particles reconstructed in the
MS are not accounted for in the trigger Emiss

T calculation,
thus they contribute to the missing transverse momentum
value directly. Large missing transverse momentum can also
be due to an asymmetry between the energy depositions in
calorimeters of the two MCPs. In case an event is selected
by both of these triggers, it is assigned to the single-muon
trigger for the following analysis. The Emiss

T trigger recovers
up to 10 % of events missed by the single-muon trigger.

Events are further required to contain at least one muon
candidate with either pT/z > 75 GeV (single-muon trigger)
or with pT/z > 60 GeV (Emiss

T trigger).4

4.3 Candidate track preselection

Each candidate track reconstructed in the MS with at least 7
MDT hits should match a high-quality track in the ID. Such
an ID track is required to have at least 6 SCT hits and 10
TRT hits, and to originate less than 1.5 mm in both the lon-
gitudinal (|z0 sin θ |) and transverse (|d0|) directions from the
primary interaction point, determined via standard technique
as described in Ref. [23]. Each candidate track must also be
within the acceptance region of the TRT (|η| < 2.0), have
pT/z > 40 GeV for events collected with the single-muon
trigger or pT/z > 30 GeV for those collected with the Emiss

T
trigger. The efficiency of the ID track reconstruction varies

4 Information on the MDT and TRT dE/dx is not available in the
standard ATLAS data stream. Hence, this analysis is based on special
streams which include this information. The pT requirements for muons
given here are imposed in the preparation of these streams and are not
optimised for the current analysis.

between 96 % and 98 % for all MCP charge values consid-
ered.

In order to reduce the background of high ionisation sig-
nals from two or more tracks firing the same TRT straws or
MDT tubes, each candidate is required not to have an adja-
cent track with pT/z > 5 GeV within �R < 0.01.

The preselected data sample (selected with these require-
ments) is completely dominated by muons, even in the pres-
ence of a possible signal.

4.4 Tight selection

The tight selection of highly ionising candidates is based on
S(pixel dE/dx) for MCPs with z = 2, and on f HT for MCPs
with z ≥ 3. As seen in Fig. 3, S(pixel dE/dx) is a powerful
discriminator for particles with z = 2. The signal region is
defined to be the region with significance greater than 17.
For higher values of z, the pixel readout saturates and the
charge information for a particular pixel is lost. Therefore, to
search for particles with z ≥ 3, f HT (see Fig. 3) is used as a
discriminating variable instead. The signal region is defined
by requiring f HT to be above 0.45.

This tight selection using S(pixel dE/dx) or f HT crite-
ria reduces the background contribution (mainly the high-
pT muons) by almost three orders of magnitude for both the
z = 2 and z ≥ 3 cases, while keeping an efficiency above
95 % for the signal.

4.5 Final selection

In the final step of the search, S(MDT dE/dx) and S(TRT
dE/dx) are used as additional discriminating variables to
separate the signal and background. Figure 4 shows the
distributions of these variables for simulated muons from
Z → μμ production compared to those of signal parti-
cles for different charges (z = 2, 3 and 6) and for a mass
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of 600 GeV. It demonstrates good separation between sig-
nal and background, which increases with increasing charge.
The S(MDT dE/dx) distribution shape broadens with charge
because of a larger track curvature, which hinders the track
reconstruction algorithms from finding all hits on the track,
thus decreasing the accuracy of the ionisation loss measure-
ment. The detailed response for these higher charge particles
may not be perfectly modelled by the simulation due to sat-
uration effects. However, since these detectors do not lose
signal at saturation, their dE/dx response would certainly
be higher than that of z = 2 particles.

The dE/dx significance strongly depends on the particle’s
charge and on its velocity (for a given velocity, it does not
depend on the particle’s mass). For the MCPs under study,
the variation of velocity (0.6 ≤ β < 1) leads to a change in
dE/dx significances by up to 30 %.

Two-dimensional distributions of S(MDT dE/dx) ver-
sus S(TRT dE/dx) are shown for data and simulated signal

events in Fig. 5 for candidates passing the tight selection as
z = 2 (left) and z ≥ 3 (right), and also satisfying all previous
selection criteria. As seen, the sub-detector system signatures
are different for the two preselected samples, and thus the
final signal regions are chosen differently. They are defined
by S(MDT dE/dx) > 5 and S(TRT dE/dx) > 5 for candi-
dates selected as z = 2 and by S(MDT dE/dx) > 7.2 and
S(TRT dE/dx) > 6 for candidates selected as z ≥ 3. The
selection was optimised using only simulated samples and
Z → μμ data control samples without examining the signal
region in the data.

A full summary of the analysis selections is presented in
Table 1.

5 Background estimation

The background contribution to the signal region is estimated
using a method which employs sidebands of the two discrim-

123



362 Page 6 of 23 Eur. Phys. J. C (2015) 75 :362

S(TRT dE/dx)
-10 -5 0 5 10 15 20 25 30

S
(M

D
T 

dE
/d

x)

-10

-5

0

5

10

15

20

25

30

35

40

Data

Mass 600 GeV, z=2

A

C

B

D

ATLAS

= 8 TeVs

-120.3 fb

S(TRT dE/dx)
-10 -5 0 5 10 15 20 25 30

S
(M

D
T 

dE
/d

x)

-10

-5

0

5

10

15

20

25

30

35

40
Data
Mass 600 GeV, z=3
Mass 600 GeV, z=6

A

C

B

D

ATLAS

= 8 TeVs

-120.3 fb
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Table 1 Summary of event selection requirements for the event selections based on the single-muon trigger and the Emiss
T trigger

Trigger and event
selection

Candidate track
selection

Tight and final
selections (z = 2)

Tight and final
selections (z ≥ 3)

Single-muon
trigger case

Any muon with:

NMDT hits ≥ 7

≥1 trigger tight muon pT/z > 40 GeV

with pT/z > 36 GeV |η| < 2.0

NSCT hits ≥ 6

≥1 reconstructed muon NTRT hits ≥ 10

with pT/z > 75 GeV |d0| < 1.5 mm Event passing preselection
having a muon with:

Event passing preselection
having a muon with:|z0 sin θ | < 1.5 mm

No other tracks

within �R < 0.01

Emiss
T trigger case Any muon with:

S(pixel dE/dx) > 17 f HT > 0.45

NMDT hits ≥ 7 S(MDT dE/dx) > 5 S(MDT dE/dx) > 7.2

pT/z > 30 GeV S(TRT dE/dx) > 5 S(TRT dE/dx) > 6

Trigger Emiss
T > 80 GeV |η| < 2.0

NSCT hits ≥ 6

≥1 reconstructed muon NTRT hits ≥ 10

with pT/z > 60 GeV |d0| < 1.5 mm

|z0 sin θ | < 1.5 mm

No other tracks

within �R < 0.01

inating variables. In this method, the plane of S(TRT dE/dx)
and S(MDT dE/dx) is divided into regions A, B, C and D
using the final selection cuts as shown in Fig. 5. Region D is
defined as the signal region, with regions A, B and C as con-
trol regions. The expected number of candidate events from

background in data in region D, ND
exp, is estimated from the

number of observed events in data in region B after tight
selection, NB

obs, and the probability, f , to find a particle with
S(MDT dE/dx) > 5 (7.2) before tight selection for the z = 2
(z ≥ 3) search case:
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ND
exp = NB

obs × f. (2)

The probability f to find a particle above some S(MDT
dE/dx) value before tight selection is derived from the cumu-
lative S(MDT dE/dx) distribution for preselected candidates
in data shown in Fig. 6. Although there are no limitations on
the S(TRT dE/dx) values of these particles, any possible
signal contamination in this distribution is negligible.

This method relies on the fact that S(MDT dE/dx) is not
correlated with the tight selection quantities, S(pixel dE/dx),
f HT or with S(TRT dE/dx). A check was performed to
demonstrate the absence of such correlations: the distribu-
tions of S(pixel dE/dx), f HT and S(TRT dE/dx) for muons
with low S(MDT dE/dx) values were compared with those
for muons with high S(MDT dE/dx) values. Excellent agree-
ment between the two cases shows that there are no cor-
relations between ionisation estimators in different ATLAS
sub-detectors for background.

Table 2 gives numbers of observed events with particles
in the B and D regions, as well as the probabilities to find
a particle above certain S(MDT dE/dx) values before tight
selection. The expected numbers of background events are
given in the last column. They amount to 0.013±0.002 in the
signal region for the z = 2 selection and 0.026±0.003 for
the z ≥ 3 selection, where the quoted uncertainties are sta-
tistical. Systematic uncertainties on the background estimate
are discussed in Sect. 7.

6 Signal efficiency

The cross-section is given by

σ = ND
obs − ND

exp

L × ε
, (3)

Table 2 The observed event yield in data in the B region, the probability
f to find a particle above the respective S(MDT dE/dx) value before
tight selection and the expected background yield in the signal region
D with its statistical uncertainty. The last column shows the observed
event yield in the D region

NB
obs f ND

exp ND
obs

z = 2 76 1.8 × 10−4 0.013±0.002 0

z ≥ 3 1251 2.1 × 10−5 0.026±0.003 0
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Fig. 7 The signal efficiencies for different MCP masses and charges
for the DY production model

where L is the integrated luminosity of the analysed data
and the numerator is the number of candidate events above
the expected background. The signal efficiency, ε, includes
trigger, reconstruction and selection efficiencies. The signal
efficiency, as estimated from simulation, is shown in Fig. 7
for each signal sample.

Several factors contribute to the efficiency dependence
on mass and charge. For low masses, the minimum pT/z
requirements are the main source of efficiency loss. At higher
masses, the requirement to reach the MS with a β which sat-
isfies the trigger timing window is the primary reason for
the reduction in efficiency. Also, high ionisation loss makes
particles slow down: they may not fit the trigger timing win-
dow or may lose all their kinetic energy before reaching the
MS. The charge dependence of the efficiency results from the
higher ionisation loss and the higher effective pT selection,
which are augmented by factors z2 and z, respectively. For
MCPs that do not reach the MS, the Emiss

T would be larger
for heavier MCPs and therefore more likely to fire the Emiss

T
trigger, although the probability for such events to satisfy all
selection criteria is smaller since only one candidate of an
MCP pair is reconstructed in the MS.

The fraction of signal events satisfying cumulative selec-
tion requirements is given in Table 3 for several examples.
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Table 3 Fractions of signal
events (in %) with at least one
MCP, which satisfy the given
requirements. The uncertainties
quoted are statistical

Signal benchmark point Trigger Preselection Tight selection Final selection

m = 100 GeV, z = 2 13.7 ± 0.2 12.8 ± 0.2 12.6 ± 0.2 11.0 ± 0.2

m = 500 GeV, z = 2 62.8 ± 0.4 42.9 ± 0.3 39.4 ± 0.3 37.1 ± 0.3

m = 900 GeV, z = 2 35.2 ± 0.4 26.6 ± 0.3 24.4 ± 0.3 22.5 ± 0.3

m = 100 GeV, z = 4 2.01 ± 0.09 1.74 ± 0.08 1.71 ± 0.08 1.66 ± 0.08

m = 500 GeV, z = 4 32.5 ± 0.3 28.7 ± 0.3 28.2 ± 0.3 26.4 ± 0.3

m = 900 GeV, z = 4 29.7 ± 0.4 22.4 ± 0.3 21.8 ± 0.3 20.4 ± 0.3

m = 50 GeV, z = 6 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.02 ± 0.01

m = 100 GeV, z = 6 0.58 ± 0.08 0.35 ± 0.05 0.32 ± 0.04 0.28 ± 0.04

m = 500 GeV, z = 6 16.2 ± 0.4 10.3 ± 0.3 10.0 ± 0.2 9.2 ± 0.2

m = 900 GeV, z = 6 17.4 ± 0.6 9.5 ± 0.4 9.0 ± 0.3 8.0 ± 0.2

7 Systematic uncertainties

Systematic uncertainties of the analysis comprise the uncer-
tainty on the background estimate, on the signal selection
efficiency, on the luminosity, and the one due to the size of
the Monte Carlo samples used.

7.1 Background estimation uncertainty

A difference is assessed between the current method and an
alternate method (ABCD method, as used in Ref. [8]) where
the number of expected events from background is calculated
from the numbers of observed events in the three control
regions according to

ND
exp = NB

obs × NC
obs

NA
obs

. (4)

Both methods use the same underlying idea, that the back-
ground estimate is proportional to the number of observed
events in the region B, NB

obs. However, the methods to derive
the proportionality constant are different, cf. Eq. (2) and
Eq. (4).

Since the ABCD method gives a large statistical uncer-
tainty in the case of zero events in one of the control regions,
the cuts on S(MDT dE/dx) were loosened from 5 or 7.2
down to 3 for both the z = 2 and z ≥ 3 selections to min-
imise this uncertainty, and the numbers of events expected
from the background were re-estimated using the two afore-
mentioned methods. The background estimates from the two
methods were found to differ by about 25 % for both the
z = 2 and z ≥ 3 cases, corresponding for both to a statistical
significance of less than two sigma. Hence, a 25 % system-
atic uncertainty on the background estimate was assigned for
both the z = 2 and z ≥ 3 cases.

7.2 Trigger efficiency uncertainty

The uncertainty on the muon trigger efficiency has two
sources: a global uncertainty on the muon trigger efficiency

of 1 % [22] and a β-dependent uncertainty. The β-dependent
part originates from uncertainties on the modelling of the
muon trigger timing for particles with β < 1. In order to
improve the description of the trigger simulation, parame-
terised corrections were applied. To assess the uncertainties,
the parameters of these corrections were varied. The β value
of particles was varied between the true generated value and
the one reconstructed in the MS from the known mass and
measured momentum.5 The time interval needed for a signal
particle to reach the RPC trigger planes was varied by the
root-mean-square width of the timing distribution for muons
measured in the full Z → μμ sample in data. The combina-
tion of these effects ranges from 0.4 % to 13 %. The timing
in the TGC for data and simulation is in good agreement, and
the systematic uncertainty for the TGC timing correction is
negligible.

The uncertainty on the Emiss
T trigger efficiency consists

of two parts: a global 5 % uncertainty due to a difference
between triggering in data and simulation [24] especially in
the turn-on region, and 8.5 % uncertainty due to the fact that
the Emiss

T trigger efficiency depends on the amount of initial-
and final-state radiation [25], affecting the number of signal
events which pass the Emiss

T trigger requirements. Varying
the amount of radiation in the MC, the number of jets in an
event was altered, and the relative difference of the Emiss

T
trigger efficiency was taken as a systematic uncertainty.

7.3 Uncertainties due to selection

The uncertainty on the selection efficiency is evaluated by
varying the requirement values used in the analysis. Several
reasons motivate these variations. For example, the uncer-
tainty on the amount of material in front of the MS, which
is found to be about 1 % [26], propagates into an uncer-
tainty on the selection efficiency due to the slowing down

5 The relation between a particle’s β, pT and mass, m, is given by
β = pT/ sin θ√

(pT/ sin θ)2+m2
.
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Table 4 Overview of separate
contributions (in %) to the
systematic uncertainty on the
signal. The total uncertainty is
given by the quadratic sum of
the individual uncertainties

Signal benchmark
point

Trigger effi-
ciency

Selection
efficiency

Limited Monte Carlo
samples size

Luminosity Total
uncertainty

m = 100 GeV, z = 2 6.1 11 1.8 2.8 13

m = 500 GeV, z = 2 8.9 4.7 0.8 2.8 11

m = 900 GeV, z = 2 9.7 1.8 1.2 2.8 10

m = 100 GeV, z = 4 3.9 8.5 5.1 2.8 11

m = 500 GeV, z = 4 9.7 2.9 1.1 2.8 11

m = 900 GeV, z = 4 8.9 1.3 1.3 2.8 9.5

m = 50 GeV, z = 6 4.0 13 60 2.8 61

m = 100 GeV, z = 6 4.0 17 13 2.8 22

m = 500 GeV, z = 6 11 4.1 2.0 2.8 12

m = 900 GeV, z = 6 10 3.0 2.2 2.8 11

of particles, and its effect is covered by the effect of varying
the pT requirement. The following variations of the nomi-
nal requirements are studied: pT value by ±3 % because of
an uncertainty on the track pT measurements and the uncer-
tainty on the amount of material; f HT value by ±25 % due
to pile-up dependence, S(pixel dE/dx) by ±10 %, S(TRT
dE/dx) by ±5 % and S(MDT dE/dx) by ±15 % because
of the observed disagreement of the mean and root-mean-
square width of these distributions in the Z → μμ events in
data and simulation, as well as of any potential mismodelling
of these ionisation estimators.

For all other variables the variations have no observable
effect in any of the signal samples. The total systematic
uncertainties on the efficiency arising from these variations
range between 1 % and 17 %, where the larger uncertainty
corresponds to lower-mass signal samples. This uncertainty
is dominated by the effect of the pT requirement variation,
which the lightest MCPs are most sensitive to.

The uncertainties due to the choice of parton distribution
functions and due to higher orders corrections propagate into
a small uncertainty on the selection efficiency, which lies well
within its statistical uncertainty.

7.4 Summary of systematic uncertainties

The contributions from the separate sources of systematic
uncertainty on the signal efficiency are shown in Table 4
for several charges and mass points. The uncertainties on
the luminosity and due to limited Monte Carlo samples size
are also shown. Since the expected number of events from
background is close to zero, the 25 % uncertainty on this
number has a very small effect on the calculation of the upper
limit on the cross-section. Thus, the trigger and selection
efficiencies are the main sources of uncertainty. An additional
statistical uncertainty to take into account the limited size of
the Monte Carlo samples is added. The samples with a mass

of 50 GeV and charge numbers z = 5, z = 6 were produced
with a selection at the generator level requiring pT/z > 20
GeV in order to decrease this uncertainty. Generally, it is
about 3 %, although it makes a significant contribution (up
to 60 %) for high-charge and low-mass samples.

The uncertainty on the integrated luminosity is 2.8 %. It is
derived, following the same methodology as that detailed in
Ref. [27], from a calibration of the luminosity scale derived
from beam-separation scans performed in November 2012.

8 Results

No signal candidate events are found for either the z = 2
or the z ≥ 3 selections. The results are consistent with
the expectation of 0.013±0.002(stat.)±0.003(syst.) and
0.026±0.003(stat.)±0.007(syst.) background events, res-
pectively. Since the number of signal events expected from
background is very small and consistent with the observa-
tion of zero candidate events, observed and expected lim-
its are virtually identical. The limits are computed with
MCLimit [28]. It uses the CLs method [29] to discriminate
between the background-only hypothesis and the signal-plus-
background hypothesis, and determines exclusion limits for
various MCP scenarios. The signal selection efficiency, lumi-
nosity, their uncertainties and number of observed events
are taken as input for pseudo-experiments, resulting in an
observed limit at 95 % confidence level (CL).

The measurement excludes the DY model of MCP pair-
production over wide ranges of tested masses. Figure 8 shows
the observed 95 % CL cross-section limits as a function of
mass for the five different charges. At the lowest mass values
the cross-section limit ranges from 7 fb for z = 2 to 1.4 pb for
z = 6. The most stringent cross-section limits are obtained
for masses of about 400 GeV and range from 0.4 to 1.6 fb.
In addition, the theoretical cross-section is shown for the
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Fig. 8 Observed 95 % CL cross-section upper limits and theoretical
cross-sections as functions of the MCP’s mass for values of z between
2 and 6

simplified Drell–Yan model. The uncertainty on the theoret-
ical cross-section is due to the parton distribution functions
choice and is estimated to be 5 %. For this model, the cross-
section limits can be transformed into mass exclusion regions
from 50 GeV up to limits of 660, 740, 780, 785, and 760 GeV
for charge numbers z = 2, 3, 4, 5, and 6, respectively. Mass
limits are obtained from the intersection of the observed lim-
its and the central values of the theoretical cross-section. This
result is similar to that obtained by the CMS collaboration [9]
and extends the excluded region approximately 300 GeV fur-
ther than in the previous ATLAS search [8].

9 Conclusion

This article reports on a search for long-lived multi-charged
particles produced in proton–proton collisions with the
ATLAS detector at the LHC. The search uses a data sample
with a center-of-mass-energy of

√
s = 8 TeV and an inte-

grated luminosity of 20.3 fb−1. Particles with electric charges
from |q| = 2e to |q| = 6e penetrating the full ATLAS detec-
tor and producing anomalously high ionisation signals in
multiple detector elements are searched for. Less than one
background event is expected and no events are observed.
Upper limits are derived on the production cross-sections
and are interpreted as mass exclusion limits for a Drell–
Yan production model from 50 GeV up to 660, 740, 780,
785, and 760 GeV for charges |q| = 2e, 3e, 4e, 5e, and 6e,
respectively.
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