
UC Davis
UC Davis Previously Published Works

Title
Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction 
of extracellular Na.

Permalink
https://escholarship.org/uc/item/9b43t2qf

Journal
The Journal of General Physiology, 90(4)

ISSN
0022-1295

Author
Bers, DM

Publication Date
1987-10-01

DOI
10.1085/jgp.90.4.479
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b43t2qf
https://escholarship.org
http://www.cdlib.org/


Mechanisms Contributing to the 
Cardiac Inotropic Effect of Na Pump Inhibition 
and Reduction of Extracellular Na 

DONALD M. BERS 

From the Division of Biomedical Sciences, University of California, Riverside, California 
92521 

A B S T R A C T  Reduction of the transsarcolemmai [Na] gradient in rabbit car- 
diac muscle leads to an increase in the force of contraction. This has frequently 
been attributed to alteration of Ca movements via the sarcolemmal Na/Ca 
exchange system. However, the specific mechanisms that mediate the increased 
force at individual contractions have not been clearly established. In the present 
study, the [Na] gradient was decreased by reduction of extracellular [Na] or 
inhibition of  the Na pump by either the cardioactive steroid acetylstrophanthi- 
din or by reduction of  extracellular [K]. Contractile performance and changes 
in extracellular Ca (sensed by double-barreled Ca-selective microelectrodes) 
were studied in order  to elucidate the underlying basis for the increase in force. 
In the presence of  agents that inhibit sarcoplasmic reticulum (SR) function (10 
mM caffeine, 100-500 nM ryanodine), reduction of the [Na] gradient produced 
increases in contractile force similar to that observed in the absence of  caffeine 
or ryanodine. It is concluded that an intact, functioning SR is not required for 
the inotropic effect of [Na] gradient reduction (at least in rabbit ventricle). 
However, this does not exclude a possible contribution of  enhanced SR Ca 
release in the inotropic response to [Na] gradient reduction in the absence of  
caffeine or ryanodine. Acetylstrophanthidin (3-5 #M) usually leads to an 
increase in the magnitude of  extracellular Ca depletions associated with individ- 
ual contractions. However, acetyistrophanthidin can also increase extracellular 
Ca accumulation during the contraction, especially at potentiated contractions. 
This extracellular Ca accumulation can be suppressed by ryanodine and it is 
suggested that this apparent enhancement of  Ca efflux is secondary to an 
enhanced release of Ca from the SR. Under conditions where Ca efflux during 
contractions is minimized (after a rest interval in the presence of  ryanodine), 
acetylstrophanthidin increased both the rate and the extent of extracellular Ca 
depletions. Thus, acetylstrophanthidin can increase both Ca influx and Ca 
efflux during the cardiac muscle contraction. These results can be explained 
by a simple model where the direction of net Ca flux via Na/Ca exchange 
during the action potential is determined by the changes in reversal potential 
of  the Na/Ca exchange. Reduction of  the [Na] gradient may well lead to net 
cellular Ca uptake (via Na/Ca exchange) and may also elevate the resting 
intracellular [Ca]. While net Ca uptake may occur with [Na] gradient reduction, 
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three independent mechanisms may contribute directly to the increase in 
contractile force observed at individual contractions in rabbit ventricular mus- 
cle: (a) enhanced Ca influx, (b) increased SR Ca release, and (c) increased 
resting intraceilular [Ca]. 

I N T R O D U C T I O N  

The exact role of Ca influx in cardiac muscle excitation-contraction coupling is 
unclear. It has been known since the experiments of Ringer (1883) that Cao is 
essential for myocardial contraction and there is general agreement that Ca 
influx plays an important role in the control of  cardiac force development (e.g., 
Chapman, 1983; Fabiato, 1985). However, it is not known whether this Ca influx 
(a) directly activates the myofilaments, (b) controls the release of Ca from the 
sarcoplasmic reticulum (SR), or (c) determines the degree of Ca loading of the 
SR for subsequent release (e.g., Fabiato, 1983; Reiter et al., 1984; Bers, 1985). 
None of these precludes any of the others. It seems probable that some combi- 
nation of these three mechanisms actually occurs and is condition dependent. In 
addition, different cardiac muscle preparations appear to vary in the degree to 
which contractile force depends on Ca release from the SR. That is, twitches in 
rabbit ventricle seem less dependent on SR Ca release than those in rabbit atrium 
or rat ventricle, but more dependent than twitches in frog ventricle (Bers, 1985). 
Thus, the use of rabbit ventricle constitutes an important aspect of  the present 
study and one must exert caution in the extrapolation of results from excitation- 
contraction coupling studies like this from one cardiac preparation to another. 

Ca influx is known to occur during the cardiac action potential through voltage- 
dependent Ca channels. This inward Ca current may be the main mechanism of 
Ca entry and has been estimated to be large enough to partially activate the 
myofilaments (K. S. Lee and Tsien, 1982; Isenberg, 1982; Hume and Giles, 
1983; Fabiato, 1983). The extent to which sarcolemmal Na/Ca exchange con- 
tributes to Ca fluxes that occur during the various phases of the cardiac cycle is 
considerably less clear. This reversible exchange system is thought to extrude 
Ca from the cell using the energy provided by the influx of Na ions down the 
large Na electrochemical gradient. It has also been suggested that the Na/Ca 
exchange system could be responsible for Ca influx during depolarization and 
Ca efflux when the cells are repolarized (Mullins, 1979). 

The positive inotropic effects of  cardiac glycosides have often been explained 
as follows. Inhibition of the Na pump leads to an increase of intraceilular Na 
activity (a~a), which in turn increases Cai via the Na/Ca exchange system (e.g., 
Ellis, 1977; C. O. Lee and Dagostino, 1982; Sheu and Fozzard, 1982; Bers and 
Ellis, 1982). This elevation of Cai could then lead to increased contractile force 
(e.g., Repke, 1964; Langer and Serena, 1970). A similar explanation could be 
used for the positive inotropic effects of  decreased Nao, except that the Na/Ca 
exchange is shifted in the direction of increased Ca uptake by decreased [Na]o 
rather than increased [Na]i. In the present study, we examine several possible 
ways in which these interventions can increase contractile force. The focus is on 
the mechanisms that may be immediately responsible for increased force at 
individual contractions. 
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Na p u m p  inhibition (or r educed  [Na]o) could lead to an increase o f  contracti le  
force by increasing: (a) Ca influx, which occurs dur ing  each beat  (which could 
be due  to N a / C a  exchange  or  Ca current) ;  (b) Ca available for  release f rom the 
SR; (c) diastolic free [Ca] in the cell such that  a constant  inc rement  in phasic Ca 
delivery to the myof i laments  would lead to increased force. These  mechanisms 
do not  p rec lude  one  ano the r  and  may even work in concert .  

T h e  present  study has two specific aims within this context .  T h e  first is to 
de t e rmine  whe ther  increased SR Ca release is requi red  in the inotropic response 
to [Na] gradient  reduct ion.  T h e  second is to evaluate how t ranssarcolemmal  Ca 
fluxes dur ing  individual contract ions  are  a l tered by reduct ion  o f  the [Na] 
gradient .  T h e  results indicate that  an enhanced  SR Ca release is not  required,  
but  p robab ly  does normal ly  cont r ibu te  to the inotropic effect  o f  [Na] gradient  
reduct ion.  T h e  results also suggest that,  dur ing  a contract ion,  bo th  Ca influx 
and  Ca efflux can be enhanced  by [Na] gradient  reduct ion.  T h e  potential  
influence o f  r epo r t ed  changes in rest ing free [Ca]i to the inotropic response is 
also considered.  

M E T H O D S  

Papillary muscles or ventricular trabeculae (0.1-0.7 mm diam) were obtained from the 
hearts of New Zealand white rabbits after intravenous administration of sodium pento- 
barbital (~75 mg/kg). The ends of the muscle were tied with fine suture. One end of the 
muscle was attached to a fixed hook and the other was attached to a transducer constructed 
from piezoresistive elements (AE-801, Aksjeselskapet Micro-Eiektronikk, Horten, Nor- 
way) in a 0.15-ml superfusion chamber. The muscle was stimulated at 0.5 Hz by platinum 
wires and equilibrated for ~ 1 h. The superfusate was a normal Tyrode (NT) containing 
(millimolar): 140 NaCI, 6 KCI, 1 MgCI2, 2 CaCi2, 10 glucose, and 5 HEPES, pH 7.40. All 
solutions were equilibrated with 100% 02 and the bath temperature was maintained at 
30~ The flow rate in the chamber was ~2 ml/min. In Iow-Na solutions, NaCI was 
replaced isosmotically with Tris or LiCI. Acetylstrophanthidin (ACS; Sigma Chemical Co., 
St. Louis, MO) was added from a 5 mM ethanol stock solution, caffeine was added as a 
solid, and ryanodine (lot 704 RWP-2, Penick Corp., Lyndhurst, NJ) was added from a 1 
mM aqueous stock solution. Muscles that showed any signs of aftercontractions or 
sustained increases in diastolic tension were excluded from this study. The concentrations 
of caffeine (10 mM) and ryanodine (100-500 nM) were sufficient to produce maximal 
effects of these agents in rabbit ventricular muscle at 30~ 

Double-barreled Ca-selective microelectrodes were fabricated from theta-style glass 
tubing (2 mm diam, R and D Optical Systems, Spencerville, MD) as previously described 
(Bers, 1983, I985; Bers and MacLeod, 1986). Microelectrodes were pulled and broken 
to 2-12 #M diam and the Ca barrel was silanized by exposure to N,N-dimethyltrimethyl- 
silylamine vapor. The Ca barrel was filled with 10 mM CaCI2 and 100 mM KCI, the 
reference barrel was filled with 140 mM NaCI, and a 50-500-#m column of neutral Ca 
sensor cocktail (Fluka Chemical Co., Ronkonkoma, NY) was drawn into the Ca barrel. 
The potentials of both barrels and their difference were continuously recorded, but only 
the difference signal (indicative of [Ca]) is shown in the figures. In order to match the 
electrical time course of signals from the two barrels, an adjustable passive RC filter was 
placed in the reference barrel signal after the output stage of the high-input impedance 
preamplifier, as previously described (Bers, 1983). Inadequate matching of the time 
courses of response of the two barrels to square voltage pulses was the most common 
reason for rejection of a microelectrode. An electrode was considered satisfactorily 
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matched if the responses to a 50-mV, 100-ms voltage pulse in the two barrels were 
indistinguishable after the initial 5-10 ms (and closely matched before that). In order to 
obtain a better signal-to-noise ratio and a more stable microelectrode position, the 
experiments with Ca-selective microelectrodes were performed in the normal superfusate 
with reduced [Ca] (0.2-0.5 raM). Stimulus artifacts are usually apparent in the C,%- 
depletion traces, but after the first 5-15 ms (including the action potential upstroke), 
these records do not show any electrical artifacts (e.g., see Bers, 1983; Bers and Merrill, 
1985). Mechanical artifacts also do not affect the Cao-depletion measurements. This has 
been previously addressed (Bers, 1983; Bers and Merrill, 1985; also see p. 491). Briefly, 
while the Ca,,-depletion amplitude and contractile force often change in a parallel fashion 
(e.g., with isoproterenol, Co, or ACS), under some conditions, the Cao-depletion signal 
decreases when tension increases (e.g., potentiated post-rest contractions and elevated 
[Ca],,). 

In the present series of experiments, Cao depletions were observed ~80% of the time. 
It is not clear why Cao depletions were sometimes not observed, but there are several 
possibilities that cannot be ruled out. The electrode tip may sometimes create an enlarged 
extracellular space, which would tend to reduce the apparent magnitude of the Ca~ 
depletions. The relatively large, blunt electrode might also destroy the cells in the 
immediate vicinity of the electrode tip; it also may not penetrate the sheath surrounding 
some trabeculae, or it may become blocked. All of these would reduce the apparent 
magnitude of the Cao depletions. The influence on the Ca microelectrode of each 
experimental solution was evaluated at the end of each experiment. Neither ryanodine 
nor ACS significantly altered the responses of the Ca microelectrodes used in these 
experiments. 

R E S U L T S  

The Influence of Caffeine and Ryanodine on the lnotropy Induced by Reduction 
of the Transmembrane [Na] Gradient 

It is possible that the degree  o f  SR Ca loading (and release) is entirely responsible 
for  the increase o f  contracti le force observed when the transsarcolemmal [Na] 
gradient  is reduced  (e.g., by cardioactive steroids, low [K]o, or  low [Na]o). I f  this 
is the case, the inotropic effect o f  the transsarcolemmal [Na] gradient  reduct ion 
by these means should be inhibited by agents that inhibit SR Ca accumulation 
or  release (e.g., caffeine and ryanodine).  This  possibility is explored  in the first 
series o f  experiments .  

Fig. 1 A shows a muscle that was exposed to ~ #M ACS under  control  
conditions. After  15-20  min, a new steady state was reached,  with a substantial 
increase in contractile force. This  effect o f  ACS was reversible and reproducible.  
In the exper iment  shown in Fig. 1 A, ACS was washed out  for  30 min and twitch 
tension r e tu rned  to 95% o f  the pre-ACS level. Caffeine (10 mM) was added  and,  
af ter  a transient positive inotropy,  twitch tension r e tu rned  to approximately the 
control  level again. After  30 min in caffeine, the muscle was again exposed to 4 
#M ACS and an increase in contracti le force similar to that seen in the absence 
o f  caffeine was observed.  T h e  recovery o f  twitch tension af ter  a 30-s rest interval 
was rout inely assessed in these exper iments  under  the different  exper imental  
conditions. T h e  post-rest recovery patterns in the caffeine exper iments  were 
very similar to those described in the ryanodine  exper iments  below (e.g., Fig. 2) 



DONALD M. BEltS [Na] Gradient Reduction and Cardiac Inotropy 483  

and the first three  post-rest contractions are shown in the lower panel o f  Fig. 
1A. Fig. 1 B shows pooled results f rom five exper iments  like that shown in Fig. 
1A. Caffeine (10 mM) by itself p roduced  a small increase of  force (Fig. 1B, 
middle bar). ACS also increased contracti le force by a similar percent  whether  
caffeine was present  or  absent (Fig. 1 B, left and  right bars). In absolute terms, 
without  adjusting for caffeine effects, the developed tension in the presence of  
caffeine plus ACS was 106% of  that with ACS alone. 

A 

Control 

Coffsine 
(10mM) 

5 rain 

ACS (4~M) 

2.5 mN 

5s 
l 

2 5  mN 

B 

200 

j.~ 150 

~ ,oo 
CL 

5O 

0 
AC$ Caffeine Caffeine 

+ 
ACS 

FIGURE 1. The effect on tension development of 4 tiM ACS applied to a rabbit ventric- 
ular muscle in the absence of, and after equilibration with, 10 mM caffeine. (A) After the 
top trace was obtained, ACS was washed out for 30 rain before addition of and equilibra- 
tion with caffeine. Two recording speeds are indicated. In the lower trace, several 
contractions recorded at high speed were omitted at the break and the last three 
contractions followed a 30-s rest interval. (B) The results are means + SEM from five 
experiments like the one shown in A. The results are expressed as percents of developed 
tension before addition of the drug. The column labeled "caffeine + ACS" is the percent 
of steady state developed tension in 10 mM caffeine when 4 uM ACS was added to the 
caffeine-containing medium. 

Fig. 2A shows an exper iment  that was similar to that shown in Fig. 1 A, except  
that the muscle was equil ibrated with 500 nM ryanodine ( ra ther  than 10 mM 
caffeine) af ter  washout o f  the first ACS exposure.  Again it can be seen that ACS 
produced  a similar increase in contractile force in the absence and presence o f  
ryanodine.  Pooled results f rom 12 exper iments  like that in Fig. 2A are shown in 
Fig. 2B. By itself, ryanodine  p roduced  a modest  depression o f  contracti le force 
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in rabbi t  ventr icular  muscle (as r epor t ed  by Sutko and  Willerson, 1980, and 
Bers, 1985). ACS induced approx imate ly  the same percen t  o f  increase in con- 
tractile force when ryanodine  was absent  or  present .  T h e  m a x i m u m  rates o f  
contract ion (+dT/dt) and  relaxat ion (-dT/dt) changed  in a fashion similar to 
deve loped  tension. 

Fig. 2A also illustrates the influence o f  ACS and ryanodine  on post-rest  
recovery.  Both traces in Fig. 2A begin at the end  o f  a 30-s rest  interval and  an 

Control 

5 s  5 m i n  
I I 4 - - 1  

( 5 0 0 n M )  
I 

ACS ( 5.~M I 

10mN 

5s 
i l 

] lOmN 

m 2oo 

o 

150 

i 
~oo 

0_ 

5 O  

_T_ 
~K_ 

ACS Ry Ry + 
ACS 

Tension 

7- 

-r- 

ACS Ry Ry + 
ACS 

+ d T / d t  

ACS Ry Ry + 
ACS 

- d T / d t  

FIGURE 2. The effect of 5/aM ACS in the absence and presence of 500 nM ryanodine 
on twitch tension and post-rest recovery of tension. (A) ACS was washed out and the 
muscle was equilibrated with 500 nM ryanodine between the two traces. Each trace begins 
at the end of a 30-s rest interval and ends with the first 10 beats after a 30-s rest interval 
in the presence.of ACS. The results are means --. SEM from 12 experiments like the one 
shown in A. Values are expressed as a percent of the value before drug addition. The "Ry 
+ ACS" columns are the percent of the value in ryanodine alone when 5 /aM ACS is 
added. In absolute terms, the tension, +dT[dt, and -dT/dt with both ryanodine and ACS 
are, respectively, 88, 70, and 61% of the value with ACS alone. 

addit ional  30-s rest  is in terposed a f te r  the muscle has nearly equi l ibrated with 
ACS (near the end  o f  each trace). In control ,  the first post-rest  beat  (beat 1) is 
larger  than the second (beat 2), but  smaller than the steady state twitch (typical 
o f  rabbi t  ventricle; see Bers, 1985). Af te r  exposure  to ACS, beat  1 was higher  
than the steady state twitch; this may reflect  an increased level o f  SR Ca loading. 
In the presence  o f  ryanodine,  beat  1 was less than steady state, and tension 
recovery  in subsequent  beats was largely monoton ic  in both  the absence or  
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presence  o f  ACS. Post-rest  recovery  and  the influence o f  ACS and ryanodine  on 
post-rest  contract ions have been discussed in detail by Bers (1985) and Sutko et 
al. (1986a).  

Control 

Ryanodine 
(500 nM) 

A 5 min 
I I 

5mN 

B 

Control 

SL 
-1- 

2 mM K + 

5mN 

5s 5rain 5s 

~ ]SmN 
(500 r/d) 

75 rnM No(Tris) 

o3 

" 0  

r  

0 . m  

C 

2 0 0  

150 

100 

5 0  

S_ 
II Y 

0 1 , i s i i i i 

140 100 75 50  140 100 75 5 0  No]raM 
Control Ry0nodine 

FIGURE 3. (A) The effect of  reduction of  [K]o on tension development in the absence 
(top) and presence (bottom) of 500 nM ryanodine. Between the two traces, [K]o was 
increased to 6 mM and the muscle was equilibrated with 500 nM ryanodine. (B) The 
effect of  reduced [Na]o on tension development in the absence and presence of 500 nM 
ryanodine. [Na]o was reduced to 75 mM. The experimental traces begin at the end of a 
30-s rest interval and end with the first 10 contractions after a 30-s rest interval in the 
presence of 75 mM Nao. (C) Pooled results are means =!= SEM from eight experiments 
similar to that in B. Tension is expressed as a percent of steady state twitch tension in 
normal [Na]o (140 mM). In this series of muscles, 500 nM ryanodine reduced twitch 
tension to 68 ___ 6% of control. 

Fig. 3A illustrates that  if  the Na p u m p  is inhibited by reduct ion o f  [K]o f rom 
6 to 2 mM, the re  is an increase in contracti le  force. Af ter  equil ibration with 500 
nM ryanodine  (which decreased contracti le  force by 22%), the same [K]o reduc-  
tion induced an increase similar to that  observed unde r  control  conditions (28 
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vs. 27%). Similar results were observed in four other experiments at different 
levels of  reduced [K]o (0.5-2 mM). 

In addition to inhibition of the Na pump, the transsarcolemmai [Na] gradient 
can also be reduced by simply decreasing [Na]o. Fig. 3B shows an experiment 
where [Na]o was reduced in the absence and presence of  500 nM ryanodine. Fig. 
3 C summarizes results from eight experiments like those shown in Fig. 3 B. This 
figure demonstrates that reduction of  [Na]o increases contractile force in both 
the absence and presence of  500 nM ryanodine (although the increases are a 
somewhat smaller percent after ryanodine treatment). Similar results were ob- 
served when 10 mM caffeine was used instead of  ryanodine in these reduced- 
[Na]o experiments (not shown). 

These results suggest that when normal SR function is depressed (by caffeine 
or ryanodine), substantial inotropic responses are still observed in response to 
ACS, low [Na]o, and low [K]o. This implies that normal SR function is not 
required for these inotropic effects. However, this does not preclude an impor- 
tant contribution of  enhanced SR Ca release to the inotropy observed in the 
absence of caffeine or ryanodine (see Discussion). 

The Influence of ACS on Cao Depletions 

Changes in [Ca]o in response to excitation were measured with double-barreled 
Ca-selective microelectrodes. This technique has been previously evaluated and 
characterized, and these activation-dependent Cao depletions are indicative of  
cellular Ca uptake (Bers, 1983, 1985; Dresdner and Kline, 1985; Bers and 
MacLeod, 1986). During steady state stimulation, there are transient depletions 
of  Cao during individual contractions that are related to cellular Ca influx and 
Ca efflux (Bers, 1983, 1985). If ACS either directly or indirectly alters transsar- 
colemmal Ca fluxes, the extent and/or  time course of Cao depletion should 
change on application of  the drug. 

Application of  ACS alters both the extent (Fig. 4) and the time course (Fig. 5) 
of  Cao depletions. Fig. 4 shows Cao-depletion signals (16 sweeps averaged) for 
control contractions, contractions after exposure to 4 #M ACS for 2, 5, and 10 
min, and contractions 40 min after removal of ACS from the superfusate. The 
magnitude of  the maximum Cao depletion under control conditions was 0.20 
mV, or 4.5 #M in an ambient [Ca] of  300 #M. The maximum depletion increased 
to 7.1 #M after 10 min in ACS and returned to 4.3 #M after washout of  the 
drug. Tension also increased to 263% of control after 10 min in ACS and 
returned to 97% after washout. 

During steady state contractions, [Ca]o returned to the bath level before the 
next excitation. The traces in the figure generally do not show the entire time 
course of this recovery. However, [Ca]o does effectively recover for all the traces 
in Figs. 4-7  (even for Fig. 6 C, which is not a steady state contraction). In contrast, 
the post-rest contractions in Fig. 8 are not near steady state, and net or cumulative 
Cao depletions occur. 

An example of  the way ACS alters the time course of  Cao depletions associated 
with individual contractions is shown in a similar experiment with another muscle 
in Fig. 5. The control Cao depletion is similar in magnitude (4.7 #M) to the 
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FIGURE 4. Changes in transient Cao depletion associated with single contractions before, 
during, and after exposure to 4/~M ACS in a rabbit ventricular muscle. Each trace is the 
average from 16 consecutive depletions. These traces are the difference of the Ca and 
reference barrel signals of a double-barreled Ca-selective microelectrode on a linear 
millivolt scale at the left. The maximum extent of the decrease in [Ca]o from the extended 
baseline is also listed at the right of each trace. The bath [Ca] in this experiment was 300 
/~M. The arrow indicates when the stimulus was applied. 

control  Cao deplet ion in Fig. 4 (al though the m a x i m u m  rate  o f  deplet ion is 
faster). Af te r  the muscle was exposed  to 4 uM ACS for  6 min (Fig. 5B), the 
initial rate  o f  Cao deplet ion was great ly  increased and  was partially obscured  by 
the stimulus artifact.  However ,  the m a x i m u m  extent  o f  Cao deplet ion was in fact 
smaller,  since af ter  - 5 0  ms, [Ca]o began to increase. By 150 ms, [Ca]o exceeded 

A C~176 ~ lO.3m V 

B ACS 
(6 rain) 

C Recovery ~ 
(6mini 

D Recovery J.~$ 
(20 rain) r" '~. 

| I 

200 ms 

FIGURE 5. Changes in [Ca]o associated with single contractions (16 signals averaged) 
before (A), during (B), and after (C and D) exposure to 4 jaM ACS. These traces are the 
difference signals from a double-barreled Ca microelectrode. A decrease of 0.3 mV 
corresponds to a decrease in [Ca]o of 6.8/~M from the bath level of 300 #M. The stimuli 
are indicated by arrows. Between C and D, the delay was decreased. The short initial 
upward deflections may be due to imperfect barrel matching during the time that the 
potential was rapidly changing. 
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the bath level, which indicates that a net loss of cellular Ca was occurring after 
an initial cellular Ca uptake. The difference between the effects of ACS on Cao 
depletion in Figs. 4 and 5 probably represents an important variability in the 
response of rabbit ventricular muscle to ACS. It might be that in the experiment 
in Fig. 5, ACS led to a large SR Ca release and subsequent Ca extrusion. This 
possibility is discussed below (pp. 488-489 and 497-499). Fig. 5C was obtained 
after ACS had been removed from the superfusate for 6 rain. At that time, the 
initial Cao depletion was more like the control and reached about the same 
minimum [Ca]o. Although [Ca]o began to rise after ~75 ms, it did not exceed 
the bath level by the end of the trace (250 ms). Fig. 5D was obtained 20 min 
after removal of ACS. When the Cao-depletion signals in Fig. 5, B, C, and D, 
were recorded, twitch tension was 225, 93, and 86%, respectively, of that under 
control conditions (Fig. 5A). 

Fig. 6 shows Cao-depletion and tension traces from single contractions (i.e., 
not signal-averaged). Panel A shows a control contraction and the small associated 

iTJ \ o 
0.4 mY I- - - ~ ; ~ . . ~ . . ~ - ' ~  ~ T , ~ " ~  

I I 
2 5 0  ms 

FIGURE 6. The influence of 4 t~M ACS on tension and [Ca]o (top and bottom trace in 
each panel, respectively) during single contractions (not averaged). (a) Steady state 
contraction in control 0.3 mM Ca superfusate. (B) Steady state contraction with 4 #M 
ACS. (C) First post-rest contraction after a 1-min rest interval with 4 #M ACS (1.5 min 
after the record in panel B). (D) Steady state contraction 15 rain after removal of ACS 
from the superfusate. A decrease of 0.4 mV corresponds to a decrease in [Ca]o of 9.1 tIM. 

transient depletion (0.15 mV, or 3.5 t~M in an ambient [Ca] of 300 t~M). Panel 
B shows that 12 min in 4 #M ACS increased Cao depletion and twitch tension (to 
197 and 320% of control, respectively). Fig. 6C shows the first beat after a l- 
rain rest interval (1.5 min after Fig. 6B), still in the presence of 4 ~M ACS. The 
initial 200 ms of the Cao depletion in C is similar to that in B, but [Ca]o reached 
a minimum at about that time and then increased; this indicates a small net 
cellular Ca loss by the end of the trace. Developed force at this contraction was 
540% of control. After 15 min washout of ACS, the traces in Fig. 6D were 
obtained. The maximum extent of Cao depletion and the developed tension at 
this contraction were 92 and 86% of the initial control, respectively. These 
results suggest that ACS can increase both Cao depletion and Cao accumulation. 

Cao Depletions in the Presence of Ryanodine 

It is possible that the reversal of Cao depletion and the net Ca loss observed in 
the presence of ACS in Figs. 5 B and 6 C are attributable to a large release of Ca 
from the SR and consequent stimulation of Ca efflux (see Discussion). That is, 
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SR Ca release may be greatly increased with ACS, particularly at potentiated 
contractions (Fig. 6 C), but also at steady state contractions in some muscles (Fig. 
5B). This may elevate [Ca]i sufficiently to increase Ca efflux, simply considering 
the principle of  mass action. To  obtain a clearer picture of  how ACS affects Ca 
influx during individual contractions, it may be useful to examine the influence 
of ACS on Cao depletions under conditions where release of  Ca from the SR is 
inhibited. This may reduce the effect of  a large Ca efflux that begins before Ca 
influx has exerted its maximum effect to decrease [Ca]o. Pretreatment of  the 
muscle with ryanodine may inhibit SR Ca release (see Discussion) and this 
approach was pursued. Therefore,  muscles were pretreated with ryanodine in 
order to inhibit both SR Ca release and the changes in Ca efflux that are driven 
by this Ca release. 

Before ryanodine exposure, the muscle in Fig. 7 exhibited Cao accumulation 
during twitches in the presence of  ACS (i.e., compare A and B). Fig. 7 C shows 

A Control C Ry 

0.4 mV[ 

B ACS D Ry + ACS 

I I 

250 ms 

FIGURE 7. The influence of 5 ~M ACS on transient Cao depletions in absence (A and B) 
and presence (C and D) of 100 nM ryanodine. The muscle was equilibrated with ryanodine 
for 30 min before the recording in panel C. These single sweeps were taken before (A 
and C), 5 min after (B), and 4 min after (D) inclusion of .5 ~M ACS in the superfusate. 
Ambient [Ca]o was 300 #M and a decrease of 0.4 mV corresponds to a 9.1 ~M decrease 
in [Ca]o. 

an individual (not averaged) Cao-depletion trace from this muscle after exposure 
to 100 nM ryanodine for 30 min (which is adequate for a maximum steady state 
effect). When 5 tzM ACS was added to the superfusate for 4 min, the Cao 
depletion and twitch tension were increased by 58 and 54%, respectively (Fig. 7, 
C and D). In the presence of  ryanodine, this muscle no longer showed Cao 
accumulation during twitches in the presence of  ACS. These transient Cao 
depletions (where [Ca]o returns to the bath level before the subsequent beat) are 
seen during steady state stimulation and indicate Ca influx and efflux associated 
with individual excitations (e.g., Bers, 1983, 1985). Cumulative Cao depletions 
are also observed under non-steady state conditions and reflect net uptake of  
Ca by the cells (such as that required to refill the SR, which becomes Ca-depleted 
during rest; see Bers and MacLeod, 1986; MacLeod and Bers, 1987). 

Fig. 8 shows Cao-depletion and tension traces during and after a 1-min rest 
interval under various conditions. Both transient and cumulative Cao depletions 
can be seen. In control conditions when stimulation was stopped (Fig. 8A), 
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[Ca]o increased above the bath level. If the rest interval had been allowed to 
proceed, the excess Cao would have been slowly washed away and the measured 
[Ca]o would have returned to the bath level in 4-5 min in this muscle (not 
shown). When stimulation was resumed, a net Cao depletion developed over the 
first 5-10 beats (1.1 mV, or 24.3 #M in ambient 300 #M Ca). With continued 
stimulation, the [Ca]o returned to the bath level in ~3-4  min. These cumulative 
changes in [Ca]o have been previously described and probably represent the slow 

Control Ryanodine ( 100 nM) 
( Steady State) 

Pre-ACS 

A 
lmV[ I 1 1 ~ 1 ~ ' ~ . ~  ~ 

1toNI 

D 

ACS (5#M) 

C 

Recovery 

I I I I 

2 rain 10 s 
FIGURE 8. The effect of 5 #M ACS on [Ca]o changes and tension development in the 
absence (left) and during steady state in the presence (right) of 100 nM ryanodine. The 
recordings were made before exposure to ACS (pre-ACS, A and D), during ACS treatment 
(B and E), and during (F) or after (C) washout of ACS. Small vertical bars indicate changes 
in the recording rate. In each panel, stimulation (0.5 HE) was stopped for 1 min and then 
resumed. A 1-mV change in the Ca signal corresponds to a 22-.M decrease (or a 24-#M 
increase) in [Ca]~ 

loss of  SR Ca from the rabbit ventricular cells during rest and refilling of the SR 
with Ca upon subsequent stimulation (Bets and MacLeod, 1986; MacLeod and 
Bers, 1987). Depletions associated with individual beats are also just discernible 
in this trace. The Cao depletion associated with the first post-rest contraction is 
smaller than that associated with the next few contractions. 

The same protocol was performed after a muscle was exposed to 5 #M ACS 
for 7 rain (Fig. 8B). Two effects of ACS on [Ca]o changes are most apparent. 
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First, both the Cao accumulation during rest and the cumulative depletion upon 
restimulation are reduced. These cumulative depletions are believed to represent 
refilling of  Cai stores that lose Ca during rest (Bers and MacLeod, 1986; MacLeod 
and Bers, 1987). ACS slows or even reverses the rest decay of  contractile force, 
probably because the SR retains Ca more effectively during rest with ACS (Sutko 
et al., 1986a; Bers and MacLeod, 1986). Thus, little cumulative Cao depletion is 
associated with refilling the SR to its pre-rest level. The second notable effect of  
ACS is that the Ca,, depletions associated with individual contractions are in- 
creased. It should be emphasized that these [Ca] records do not show any 
contraction artifacts. This can be appreciated by considering the first two 
contractions in Fig. 8B (and also Fig. 6, B and C). The first post-rest beat (beat 
1) exhibits a much stronger contraction, but a smaller transient Cao depletion 
than the second post-rest beat (or steady state beat, Fig. 6B). Thus, the increase 
in transient Cao depletion observed with ACS cannot be attributed to any 
influence of  movement on the electrode signals. Fig. 8C was obtained 27 min 
after removal of  ACS from the superfusate. The effects of  ACS were almost 
completely reversed. This muscle was then exposed to 100 nM ryanodine for 20 
min and the traces in Fig. 8 D were obtained. In the presence of  ryanodine, the 
loss of  Cai during rest leads to a larger and more rapid accumulation of  Cao than 
in control. When stimulation is resumed, the cumulative Cao depletion is also 
larger in the presence of  ryanodine than in control conditions. At the first few 
contractions, only Cao depletion occurs. There is no evidence of  Cao repletion 
between the contractions (compare with Fig. 8, A-C,  and see in Fig. 9A). It is 
possible that ryanodine inhibits the Ca efflux that may be associated with Cai 
release. 

When 5 #M ACS was added to the ryanodine-containing superfusate for 9 
min, the traces in Fig. 8 E were obtained. ACS decreased the magnitude of the 
Cao accumulation during rest and the extent of  cumulative Cao depletion, with 
resumption of  stimulation (by 17 and 30%, respectively). In the presence of  
ryanodine, the SR may still lose Ca rapidly, even in the presence of  ACS 
(MacLeod and Bers, 1987). This may account for the smaller reduction of  the 
cumulative Cao depletions by ACS in the presence of  ryanodine. 

In ACS, the Cao depletions associated with individual contractions are notably 
increased. The first post-rest contraction in the presence of  ryanodine may be 
the closest one might hope to get to estimation of  the unidirectional Ca influx 
with this approach. Under these conditions, the SR is probably virtually empty, 
does not release Ca, and may sequester (at least temporarily) much of the Ca 
that enters the cell at that contraction (Bers and MacLeod, 1986; Bets et al., 
1987). Thus, there is likely to be little Ca efflux contributing to the [Ca]o changes 
observed. As stimulation continues, approaching steady state, Ca influx and 
efflux must be the same and will undoubtedly overlap. These aspects can be best 
appreciated in Fig. 9, which shows a closer view of the initial post-rest segments 
of  the [Ca] traces in Fig. 8, D and E. At the first post-rest contraction (Fig. 9A), 
the extent of  Cao depletion is 7.3 ~M, but takes nearly an entire cycle length (2 
s) to reach this value in ryanodine, where, in the presence of  ACS, the Cao 
depletion reaches 10 #M in less than half that time (Fig. 9B). At the 10th 
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contraction, the transient Cao depletion in the presence of  ACS was ~2.5 times 
that in ryanodine alone. While there was surely temporal overlap between Ca 
influx and efflux at this point, both Ca influx and efflux may have been enhanced. 

Fig. 8 F was obtained 10 min after ACS removal from the ryanodine-containing 
superfusate. There was partial, but not complete, reversal of  the ACS effect at 
that time. Fig. 8F  also demonstrates, at faster recording rate, the rapid Ca loss 
that occurs upon termination of  stimulation in the presence of  ryanodine de- 
scribed previously (Bers and MacLeod, 1986; MacLeod and Bers, 1987; Bers et 
al., 1987). The experiments with Cao microelectrodes (Figs. 4-9) were performed 
with a lower [Ca]o than the experiments in Figs. 1-3. However, Fig. 8 shows that 
the same qualitative results were obtained at low [Ca]o. That is, ACS produced 
a substantial inotropic effect in both the absence and presence of  ryanodine. 

The results in this section indicate that when SR Ca release is minimized, the 
increase in Ca influx induced by ACS is most apparent. Furthermore, these 
results suggest that both Ca influx and efflux are increased in the presence of  
ACS at steady state. 

A Ryanodine 

B Ryanodine+ ACS >E 

8s 

FIGURE 9. A closer view of the [Ca]o changes shown in Fig. 8, D and E, after resumption 
of stimulation in the presence of 100 nM ryanodine (A) or in the presence of 100 nM 
ryanodine and 5 #M ACS (B). 

D I S C U S S I O N  

It is now generally accepted that the mechanism of inotropic action of  cardioac- 
tire steroids depends on sarcolemmal Na pump inhibition and Na/Ca exchange 
(e.g., Langer and Serena, 1970; Langer, 1981; Lee, 1985). There is a very steep 
relationship between intracellular Na activity (a~a) and contraction force (C. O. 
Lee et al., 1980; Wasserstrom et al., 1983; Im and Lee, 1984; Eisner et al., 
1984), and the elevation of  a~a has been associated with increased resting free 
[Ca]i (Bers and Ellis, 1982; C. O. Lee and Dagostino, 1982). Inhibition of  the 
Na pump by reducing [K]o also results in elevated aka and free [Call (Bers and 
Ellis, 1982; Sheu and Fozzard, 1982; Eisner et al., 1984), and reduction of 
[Na]o leads to increased free [Ca]i (Marban et al., 1980; Bers and Ellis, 1982; 
Sheu and Fozzard, 1982). At this point, it seems clear that a shift in the Na/Ca 
exchange system is crucial in the inotropic effect of  Na pump inhibition (by 
cardioactive steroids or [K]o reduction) or reduction of  [Na]o. In each case, the 
transsarcolemmal [Na] gradient is reduced, such that the Na/Ca exchange is 
shifted more in favor of  Ca entry and less in favor of  Ca efflux. 
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There are several levels at which such an ionic shift could lead to a change in 
tension development: (a) Ca influx associated with individual contractions could 
be increased; (b) the amount of  Ca released by the SR could be increased; (c) 
resting free [Ca]i could be elevated. These three possibilities will be discussed in 
detail below in reverse order. It is unlikely that the inotropic effects are due to 
alteration of  myofilament Ca sensitivity or mitochondrial Ca shifts. Similar effects 
on tension are seen with ACS, reduced [Na]o, or Na pump inhibition by low 
[K]o. Reduction of  [Na]o decreases a}~a, while ACS increases a}~a. On this basis, 
these two interventions might be expected to produce opposite effects on 
mitochondrial Ca content (Crompton et al., 1976). There is also no evidence to 
suggest that myofilament characteristics are altered by cardioactive steroids or 
small monovalent cationic changes (Fabiato and Fabiato, 1973; Nayler, 1973; 
Kentish, 1984). While other mechanisms may be involved, the remainder of  the 
Discussion will focus on whether increases of resting free [Ca]i, SR Ca release, 
or Ca influx can contribute to the inotropic effect of the reduced [Na] gradient. 

Increased Resting Free [Ca]i? 

Cardioactive steroids, low [K]o, and low [Na]o have all been shown to increase 
the resting free [Ca]i in cardiac tissues (Dahl and Isenberg, 1980; Lee et al., 
1980; Marban et al., 1980; Bers and Ellis, 1982; Lee and Dagostino, 1982; Sheu 
and Fozzard, 1982; Allen et al., 1983; Weingart and Hess, 1984; Wier and Hess, 
1985). The increases in the resting free [Ca]i under conditions that might be 
considered to be relevant to an inotropic situation are variable, and the resting 
[Ca]i is near the detection limits of  both Cai microelectrodes and aequorin. To  
estimate the effect that these changes in the resting [Ca]i may have on contrac- 
tions, I will use the model of  cellular Ca buffering described by Fabiato (1983) 
and an educated guess as to the true resting and increase in free [Ca]i. 

Fig. 10 shows Fabiato's calculated relationship between total Cai and tension. 
Three different diastolic free [Ca]i values are indicated: 125 (A), 300 (B), and 
480 (C) nM. These values correspond to total Ca of  5, 10, and 15 #mol/kg wet 
weight and are below or just at the threshold of  contractile activation. These 
values are in the range of  resting and elevated free [Ca]i associated with inotropic 
cardioactive steroids or a reduction of  [Na]o to ___50% of normal (see above). If  
a constant increment of  cellular Ca is added to these three diastolic levels (20 
#mol/kg wet weight), the peak tensions at A', B' ,  and C' are predicted (corre- 
sponding to 1-2 #M peak [Ca]i). Going from A' to B '  and A'  to C',  respectively, 
represents 57 and 114% increases in contractile force. Thus, it seems possible 
that changes in resting free [Call can contribute quantitatively to the inotropic 
effect of  transsarcolemmal [Na] gradient reduction, even with a constant phasic 
supply of activating Ca. 

Increased SR Ca Release? 

The following is probably the most widely held explanation of  this inotropy. 
That is, reduction of the [Na] gradient limits Ca extrusion by the Na/Ca exchange 
and this results in an increased SR Ca load and release in response to muscle 
activation. The results of  the present study (Figs. 1-3 and 8) illustrate that 
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pretreatment of rabbit ventricular muscle with caffeine or ryanodine does not 
abolish the increase of contractile force induced by ACS, reduced [Na]o, or 
reduced [K]o. On the contrary, the increases in contractile force are very similar 
in terms of a percent increase (and also in absolute terms). If  it is assumed that 
caffeine and ryanodine inhibit SR Ca release (see below), these results suggest 
that a normally functioning SR is not required for the observed inotropic effects 
of ACS, low [Na]o, and low [K]o. Furthermore, these results imply that some 
other mechanism may be responsible for a substantial component of the increases 
of contractile force. 

On the other hand, it is not to be concluded that increased SR Ca loading and 
release do not contribute to the inotropic effects of ACS, low [Na]o, and low 
[K]o under normal conditions (i.e., in the absence of caffeine or ryanodine). It is 
likely that ACS and low [Na]o do increase the SR Ca content and allow the SR o y 
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FIGURE 10. The relationship between total cytoplasmic Ca and percent maximum 
tension using values calculated by Fabiato (1983) and using his conversion factor 0.399 
liter cell water/kg wet weight. These values were fit by a least-squares fitting procedure 
by the following arbitrarily chosen equation, y = 127/11 + [1/(1.42 x 10-6)(x2's)]}, to 
generate the curve. The points along the tension = 0 line (A-C) indicate three possible 
values of diastolic [Call. The other points (A', B', C') indicate the corresponding tension, 
which would be reached by increasing cytoplasmic Ca by 20 #mol/kg wet weight. 

to retain this Ca longer in this preparation (Sutko et al., 1986a; Bridge, 1986; 
Bers and Bridge, 1987). Ca transients sensed by aequorin, which are believed to 
be due to SR Ca release, are also increased by ACS (Wier and Hess, 1984; Allen 
et al., 1985). While the aequorin transients may not be exclusively SR dependent, 
it appears likely that under control conditions, increased SR Ca uptake and 
release may be partly, but certainly not wholly, responsible for the increase of 
force produced by ACS, low [K/o, and low [Na]o. 

The conclusions in the foregoing section are dependent upon the ability of 10 
mM caffeine and 100-500 nM ryanodine to inhibit SR Ca accumulation and/or 
Ca release. These are concentrations of these agents that we have found sufficient 
to produce apparently full depression of SR function. Caffeine is a classic probe 
of SR function, and at 10 mM it appears to render the SR permeable to Ca, such 
that the SR is unable to accumulate Ca and hence unable to release Ca in 
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response to excitation (Weber and Herz, 1968; Bianey et ai., 1978). Both caffeine 
and ryanodine strongly inhibit Ca transients sensed by aequorin (Hess and Wier, 
1984; Wier et al., 1985) and contractions thought to be principally dependent 
upon Ca release from the SR (e.g., post-rest contractions and rapid cooling 
contractures; Figs. 2A, 3B, and 8) (Bers, 1985; Sutko et al., 1986a, b; Bridge, 
1986; Bers et al., 1987). In addition to preventing SR Ca uptake and release, 
caffeine exerts several other cellular effects at this concentration that complicate 
conclusions (e.g., it increases myofilament Ca sensitivity [Fabiato, 1981; Wendt 
and Stephenson, 1983], it increases Ca influx [Blinks et al., 1972; Bers, 1985], 
and it is a phosphodiesterase inhibitor). While ryanodine appears to be more 
specific, its action on the SR is more complex (Hilgemann et al., 1983; Sutko et 
al., 1985, 1986b; Bers and MacLeod, 1986; Bers et ai., 1987). In the presence 
of ryanodine, the SR can still accumulate Ca, but it does not appear to release 
the Ca normally in response to activation, losing the Ca more slowly during the 
few seconds after activation (Bers et al., 1987). In effect, both of these agents 
can be expected to inhibit SR Ca release. 

It may be noted that, under these conditions, developed tension in rabbit 
ventricular muscle is not greatly depressed by either caffeine or ryanodine, 
especially when compared with certain other cardiac tissues (e.g., rat ventricle, 
Purkinje fibers, or even rabbit atrium; see Sutko and Willerson, 1980; Bers, 
1985). These results were interpreted to suggest that in the absence of normal 
SR function, Ca influx can activate tension development fairly well in rabbit 
ventricle, but only minimally in rat ventricle. We have also recently compared 
the ryanodine sensitivity of rat and rabbit ventricle at several temperatures 
(Shattock and Bers, 1987). While tension development was depressed to a much 
greater extent in rat ventricle, the ryanodine concentrations required for a half- 
maximal effect in the two tissues were almost identical (0.5 nM at 37~ 5 nM 
at 29 ~ and 20-30 nM at 23 ~ The limited ability of caffeine and ryanodine 
to decrease developed tension in rabbit ventricle is probably not due to lower 
SR susceptibility, but rather to a fundamental difference in dependence on SR 
Ca release (e.g., compared with rat ventricle). 

Increased Ca Influx? 

The results with Cao-selective microelectrodes (Figs. 4-9) illustrate that Cao 
depletions associated with individual contractions are increased by ACS, at least 
early in the contraction. Cao depletions in cardiac muscle assessed with Ca- 
selective microelectrodes have been extensively characterized (Bers, 1983, 1985; 
Dresdner and Kline, 1985; Bers and MacLeod, 1986; MacLeod and Bers, 1987). 
Cao depletions in cardiac muscle have also been studied using Cao-sensitive dyes 
(Hiigemann et al., 1983; Hilgemann and Langer, 1984; Cleeman et al., 1984; 
Pizzaro et al., 1985; Hilgemann, 1986a, b). The results with the two techniques 
have in general been in excellent agreement. The only relevant discrepancy in 
the results reported with these two approaches is that Pizzaro et ai. (1985) 
reported that 1 ~M strophanthidin did not appreciably alter the Cao depletion 
in frog ventricular muscle, whereas the present study shows that ACS can 
appreciably alter Cao depletions in rabbit ventricle. 

The recorded changes of [Ca]o are indicative of cellular Ca uptake and loss. 
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However, they cannot be expected to provide unidirectional flux measurements. 
That  is, both Ca influx and efflux occur during single contractions and only the 
net changes in [Ca]o can be detected by the Ca-sensitive microelectrode. Thus, 
if Ca influx is increased in ACS, but Ca efflux is also increased (e.g., owing to a 
large SR Ca release), the [Ca]o may increase or decrease, or do neither or both. 
The extracellular Ca microelectrode records the net result of  Ca influx and 
efflux, which may be more relevant to contraction or overall Ca movements than 
any single route of Ca movement (e.g., current through Ca channels). However, 
to obtain information about unidirectional Ca influx with this technique, it is 
useful to depress Ca efflux preferentially. It is possible that the rise of [Ca]i 
associated with SR Ca release is a major stimulator of  Ca efflux during a 
contraction. If so, inhibition of SR Ca release should diminish the influence of 
Ca efflux on the [Ca]o change so that it is more representative of  Ca influx. This 
was the rationale for using ryanodine in the experiments in Figs. 7-9 and 
especially for examining the first post-rest beat when the SR and the cell were 
relatively depleted of  Ca (Figs. 8, D-F, and 9). Under these conditions, the 
increase of Ca uptake induced by ACS is most apparent. 

The changes of [Ca]o sensed by the Ca microelectrode are also complicated by 
diffusional replenishment and Cao buffering. The halftimes for washout or 
replenishment of [Ca]o changes by the superfusate vary, but are ~ 1-4 min (e.g., 
Fig. 8A). This is very slow compared with the rapid Cao depletions at single 
excitations, but can complicate the slower cumulative depletions of Cao. Extra- 
cellular sites that bind Ca (e.g., the sarcolemma and glycocalyx) will buffer 
changes in [Ca]o and would tend to diminish the measured changes in [Ca]o 
produced by any transsarcolemmal Ca movement. 

The exact location of the Ca-selective microelectrode tip in the extracellular 
space is unknown and is probably variable. This places some limitations on 
quantitative extrapolations to intact tissue Ca fluxes (as discussed by Bers, 1983; 
Bers and Merrill, 1985; Bers and MacLeod, 1986). The Cao depletions associated 
with individual contractions are fairly consistent in amplitude (4.66 + 0.34 #M 
under control conditions in superfusate containing 300 #M Ca, n - 8), but are 
more variable in the time course of Cao depletion (Figs. 4-8; Bers, 1983). This 
sort of  variation would be expected if the tip of the microelectrode is at a variable 
distance from the site of  transmembrane Ca movement and if the maximum 
depletion is reflective of the mean extracellular space Cao depletion. The quan- 
titative agreement between Cao depletions measured by Ca-sensitive dyes and 
microelectrodes also supports this conclusion (Bers, 1983; Hilgemann and 
Langer, 1984; Hilgemann, 1986b; Bers and MacLeod, 1986; MacLeod and Bers, 
1987). 

Inward Ca current in cardiac muscle has been reported to be increased 
(Dramane et al., 1971; Weingart et al., 1978; Lederer and Eisner, 1982; Marban 
and Tsien, 1983) or unaffected by cardioactive steroids (Greenspan and Morad, 
1975; McDonald et al., 1975). It is, however, certain that Na pump inhibition 
alters Ca movements mediated by Na/Ca exchange. It is useful to consider the 
impact that ACS may have on Ca movements via Na/Ca exchange during the 
rabbit ventricular action potential. In a manner similar to that described by 
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Mullins (1979), a simple, symmetrical,  reversible Na/Ca exchange system with a 
coupling ratio of  3 Na: 1 Ca (Reeves and Hale, 1984) will be considered.  

Fig. 11 shows a typical rabbit  ventr icular  action potential  ( recorded at 30~ 
and also shows how the reversal potential  o f  the Na/Ca exchanger  would be 
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FIGURE 11. Rabbit ventricular action potential (Era) and estimated changes in the rever- 
sal potential of the Na-Ca exchange (Er,v) in the absence (left) and presence (right) of 
ryanodine. The ah~ was assumed to be 6 (A and D), 8 (B and E), and 12 (C and F) mM. 
Resting free [Ca]i was assumed to be 200 nM (a, B, D, and E) or 250 nM (C and F) and 
increased during contractions to 1 (a), 3 (B), 3.5 (C), 0.6 (D), 1.5 (E), and 3 (F) #M. 
The Ca transient and Er~v were assumed to reach a maximum in 40 and 120 ms in the 
absence and presence of ryanodine, respectively. The change in [Ca]i that causes the 
change in E~v could also produce an aequorin light transient. The aequorin light tran- 
sient that would be associated with the Er,v changes in A and D were calculated from 
the Nernst equation and the following equation from Wier and Hess (1984): L/Lm,x = 
{(1 + KR[Ca])/(I + KTR + Ka[Ca])} ~, where Ka = 2.6 X 10 ~ M -t and KTR ---- 126. The 
halftimes of decline of the E~** signal are - 100 ms and of the aequorin transient are 40 
and 50 ms in the absence and presence of ryanodine, respectively. 

affected by both changes o f  free [Ca]i associated with contract ion (in each panel) 
and increases in aha due  to Na pump inhibition (going f rom top to bottom).  For  
simplicity, the same action potential  is used th roughou t  the f igure (although ACS 
does decrease action potential  durat ion and overshoot  and ryanodine  does 
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prolong the action potential). The reversal potential for Na/Ca exchange (Erev) 
was calculated from Ercv = 3 ENa -- 2 Ec~ (Mullins, 1979). The time courses of 
the Ec~ changes were estimated from reported aequorin light transients (Allen 
and Orchard, 1984; Wier and Hess, 1984; Morgan, 1985; Wier et al., 1985). 
The aequorin light transients that would correspond to the Ere~ changes in panels 
A and D are also shown for the purpose of comparison. When the membrane 
potential (E,,) exceeds E .... Ca will enter the cell via Na/Ca exchange. The 
periods when this occurs are shaded in Fig. 11 and the driving force is propor- 
tional to the potential difference (E,, - Erev). When Erev is greater than Era, the 
Na/Ca exchange will engage in net Ca efflux. 

Under control conditions, a~a was assumed to be 6 mM with an a ~  of 110 
mM (C. O. Lee and Fozzard, 1975; Ellis, 1977). The resting free [Ca]i was 
assumed to be 200 nM and to increase to 1 tiM ~40 ms after the start of  the 
action potential with [Ca]o -- 2 mM. Under these conditions (Fig. 11A), Ca entry 
via Na/Ca exchange would occur only briefly at the beginning of the action 
potential. With exposure to ACS sufficient to raise a}~ from 6 to 8 mM and peak 
[Ca]i to 3 tim (Fig. 11B), Ca entry via Na/Ca exchange would initially be 
increased, but then Ca efflux will dominate as [Ca]i rises and Em falls (especially 
with a shorter action potential in ACS). This will be particularly true at the first 
post-rest contraction, where [Ca]i probably reaches a higher peak (e.g., Figs. 6 
and 8) and the action potential is also shorter. This is probably the situation 
where early Cao depletion is enhanced, but is followed by a net cellular Ca loss 
(Fig. 6). Sometimes this is also seen with ACS during regular stimulation (Fig. 5). 
Hilgemann (1986b) has also observed this pattern of Cao depletion in rabbit 
atrium at potentiated contractions using extracellular Ca dye to monitor [Ca]o. 
The Erc~ curve in Fig. 11C is projected if a}~ increases to 12 mM and resting 
and peak [Ca]i increase to 0.25 and 3.5 tzM, respectively. Whether net Cao 
accumulation or depletion will actually occur in a particular cell depends critically 
on the degree of Na loading, the actual resting and peak free [Ca]i that are 
achieved, and the action potential configuration. These three parameters may 
vary from muscle to muscle and this may readily explain the variability of Cao 
depletions seen with ACS (Figs. 4-8). 

In the presence of ryanodine, the rise of  [Ca]i is slower and smaller (Wier et 
al., 1985) and Ca entry via Na/Ca exchange would be expected to be prolonged 
(Fig. 11, D-F). This was sometimes observed, but it "was most apparent at post- 
rest contractions (e.g., Figs. 8D and 9). Hilgemann (1986b) has also made this 
observation in rabbit atrium with Cao dyes. Ryanodine also inhibits early repo- 
larization and increases action potential duration in rabbit ventricle (Bets, 1985). 
This would also prolong Ca entry via Na/Ca exchange. Fig. 11, E and F, shows 
the expected changes of Er~v with progressive Na loading (to 8 and 12 mM, 
respectively). 

The Er~ changes in Fig. 11 are those that might be expected under control 
conditions (at 2 mM Cao). However, the Cao depletions in the present study were 
performed at reduced [Ca]o (usually 0.3 raM). Fig. 12 shows estimated E~e~ 
changes that might occur with 0.3 mM Cao under control conditions with 
progressive Na loading (Fig. 12, A-C) and with ryanodine and progressive Na 
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loading (Fig. 12, D-E). Reduced [Ca]o increases a~a (Ellis, 1977; Sheu and 
Fozzard, 1982). The resting a}~a in Fig. 12 is assumed to be 8 mM and the peak 
values of  [Ca]i reached during a contraction are also reduced, reflecting the 
decrease in force at 0.3 mM [Ca]o. The reduction of  [Ca]o produces some 
quantitative changes (e.g., more positive Erev), but the qualitative results are not 
very different and are consistent with the experimental observations and preced- 
ing discussion. 

Clearly, the foregoing projected Erev changes are dependent upon the a'Na, 
[Ca]i, coupling ratio, and time course of  the [Ca]i change. While these may be 
reasonable values, it is not suggested that they are unique actual values. Regard- 
less of  the specific values chosen (save reduction of  the Na/Ca coupling ratio to 
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FIGURE 12. Rabbit ventricular action potential and estimated changes in E,~v of the Na/ 
Ca exchange in the absence (top) and the presence of ryanodine (bottom) as in Fig. 11, 
but modified for [Ca]o = 0.3 mM. The a~a is assumed to be 8 (A and D), 11 (B and E), 
and 16 (C and F) raM. Resting [Ca]i was assumed to be 150 nM (A, B, D, and E) and 200 
nM (C and F). Peak [Ca]i was assumed to reach 0.6 (A), 1.5 (B), 2 (C), 0.5 (D), 1 (E), and 
] .5 (F). 

---2), the trends predicted would be the same. It should also be emphasized that 
relatively modest changes in a~a or aM (resting or peak) can make important 
differences in whether early Ca loss like that in Fig. 5 is observed or not, as in 
Fig. 4 (e.g., compare B and C of Fig. 12). Thus, the variability illustrated in Figs. 
4 and 5 may represent real biological variability in the way ACS alters cellular 
Na and Ca metabolism in rabbit ventricular muscle. 

It is clear that Ca influx via the Na/Ca exchange will be most strongly favored 
in the early part of  the action potential and that reduction in the transsarcolemmal 
[Na] gradient would increase this Ca influx. Ca influx via Ca current would also 
be expected to be large at early times. Ca current may also be increased by Na 



,~00 THE J O U R N A L  OF GENERAL PHYSIOLOGY �9 VOLUME 90 �9 1 9 8 7  

pump inhibition (see above, p. 496), and this effect has been attributed to an 
increase of  resting free [Ca]i (via an effect on Ca channel availability; Marban 
and Tsien, 1982). Under control conditions of  low [Ca]o, Cao depletions can be 
largely inhibited by verapamil or nifedipine (Bets, 1983; Bers and MacLeod, 
1986). This is consistent with our observations that 1 #M nifedipine almost 
eliminates tension development in these preparations and in the top curve in Fig. 
12 (where Ca influx via Na/Ca exchange would be expected to be small). 
However, during steady state exposure to ACS, addition of  nifedipine is less 
effective at reducing twitch tension than under control conditions (unpublished 
observations). The implication of  these results is that, under control conditions, 
Ca current is probably responsible for most of Ca influx (and Cao depletion), but 
decreasing the transmembrane [Na] gradient can increase the contribution of  
Na/Ca exchange to Ca influx. 

It should also be noted that Ca entry via a 3:1 Na/Ca exchange would produce 
an outward membrane current. Thus, if Ca current is enhanced by cardioactive 
steroids, the increased outward Na/Ca exchange current would lead to under- 
estimation of  the increased Ca current. As pointed out by Marban and Tsien 
(1982), the transient outward current could have complicated some previous 
experiments on the effects of  cardioactive steroids on Ca current. The important 
issue at present is that even if Ca current were unaffected, Ca entry at early 
times in the action potential would probably be enhanced by ACS. 

Reduction of [Na]o has also been shown to increase transient Cao depletions 
and decrease cumulative Cao depletions (Bers, 1983; Bers and MacLeod, 1986) 
and it would be expected that [Na]o reduction would have effects similar to Nai 
loading (if the reduction of  the [Na] gradient is the primary action). However, 
results with reduced [Na]o are complicated, because a~a also decreases and the 
[Na] gradient will tend to approach normal (Ellis, 1977). 

Conclusions 

Under normal conditions, the Na/Ca exchange system would be expected to 
produce net Ca extrusion during most of  the cardiac cycle. When the inward 
[Na] gradient is reduced, Ca influx via Na/Ca exchange would be expected to 
be increased (and Ca efflux reduced) during the cardiac cycle. This will result in 
both a net gain in cellular Ca and a shift in the balance of  Ca influx/efflux 
mediated by the Na/Ca exchange during the cardiac cycle. While reduction of 
the [Na] gradient leads to net uptake of Ca by the cells, three independent 
mechanisms may contribute directly to the increase in contractile force observed 
during individual contractions: (a) enhanced Ca influx, (b) increased SR Ca 
release, and (c) increased resting [Ca]i. 
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