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Background—Previous studies indicate the benefit of therapy depends on patients’ risk for 

cancer recurrence relative to non-cancer mortality (ω ratio). We sought to test the hypothesis that 

head and neck cancer (HNC) patients with a higher ω ratio selectively benefit from intensive 

therapy.

Methods—We analyzed 2688 patients with stage III-IVB HNC undergoing primary radiation 

therapy (RT) with or without systemic therapy on three phase III trials (RTOG 9003, RTOG 0129, 

and RTOG 0522). We used generalized competing event regression to stratify patients according to 

ω ratio, and compared the effectiveness of intensive therapy as a function of predicted ω ratio (i.e., 

ω score). Intensive therapy was defined as treatment on an experimental arm with altered 

fractionation (AFX) and/or multiagent concurrent systemic therapy. A nomogram was developed 

to predict patients’ ω score based on tumor, demographic, and health factors. Analysis was by 

intention-to-treat.

Results—Decreasing age, improved performance status, higher body mass index, node positive 

status, P16 negative status, and oral cavity primary predicted a higher ω ratio. Patients with ω 
score ≥ 0.80 were more likely to benefit from intensive treatment (5-year OS, 70.0% vs. 56.6%; 

HR 0.73, 95% CI 0.57–0.94; P=0.016) than those with a ω score < 0.80 (5-year OS, 46.7% vs. 

45.3%; HR 1.02, 95% CI 0.92–1.14; P=0.69; P=0.019 for interaction). In contrast, the 

effectiveness of intensive therapy did not depend on risk of progression.

Conclusion—HNC patients with a higher ω score selectively benefit from intensive treatment. A 

nomogram was developed to help select patients for intensive therapy.

Introduction

While the effectiveness of intensive therapy (e.g., concurrent chemotherapy or altered 

fractionation) for locoregionally advanced head and neck cancer has been established, there 

is considerable controversy surrounding which subsets of patients are most likely to benefit 

from this approach. In particular, the effectiveness of intensive therapy in patients who are 

older, or who have comorbidities, or who have relatively favorable risk disease (e.g., human 

papilloma virus (HPV)-associated disease, non-smokers) is unclear.

Traditionally, risk-stratification models used in cancer outcomes research have focused on 

the effects of treatments and risk factors on endpoints such as overall survival (OS) or 

progression-free survival (PFS). A problem is that these endpoints do not differentiate 

effects on primary events, such as disease recurrence or cancer mortality, from competing 

events, such as death from comorbid illness. As a result, such models are suboptimal, 

because they pool patients at high risk for cancer events with patients at high risk for 

competing events, even though these groups have different expected benefit from intensive 

therapy.1–9 Thus, staging systems and nomograms that predict for OS and PFS are likely to 

be suboptimal for selecting head and neck cancer (HNC) patients for intensive therapeutic 

regimens.

Previous studies indicate that in patients with competing risks, the hazard for cancer relative 

to competing mortality events (i.e., ω ratio) is a key determinant of treatment benefit.7,9–11 

In particular, older patients with higher ω ratios may be good candidates for more intensive 

therapy; conversely, younger patients with lower ω ratios may not be. Further work is 
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needed to define factors that critically affect ω ratios and correlate them with treatment 

effects. Correspondingly, newer methods have been developed to quantify effects on the ω 
ratio, with considerable improvement in risk stratification compared to standard models.
10–13 However, it is not known whether the benefit of more intensive treatment varies 

according to ω ratio, and in particular whether this is a more effective method to predict 

which patients are most likely to benefit from intensive treatment. The goal of this study was 

to develop a model to identify locally advanced HNC patients with a higher ω ratio and to 

test the hypothesis that such patients selectively benefit from treatment intensification.

Materials and Methods

Population, Sampling Methods, and Treatment

We studied 2688 patients with locoregionally advanced (stage III-IVB) HNC treated on 

three clinical trials: RTOG 9003 (), RTOG 0129 (), and RTOG 0522 (). Details of these 

protocols have been published previously.14–17 Written informed consent was obtained for 

all patients. The study was conducted in accordance with recognized ethical guidelines and 

was approved by the institutional review boards at all participating institutions.

Briefly, patients on RTOG 9003 were randomized to one of four arms: hyperfractionated 

radiotherapy (HFX: 81.6 Gy in 68 fractions BID over 7 weeks), delayed concomitant boost 

radiotherapy (DCB: 72 Gy in 42 fractions over 6 weeks), split course radiotherapy (SC: 67.2 

Gy in 42 fractions over 6 weeks), or standard fractionation (SFX: 70 Gy in 35 fractions over 

7 weeks). For the purpose of this analysis, HFX and DCB were considered altered 

fractionation (AFX), whereas SC and SFX were not. Patients on RTOG 9003 did not receive 

chemotherapy. Patients on RTOG 0129 were randomized to either AFX or SFX and received 

chemotherapy (two cycles of cisplatin 100 mg/m2 weeks 1 and 4 of chemoradiotherapy for 

patients receiving AFX, and three cycles at the same dose weeks 1, 4 and 7 for patients 

receiving SFX). Patients on RTOG 0522 were randomized to either cetuximab (400 mg/m2 

loading dose followed by 250 mg/m2 weekly) vs. no cetuximab, and all patients received 

AFX (six fractions per week) along with concurrent cisplatin (two cycles of cisplatin 100 

mg/m2 weeks 1 and 4 of chemoradiotherapy). All human investigations were performed 

after approval by a local Human Investigations Committee and in accordance with an 

assurance filed with and approved by the Department of Health and Human Services.

Outcomes

Progression-free survival time was defined as the time from randomization to the first 

recurrence of disease, or death from any cause, or censoring. Overall survival time was 

defined as the time from randomization to death from any cause, or censoring. Time to 

recurrence and time to cancer-specific mortality were defined as the time from 

randomization to first recurrence (or cancer-related mortality), with competing mortality 

events treated as censored. Time to competing mortality for recurrence was defined as time 

from randomization to death from any cause, in the absence of a recurrence event, with 

recurrence events treated as censored. Correspondingly, time to competing mortality for 

cancer mortality was defined as time from randomization to death from any cause, in the 

absence of a cancer mortality event, with cancer mortality events treated as censored.
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Statistical Analysis

The study followed TRIPOD guidelines.18 The statistical approach involved two main steps: 

(1) development of a model to separate patients by ω ratio and (2) validation of the model as 

a method to predict treatment effects (i.e., variation in treatment effects as a function of ω). 

Overall survival was used as the primary outcome assessment for model validation, since 

this endpoint was not used in model development and represents an outcome of clear clinical 

benefit to patients.

Kaplan-Meier functions were used to plot PFS and OS and cumulative incidence functions 

were used to plot competing events with respect to time. The basehaz function in R (version 

3.4.2) was used to estimate cumulative hazards. Forest plots were used to analyze treatment 

effects within risk strata, according to intention-to-treat. Proportional hazards assumptions 

were tested using the Grambsch-Therneau method (cox.zph function in R).

We trained risk scores for recurrence, competing mortality, and PFS using data from the 

control arms from the three studies (Supplementary Figure 1), based on the linear predictor 

from a multivariable Cox proportional hazards regression.19 For RTOG 9003, the SC and 

SFX arms were collectively considered the control group. For the multivariable models, we 

selected the following candidate variables for inclusion, based on their availability in all 

three trials and potential association with disease recurrence15–17,22–23 and/or competing 

mortality2–4,11,19–21: age (per 10 years; continuous), female sex, black/African-American 

race (vs. other), white/Caucasian race (vs. other), body mass index (BMI) (≤ 20 kg/m2 vs. > 

20), ECOG performance status (0 vs. 1–2), marital status (married vs. other/unknown), 

anemia (yes/no), education history (any college vs. other/unknown) – as a proxy for 

socioeconomic status (SES), primary site (oral cavity vs. oropharynx vs. hypopharynx vs. 

larynx), T stage (0–2 vs. 3 vs. 4), and N stage (0 vs. 1–2a vs. 2b-2c vs. 3). Anemia was 

defined for males as a baseline hemoglobin ≤ 13.5 g/dL and for females as a baseline 

hemoglobin ≤ 12.5 g/dL. For patients with known smoking and tumor P16 status, we 

included pack-years (≤10 vs. >10) and P16 (positive vs. negative) as covariates. P16 was 

analyzed as a prognostic factor for both oropharyngeal and non-oropharyngeal sites, based 

on several studies that have found differences in outcomes by P16 or HPV status in both 

oropharyngeal22–23 and non-oropharyngeal HNC.24–26

All variables were normalized by subtracting the sample mean and dividing by the sample 

standard deviation. The mean BMI value was imputed for 194 patients with missing data, 

using single imputation. Risk scores based on the linear predictor were generated taking the 

inner product of the coefficient vector with the individual patient’s data vector, as described 

previously.11 Risk strata were defined according to quantiles of the risk score distribution. 

We compared results with a standard model developed to stratify oropharyngeal cancer 

patients.22–23 Note that this model also stratifies non-oropharyngeal cancer patients 

(Supplementary Figure 2).

For modeling effects of covariates, we used generalized competing event (GCE) regression 

based on a proportional relative hazards model.11,27–28 A detailed description of the GCE 

modeling approach is provided below. In brief, the ratio of the cause-specific hazard for 

recurrence (λ1) vs. the cause-specific hazard for competing mortality (λ2) is represented as 
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ω+, whereas the ratio of the cause-specific hazard for recurrence (λ1) to the hazard for any 

progression-free event (λ1+λ2) is represented as ω. We use the terms ω and ω+ ratio to refer 

to observed values, whereas ω and ω+ score refer to values of ω and ω+, respectively, 

predicted by the GCE model.

For GCE regression, the same variables were used as in the Cox proportional hazards 

models, after normalization. Separate regression models were built for both cause-specific 

events (i.e., disease recurrence) and competing mortality (i.e., death in the absence of disease 

recurrence, with the cause-specific event treated as censored). Treatment-related deaths were 

classified as competing mortality events. To test the sensitivity of our conclusions to model 

specification, reduce overfitting, and facilitate clinical implementation, we generated a 

parsimonious GCE model using backward stepwise regression to exclude variables from the 

regression if p>0.20, and by consolidating N stage (0 vs. 1–3). In this model, only age, 

performance status, BMI, oral cavity site, N stage, and P16 status had p<0.20 and thus were 

retained in the final nomogram, which was trained on the subset of controls with known P16 

status (N=602).

GCE risk scores were generated by taking the inner product of the (normalized) individual 

patient’s data vector with the difference of the coefficient vector for cause-specific events 

and competing mortality. For 95% confidence intervals of estimates, we employed the 

gcerisk package in R.27 Risk strata were defined according to quantiles of the GCE risk 

score distribution. Tests of treatment effects and interactions included random effects for 

study and age.29 All P values are 2-sided.

Generalized Competing Event (GCE) Model

For mutually exclusive events of type k, we posit the following proportional relative hazards 

model:

ω+
k(t | X) = ω+

k0(t)exp(βk GCE
+′ X) [1]

where

ω+
k0(t) = λk0(t)/Σj ≠ kλj0(t) [2]

Here, λk0(t) is the baseline hazard for an event of type k, Σj≠k λj0(t) is the baseline cause-

specific hazard for the set of events competing with event type k, X is a vector of covariates, 

and βk GCE
+  is the vector of effects (coefficients) on the covariates. From this model it can be 

shown that

βk GCE
+ = (βk − β j ≠ k) [3]

where βk and βj≠k represent effects on the baseline hazard for event type k and competing 

events, respectively, from the Cox proportional hazard model. We use βk GCE
+ = βk − β j ≠ k as 

the estimator for βk GCE
+  and ωk0

+ (t) = Λk0(t)/Λ j ≠ k 0(t), where Λk0(t) and Λ j ≠ k 0(t) represent 
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the Nelson-Aalen estimators18 for the cumulative hazard for event type k and the set of 

competing events at time t, respectively. We estimate the predicted value of ωk
+(t | d)  for an 

individual with given data vector d as:

ωk
+(t | d) = ωk0

+ (t) exp(βk GCE
+ ∙ d) [4]

Note then that exp(βk GCE
+ ) is the estimate of the ω+ ratio, which quantifies how the relative 

hazards for primary and competing events change in response to changes in covariates.

We define the omega value as the ratio of the hazard for an event of type k to the hazard for 

all events:

ωk(t) = λk(t)/λ(t) [5]

and estimate the predicted omega value as

ωk(t | d) = ωk
+(t | d)/(1 + ωk

+(t | d)) [6]

Note that while ωk ranges from 0 to 1 inclusive, ωk
+ ranges from 0 to ∞. For k=2, a value of 

ω1
+ = 1 means the hazard for event type 1 equals the hazard for event type 2, and therefore 

ω1 = ω2 = 0.5. For the purpose of this study, we defined ω+ as the ratio of the hazard for 

disease recurrence to the hazard for competing mortality in the absence of recurrence, and ω 
as the ratio of the hazard for disease recurrence to the hazard for recurrence or death from 

any cause. All values of ω are unscaled unless otherwise specified. Scaled estimates were 

obtained by factoring out the baseline ω+ values.

Sample Size Estimates

We used the power calculator described by Pintilie38 to estimate sample sizes for 

hypothetical randomized trials with a primary endpoint of PFS, assuming balanced 

randomization, accrual time of 3 years, follow-up time of 2 years, two-sided α=0.05, and 

β=0.20. We considered two events: cancer recurrence (k=1) and competing mortality (k=2), 

and assumed a hazard ratio for cancer recurrence (θ1) of 0.5 and a hazard ratio for 

competing mortality (θ2) of 1. Under varying ω1 values, we allowed the hazard ratio for any 

event (θ) to vary according to the equation

θ = ω1 * θ1 + (1 − ω1) = (ω1
+ * θ1 + 1)/(ω1

+ + 1) [7]

Final GCE Risk Score

R functions to define the GCE risk score and scaled predicted ω are:
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exp.risk.score = function(AGE,BMI,ECOG12,OC,N0,P16){ exp(−.3693*((.1*AGE-5.72)/.

9126)+.2044*(((BMI>20)-.88538)/.31883)-.2262*((ECOG12-.377076)/.4851)+.

1684*((OC-.03488)/.18364)-.1274*((N0-.14452)/.3519)-.2147*((P16-.488372)/.5))}

scaled.omega.predicted = function(AGE,BMI,ECOG12,OC,N0,P16) 

{exp.risk.score(AGE,BMI,ECOG12,OC,N0,P16)/

(exp.risk.score(AGE,BMI,ECOG12,OC,N0,P16)+1)}

omega.score = function(AGE,BMI,ECOG12,OC,N0,P16) 

{2.6*exp.risk.score(AGE,BMI,ECOG12,OC,N0,P16)/

(2.6*exp.risk.score(AGE,BMI,ECOG12,OC,N0,P16)+1)}

For this calculation, AGE is in years, BMI is in kg/cm2, ECOG12 is 1 if ECOG performance 

status is > 0 and 0 otherwise, OC is 1 for oral cavity tumors and 0 otherwise, N0 is 1 if there 

is no nodal involvement and 0 otherwise, and P16 is 1 for P16 positive tumors and 0 

otherwise. The factor 2.6 is the mean baseline ω+ estimate from the control sample.

Results

Sample characteristics are provided in Supplementary Table 1. Comparisons of model 

estimates for the entire control group and the subset with known smoking history and P16 

status appear in Table 1. Factors predicting a higher ratio were decreasing age, improved 

performance status, higher body mass index, node positive status, P16 negative status, and 

oral cavity primary. It is interesting to compare and contrast effect estimates from Cox vs. 

GCE models. While patients with poorer OS or PFS are typically identified as candidates for 

more intensive treatment, the GCE model indicates that patients with advanced age, poorer 

performance status, hypopharynx site, and advanced T category, for example, have a reduced 

hazard for cancer events relative to competing mortality, implying that such patients are 

relatively less likely to benefit from treatment intensification. Moreover, some factors, such 

as N3 category, and marital, education, and smoking status, are attenuated in the GCE model 

due to offsetting effects on recurrence and competing mortality.

Compared to standard models, GCE models improved stratification according to ω ratio 

within each risk group, with increasing ω from low risk to high risk according to both model 

predictions and observations (Supplementary Table 2). Agreement between predicted ω 
(i.e., ω score) and observed ω ratios was high, indicating excellent model fit and validity. 

The observed 3-year ω and ω+ ratios for the whole cohort were 0.719 and 2.56, respectively. 

The observed 3-year ω and ω+ ratios for the subset with known p16 and smoking status 

were 0.738 and 2.87, respectively.

As shown in Figure 1, OS differed markedly across risk groups defined by standard models 

(A,C), whereas GCE models show little correspondence between OS and risk level when 

risk is defined by ω score (B,D). This suggests that, paradoxically, patients with a better 

predicted survival (and higher ω score) could be more likely to benefit from intensive 

treatment (by virtue of being much less likely to die from non-cancer causes). This is further 

shown in Figure 2, which plots the cumulative incidences of cancer recurrence and 

competing mortality within risk groups. Note that with standard risk-stratification models, 
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the probability of both cancer and non-cancer mortality are increased in the highest risk 

strata relative to the GCE model, while the converse is true of the lower risk strata, further 

supporting GCE model validity. This is because while standard models are designed to 

separate groups according to PFS and OS, GCE models are designed to optimize the ratio of 

competing events in order to favor a particular event of interest.

Patients with the highest ω score (≥ 0.80) – representing the highest quintile - were more 

likely to benefit from intensive treatment (5-year OS, 70.0% vs. 56.6%; HR 0.73, 95% CI 

0.57–0.94; Wald P=0.016) than those with ω score < 0.80 (5-year OS, 46.7% vs. 45.3%; HR 

1.02, 95% CI 0.92–1.14; Wald P=0.69) (P=0.019 for interaction). For patients with known 

P16 status, the GCE nomogram similarly identified a statistically significant benefit from 

treatment intensification in patients with ω score ≥ 0.80 (HR 0.67; 95% CI, 0.47–0.95, Wald 

P=0.027); in contrast, we did not find statistically significant treatment effects in the high-

risk subgroups defined by standard models overall (Figure 3), or in any of the trials 

separately. Treatment intensification was also associated with statistically significant 

improvement in OS in patients with ω score ≥ 0.80 in the RTOG 9003 trial separately 

(Supplementary Figure 3). These results appeared robust over a range of potential cut points 

near the ω score of 0.80 (Supplementary Figure 4A–B). Calibration plots showed excellent 

discriminatory ability, with better fitting at higher predicted ω values (Supplementary Figure 

4C). A nomogram for calculating an individual’s ω score appears in Figure 4.

Model estimates and performance were similar when patients with missing BMI data were 

omitted from the analysis. We found evidence of efficiency gains with the GCE model 

relative to standard models under varying definitions of “high-risk” (Table 2), due to the 

higher ratio of primary to competing events. However, this analysis does not account for 

efficiency loss that could result from a lower event rate. While the incidence of competing 

mortality was lower in the high-risk group using the GCE model, the lower incidence of 

cancer recurrence offset some of the efficiency gains, indicating correlation between primary 

and competing events. As such, GCE models could be less efficient than models designed to 

predict recurrence, but this conclusion was sensitive to the lack of P16 status for the majority 

of the cohort. It is noteworthy, however, that sample size estimates were similar with the 

various approaches, despite a marked reduction in the overall event rate in the “high-risk” 

group defined by the GCE model.

Discussion

In this study we found that intensive treatment differentially benefits patients with a higher 

relative recurrence risk (ω score ≥ 0.80). Previous studies involving HNC and other disease 

sites have found that ω scores could be used to identify patients with a greater likelihood to 

benefit from intensive therapy.3,10–13 The present study is the first to examine treatment 

effects within risk groups defined by this factor. We found evidence to support the 

hypothesis that relative recurrence risk is an important predictor of treatment effectiveness in 

the HNC population.

Advantages of this study were its large sample size and large number of known predictors of 

both cancer-related and competing events. Randomization also mitigated the impact of 
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selection bias, which presents a problem studying treatment effects in other data sources. A 

limitation of this study, however, is the heterogeneity in the treatment and populations across 

the three trials. “Intensive treatment” was defined relative to the baseline (control) group, 

and thus included altered fractionation (with or without concurrent chemotherapy), or 

chemoradiotherapy with concurrent targeted therapy, depending on the trial. We were also 

unable to control directly for some predictors, such as comorbidity and SES, that likely 

would have helped optimize the model relative to standard approaches. For example, income 

was prognostic for both cancer recurrence and competing mortality, but had to be omitted 

since it was not collected for all trials. While previous studies have found increased survival 

for patients undergoing treatment at high-volume centers,30–32 radiotherapy quality in 

RTOG trials is considered to be high. The incidence of non-cancer mortality in this cohort 

was also lower than has been observed in prior studies,2 indicating the exclusion of many 

patients at risk for competing events.

Variation in the definition of “intensive treatment” is a potential limitation of our study; 

however, the intent was to compare the effectiveness of intensity with respect to the control 

arm, and our results were unaffected whether we applied fixed or random effects models. 

Data from large randomized trials or meta-analyses involving homogeneous treatments (in 

particular, with an established survival benefit) will be important for further model 

validation. Note that both RTOG 0129 and RTOG 0522 failed to reject the null hypothesis; 

in the absence of effective therapy, it is not possible to identify subpopulations that would 

benefit. Future studies involving more trials that met their primary endpoint would be 

helpful to determine how treatment effects and toxicity vary with the ω ratio. However, we 

did observe a survival advantage with altered fractionation in the high-risk group from 

RTOG 9003, lending support to the hypothesis that ω score is a useful predictive marker.

Interpreting the effects of particular covariates in this study should be undertaken with 

caution, since confidence intervals were fairly wide (leading to some differences in 

interpretation across samples). Lack of consistency and incomplete collection of key 

prognostic variables hampers efforts to compare risk models, requiring us to re-train 

multivariable models in new samples; however, GCE models have previously been validated 

in population-based studies.10,11 It should also be noted that age cutoffs ≤ 50 (and >70) have 

been previously associated with a selective benefit (or lack thereof) of treatment 

intensification in HNC, including the RTOG 0522 trial included in this analysis.16,33–34 

However, age as a sole criterion for treatment selection is generally not favored,35 since 

other health factors can influence the appropriate intensity of therapy. In this study, age ≤ 50 

was not predictive of a treatment benefit in the whole cohort.

GCE regression is a modeling approach with clear differences relative to standard risk-

stratification methods. It contrasts with other nomograms23,36–37 in that instead of predicting 

patients’ risk for event-free survival, which is preferable for prognostication, the GCE model 

seeks to predict the ratio of cancer events to competing events, which is considered 

preferable as a predictive model. Further studies are required to establish its advantages over 

standard methods, especially in the postoperative setting and the larger population not 

participating in trials, who we expect would have differing risk for competing events. An 

important limitation is that the cutoff of 0.80 for the ω score, although robust, was not 
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chosen a priori; our results should thus be considered hypothesis generating, and should be 

validated in future studies. Ascertaining optimal cutoffs to define “high-risk” groups remains 

an area of investigation, especially with models controlling for comorbidity and other 

geriatric/frailty assessments. Perhaps most interestingly, our findings suggest that a higher 

absolute risk for recurrence/progression does not necessarily confer a higher likelihood to 

benefit from intensive therapy (or greater power to detect treatment effects). This is because 

patients with a low risk for both recurrence and competing mortality may benefit as much 

from aggressive treatment approaches as patients with high risk for both events.

In summary, here we propose a method to predict an under-reported but meaningful quantity 

for individual patients (i.e., relative recurrence risk, or ω ratio), with a clinically relevant 

interpretation (i.e., a value > 50% means the individual’s hazard for cancer recurrence 

exceeds the hazard for competing mortality). Our findings indicate patients with a higher 

relative recurrence risk, indicated by a ω score ≥ 0.80, selectively benefit from intensive 

therapy. This approach is being implemented prospectively in the NRG-HN004 trial, along 

with a nomogram to inform clinical practice and trial design (comogram.org). Further 

research, however, is needed to optimize GCE models and to ascertain which patients derive 

the greatest benefit from intensive therapy.
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Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF TRANSLATIONAL RELEVANCE

The effectiveness of intensive therapy for head and neck cancer (HNC) patients who are 

older, or who have comorbidities, or who have favorable risk HPV-associated disease is 

unclear. Traditional risk-stratification models pool patients at high risk for cancer events 

with patients at high risk for competing events, even though these groups have different 

expected benefit from intensive therapy. Studies indicate that the hazard for cancer 

recurrence relative to competing mortality (ω ratio) is a key determinant of treatment 

benefit, with newer regression methods developed to quantify effects on this ratio. This is 

the first study to examine the effectiveness of intensive therapy for HNC as a function of 

ω ratio. We found that patients with a predicted ω > 0.80 had improved overall survival 

with intensive therapy, using pooled data from three randomized controlled trials.
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Figure 1. 
Overall Survival, by Risk Strata. (A) Cox Model in the Whole Cohort. (B) Generalized 

Competing Event (GCE) Model in the Whole Cohort. (C) Fakhry et al. Nomogram21 in 

Patients with Known Smoking History and P16 Status. (D) GCE Nomogram in Patients with 

Known P16 Status.
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Figure 2. 
Competing Event Incidences, by Risk Score. (A) Cox Model in the Whole Cohort. (B) 

Generalized Competing Event (GCE) Model in the Whole Cohort. (C) Fakhry et al. 

Nomogram21 in Patients with Known Smoking History and P16 Status. (D) GCE Model in 

Patients with Known P16 Status.
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Figure 3. 
Interaction between experimental therapy and ω score. (A) Whole Cohort. Left: ω score < 

0.80; Right: ω score ≥ 0.80 (B) Patients with Known P16 Status. Left: ω score < 0.80; 

Right: ω score ≥ 0.80.
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Figure 4. 
Nomogram to predict patients’ relative hazard for recurrence based on generalized 

competing event (GCE) regression model.
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Table 1.

Comparison of Cox vs. GCE models in All Controls (Left Columns) and Complete Cases with Known 

Smoking and P16 Status (Right Columns).

All Controls (N=1352) Subset with Known Smoking and P16 Status 
(N=527)

Cox PH Regression GCE Regression Cox PH Regression GCE Regression

Characteristic HR* (95% CI) ω+ Ratio (RHR)** 
(95%CI)

HR* (95% CI) ω+ Ratio (RHR)** 
(95%CI)

Age at diagnosis, per 10 years
¶ 1.42 (1.31, 1.53) 0.66 (0.57, 0.77) 1.37 (1.19, 1.58) 0.67 (0.51, 0.88)

Sex

 Female vs. Male 0.84 (0.70, 1.01) 1.06 (0.74, 1.51) 0.94 (0.68, 1.29) 0.94 (0.51, 1.75)

Race

 Black 1.04 (0.74, 1.47) 0.51 (0.25, 1.06) 0.65 (0.35, 1.22) 0.88 (0.25, 3.10)

 White 0.80 (0.60, 1.09) 0.42 (0.22, 0.80) 0.59 (0.35, 1.00) 0.83 (0.29, 2.41)

 Non-Black / Non-White REF REF REF REF

Body Mass Index
¶

 ≤ 20 kg/m2 vs. > 20 kg/m2 0.55 (0.46, 0.67) 1.03 (0.71, 1.49) 0.76 (0.54, 1.09) 1.66 (0.83, 3.32)

ECOG Performance Status
¶

 1–2 vs. 0 1.35 (1.16, 1.58) 0.49 (0.36,0.67) 1.54 (1.19, 2.01) 0.59 (0.34, 1.00)

Anemia

 Yes vs. No/Unknown 1.11 (0.94,1.30) 0.79 (0.58, 1.08) 0.92 (0.69,1.21) 0.97 (0.56, 1.67)

Married

 Yes vs. No/Unknown 0.75 (0.66, 0.88) 0.99 (0.74, 1.32) 0.77 (0.59, 1.00) 1.16 (0.70, 1.93)

Education History

 Any College / Vocational / 
Technical vs. None/Unknown

0.60 (0.51, 0.71) 0.98 (0.71, 1.36) 0.57 (0.43, 0.77) 0.90 (0.52, 1.55)

Anatomic subsite

 Oropharynx REF REF REF REF

 Larynx 1.16 (0.96, 1.39) 1.06 (0.73, 1.53) 0.93 (0.66, 1.30) 1.15 (0.59, 2.24)

 Hypopharynx 1.65 (1.33, 2.04) 0.77 (0.50, 1.18) 1.72 (1.16, 2.55) 0.87 (0.39, 1.91)

 Oral Cavity
¶ 1.47 (1.13, 1.91) 2.55 (1.40, 4.62) 2.11 (1.22, 3.64) 2.46 (0.62, 9.77)

T Stage

 0–2 REF REF REF REF

 3 1.06 (0.88, 1.28) 0.85 (0.59, 1.23) 0.87 (0.63, 1.21) 0.84 (0.44, 1.61)

 4 1.53 (1.26, 1.86) 0.77 (0.52, 1.13) 1.45 (1.04, 2.01) 0.84 (0.44, 1.62)

N Stage

 0
¶ REF REF REF REF

 1–2a 1.26 (1.01, 1.57) 1.36 (0.88, 2.10) 1.23 (0.82, 1.84) 1.53 (0.69, 3.39)

 2b-2c 1.29 (1.06, 1.57) 1.39 (0.94, 2.06) 1.54 (1.07, 2.21) 1.37 (0.67, 2.82)
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All Controls (N=1352) Subset with Known Smoking and P16 Status 
(N=527)

Cox PH Regression GCE Regression Cox PH Regression GCE Regression

Characteristic HR* (95% CI) ω+ Ratio (RHR)** 
(95%CI)

HR* (95% CI) ω+ Ratio (RHR)** 
(95%CI)

 3 2.19 (1.65, 2.91) 1.07 (0.60, 1.91) 2.93 (1.77, 4.84) 1.00 (0.36, 2.81)

Smoking History, pack-years

 ≤ 10 vs. > 10 - - 0.50 (0.36, 0.70) 1.05 (0.56, 1.94)

P16 Status
¶

 Positive vs. Negative - - 0.53 (0.39, 0.72) 0.66 (0.37, 1.18)

Abbreviations: ECOG, Eastern Cooperative Oncology Group. PH, proportional hazards. GCE, generalized competing event. RHR, relative hazard 
ratio.

*
>1 Indicates increased Hazard Ratio for Progression-Free Survival

**
>1 Indicates increased Hazard for Cancer Recurrence Relative to Competing Mortality

¶
Retained in parsimonious GCE model (nomogram)
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Table 2.

Comparison of sample size estimates within variously defined high-risk groups.

Cancer Recurrence (3-year 
cumulative incidence (%)

Competing Mortality (3-year 
cumulative incidence (%))

Hazard Ratio* N

Whole Cohort

 Highest Tertile

  Cox Model for OS 48.4 25.3 0.672 442

  Cox Model for Recurrence 50.7 21.9 0.651 364

  GCE Model* 36.6 6.4 0.574 307

 Highest Quintile

  Cox Model for OS 51.9 26.7 0.670 409

  Cox Model for Recurrence 54.6 24.3 0.654 346

  GCE Model* 36.6 5.5 0.565 293

Subset with Known P16 and Smoking Status

 Highest Tertile

  Fakhry Model for OS 52.3 20.7 .642 331

  Cox Model for Recurrence 53.4 18.5 .629 298

  GCE Model 39.7 8.9 .592 315

 Highest Quintile

  Fakhry Model for OS 54.4 24.6 .655 351

  Cox Model for Recurrence 58.9 19.6 .625 264

  GCE Model 34.6 11.0 .600 301

Abbreviations: OS, overall survival; GCE, generalized competing event

*
Projected hazard ratio for recurrence or death from any cause from equation [7], based on observed ωratios.
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