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Computation of the One-Dimensional Free-Space Periodic 
Green’s Function for Leaky Waves using the Ewald Method  
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1Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005. 
   e-mail: djackson@uh.edu, tel.: 713-743-4426. 
2 Department of Electrical Engineering and Computer Science, University of California, Irvine, Irivne, CA,92697-2625 . 
   e-mail: f.capolino@uci.edu, tel.: 949-824-2164.   

Abstract − This paper examines an extension of the Ewald 
method for evaluating the periodic free-space Green’s function 
due to an array of point sources, when the wavenumber of the 
phased sources is allowed to be complex. This makes the 
Ewald method useful for treating leaky modes on periodic 
structures.  

1 INTRODUCTION 

The Ewald method that is used in evaluating the free-
space periodic Green’s function for an array of point 
sources is extended here to leaky modes by allowing 
for complex wavenumbers. It is shown that care must 
be taken when choosing the path of integration in the 
complex plane that is used to define the exponential 
integral function that appears in the Ewald method. An 
analytic continuation of the exponential integral 
function that appears when the wavenumber is real is 
used, giving rise to a “generalized exponential integral 
function.”  By doing so, one can obtain a simple rule 
for how to modify the exponential integral calculation 
to obtain solutions that correspond to physical leaky-
wave solutions.  

This extension of the Ewald method to complex 
wavenumbers allows for the treatment of periodic 
leaky-wave antennas as well as metamaterial 
structures such as one-dimensional chains of 
particles, including plasmonic nanoparticles.  

2 PERIODIC GREEN’S FUNCTION 

We consider here an infinite one-dimensional array 
of point sources located along the z axis at z = nd, 
where d is the period of the array. The usual space-
domain form of the free-space (or homogeneous 
medium, to be more general) Green’s function is  
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where kz0 is the phasing wavenumber and Rn is the 
distance from the nth source point to the observation 
point at (ρ, z) in cylindrical coordinates, given by 
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(A time-harmonic convenient of exp(jωt) is assumed 
and suppressed.) This summation is slowly 
converging for real wavenumbers kz0, and it fails to 
converge for complex wavenumbers, as would be 
encountered for a leaky mode on a periodic structure. 

 An alternative representation is the spectral form 
of the periodic Green’s function, given by  
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where  

 2 2
q zqk k kρ = −  

and 
  
 0 2zq q z q dk k πβ == + . 
 
This form converges for complex wavenumbers, but 
converges more slowly as the radial distance ρ from 
the z axis decreases. Unfortunately, small values of 
radial distance are encountered in a numerical 
moment-method solution of periodic structures, e.g., 
when treating the self-terms of the impedance matrix. 
Hence, it is highly desirable to have an efficient 
method for calculating the free-space periodic 
Green’s function for complex wavenumbers.  

The Ewald method is a very efficient method for 
calculating the periodic free-space Green’s function, 
which casts the result as the sum of a modified spatial 
series and a modified spectral series, called here the 
“Ewald spatial” and the “Ewald spectral” series. Each 
of these two series has Gaussian convergence, and 
hence is very rapidly converging for all observation 
points. The Ewald method for the one-dimensional 
array of point sources in a homogenous medium has 
been discussed in [1] for the case of a real 
wavenumber kz0. The result is given as 
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is the Ewald spatial series and  
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is the Ewald spectral series. In these expressions 
erfc(z) is the complementary error function and Ep(z) is 
the exponential integral function of order p, which is 
related to the fundamental exponential integral 
function of order 1 through the recurrence relation  
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The fundamental exponential integral function is 
defined as  
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where the path C in the complex t plane in Eq. (8) 
starts at the point z and ends at infinity on the positive 
real axis, staying above or below the simple pole at t = 
0, depending on whether z is in the upper half plane or 
the lower half plane.  

3 EXTENSION OF THE EWALD METHOD 
TO COMPLEX WAVENUMBERS 

Equation (5) is already applicable to complex 
wavenumbers and requires no modification. Equation 
(6) requires modification, however, when kz0 is 
complex.   We consider any particular term q in the 
summation, corresponding to a particular space 
harmonic (Floquet wave). By carefully examining the 
location of the point  
 2 24qz k Eρ= −  (9) 

in Eq. (8), we can observe how the path C in the t 
plane changes as we move from the situation where kz0 

is real to the situation where kz0 = β - jα is complex. In 
some cases the path changes so that it detours around 
the pole at t = 0; e.g., by starting at a value of z that is 
in the third quadrant of the complex t plane, and then 
detouring above the pole, and then heading to infinity 

on the positive real axis. For such a path, the function 
E1(z) gets modified by adding a residue contribution of 
-2π j due to the pole at the origin that is detoured 
around.  We call the resulting function a “generalized” 
exponential integral and denote it as E1

G(z). 
The final result is as follows:  
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where m is an integer that is chosen according to 
whether or not a residue has been captured. The value 
of m is given by  
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Physically, the above rule means that the 
generalized exponential integral is required in Eq. (6) 
(m is different from zero) whenever the phase 
constant of a particular space harmonic lies within 
the region 0 < βq < k. This means that this particular 
space harmonic is in the radiating fast-wave region, 
and is a forward propagating wave (having a positive 
phase constant). Such a wave is physically chosen as 
improper, meaning that the radial wavenumber kρq 
has a positive imaginary part. 

The above rule applies for the calculation of the 
field from the space harmonics of a guided mode that 
is assumed to be “physical,” where each space 
harmonic is chosen as proper or improper according 
to the value of βq [2]. For nonphysical modes, other 
values of m may be needed.  

Results (omitted here) verify that the Ewald method 
as extended above gives the correct results (it agrees 
with the pure spectral method when kρq is chosen 
according to the physical proper/improper rule in the 
pure spectral method) and is faster than the pure 
spectral method when the radial distance ρ is less 
than about a quarter of a wavelength.  
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