
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Towards Fast And Accurate Structured Prediction

Permalink
https://escholarship.org/uc/item/9b51m1jf

Author
Srinivasan, Sriram

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b51m1jf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

TOWARDS FAST AND ACCURATE STRUCTURED PREDICTION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

Sriram Srinivasan

September 2020

The Dissertation of Sriram Srinivasan
is approved:

Dr. Lise Getoor, Chair

Dr. Kristian Kersting

Dr. Rajarshi Guhaniyogi

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright © by

Sriram Srinivasan

2020

Contents

List of Figures vi

List of Tables ix

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 Structured Prediction Using SRL Frameworks 3

1.1.1 Challenge 1: Structured Prediction Using Large Graphical Mod-
els . 3

1.1.2 Challenge 2: Memory-Constrained Structured Prediction 4
1.1.3 Challenge 3: Real-time Structured Prediction 4
1.1.4 Challenge 4: Metric-Optimized Parameter Estimation 5

1.2 Contributions . 6
1.3 Organization . 11

2 Background in SRL 12
2.1 Statistical Relational Learning . 12
2.2 Markov Logic Networks . 16

2.2.1 Diagonal Newton Method for Weight Learning (DN) 17
2.3 Probabilistic Soft Logic . 18

2.3.1 Maximum Likelihood Estimation (MLE) 20
2.3.2 Maximum Pseudolikelihood Estimation (MPLE) 21
2.3.3 Large-Margin Estimation (LME) 21

3 Lifted hinge-loss Markov random field 23
3.1 Introduction . 23
3.2 Related work . 24

iii

3.3 Background . 25
3.3.1 Color refinement . 25

3.4 Method . 26
3.4.1 Lifted HL-MRFs (LHL-MRFs) 28
3.4.2 Correctness of the method . 29

3.5 Empirical Evaluation . 33
3.6 Conclusion and Future work . 39

4 Tandem Inference: An Out-of-Core Streaming Algorithm For Very Large-
Scale Relational Inference 42
4.1 Introduction . 42
4.2 Related Work . 44
4.3 Tandem Inference . 45

4.3.1 Streaming Grounding . 46
4.3.2 Streaming Inference . 48

4.4 Empirical Evaluation . 51
4.4.1 Scale, Speed, and Convergence 54
4.4.2 Memory Efficiency . 55
4.4.3 Optimizer Efficiency and Learning Rate 57

4.5 Conclusion and Future Work . 59

5 Real-Time Structured Prediction Using PSL 60
5.1 Introduction . 60

5.1.1 Contributions and Organization 63
5.2 Related Work . 64
5.3 Problem definition and traditional approach 64

5.3.1 Facet mismatch classification 65
5.3.2 Traditional approach . 65

5.4 Relational structure and micrographs 67
5.5 Structured Mismatch Classification . 70

5.5.1 Using TMC Predictions . 70
5.5.2 Using Product Similarities . 71
5.5.3 Incorporating Confidences into Mismatch Detection 72
5.5.4 Regularization via Priors . 74

5.6 Scalability . 75
5.7 Empirical Evaluation . 77

5.7.1 Datasets and Models . 78
5.7.2 Experimental setup and evaluation 81

5.8 Conclusion and Future Work . 85

iv

6 A Taxonomy of Weight Learning Methods for Statistical Relational Learn-
ing 86
6.1 Introduction . 86
6.2 Related Work . 89
6.3 Background . 90

6.3.1 Black-box optimization . 90
6.3.2 Gaussian Process Regression 91

6.4 Search-Based Approaches for Weight Learning 92
6.4.1 Motivating Example . 92
6.4.2 Problem definition . 93
6.4.3 Random Grid Search for Weight Learning 94
6.4.4 Continuous Random Search for Weight Learning 95
6.4.5 Hyperband for Weight Learning 97
6.4.6 Bayesian Optimization for Weight Learning 99
6.4.7 Efficiency of Search-Based Approaches 104

6.5 Efficient Space to Search for Weights 105
6.5.1 Challenges in the Original Space 106
6.5.2 Scaled Space . 107
6.5.3 The Effect of Varied Number of Groundings in the Scaled Space 110
6.5.4 Sampling Weight Configurations for Search 111

6.6 Accommodating Negative Weights in Markov Logic Networks 116
6.7 Empirical Evaluation . 116

6.7.1 Performance analysis . 118
6.7.2 Scalability . 121
6.7.3 Robustness . 123

6.8 Conclusion and Future work . 126

7 Conclusion and Future Work 130
7.1 Summary of Contributions . 130
7.2 Future Work . 132

Bibliography 135

v

List of Figures

2.1 Factor graph produced by grounding the example SRL model with syn-

thetic data for 100 users. The blue nodes are users who smoke, and the

red nodes are users who do not smoke. Grey nodes are the rest of the

grounded atoms, and the black nodes are potentials. Here, we see that

the resulting factor graph is large, complex, and highly connected even

for this simple case. 15

3.1 The factor graph of the HL-MRF model presented in Example 1. The

labels of the factor nodes appear on their right side. Edge weights are

represented by line style (solid: 1, dashed: -1, thick: 2). 27

3.2 The colored coefficient graph of the HL-MRF model presented in Ex-

ample 1. Edge weights are represented by line style (solid: 1, dashed:

-1, dotted: 5). 31

3.3 The number of variables and rules reduce by different amounts after

lifting in real-world datasets. 35

3.4 Comparison of inference times and sizes of the problem for HL-MRF

and LHL-MRF as graph density varies 36

3.5 As symmetry increases, the time gap between solving HL-MRF and

LHL-MRF increases. 38

3.6 As symmetry increases, the time gap between solving HL-MRF and

HL-MRF(Gurobi) increases exponentially. The difference between LHL-

MRF and LHL-MRF(Gurobi) remains almost the same as the 1x dataset. 38

vi

4.1 The architecture of TI. 45

4.2 Comparison of the runtimes for TI, ADMM, and SGD on 10 datasets. . . 52

4.3 Memory usage, I/O usage, and speed of TI on the JESTER-FULL dataset

w.r.t. page size. Page sizes listed as ∞ are run with SGD, which does

not use pages. 55

4.4 The effect of different optimizers on convergence. 57

5.1 The facet mismatch classification problem as a structure prediction prob-

lem. Black dotted edges represent unobserved facet matches. A black

solid edge represents an observed facet mismatch and has a value of

zero or one. The prediction task is to infer the values for the black dot-

ted edges based on the available structural relationships (all other edges). 66

5.2 Comparison of three models using TMC vs. STMC vs. S2MC on D1 with

HSQ coverage 60%. 80

5.3 Speedup obtained by using TRON over ADMM for performing in-

ference. The speedup increases as coverage increases and we get a

speedup of up to 150x on the D1 dataset. 81

5.4 Precision, recall and F1 for TMC, STMC, SMC, and S2MC on three dif-

ferent datasets, D1 (top), D2 (middle) and D3 (bottom). We show the

metrics for both HSQs and all queries included. Optimal performance

is obtained when S2MC used with threshold of 0.08 and 0.52 is used as

lower and upper limit resulting in S2MC model affecting 60% of queries. 82

6.1 Heat map of AUROC and log-likelihood for the model in Example 1.

The lighter color indicates higher values; higher values are desired for

both metrics. 93

6.2 Visualization of Dirichlet distribution with different values of hyperpa-

rameter A for a model with three rules. Visualization shown both in OS

and SS. 128

vii

6.3 Analyzing the scalability of different approaches w.r.t. the number of

rules and groundings. When the number of iterations is fixed, search-

based approaches scale better with both the number of rules and ground-

ings. 129

viii

List of Tables

3.1 Time taken to perform inference on different datasets. 34

4.1 Details of models used and their memory consumption for non-streaming

inference. Memory usage for FRIENDSHIP-500M and FRIENDSHIP-

1B are estimates. The memory consumed by TI depends on the page

size chosen. In our comparison experiments, we use a page size of 10M

which uses about 10GB of memory. 53

5.1 Details for the three datasets we use. Even though the dataset contain a

small number of queries, the query independent nature of our approach

enables our results to hold for even larger datasets. 78

5.2 Different models and rules used to perform evaluation. 79

5.3 Number of queries that uses micrograph (Coverage) for different lower

and upper limit. 80

6.1 Performance of PSL weight learning methods across datasets. The best

scoring methods (with p < 0.05) are shown in bold. Note: the metric

values are rounded to three points of precision, making some numbers

the same, but the significance tests were performed on values with six

point precision. 119

6.2 Performance of MLN weight learning methods across datasets. The

best scoring methods (with p < 0.05) are shown in bold. 121

ix

6.3 Mean (std) of the metrics obtained by running search-based approaches

with varied initialization. We observe that the performance of BOWL

is least affected by both initialization. 124

6.4 Performance of different search-based approaches by varying the hy-

perparameter A in the Dirichlet distribution. The best metric values in

every row is shown in bold. 125

6.5 Effect of metrics obtained by using different acquisition function with

BOWL . We observe that the performance of BOWL is unaffected by

both acquisition function. 126

x

Abstract

Towards Fast And Accurate Structured Prediction

by

Sriram Srinivasan

Complex tasks such as sequence labeling, collective classification, and activity recog-

nition involve predicting outputs that are interdependent, a task known as structured

prediction. Approaches such as structured support vector machines, conditional ran-

dom fields, and statistical relational learning (SRL) frameworks are known to be effec-

tive at structured prediction. Of these approaches, SRL frameworks are unique as they

combine ease of using logical statements with the power of probabilistic models. How-

ever, structured prediction using SRL frameworks face several challenges that affect

both scalability and accuracy of these models. In this dissertation, I address four key

challenges that significantly improves scalability and accuracy of SRL model at per-

forming structured prediction task. First, structured prediction using large graphical

models: graphical models generated through SRL frameworks for structured prediction

tasks are often large, and this can make inference computationally expensive. Second,

memory-constrained structured prediction: often performing structured prediction us-

ing large graphical models require a large amount of memory, which can be infeasible

as some model sizes can grow to require terabytes of space. Third, real-time structured

prediction: some applications require performing structured prediction tasks in real-

time, which requires an extremely efficient inference engine that can perform model

generation and inference in under a few milliseconds. Fourth, the optimization of ar-

bitrary user-defined evaluation function: every application evaluates its structured pre-

diction task via a unique evaluation function with arbitrary form, making it challenging

to optimize them through well-known approaches such as gradient-descent. In this dis-

sertation, I propose four general techniques that address these challenges and improve

xi

the scalability and accuracy of structured prediction tasks. First, I develop an approach

to detect and exploit symmetries in large graphical models that make inference more

tractable. Second, I develop a new framework that intertwines model generation and

inference to perform structured prediction effectively. Further, this approach makes use

of disk space and a smart in-memory cache to minimize the memory footprint and scale

inference based on disk space rather than the main memory. Third, I derive a new infer-

ence procedure based on a second-order method, which reduces the inference time on

small graphical models to under a millisecond enabling structured prediction to be per-

formed online in real-time. Further, to demonstrate the effectiveness of this procedure, I

introduce the concept of a micrograph to generate small effective graphical models and

perform real-time structured prediction in the product search domain. Finally, I propose

four parameter estimation approaches based on search strategies that can directly opti-

mize any user-defined evaluation function by treating it as a black-box. These methods

significantly improve the scalability and accuracy of structured prediction tasks and

expand their scope to domains previously impossible.

xii

A loving dedication to the one that is all and all that is one.

xiii

Acknowledgments

First and foremost, I would like to extend my heartfelt gratitude to my advisor Lise

Getoor without whom this Ph.D. would have been impossible. Lise’s wisdom, encour-

agement, and support shaped my research and led to many successful projects. I con-

sider myself lucky to have gotten to work with such a great advisor. I joined the LINQS

lab in the third year of my Ph. D, when my previous advisor had to leave due to unfore-

seen circumstances. Lise gladly accepted me under her and let me work on a project

which quickly led to a successful publication, for which I am truly grateful. She has

continuously supported me in every decision throughout my Ph. D. with my best inter-

ests at her heart. Her constant comments have pushed me to get better at every step and

become a better researcher, presenter, and mentor. All the lessons I have received from

her, I am sure, will help me overcome any obstacle I may face in my future. I sincerely

thank her for believing in me, supporting me, and guiding me throughout my Ph. D.

Next, I would like to thank my previous advisor, Vishy, without whom I would

have never started my Ph. D. at UCSC. Vishy has been a great mentor helping me and

supporting me throughout, starting with my initial Amazon days. Since then, I have

counted on him for both technical and personal advice. He has inspired me beyond

technical research through his many activities, like bee-keeping and farming. I look

forward to joining back with him at Amazon and working with him.

Next, I would like to thank my advancement committee members Kristian Kersting,

Rajarshi Guhaniyogi, and David Helmbold, whose comments helped shape this disser-

tation. I would like to extend a special thanks to Kristian Kerting, who helped us out

with his expertise in lifted inference and SRL, which helped shape my lifted inference

and tandem inference paper.

This dissertation would not have been possible without the help of several of my

co-authors. First, I would like to thank Golnoosh Farnadi, who was a postdoc with Lise

xiv

when I joined. I got to work on several projects with her. Her hard work, insight, and

comments helped many of our projects get published at top conferences. I sincerely

thank her for all the effort and support. I would also like to thank Behrouz Babaki, with

whom I worked on lifted inference, my first paper in my Ph. D. His work on the theorem

in the paper was crucial for its success. A special and huge thanks to Eriq Augustine,

who has an equal contribution in our tandem inference paper. The help Eriq provides

in the lab goes much beyond co-authored papers. His presence fills the lab with energy,

and many conversations with him have helped me understand several technical and non-

technical topics in much better detail. Eriq’s work on the PSL codebase has helped me

in every single project, and his promptness in helping fix any challenge has been a boon

to the LINQS lab. Next, I would like to thank Charles Dickens for being enthusiastic

and prudent in helping me with the journal paper on weight learning. An extra thanks

to him for sharing tips and helping me out in surfing waves. During my internship at

Amazon, I got to work with Karthik Subbian, my manager, and Nikhil Rao, my mentor.

I thank them for believing in me and letting me work on a problem of my choice, which,

with their help, got published at CIKM and is now part of my dissertation.

During my Ph. D, I collaborated with several excellent researchers and co-authored

several papers that did not appear in my dissertation. I would like to thank them for

helping me expand my knowledge and understanding of the field. The work on DSMLR

with Parameswaran Raman truly helped me understand large-scale systems and opti-

mization. I got to work with Varun Embar on multiple challenging projects like struc-

ture learning. I consider myself lucky to have Varun and Parameswaran, my collab-

orators, also be my house/roommates. A heartfelt thanks to them for making my life

during Ph. D. extremely pleasant. I thoroughly enjoyed every conversation at home

and at work. Next, I would like to thank Ehsan Amid and Manfred Warmuth for let-

ting me work with them on TTLR, which helped me understand robust optimization

xv

techniques. I would also like to thank Manfred for his advice on farming, health, and

nutrition, which has genuinely inspired me to follow his path of self-sustenance. Next,

I would like to thank Rajdipa Chowdhry for being a great mentee and working with me

on fake news detection. Her dedicated work enabled us to submit a paper in a short pe-

riod of three months. I would also like to thank Spencer Thompson and Pigi Kouki for

introducing me to the “fair recommender system” and helping me understand the area

of fairness in machine learning. Finally, thanks to my internship mentors Choon-hui

Teo, Hsiang-fu Yu, and Leo Dirac at Amazon, who have helped expand my knowledge

and understand different systems. A special thanks to Vijai Mohan, who mentored me

for the past nine years, which has helped me substantially in both my professional and

personal life. His help and advice made me excel in several projects at Amazon and

helped me secure an excellent position.

Sincere thanks to my parents, Lakshmi and Srinivasan, who have made innumerable

sacrifices in their life so I could be successful. This life would not be possible without

them. A heartfelt thanks to my brother and sister-in-law, Krishnan and Rukhmini, for

always supporting me in every aspect and being the best I could wish. Next, I would

like to thank all my labmates, LINQS and ML lab , who felt more like family to me

than labmates. Finally, I would like to thank all my friends whose constant support and

encouragement always keeps me going.

Portions of this work were supported by NSF grants CCF-1740850 and IIS-1703331,

AFRL, and DARPA. The U.S. Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein are those of the author and

should not be interpreted as necessarily representing the official policies or endorse-

ments, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

xvi

Chapter 1

Introduction

With the growth of areas such as online social networks, bioinformatics, dialog

systems, and computer vision, the availability of multi-relational structured data has

dramatically increased. Many of the prediction tasks in machine learning can be im-

proved significantly by considering the data’s structural information. Considering the

structure of the problem leads to more complex inference tasks that involve predicting

structured outputs. Traditional machine learning methods often assume that the data

is independent and identically distributed (i.i.d) [20]. This assumption often misrep-

resents the real data as it ignores the structural information. The use of structure in

data and structure in the outputs for prediction often requires joint predictions to out-

put structured objects such as trees, graphs, and sequences. This general task is known

as structured prediction. Over the years, many approaches, such as relational models,

structured support vector machines, and conditional random fields, have been proposed

to perform structured prediction [53, 152, 15, 66].

Of these approaches, statistical relational learning (SRL) frameworks [130, 55, 37,

36] are known to perform easy and effective structured prediction. SRL frameworks

generate probabilistic graphical models that can perform structured predictions. SRL

frameworks combine the convenience of representing the structure through logical rela-

1

tions and the power of probabilistic models at making accurate predictions. This makes

SRL frameworks an attractive option for performing structured prediction. Models in an

SRL framework are often defined using a set of weighted logical rules. These rules are

instantiated/grounded with data to generate a probabilistic graphical model on which

inference is performed. Models defined through these frameworks have been used in

many fields and shown to yield state-of-the-art results. Examples include NLP tasks

[16, 160], image processing [3, 59], bioinformatics [143], search [8], recommender

systems [85, 90] and more [42, 43, 28].

Multiple SRL frameworks have been developed [130, 54, 11] to perform effective

structured prediction. Markov logic networks (MLNs) [130] and probabilistic soft logic

(PSL) [11] are two of the most widely used SRL frameworks that define probabilistic

graphical models through weighted logical rules. A MLN program generates a discrete

Markov random field (MRF) based on boolean logic called Markov networks, and PSL

makes a continuous relaxation of the random variables using soft logic to generate a

continuous MRF called a hinge-loss Markov random field (HL-MRF). This relaxation

allows the problem of MAP inference to take the form of a convex objective function.

Empirical evidence shows that the ability to solve a convex optimization problem rather

than a combinatorial problem can yield exponential speedups at inference time over

other traditional quadratic programming based methods [11]. MLN and PSL have both

shown to produce the state-of-the-art results in several domains [118, 46, 163, 159, 127,

86, 121, 144]. In this dissertation, I make use of these two SRL frameworks to address

some of the key challenges in performing accurate and scalable structured prediction

via SRL.

2

1.1 Structured Prediction Using SRL Frameworks

There are several challenges in SRL and graphical models which affect the scala-

bility and accuracy of a model defined through MLNs and PSL. In this dissertation, I

focus on addressing four significant challenges that improve the scalability and accu-

racy of these models. The first three challenges address three different scalability issues

that exist in graphical models generated through SRL frameworks. The last challenge

is related to the accuracy of the predictions made by SRL evaluated through arbitrary

evaluation function. Below, I briefly introduce the four challenges tackled in this dis-

sertation.

1.1.1 Challenge 1: Structured Prediction Using Large Graphical

Models

The graphical models generated through SRL frameworks for structured prediction

are often large. Performing inference on large graphical models is complex and ineffi-

cient. However, in many of these instances, the large graphical models contain repeated

substructures or symmetries. Detecting these symmetries and eliminating them to pro-

duce a smaller equivalent problem can often lead to significant computational speedups

for inference. The process of detecting and exploiting symmetries to perform faster in-

ference is referred to as lifted inference [70, 77, 41, 68, 107, 119, 38, 71, 140, 41, 6,

106]. However, in SRL frameworks like PSL, for the lifting approach to be practical,

the lifting process needs to be efficient and faster than performing full inference, which

is already efficient.

3

1.1.2 Challenge 2: Memory-Constrained Structured Prediction

Graphical models used for the structured prediction can grow to extreme sizes. This

means that the graphical models generated through SRL can quickly grow to sizes

that cannot fit in memory. Consider a simple transitive rule in SRL: Link(A,B) ∧
Link(B,C) =⇒ Link(A,C), commonly used in conjunction with link prediction.

When instantiated with a small fully-connected network with 1000 entries, the graphi-

cal models generated will contain a billion cliques. This will require memory in the or-

der of 100s of GB or TBs. While several different approaches such as lifted inference,

approximate lifted inference [135, 141, 155, 23, 132, 24, 25, 72], hybrid approaches

[9], distributed approaches [97], blocking [117], and other approaches [10] have been

proposed, all of them fundamentally assume that the graphical model can fit in mem-

ory. This assumption severely restricts the application of SRL and graphical models to

perform structured prediction.

1.1.3 Challenge 3: Real-time Structured Prediction

The first two challenges focus on inference in large models, but there is another

class of problems where structured prediction needs to be performed at real-time with a

stringent time constraint. These problems generally require us to generate and perform

inference in under a few milliseconds. While there are previous works that focus on on-

line inference using relational models [114, 154, 75, 123, 122], they do not assume any

stringent time constraint and generally focus on continuous optimization rather than

real-time predictions. To understand this challenge better, consider an information re-

trieval task on large e-commerce websites. A user enters a search query and expects to

see a set of items that match the facets (or attributes) mentioned in the query. However,

due to several lexical and behavioral patterns, the item set might have some facet mis-

matches. Performing collective classification [136] using graphical models to identify

4

any mismatches between the items returned, and the query placed can significantly im-

prove user experience on the e-commerce site [45]. However, creating a large graphical

model with all items and queries and performing inference is infeasible as the online

collective classification task (i.e., model generation and inference) needs to be com-

pleted under a few milliseconds. Any delay in this task leads to a significant negative

impact on the user experience. For such setups, it is crucial to carefully generate small

graphical models and perform extremely efficient inference for maximum impact. As

mentioned earlier, many of the proposed approaches address the challenge of scaling

to large graphical models, but performing inference on small graphical models with

extreme time constraints has received little attention.

1.1.4 Challenge 4: Metric-Optimized Parameter Estimation

The fourth challenge relates to the accuracy of the structured prediction task using

SRL frameworks. Learning the optimal set of weights is essential to making accurate

predictions in SRL. Most approaches that attempt to find the optimal set of weights

maximize the likelihood of the model [96, 139, 14]. This is a hard problem, as it in-

volves the computation of an intractable log-partition function. Many approaches max-

imize approximations of the likelihood to perform efficient weight learning. However, a

key challenge in using these methods is that the objective for most realworld problems

is usually a user-defined evaluation metric, such as F1 score, and not the likelihood

function. The inherent assumption made by likelihood-based methods that there is a

correlation between likelihood and the user-defined evaluation function is not always

correct. Therefore, most methods end up maximizing different versions of likelihood

with no guarantees on improving the user-defined metric. While it is paramount for us

to learn the optimal set of weights that maximize a user-defined evaluation function, it

is extremely challenging due to the large set of possible evaluation functions. Generat-

5

ing a method for every evaluation function is infeasible and some evaluation functions

cannot be expressed in closed-form function, precluding closed-form updates.

1.2 Contributions

In this dissertation, I introduce several strategies to address the four challenges men-

tioned above. For the first three challenges I introduce three orthogonal approaches that

directly improve scalability by: 1) efficiently identifying and exploiting symmetries in

graphical models; 2) smart usage of disk space with main memory to constrain the

memory footprint; and 3) introducing the concept of micrographs and using second-

order methods to perform inference efficiently. Finally, as the solution to the last chal-

lenge, I introduce four novel parameter learning techniques. While I use PSL as the

main SRL framework for the first three challenges and both PSL and MLN for the

fourth, the strategies introduced are general and can be extended and used in other SRL

frameworks and graphical models. Below, I highlight the key contributions provided

in this dissertation. Portions of the solutions proposed in this dissertation have been

published in [148, 149, 150, 147].

To address the first challenge of scaling inference to large graphical models, I in-

troduce a new approach to perform lifted inference in HL-MRFs referred to as lifted

HL-MRFs (LHL-MRFs). HL-MRFs make use of an efficient optimizers, alternating di-

rections method of multipliers (ADMM) [21], to perform efficient large-scale inference

(explained in Section 2.3). However, HL-MRFs generated through PSL might have

symmetries that could increase the computational cost of inference by performing re-

dundant operations. The color refinement algorithm (explained in Section 3.3.1) has

been shown to be efficient at identifying symmetries in linear and quadratic programs

[104, 108]. In this approach, I combine the color refinement algorithm with ADMM

to perform efficient lifted inference in HL-MRFs. I show that the lifted network gen-

6

erated by the color refinement algorithm for any HL-MRF is correct and conforms to

a form amenable to ADMM. I also show that performing inference on LHL-MRFs is

equivalent to performing inference on HL-MRFs. The quasilinear time complexity of

our lifting approach and the ability to use ADMM to perform inference ensures a sig-

nificant runtime reduction in the inference process. I perform an empirical evaluation

of our approach on three realworld datasets, and show that even on datasets with∼20%

reduction in the model size, we gain ∼10% in runtime performance with no loss of

accuracy. Further, using synthetic datasets, I perform a thorough study to understand

the impact of lifting on HL-MRFs with varied graph densities, precision in data, and

symmetries. I show that the liftability of a HL-MRF is inversely correlated to the data

precision, i.e., high precision in data reduces the liftability as high precision in data can

be susceptible to noise breaking symmetries. I also show that the runtime gains and the

amount of symmetry in the HL-MRF are directly correlated.

Next, I address the second challenge by introducing a novel approach referred to as

tandem inference (TI) that is orthogonal to the lifted inference method proposed earlier.

TI works by intertwining the process of model generation (grounding) and inference to

make them run in tandem. Further, it uses smart caching and disk space to minimize the

memory footprint in the RAM, making it possible to perform inference in prohibitively

large models on machines with low RAM. I introduce two new strategies that enable the

possibility of TI: 1) continuously generate cliques of the graphical model rather than

a full instantiation; and 2) a gradient-based optimization that can perform inference

using one clique at a time. Further, I stream cliques to and from a disk and instantiate a

limited size cache to hold cliques in memory for inference. I perform a comprehensive

empirical evaluation of TI and compare it with traditional inference on eight realworld

datasets and two synthetic datasets. In the experiments, I show that TI can perform

inference on extremely large models, which contain a billion cliques, on a machine

7

with just 10GB of RAM, where a traditional inference would require over 800GB of

RAM. Further, these experiments also show that TI can even run up to 8 times faster

than traditional approaches on our largest realworld dataset. I also perform a varied

set of experiments to show the impact of different cache sizes on inference and the

convergence of different the new gradient-based approach and traditional approach.

The next contribution of this dissertation involves addressing time-constrained in-

ference in graphical models for real-time structured prediction. To do this, I choose a

specific application of product search/retrieval and a collective classification task. First,

I introduce a new task in product retrieval referred to as facet mismatch classification

(FMC) and then propose an approach that is both accurate and efficient to be performed

at runtime with a stringent time constraint. Every product on an e-commerce website is

associated with a set of attributes called facets. A user generally enters a search query

and attempts to match the query with the facets of a product of interest. For example, a

user enters a search query “iPhone 8 64GB” and search engine needs to match products

along all facets “iPhone 8” and “64GB”. When a product returned does not match along

any of the facets, we refer to it as a facet mismatch (FM). Given a query and a set of

products, the general task of FMC is to classify all products in this set as a FM or not.

While traditional methods assume independence between products, I introduce a struc-

tured mismatch classification (SMC) approach that considers the similarities between

products at the time of classification. To efficiently perform SMC, I introduce the con-

cept of a micrograph that generates small graphical models by conditioning on a query

and considering only the links between products such as the textual similarity between

product titles. To perform efficient inference on these graphical models generated, I pro-

pose an approach based trust region Newton method (TRON) [93]. The TRON-based

inference has a high convergence rate, making them practical for real-time systems.

I also show that inference in PSL can be cast as learning a one-class support vector

8

machine (SVM) problem. This enables PSL to use any optimization approach that is

available for SVMs. In the empirical evaluation, I show that perform SMC can yield up

to 12% improvement in precision across three different e-commerce datasets. Further,

we compare the runtimes between TRON and ADMM for SMC and observe that the

proposed TRON-based approach is 150x faster than the ADMM-based method and the

classification on a micrograph takes under 1ms which makes it feasible to perform this

inference in real-time.

The contributions mentioned so far are orthogonal approaches that address the chal-

lenges in the scalability of SRL-based systems (in specific PSL). While it was possible

to use the existing ADMM-based inference in LHL-MRF effectively, I introduced a

stochastic gradient-based approach to perform TI and a TRON-based approach to per-

form real-time inference using PSL. These three optimizers complement each other

and help improve the overall scalability of PSL and its applicability to different ap-

plications. While the ADMM-based inference for PSL is efficient and embarrassingly

parallel, it does not easily conform to streaming architecture and uses excess memory

by creating many auxiliary variables. However, a stochastic gradient-based approach

easily conforms to a streaming architecture and does not use excess memory, but is not

embarrassingly parallel and is more sensitive to hyperparameters than ADMM. While

both these inference methods have a low per-iteration cost, they also have a low conver-

gence rate and take many iterations to converge. However, a TRON-based approach has

a high convergence rate and takes fewer iterations to converge, but its per-iteration cost

increases with model size, making them less practical for large models. Therefore, these

three approaches can be effective in different scenarios and help improve the overall

performance of PSL. For instance, while PSL with ADMM is ideal in a distributed set-

ting, PSL with a stochastic gradient-based approach is suitable for an online/streaming

setting, and PSL with TRON is perfect in applications requiring real-time inference

9

using small graphical models. Hence, the combination of the contributions so far sig-

nificantly improves the scalability and applicability of PSL.

This dissertation’s final contribution addresses the fourth challenge of performing

parameter estimation to maximize any user-defined evaluation metric. To do this, I in-

troduce four novel weight learning approaches for SRL frameworks based on search

strategies commonly used for hyperparameter tuning in statistical machine learning.

These approaches are based on black-box optimization and can optimize for any arbi-

trary evaluation function without the need to re-derive update equations. The first two

approaches are based on “random search”, which has been shown to be surprisingly

effective at searching for hyperparameters in deep learning [17]. The third approach is

based on Hyperband [91], which performs a smart search through effective resource

allocation. The fourth approach is based on Bayesian optimization with Gaussian pro-

cess regression, which is an efficient and robust approach for approximating arbitrary

functions. I showcase the power of these approaches by applying them to both MLNs

and PSL. To ensure an efficient searching of the weight space using these approaches, I

introduce a new projection, which I refer to as scaled space (SS), that is accurate at rep-

resenting the weights. I show that SS eliminates the redundancies in the original weight

space and ensures that the distances in this space are correlated with the true representa-

tion of the weights. Because sampling weights from SS can be challenging, I introduce

an approximation of SS and an approach to sample efficiently form this approximation.

I perform an elaborate set of empirical evaluations on five realworld datasets with two

metrics each to compare the performance of 8 different weight learning techniques in

MLNs and PSL. I show that the search-based approach introduced almost always out-

performs the previous methods by up to 10% in different evaluation metrics. Further,

runtimes measured for these approaches show that the search-based methods are scal-

able with the size of the graphical model generated. Finally, I show that all the four

10

search-based approaches are both accurate and robust to weight initializations, and that

the Bayesian optimization approach is also robust to other hyperparameters.

1.3 Organization

This dissertation is organized as follows. First, in Chapter 2, I provide the back-

ground necessary to understand logical MRFs, HL-MRFs, and PSL. Next, in Chapter

3, I elaborate my approach, LHL-MRF, to identify and exploit symmetry to perform

efficient inference in HL-MRFs. Then, in Chapter 4, I explain TI to perform efficient

memory-constrained inference in graphical models generated from SRL frameworks.

Further, in Chapter 5, I propose a TRON-based inference approach for real-time struc-

tured prediction in PSL and show its effectiveness through a novel application in the

domain of product retrieval. Next, in Chapter 6, I describe four new weight learning

approaches for SRL. Finally, in Chapter 7, I provide the conclusion and potential future

directions of this research.

11

Chapter 2

Background in SRL

In this chapter, I review the basics of SRL approaches that use weighted logical

rules to define a probabilistic graphical model. In specific, I give an overview of two

powerful SRL frameworks MLNs and PSL. I highlight their similarities and differences

and discuss the inference and weight learning techniques commonly used with them.

2.1 Statistical Relational Learning

SRL methods such as PSL and MLNs combine the power of probabilistic graphical

models with weighted first-order logical rules to capture relational structure in any do-

main. A set of weighted first-order logical rules are instantiated with dataD to generate

a logical Markov random field (LMRF). This process is referred to as grounding and

every instantiated rule consisting of only ground predicates is called a ground rule. Ev-

ery ground predicate represents a random variable in the LMRF which may be observed

(x) or unobserved (y) and a ground rule represents a clique potential φ in the LMRF.

Every potential in the LMRF is associated with a weight equal to the weight assigned

to the logical rule it was instantiated from. The weight of a logical rule represents the

importance of the rule in the model. The weighted sum of potentials in the LMRF is

12

referred to as the energy function E. A LMRF can be formally defined as:

Definition 1 (Logical Markov random fields). Let y = {y1, y2, ..., yn} be n unobserved

random variables, x = {x1, x2, ..., xm} be m observed variables or evidence, and

φ = {φ1, φ2, ..., φι} be ι potentials describing different logical relations between vari-

ables. The output of a potential function φi(x, y) is a real-valued scalar representing

compliance of x and y with φi. Further, let w ∈ {w1, w2, ... , wι} be a set of weights

associated with each potential. The energy function of a LMRF is defined as:

E(y|x) =
ι∑
i=1

wiφi(x,y) s.t., y ∈ {0, 1}n; x ∈ {0, 1}m (2.1)

and the conditional likelihood of a LMRF is defined as:

P (y|x,w) = 1
Z(y)exp(ŝ · E(y|x)) (2.2)

where Z(y) =
∫

y exp(ŝ · E(y|x)) is a normalization constant and ŝ ∈ {1,−1} deter-

mines the sign in the exponent based on if potential measures satisfaction or dissatis-

faction.

To better understand LMRFs and the process of grounding, consider a simple col-

lective labeling problem:

Example 1. Assume we have a set of users U and a label that can be either true

or false associated with each user, such as if a user Smokes or not. The label for

Smokes is observed for some users (Uo) and unobserved for the rest (Uu). The task is

to infer the labels for Uu. Let the input data include a social network with friendship

links between users U, Friend(U, V), and a local predictor that predicts if a user

smokes or not based on the user’s features, LocalPredictor(U). The LocalPredictor

is a classifier (e.g., logistic regression, neural network, decision tree) built based on

13

attributes of the individual U , for example SmellSmoky(U) and Y ellowFingers(U).

Below is a simple SRL model for collectively inferring labels:

w1 : LocalPredictor(U)→ Smokes(U)

w2 : Smokes(U) ∧ Friend(U, V)→ Smokes(V)

where w1 and w2 are weights for the rules. The above model is then grounded with

users U to generate an LMRF. Each ground rule (e.g., w1: LocalPredictor(“Bob”)

→ Smokes(“Bob”)) generates a potential function φi. Each ground predicate created

by instantiating the Smokes predicate with users Uu generates a set of unobserved

random variables y and the rest of the ground predicates generate a set of observed

random variables x. Fig. 2.1 shows the resulting graphical model when instantiated

over a small social network of 100 individuals.

Inference in a LMRF is performed by finding a maximum aposteriori estimate

(MAP) of the random variables y given evidence x. This is performed by maximizing

the density function or equivalently maximizing the energy function in Equation 2.1.

MAP inference is expressed as:

argmax
y

P (y|x) = argmax
y

ŝ · E(y|x) (2.3)

MLN and PSL make specific choices in LMRF to generate a Markov network and a

hinge-loss Markov random field (HL-MRF), respectively. Next, I highlight the choices

made by MLNs, followed by PSL, along with weight learning approaches commonly

used by both.

14

Figure 2.1: Factor graph produced by grounding the example SRL model with syn-
thetic data for 100 users. The blue nodes are users who smoke, and the red nodes are
users who do not smoke. Grey nodes are the rest of the grounded atoms, and the black
nodes are potentials. Here, we see that the resulting factor graph is large, complex, and
highly connected even for this simple case.

15

2.2 Markov Logic Networks

MLNs [130] use boolean logic and use discrete random variables as in LMRF. Po-

tential functions φ are indicator functions that are one if a ground rule is satisfied and

zero otherwise. Every ground logical clause can be written as:

ni(x,y) =
(∨
i∈I+

u

yi
)
∨
(∨
j∈I−

u

¬yj ∨
∨
k∈I+

o

xk
)
∨
(∨
l∈I−

o

¬xl
)

(2.4)

where I+
u and I+

o are sets of unobserved and observed positive literals that participate

in the clause and I−u and I−o are sets of unobserved and observed literals that participate

in the cause with a negation. A potential in MLN is of the form:

φi(x,y) = ni(x,y) = min

∑
i∈I+

u

yi +
∑
j∈I−

u

(1− yj) +
∑
k∈I+

o

xk +
∑
l∈I−

o

(1− xl), 1

(2.5)

where ni(·, ·) is the satisfaction of the ith ground rule. Since the potentials measure the

satisfaction of the ground rules, the ŝ is set to one and the MAP inference in MLN is

written as:

argmax
y

P (y|x) = argmax
y

E(y|x) (2.6)

Many different efficient implementations of MLNs exist [138, 116, 158, 65], but in

this dissertation I choose Tuffy [116] as our MLN framework. Tuffy combines a hybrid

architecture with smart data partitioning to scale up inference in MLN. Tuffy uses the

WalkSAT algorithm [67, 116] to perform MAP inference in MLNs. WalkSAT is an

approximate search-based approach that iteratively flips random variables’ values to

find the most satisfied world. Every step, WalkSAT chooses an unsatisfied ground rule

and flips a variable at random or flips a variable that would make the ground rule most

16

satisfied. After a set amount of iterations, WalkSAT returns the best assignments for the

random variables obtained.

Many weight learning approaches have been proposed for MLNs [130, 139, 96]. It

has been observed that second-order methods for weight learning tend to perform better

than other approaches [96]. Tuffy uses a second-order method, the diagonal Newton

approach introduced in [96], to perform weight learning.

2.2.1 Diagonal Newton Method for Weight Learning (DN)

This approach minimizes the negative conditional log-likelihood (CLL) using a

Newton-based method. A Newton-based approach reaches global minimum by mul-

tiplying the gradient with the inverse of the Hessian at every iteration:

wt+1 = wt −H−1g

where H is the Hessian, g is the gradient w.r.t. w, and t is the iteration number. Since

computing the Hessian can be expensive and infeasible, a diagonal Newton method

is used as an approximation for the Hessian. The Hessian of the negative CLL is the

covariance matrix of the CLL, and this is approximated through samples generated

using MC-SAT [120]. The final update for the weight of a logical rule at each iteration

is given by:

wi = wi − α
Ew(Ni)−Ni

Ew(N2
i)− (Ew(Ni))2 (2.7)

where Ni = ∑
j∈gi nj(x,y), gi is a set of ground rules generated by the ith rule, Ew is

expectation w.r.t. the weights and α is the step size.

17

2.3 Probabilistic Soft Logic

PSL [11], unlike MLNs, uses soft logic and relaxes random variables to be in the

range [0, 1]. Specifically, PSL uses Łukasiewicz logic to generate potentials which take

the form of hinges. In Łukasiewicz logic conjunction (∧̃), disjunction (∨̃) and negation

(¬̃) are defined as:

y1∧̃y2 = max{y1 + y2 − 1, 0} (2.8)

y1∨̃y2 = min{y1 + y2, 1} (2.9)

¬̃y = 1− y (2.10)

The ˜ indicates the relaxation over Boolean values. These logical statements are flipped

to measure the distance to satisfaction of a ground rule instead of their satisfaction and

are used as potential function φ. A hinge potential in PSL is of the form:

φi(x,y) = max(`i(x,y), 0)di s.t., 0 ≤ y ≤ 1 ; 0 ≤ x ≤ 1 (2.11)

`i(x,y) = 1−
∑
i∈I+

u

yi −
∑
j∈I−

u

(1− yj)−
∑
k∈I+

o

xk −
∑
l∈I−

o

(1− xl) = yT zi − ci (2.12)

where `i is a linear function and di ∈ {1, 2} provides a choice of two different loss

functions, di = 1 (i.e., linear) and di = 2 (i.e, quadratic), ci is the constant associated

with the potential, and zi ∈ {0, 1,−1}n is a vector that determines how all the variables

participate in a specific potential i. zi,j = 0 implies variable yj does not participate,

zi,j = 1 implies variable yj ∈ I−u , and zi,j = −1 implies variable yj ∈ I+
u . The constant

ci is computed based on the observed variables xs and other constants in the equation.

Since the potential functions in PSL measure distance to satisfaction, the ŝ is set to −1.

Further, weights in PSL are positive and real, i.e., wi ∈ R+. The MAP inference in PSL

18

is expressed as:

argmax
y

P (y|x) = argmin
y

E(y|x) (2.13)

A key advantage of using PSL is that the inference objective is convex. This enables

the use of efficient convex optimization procedures, such as the alternating direction

method of multipliers (ADMM) [21]. Hence, given known weights, inference in PSL

can be performed at scale, enabling predictions on large realworld datasets.

The first step in solving the problem with ADMM is to form the augmented La-

grangian function of the problem as (ignoring xxx in the equations as they are observed):

L(y, yl) = min
y,yl

ι∑
i=1

wiφi(yl,i) +
n∑
j=1
X[0,1][yj]

subject to: yl,i = y ∀i ∈ {1, ...,m} (2.14)

where X[0,1][yj] is an indicator function which produces zero if yi ∈ [0, 1] and infinity

otherwise, and yl is a matrix with m rows and n columns and yl,i represents ith row of

the matrix. The augmented Lagrangian form of this would be:

L(y, yl, α) = min
y,yl

ι∑
i=1

wiφi(yl,i) +
n∑
j=1
X[0,1][yj]

+
ι∑
i=1

αTi (yl,i − y) + ρ

2

ι∑
i=1
||yl,i − y||22

where ρ > 0 is step size and α is a matrix of same dimension as yl and represents the

19

dual variables. The update equation for ADMM at iteration t is the following:

αti = αt−1
i + ρ(yt−1

l,i − yt−1)

ytl = argmin
yl

L(yl, αt, yt−1)

yt = argmin
y

L((yl, αt, yt−1)

The ADMM updates ensure that y converges to the MAP state.

Unlike MAP inference, the task of learning the rule weights from training data is not

as efficient (although, as we will see in Chapter 6, having tractable MAP inference is

useful for weight learning). There are three primary approaches used to perform weight

learning in PSL as discussed in [14]: Maximum Likelihood Estimation (MLE), Maxi-

mum Pseudolikelihood Estimation (MPLE), and Large-Margin Estimation (LME).

2.3.1 Maximum Likelihood Estimation (MLE)

This approach maximizes the log-likelihood function with respect to the weights of

the rules based on the training data. Since all the potentials generated by a rule share the

same weight, Equation 2.1 can be written as
∑r
i=1[wiΦi(x,y)] where r is the number

of template rules, wi represents the weight of the ith rule, Φi = ∑
j∈gi φj(x,y), and gi

is a set of ground rules generated by the ith rule. The partial derivative of the log of the

likelihood function given in Equation 2.2 for PSL with respect towq, for q ∈ {1, . . . , r}
is:

∂logP (y|x)
∂wq

= Ew

[
Φq(x,y)

]
− Φq(x,y) (2.15)

where w = {w1, ..., wr} and Ew is expectation w.r.t. the weights. It is infeasible to

compute the expectation, hence to make the learning tractable, a MAP approximation

20

is used that replaces the expectation in the gradient with the corresponding values in

the MAP state. This approach is a structured variant of the voted perceptron algorithm

[32].

2.3.2 Maximum Pseudolikelihood Estimation (MPLE)

An alternative approach that maximizes the pseudolikelihood function, which is

given by:

P ∗(y|x) =
n∏
i=1

P ∗(yi|MB(yi),x) (2.16)

where n is the number of random variables and MB(yi) is the Markov blanket of yi.

Equation 2.16 is maximized using a gradient ascent based approach and the derivative

of the log-pseudolikelihood function with respect to wq is given by:

∂logP ∗(y|x)
∂wq

=
n∑
i=1

Eyi|MB

[∑
j∈gq :i∈φj

φj(x,y)
]
− Φq(x,y) (2.17)

where i ∈ φj implies that variable yi participates in the potential φj . Using a Monte

Carlo approach this derivative can be computed in linear time in the size of y.

2.3.3 Large-Margin Estimation (LME)

This approach focuses on maximizing the MAP state rather than producing accu-

rate probabilistic models. This approach uses the intuition that the ground-truth state y

should have energy lower than any alternate state ỹ by a large margin defined by a loss

21

function L. The objective function to find the optimal set of weights is given by:

w∗ = argmin
w

1
2 ||w||

2 + Cξ (2.18)

s.t :wT (Φ(ỹ,x)− Φ(y,x)) ≤ −L(y, ỹ) + ξ

where L is a loss function such as the L1 distance between y and ỹ, and ξ is a slack

variable. Equation 2.18 is then solved by performing a large-margin estimation based

on a cutting-plane approach for structural support vector machines [66].

22

Chapter 3

Lifted hinge-loss Markov random field

In this chapter1 I discuss in detail about the existence of symmetry in the graphical

model generated through PSL. Further, I describe an approach that can be used to find

symmetries in these model and use them to improve the runtime of the inference task.

Through evaluation on realworld datasets I show the effectiveness of our approach in

performing lifted inference in PSL.

3.1 Introduction

For SRL frameworks, exact inference is often computationally expensive, because

inference is performed over large grounded graphical models. However, this ground

representation is typically derived from a much smaller set of logical rules, and, de-

pending on the data, it often contains identical substructures. These identical substruc-

tures cause unnecessary work for the inference algorithm by repeatedly performing the

same operations. Lifted inference [70, 77, 41, 68] aims to detect common substructures

and use them to avoid redundant computations. There have been many approaches in-

troduced to perform lifted inference which we mention in our related work section.

1Appeared in 33rd AAAI Conference on Artificial Intelligence (2019)

23

The inference algorithm in HL-MRFs relies on alternating direction method of mul-

tipliers (ADMM). ADMM is an iterative optimization method [21] that provides an

elegant approach for finding the saddle point in augmented Lagrangian. The ADMM

algorithm for HL-MRFs use the structure in the objective function and solves the sub-

problems in each iteration using closed-form solutions.

Our work integrates the concept of lifting using color refinement algorithm with

ADMM to perform a more efficient inference in HL-MRFs. Using ADMM for HL-

MRFs [11] showed exponential performance gains over traditional LP/QP solvers. To

our best knowledge this is the first approach that combines ADMM with color refine-

ment to perform lifting for probabilistic inference. Our contributions are as follows:

1) we propose the first method for detecting and eliminating the symmetries in HL-

MRFs inference problems using color refienment algorithm. By applying this method

to the realworld datasets, we observe significant reductions (up to 66%) in the size of

problems, 2) we show how the lifted problem can be cast back into the same form as

the original inference problem, and solved using the specialized inference algorithm of

HL-MRFs. The proposed integration of lifted inference and ADMM is essential to our

goal. We solve the lifted problem using exsiting off-the-shelf solvers and the ADMM

method, and demonstrate that lifting has better pay off when latter is employed, 3) we

run a series of experiments on synthetically generated data, analyze the complicated re-

lationships graph structures have with lifting, and show the effectiveness of LHL-MRFs

on varied levels of symmetry.

3.2 Related work

Lifted inference in SRL is a well-studied problem. A popular approach is to group

objects that are indistinguishable given evidence, and perform inference by operating

on these groups. First-order variable elimination [119, 38] extends the standard variable

24

elimination algorithm by summing over entire groups of random variables instead of

one at a time. Lifted belief propagation [140, 72, 7, 6] employs the same message-

passing method as the standard belief propagation algorithm. It first groups variables

and form super nodes which are connected via so-called super edges. Message passing

is then performed over the graph with these super nodes and super edges. A modified

version of belief propagation(BP) called counting BP [71] constructs a compressed

factor graph by creating clusternodes and clusterfactors and using a modified BP to

perform inference. Some inference algorithms use the logical structure in a model for

problem decomposition [39, 27]. The lifted versions of these algorithms perform this

decomposition at the first-order level [56, 41].

The exact lifting methods discussed above assume that variables in the problem of

interest are discrete. This makes them inapplicable to languages such as PSL, which are

defined over continuous random variables. Recently developed lifted linear program-

ming [104] and lifted convex quadratic programming [108] offer a method for finding

and exploiting symmetries in linear programming and quadratic problems. Lifted linear

and quadratic programming, groups indistinguishable variables using color refinement

algorithm to produce a smaller linear or quadratic program making inference faster.

3.3 Background

In this section we discuss the color refinement algorithm on which our method is

based on.

3.3.1 Color refinement

Color refinement is a simple algorithm to identify similar nodes in a graph [125].

This algorithm has efficient implementations that run in quasilinear time [31] and has

25

been already used in practical graph isomorphism tools and for lifted inference [60].

The color refinement is an iterative algorithm that assigns colors to nodes in a sequence

of refinement rounds. For a graph G = (V,E), it first initializes all nodes in V with the

same color. In every refinement round, any two nodes v, w ∈ V with the same color

are re-assigned to a different colors if there is some color c such that v and w have

a different number of neighbors with color c; otherwise the no change is made. The

refinement stops when the color of all pairs of nodes before and after the refinement

round remains the same. This state of the graph where the colors of nodes do not change

across refinement rounds is called a stable coloring of the graph. LetA be the adjacency

matrix of G. Then the nodes u and v have the same color in the stable coloring of G iff

it holds for every color C that
∑

w∈C Avw =
∑

w∈C Av′w .

The color refinement algorithm can be generalized to weighted graphs by refining

the algorithm based on weighted sum of the edges (i.e., weighted sum of the edges of

neighbors with the same colors) instead of degree (i.e., number of neighbors with the

same colors). This generalization can then be extended to weighted bipartite graphs.

However, the initial coloring in a bipartite graph is different. Instead of starting with

one color, two initial color classes c1 and c2 are used where each color is assigned to

one type of node. For instance in a factor graph, factors are initialized with color c1

and nodes are initialized with color c2. The final state of a bipartite graphs once the

refinement stops is called a stable bi-coloring of the graph. At this state, the condition

mentioned above holds for the weighted adjacency matrix of G.

3.4 Method

Graphical models generated from logical templates can manifest degrees of sym-

metry. In this section we introduce a method based on the color refinement algorithm

to find and eliminate such symmetries in an HL-MRF energy function. The function

26

y1

y2

y3

y4

φ1

φ2

φ3

φ4

Knows(Dan, Bob)

Knows(Elsa, Bob)

Knows(Bob, Dan)

Knows(Dan, Elsa)

variable potential

(a) Factor graph: initial color-
ing

variable potential

y1

y2

y3

y4

φ1

φ2

φ3

φ4

(b) Colored factor graph

y∗1

y∗2

y∗3

φ∗
1

φ∗
2

φ∗
3

lifted variable lifted potential

(c) Lifted factor graph

Figure 3.1: The factor graph of the HL-MRF model presented in Example 1. The labels
of the factor nodes appear on their right side. Edge weights are represented by line style
(solid: 1, dashed: -1, thick: 2).

obtained by this method is also a HL-MRF energy function. Preserving this form is

crucial, since the efficient ADMM method introduced earlier is tailored for functions

of this form. At the end of this section, we show that we can obtain the solution of the

original problem by solving the lifted problem and mapping its solution back to the

original space.

To understand our approach better we will introduce a simple PSL model and gener-

ate a small HL-MRF. Throughout this chapter we will use this as our running example:

Example 2. Consider a PSL program consisting of a single rule that represents a tran-

sitivity relation among people:

w : Knows(P1, P2) ∧Knows(P2, P3)→ Knows(P1, P3) ∧ 2

where w is the weight of the rule. To keep the example simple we have only one

squared rule. We have three individuals in our data: Bob, Dan and Elsa. Given the

observations I
(
Knows(Ben,Elsa)

)
= 1, I

(
Knows(Elsa,Dan)

)
= 1, and assuming that

I
(
Knows(X,X)

)
= 0 for every individual X , our aim is to infer truth values for the

27

remaining atoms. The grounded model consists of four atoms that participate in four

grounded rules. Let us denote the unknown truth values by variables y1 . . . y4 (see Fig.

3.1a). The objective function for inference will be:

E(yyy) = wmax(2y1 − y2, 0)2 + wmax(−y1 + y2 + y4 − 1, 0)2

+ wmax(y1 − y4, 0)2 + wmax(−y3 + 1, 0)2 (3.1)

3.4.1 Lifted HL-MRFs (LHL-MRFs)

Our lifting method operates on a factor graph, which is a graphical representation

of a HL-MRF energy function.

Definition 2 (Factor Graph). The factor graph of an HL-MRF energy function is a

graph G = (U, V,E) in which there is a node uj ∈ U for each variable yj (j =

1, . . . , n) and a node vi ∈ V for each potential φi (i = 1, . . . , ι). For each nonzero

coefficient zij of variable yj in potential φi there is an edge eij ∈ E between uj and vi

with the weight zij . Each node vi ∈ V is labeled by the tuple (wi, ci, di).

Example 3. The energy function of the HL-MRF in Example 2 can be represented by

the factor graph in Fig. 3.1a.

We will now describe a method that given the factor graph G of an energy function

E, produces a potentially smaller factor graph G′. Instead of solving the MAP infer-

ence problem for E, one can solve the MAP inference problem for the function E′

represented by G′ and map the solution back to the variables in E.

We first assign the initial colors to the nodes of G = (U, V,E). The nodes in V

receive different colors based on their labels: Two nodes with labels (w1, c1, d1) and

(w2, c2, d2) receive the same initial color iff c1 = c2, w1 = w2 and d1 = d2. All nodes

28

in U receive the same color, which is different from the colors of the nodes in V .

We then run the color-refinement algorithm on G, which outputs a stable bi-coloring

CU
1 , . . . , C

U
p for the nodes in U and CV

1 , . . . , C
V
q for the nodes in V . To create the lifted

factor graph G′ = (U ′, V ′, E ′), we first create a lifted variable node u′k for every color

class CU
k and a lifted factor node v′l for every color class CV

l . Each lifted variable node

u′k and lifted factor node v′l corresponds to a set of edges in G, namely Ekl = {eij ∈
E : vi ∈ CV

l , uj ∈ CU
k }. If Ekl is non-empty, we connect the nodes u′k and v′l in G′ by

an edge with the weight (∑(i,j):eij∈Ekl zij)/|CV
l |. Let I = {i : vi ∈ CV

l } and (w, c, d)

be the label of some v ∈ CV
l . We label the node v′l ∈ V ′ by the tuple (∑i∈I wi, c, d).

Example 4. The output coloring of the color refinement algorithm is shown in Fig. 3.1b.

According to this coloring, the variables are partitioned into sets
{
{y1}, {y2, y4}, {y3}

}
and the factors are partitioned into sets

{
{φ2}, {φ1, φ3}, {φ4}

}
. From the color classes

of Example 3, we obtain the lifted factor graph of Fig. 3.1c which represents the func-

tion: E(y∗y∗y∗) = 5 max(−y∗1 + 2y∗2 − 1, 0)2 + 10 max(y∗1 − y∗2, 0)2 + 5 max(−y∗3 + 1, 0)2.

As noted before, the expression in the above example is essentially a weighted sum

of hinge functions which has the exact same form as (2.1) defined for HL-MRFs. This

implies that the function represented by the lifted factor graph can also be solved using

ADMM. To map the solution of lifted problem back to the original space, we only need

to assign the value of the representative variables of each lifting color class to all the

variables in that color class.

3.4.2 Correctness of the method

We now show that optimizing over the lifted function produces the same objective

value as optimizing the original function, and the optimal values of the variables in

the original problem can be derived from their lifted counterparts. Our proof is based

on an existing procedure for lifting the Quadratic Programming (QP) problems [108].

29

We show that the MAP inference problem in HL-MRFs can be cast as a QP problem

and that lifting this problem produces another QP which is equivalent to the function

produced by our lifting method.

To write the objective function of the MAP inference in Equation 2.13 as a QP, we

replace the max functions by constraints over auxiliary variables ψi:

min
∑
i

wiψ
di
i s.t., ψi ≥

∑
j

zijyj − ci ∀i, yyy,ψψψ ≥ 000 (3.2)

QP problems are lifted by performing the color refinement algorithm on a graph called

the coefficient graph. We will now explain how to construct the coefficient graph for

(3.2) (for further details we refer to [108]). The coefficient graph of (3.2) is the 4-tuple

(U, V, Ψ̃, E) where the nodes uj ∈ U , vi ∈ U , and ψ̃i ∈ Ψ̃ correspond to variable yj ,

constraint i, and variable ψi, respectively. For each nonzero coefficient zij there is an

edge with weight zij between the nodes uj and vi. For each constraint i, the nodes

vi ∈ V and ψ̃i ∈ Ψ̃ are connected by an edge with weight −ci, and if di = 2 then

there is a self-loop edge on ψ̃i with the weight wi.

Initially all nodes in U ∪ Ψ̃ have the same color, which is not shared by any node

in Ψ̃. Two nodes vi1 , vi2 ∈ V receive the same initial color iff ci1 = ci2 .

After performing the color refinement algorithm on this coefficient graph, the co-

efficient graph of the lifted QP problem is constructed by grouping the variables and

constraints of each color class together. The edge weights are aggregated in the same

way as previously described in our method. The optimal value of a variable in the orig-

inal QP is equal to the optimal value of its lifted counterpart.

Example 5. The coefficient graph of the QP corresponding to Example 2 and the col-

oring assigned to it by the color refinement algorithm is presented in Fig. 3.2.

Assume that a function E is lifted to another function E′ using our proposed method.

30

y1

y2

y3

y4

variable constraint

ψ1

ψ2

ψ3

ψ4

variable

Figure 3.2: The colored coefficient graph of the HL-MRF model presented in Example
1. Edge weights are represented by line style (solid: 1, dashed: -1, dotted: 5).

We demonstrate the correctness of our method by showing that the QP of E can be lifted

to the QP of E′.

Theorem 1. Let G = (UG, V G, EG) be the factor graph of an energy function of an

HL-MRF, and Q = (UQ, V Q, Ψ̃Q, EQ) be the coefficient graph of its QP. Then in the

stable bi-colorings of G and Q, the color classes of U and V are the same.

Proof. Assume that in the stable bi-coloring CG of factor graph G, the nodes are parti-

tioned into disjoint colors CG
1 , . . . , C

G
q ⊆ V G and CG

q+1, . . . , C
G
q+p ⊆ UG. Let us denote

by uGj and vGi the nodes in G corresponding to variable yj and factor φi in the HL-MRF

energy function. Also let uQj , vQi and ψ̃Qi denote the nodes corresponding to variable yj ,

constraint i, and auxiliary variable ψi in the corresponding QP problem. We will now

construct a stable bi-coloring CQ of the coefficient graph Q with the following proper-

ties: 1) Variable nodes have the same color classes in CQ and CG and constraint nodes

in CQ have the same color classes as factor nodes in CG, 2) CQ is consistent with the

initial coloring of Q, and 3) CQ is the coarsest stable bi-coloring of the graph Q. We

first construct the coloring CQ and then show how the above conditions hold for it. Let

C(u) denote the color class of u in the coloring C. In CQ we assign the colors to the

31

nodes in UQ, V Q, and Ψ̃Q based on the color classes of UG and V G in CG as follows:

uQj1 ∈ CQ(uQj2)⇔ uGj1 ∈ CG(uGj2) (3.3)

vQi1 ∈ CQ(vQi2)⇔ vGi1 ∈ CG(vGi2) (3.4)

ψ̃Qi1 ∈ CQ(ψ̃Qi2)⇔ vGi1 ∈ CG(vGi2) (3.5)

The first property holds by definition. By definition, the nodes uQj1 , u
Q
j2 ∈ UQ have

the same initial color iff the initial colors of the nodes uGj1 , u
G
j2 ∈ UG are the same.

Similarly, vQi1 , v
Q
i2 ∈ V Q receive the same initial color iff the nodes vGi1 , v

G
i2 ∈ V G have

the same initial color. Additionally, all nodes in Ψ̃Q receive the same initial color. Hence

CQ is consistent with the initial coloring of Q.

To show that the coloring is stable, we need to show that the sum of edge weights

connecting to the nodes in each color class is the same among all the nodes having

the same color. So for each pair of variable nodes uQj1 , u
Q
j2 ∈ UQ and color class CQ

l

it should hold that uQj1 ∈ CQ(uQj2) ⇔ ∑
i:vQi ∈C

Q
l
zij1 = ∑

i:vQi ∈C
Q
l
zij2 . Since CG is

a stable coloring of G we have uGj1 ∈ CG(uGj2) ⇔ ∑
i:vGi ∈C

G
l
zij1 = ∑

i:vGi ∈C
G
l
zij2

which together with equation 3.3 proves this property. Similarly, for each pair of con-

straints i1, i2 and color class CQ
k it should hold that vQi1 ∈ CQ(vQi2) ⇔ ∑

j:uQj ∈C
Q
k
zi1j =∑

j:uQj ∈C
Q
k
zi2j which can be concluded from equation 3.4 and the fact that vGi1 ∈

CG(vGi2) ⇔ ∑
j:uGj ∈C

G
k
zi1j = ∑

j:uGj ∈C
G
k
zi2j . Note that the weights of edges connect-

ing to nodes of ψi are not included in these equations since ψi variables appear with the

same coefficient in all constraints. For a pair of nodes ψ̃Qi1 , ψ̃
Q
i2 ∈ Ψ̃Q where di1 = di2 =

1, we should have ψ̃Qi1 ∈ CQ(ψ̃Qi2) ⇔ vQi1 ∈ CQ(vQi2) which trivially holds according to

equation 3.5. Finally, when di1 = di2 = 2, it should hold that ψ̃Qi1 ∈ CQ(ψ̃Qi2) ⇔ vQi1 ∈
CQ(vQi2)∧wi1 = wi2 which holds according to equation 3.5 and the fact that if wi1 6= wi2

then the nodes vQi1 , v
Q
i2 ∈ V Q are initialized with different colors.

32

Now what remains is to show that CQ is the coarsest stable coloring of graphQ, i.e.,

there is not another stable bi-coloring respecting the previous conditions that assigns

fewer number of colors than CQ to the nodes of Q. Assume that there is a stable bi-

coloring C ′Q ofQwith fewer colors than CQ. Then we can construct a stable bi-coloring

C ′G for the factor graph G that respects its initial coloring, by partitioning the UG and

V G according to the color classes of UQ and V Q in C ′Q. Since partitions of UQ and Ψ̃Q

are in one-to-one correspondence, the reduction in the number of color classes in C ′Q

can not be limited to color classes of the nodes in Ψ̃Q. This means that C ′G has fewer

color classes than CG, which is a contradiction.

3.5 Empirical Evaluation

In this section, we evaluate our proposed lifted inference algorithm, LHL-MRF, on

various real and synthetic datasets. We investigate three research questions in our ex-

periments: Q1: How does lifting affect performance on real world datasets? Q2: How

does the graph structure influence the impact of lifting? Q3: How much symmetry is

required for lifting HL-MRFs to be effective? All experiments were run on a machine

with 16GB RAM and an i5 processor. The implementations are all single-threaded.

We implemented our models using the PSL open-source Java library.2 We ground the

rules using the PSL library and then run inference using our own implementation of

ADMM in C++.3 Note that PSL removes a large number of trivial symmetries dur-

ing the grounding process by removing trivially satisfied rules (for further information

see [9]). Removing these simple symmetries ensures the extra symmetries that are ob-

tained during our approach are non-trivial. We use Saucy4 from the RELOOP library to

perform color refinement [105].

2https://github.com/linqs/psl
3https://github.com/linqs/srinivasan-aaai19
4http://vlsicad.eecs.umich.edu/BK/SAUCY

33

Experiments on Real-world Data

We selected three real world datasets from different domains for which the corre-

sponding PSL models have been used with promising results.

-Citeseer: This dataset includes 3312 papers in six categories, and 4591 citation links.

The goal is to classify documents in a citation network. The original data comes from

Citeseer . The details about the model and data can be found in [11].

-Cora: This dataset includes includes 2708 papers in seven categories, and 5429 cita-

tion links. The goal is to classify documents in a citation network. The original data

comes from Cora . The details about the model and data can be found in [11].

-Wikidata: The dataset contains 419 families and 1,844 family trees. The goal is to

perform entity-resolution on a family graph obtained form wikidata by crawling the

site for familial relations. The details about the model and data can be found in [85].

To address Q1, we measure the effects of lifting on the three datasets. Figure 3.3

presents the number of variables and potentials of these datasets before and after lifting.

We observe that there is a varying amount of symmetry in these datasets, the reduction

in number of variables and potentials is about 20% in the Wikidata, 46% in the Cora,

and 66% in the Citeseet dataset.

Datasets HL-MRF LHL-MRF LHL-MRF LHL-MRF
(solving) (lifting) (total)

(in sec) (in sec) (in sec) (in sec)
Citeseer 57.4 19.8 0.39 20.19

Cora 47.7 17.5 0.53 18.03
Wikidata 636.0 463.7 112.7 576.4

Table 3.1: Time taken to perform inference on different datasets.

Table 3.1 shows the time to solve the original problem, i.e., HL-MRF, the time to

solve the lifted problem, i.e., LHL-MRF (solving), the time to lift HL-MRF with the

34

Citeseer Cora Wikidata

102

103

104

105

106

107

8.76

10.54

15.21

4.41

9.92

14.98

N
um

be
r

of
po

te
nt

ia
ls

+
va

ria
bl

es Full model
Lifted model

Figure 3.3: The number of variables and rules reduce by different amounts after lifting
in real-world datasets.

color refinement algorithm, i.e., LHL-MRF (lifting), and the end to end inference time

for the lifted approach, i.e., LHL-MRF (total) or LHL-MRF in short.

As expected, due to the large amount of reduction in the number of variables and

potentials, there is a significant difference between the time taken for HL-MRF and

LHL-MRF (solving) on all subsets. Even with a small 20% reduction in number of

variables and potentials in Wikidata, we see that LHL-MRF (Solving) is 27% faster

than HL-MRF and due to much higher reduction in other datasets, we see three-fold

speed-ups in both the Cora and the Citeseer datasets.

However, lifting time (LHL-MRF (lifting)) must also be considered. After account-

ing for this, we still see that LHL-MRF is about a 10% faster in the Wikidata dataset

and almost three times faster for the Cora and the Citeseer datasets when compared to

HL-MRF.

Experiments on Synthetic Data

To address Q2 and Q3 and better understand how symmetry is affected by graph

density, we generate five different synthetic graphs. We also generate three sets of pos-

sible continuous values that the edges of the graph can take to generate different struc-

35

10k 50k 100k 200k 500k
0

1

2

3

4

5

·105

10,629

50,413

1.01 · 105

2.01 · 105

5.02 · 105

6,641
25,886

49,116

92,457

1.9 · 105

Graph Density

N
um

be
r

of
po

te
nt

ia
ls

+
va

ria
bl

es Full model
Lifted model

(a) For binary values, as the graph den-
sity increases, the total amount of lifting
increases.

10k 50k 100k 200k 500k

1

1.5

2

2.5

Graph Density

R
a
ti
o
(f
u
ll
/l
if
te
d
)

Binary edges

Low precision edges

High precision edges

(b) For varying numbers of values, as
graph density increases, the ratio of lifting
varies.

10k 50k 100k 200k 500k
0

10

20

30

40

Graph Density

T
im

e
(S
ec
)

HL-MRF

LHL-MRF(solving)

LHL-MRF

LHL-MRF(lifting)

(c) Comparison of inferences times for
HL-MRF and LHL-MRF as graph density
varies.

Figure 3.4: Comparison of inference times and sizes of the problem for HL-MRF and
LHL-MRF as graph density varies

ture of neighbors in the graph. We generate the graphs for the task of node labeling

with varying levels of density. We used a PSL model for the commonly used smoker

example as introduced in [130], which describes smoking behavior among friends with

the following rules:

1.0 : Friend(A,B) ∧ Smokes(A)→ Smokes(B)

1.0 : Friend(A,B) ∧ ¬Smokes(A) → ¬Smokes(B) This model states that if two

people are friends, then either both of them smoke or neither of them do.

We fix the number of users to 1000, and randomly create friendship links between

36

these users by varying the number of edges from 10k to 500k. In practice friendship is

not necessarily a black-and-white matter, i.e., people can be friends to varying degrees.

Hence, we consider three cases for the values of the friendship links: 1) binary values,

2) values between zero to one with one decimal point, 3) values between zero to one

with four decimal points. This means that friendship links can take only two values in

the first case ({0, 1}), 10 values in the second ({0.0, 0.1, . . . , 1.0}) and 10,000 in the

third case ({0.0000, 0.0001, . . . , 1.000}). We randomly assign a label to users and keep

50% of the labels as evidence and another 50% as unknowns to be inferred. Figure 3.4a

shows the total number of variables and potentials before and after lifting for the binary

case. Figure 3.4b shows the ratio between the number of variables and potentials before

and after lifting, for varying value ranges. We see that for the binary case, the amount

of lifting is maximized and the ratio increases as the graph density increases. However,

as the value range increases, the amount of lifting drops significantly, and eventually

there are no symmetries to be exploited. Finally, Figure 3.4c presents the processing

time to solve the binary case. The results indicate that using LHL-MRF gives a sig-

nificant performance improvement over HL-MRF as the graph becomes denser. These

results imply that there are complex trade-offs between the structure of the graph and

the range of the values in the data. We utilize exact lifting and therefore, we observe

that LHL-MRF performs well for finding symmetries in datasets with denser structures

and smaller range of values.

Finally, to further understand how the amount of symmetry affects the overall infer-

ence time in a slightly more complex and realistic setting (yet still a synthetic dataset),

we study the social affiliation dataset and the PSL model used by [11] for scalability

analysis. We use a dataset that contains 22k nodes and 130k edges. 5

We begin by lifting this dataset to remove all symmetry (the original dataset has less

than 1% symmetry). To induce symmetry, we systematically inject the same structure

5https://github.com/stephenbach/admm-speed-test

37

to the data. This is done by duplicating every grounded rule and shuffling the data. We

duplicate the grounded rules up to 10 times creating 10 subsets (named 1x, 2x, 3x...,

10x), where the 10x subset has 10 times as many potentials created by duplicating the

original data i.e., the 1x subset.

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
0

20

40

60

80

Symmetry

T
im

e
(i
n
se
c)

HL-MRF

LHL-MRF(solving)

LHL-MRF

LHL-MRF(lifting)

Figure 3.5: As symmetry increases, the time gap between solving HL-MRF and LHL-
MRF increases.

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x

101

102

103

104

105

106

Symmetry

L
o
g
of

T
im

e
(i
n
se
c)

HL-MRF

HL-MRF(Gurobi)

LHL-MRF

LHL-MRF(Gurobi)

Figure 3.6: As symmetry increases, the time gap between solving HL-MRF and HL-
MRF(Gurobi) increases exponentially. The difference between LHL-MRF and LHL-
MRF(Gurobi) remains almost the same as the 1x dataset.

Figure 3.5 shows the results of HL-MRF and LHL-MRF (split into LHL-MRF (solv-

ing), LHL-MRF (lifting), and LHL-MRF on all 10 subsets. For the smallest dataset

(which contains no symmetry), the time required for LHL-MRF is higher than HL-MRF

due to the time taken to perform lifting. However, increasing the size of the dataset from

two to ten, we observe that the amount of time taken by LHL-MRF to solve the problem

38

is getting much lower than HL-MRF. It is noticeable that as the symmetry increases, the

gap between solving HL-MRF problem and LHL-MRF problems widens. Note that the

inference time in LHL-MRF for all 10 subsets is the same (equal to 1x dataset), which

is the flat line in Figure 3.5 for LHL-MRF (solving).

For the sake of completeness and to compare against other lifted inference methods,

in Figure 3.6, we compare the performance of HL-MRF and LHL-MRF using ADMM

with versions which use Gurobi– an off-the-shelf commercial QP solver–. We denote

these methods which use Gurobi HL-MRF (Gurobi) and LHL-MRF (Gurobi). For all

10 subsets, we observe that using HL-MRF and LHL-MRF consistently and signifi-

cantly outperforms HL-MRF (Gurobi) and LHL-MRF (Gurobi) respectively. We also

see that this difference increases as the size of the data increases. Note that the time

taken to solve using LHL-MRF (Gurobi) is similar to other lifting methods such as be-

lief propagation. For most of the lifting methods, the time complexity grows cubicly

with the number of variables in the data. However, our approach is unique and desir-

able as it maintains the original form of the function allowing us to use ADMM which

is known to be much more scalable than other approaches [48].

To our best knowledge, the size of datasets used in other lifted inference papers are

in order of 1000s of variables and potentials, whereas using ADMM in our approach

allow us to easily scale to problems with millions of variables and potentials.

3.6 Conclusion and Future work

In this paper, we introduced LHL-MRF, a novel approach to lifted inference in HL-

MRFs. LHL-MRF marries the powerful ideas of lifted inference with the color refine-

ment algorithm of [60] with the convex inference approach proposed by [11], to solve

large-scale graphical models described by HL-MRFs. By combining these two ideas,

our method is able to reduce the number of variables and potentials in a model and

39

perform inference efficiently on a significantly smaller optimization problem. Through

empirical evaluation, we show that the inference task for HL-MRF models on relatively

small real world problems can be made to run three times faster. Further, in our exper-

iments, we investigated how varying symmetry affects the performance of LHL-MRF

and we explored the impact of both structure and domain values on the efficiency of

LHL-MRF.

We have shown that there are significant opportunities for lifted inference, even in

the case where we have continuous-valued variables defined by HL-MRFs. Through

empirical evaluation on real datasets, we show that the inference task for HL-MRF

models can run up to three times faster by using LHL-MRFs. However, it is important

to note that LHL-MRFs cannot guarantee speed-ups for all types of problems. We in-

vestigate the effects of graph density and range of real values on lifting in HL-MRFs.

However, studying the characteristics of the optimization problem after lifting is left for

future work. We also notice that on small sized problem, in which inference takes less

than one second to finish in HL-MRFs, the overhead of lifting is noticeable, and there-

fore even with a huge amount of reduction in the number of variables and potentials,

we cannot necessarily reduce the solving time of LHL-MRFs.

This work suggests other interesting directions for future work. First, in this work

we only exploit exact symmetries, which may be hard to find in some applications. Pre-

vious work indicates approximate lifted inference can improve the performance without

compromising on other metrics like precision [135]. In our setting, approximate lifting

could also lead to a greater reduction in number of variables and speed up the task of

inference. Second, two of the most challenging tasks in MRFs are learning the weights

and the structure of the logical rules from the data. Structure learning and weight learn-

ing are often performed using a scoring function that iteratively uses a MAP state. An

interesting path to explore is to employ lifted inference to make such systems more

40

efficient.

41

Chapter 4

Tandem Inference: An Out-of-Core

Streaming Algorithm For Very

Large-Scale Relational Inference

In this chapter1 I discuss in detail an approach to scale inference in relational models

(in specific PSL) to prohibitively large models that do not fit in the main memory of

the machine. Further, I develop a novel streaming approach for both grounding and

inference in PSL that make use of disk space and enables us to perform inference in

tandem with model grounding. Through evaluation on realworld and synthetic datasets

I show the effectiveness of our approach in performing extremely large scale inference

in PSL.

4.1 Introduction

SRL methods have seen a great deal of success, they face a major challenge when

scaling to large datasets. The benefit of easily generating large graphical models from a

1Appeared in 34th AAAI Conference on Artificial Intelligence (2020)

42

few template rules can turn into a curse as the graphical models can quickly grow to in-

tractable sizes that do not fit in memory. Consider a simple transitive rule:Link(A,B)∧
Link(B,C)→ Link(A,C), commonly used in conjunction with link prediction tasks.

When this rule is instantiated (grounded) with a simple dataset of 1000 entries, a graph-

ical model with a billion potentials is generated.

To address this issue, in this chapter, we propose an alternate approach to scaling

which performs inference in tandem with grounding. This enables us to scale SRL

systems to large, previously intractable, models. Our approach, which we refer to as

tandem inference (TI), uses a novel streaming grounding architecture and an out-of-

core inference algorithm that utilizes a disk cache in order to consume a fixed amount of

memory. This allows TI to scale unbounded by a machine’s main memory. Furthermore,

even with increased I/O overhead, our approach runs the entire process of grounding

and inference in a fraction of the runtime required by traditional approaches. Since TI is

orthogonal to lifting and some of the other strategies, it can be combined with them for

further improvements.

The TI concept is general and can potentially be applied to several different SRL

frameworks. In this chapter, we show how it can be implemented in probabilistic soft

logic (PSL) [11]. PSL is a SRL framework that generates a special kind of undirected

graphical model called a hinge-loss Markov random field (HL-MRF). A key distin-

guishing factor of a HL-MRF is that it makes a continuous relaxation on random vari-

ables (RVs) which transforms the inference problem into a convex optimization prob-

lem. This allows PSL to use optimizers such as alternating direction method of multi-

pliers (ADMM) [21] to perform efficient inference.

Our key contributions are as follows: 1) we propose a general framework, TI, which

uses streaming grounding and out-of-core streaming inference to perform memory ef-

ficient, large-scale inference in SRL frameworks; 2) we derive a stochastic gradient

43

descent-based inference method (SGD) and show that the SGD-based method can out-

perform the traditionally used ADMM-based method; 3) we develop an efficient stream-

ing grounding architecture and SGD-based out-of-core inference system that runs faster

than previous state-of-the-art systems; 4) through experiments on two large models,

FRIENDSHIP-500M and FRIENDSHIP-1B, which require over 400GB and 800GB of

memory respectively, we show that, using just 10GB of memory, we can perform infer-

ence on FRIENDSHIP-500M in under four hours and FRIENDSHIP-1B in under nine

hours; and 5) we perform an empirical evaluation on eight realworld datasets to validate

the speed and accuracy of TI. In addition to enabling inference on models too large to

fit into memory, on our largest realworld dataset which does fit in memory, TI is 8 times

faster than traditional approaches.

4.2 Related Work

Several approaches have been proposed to scale relational models to large datasets.

Lifted inference [38, 140, 41, 70, 134, 78, 148] is a commonly employed and effective

approach that exploits symmetry in the data to generate a more compact model on

which to perform inference. While effective in many settings, a key drawback of these

approaches is that evidence or noisy data can break symmetries, making lifting less

effective. To address this issue, approximate lifting approaches have also been proposed

[135, 40, 156, 33] which exploit approximate symmetries, allowing for greater and

more robust compression. However, if the ground model lacks significant symmetry,

approximate lifting may improve tractability only at the cost of correctness.

Several approaches orthogonal to lifted inference have also been proposed that at-

tempt to perform efficient grounding by utilizing hybrid database approaches [116],

exploiting the structure of rules [9], perform efficient approximate counting for faster

inference [157, 133, 34], exploiting sparse structure in data to constrain the size of mod-

44

els (blocking) [117, 10] or distributing models across multiple machines [97]. How-

ever these methods, while quite useful, only provide partial solutions to grounding and

efficient inference at scale. The hybrid database approach increases runtime substan-

tially, exploiting rule structure requires large amounts of memory to store the ground

model, approximating counting methods are applicable to discrete graphical models

only, blocking needs high understanding of data and can constrain the types of models

on can generate, and distributing across several machines does not reduce the overall

memory required to run a large program.

4.3 Tandem Inference

Grounding

Generator

Inference

Engine

DataModel

Disk

Database

RAM

Cache
Ground Terms

C
ached

T
erm

s
Ra
nd
om

Va
ria
bl
es

(a) Block diagram showing
the TI system architecture.

(b) Network sequence dia-
gram for iteration 1 of TI.

(c) Network sequence dia-
gram for iterations 2 through
T of TI.

Figure 4.1: The architecture of TI.

In order to define our proposed tandem inference (TI) algorithm we introduce two

components: the grounding generator (GG) and the inference engine (IE). The GG sup-

ports streaming grounding, which is the process of generating ground rules in small

batches without materializing all grounding results into memory. The IE supports stream-

ing inference, which is the process of performing inference using a single potential at

a time. Fig. 4.1a shows the system architecture of TI. The GG takes as input the data

D and the model M, which GG uses to generate the ground model. With respect to

45

storage, the GG can leverage the hard disk, the database, and RAM, while the IE can

only utilize RAM.

The process flow of TI is shown in the network sequence diagrams given in Fig.

4.1b (for the first round of inference) and 4.1c (for subsequent rounds of inference).

The IE begins by requesting a potential function (also called a ground term) from the

GG. During the first round of inference, the GG utilizes the database to generate ground

rules. Once a ground rule is created, it is converted into a ground term, written to a disk

cache, and then passed onto the IE. On subsequent rounds of inference, the GG uses the

disk cache alone to provide ground terms to the IE. As each term is returned from the

GG, the IE will optimize the term and update any relevant RVs held in RAM. After all

terms have been seen, IE will then begin a new round of inference until convergence

criteria are met. Since the GG uses a fixed-size in-memory cache and the IE discards

terms after use, there is a maximum amount of memory in use by TI at any given time.

4.3.1 Streaming Grounding

Streaming grounding is the TI component that is responsible for providing ground

terms one at a time to the IE. To support streaming grounding, the underlying SRL

framework must be able to construct a single ground rule without instantiating large

portions of the model, a process we will refer to as partial grounding. Constructing the

full ground network is the SRL phase that is most prone to running out of memory, so it

is imperative that this process can be broken up into small chunks. PSL is one of several

SRL frameworks that supports bottom-up grounding [9], which frames the problem

of grounding a rule as constructing and executing a SQL query. Relational database

management systems (RDBMSs) have a built-in way to fetch only a portion of the query

results through cursors [50]. A cursor works as an iterator for a query’s results. If the

RDBMS and content of the SQL query allows for it, cursors can return results as they

46

are generated by the query instead of waiting for the full query to complete. Cases that

force a database to materialize all results before returning any records include sorting

or deduplicating the results, both of which are avoided in PSL grounding queries.

During the initial iteration of streaming grounding, the database must be queried to

fetch the ground terms. The process described here is also shown as a network sequence

diagram in Fig. 4.1b. The rules in the model,M, will be iterated over until all have been

grounded. When asked for a term, the GG will first check if it has an open database

cursor. If there is no cursor or the current cursor has been exhausted, then the database

will be queried for the next rule and a new cursor will be constructed. If all rules have

been grounded, then the GG will inform the IE that there are no more ground terms

for this iteration. With an open cursor, the next result tuple will be fetched. The tuple

will then be instantiated into a ground rule and checked for triviality. A ground rule

is trivial if it will not affect the result of inference; for example, a ground rule with a

logical expression that is already satisfied by observed variables is considered trivial.

If the newly instantiated ground rule is invalid, the process is repeated with the next

result from the cursor until a valid ground rule is instantiated. After a ground rule is

validated, it is converted into a ground term. This term is then put into a cache buffer

and eventually passed on to the IE. Once the cache buffer is full, or there are no more

ground rules, it is written to disk.

After the initial iteration of TI, ground terms are fetched from the disk cache in the

order they were written during the initial iteration of streaming grounding. The process

described here is shown as a network sequence diagram in Fig. 4.1c. The disk cache is

written as several pages, one page to a file. The number of terms written to a page can

be configured and the effect of this configuration is explored in Section 4.4.2. When

asked for a term, the GG will first ensure that a cache page is loaded. If the current page

has been exhausted and there are no more pages, then the IE will be informed that there

47

are no more ground terms for this iteration. Each page is written in binary to minimize

I/O. The first 16 bytes of a page contains the number of terms written to the page and

the size in bytes of all the terms in the page. Because each term may contain a different

number of RVs, the exact size of each term is not known until it is generated. Each

term is then read into a preallocated term structure. A free list of available terms large

enough to fill a page is maintained to minimize memory allocations. After all terms

have been read into the memory cache, the next term from the cache will be returned to

the IE until the page is exhausted.

The GG also provides the ability to return ground terms in a semi-random order. The

effectiveness of randomizing term order is dependent upon the optimization algorithm

employed by the IE. During the initial iteration of streaming grounding, the order of the

terms is dependent upon the order that results are returned from the database. However,

during subsequent iterations, there are more opportunities to induce randomness. First,

the order that pages are accessed can be randomized. Second, the terms in each page

can be shuffled in-place after they have been read from disk. Although not fully random

since every term is guaranteed to be no more than a page length away from other terms

in the same page, these steps provide a good amount of randomness without increasing

the number of I/O operations or memory required.

4.3.2 Streaming Inference

The second core component of TI is streaming inference. The open-source PSL

implementation uses ADMM to minimize the convex objective produced by a HL-MRF.

While ADMM is an efficient algorithm, it places a high memory requirement on the

system. However, our primary goal of using TI is to alleviate any memory constraints

for performing inference. ADMM in PSL works by creating Lagrange variables (LVs)

and a local copy of the RVs (LRVs) for every potential. Every potential is optimized

48

w.r.t. the LRVs and an average over all LRVs is taken to obtain a global assignment

for the RVs. All ground rules, LRVs, and LVs are kept in memory to make this process

efficient. However, the need to keep all this information in memory makes ADMM less

than ideal for streaming inference. To replace ADMM, we propose a gradient-based

optimization to solve Equation 2.13.

Stochastic Gradient Descent for PSL

Consider the energy function from Equation 2.1 defined for HL-MRFs. To facilitate

easy gradient computation, this can be re-written as:

E(y|c) =
K∑
i=1

wiφi(y, ci) (4.1)

φi(y, ci) =

(yTqi − ci)di if linear loss

max((yTqi − ci), 0)di otherwise

ci = xT q̇i

where qi ∈ {0, 1,−1}n and q̇i ∈ {0, 1,−1}m are respective n-dimensional and m-

dimensional ternary vectors which indicates if a variable participates positively, nega-

tively, or not at all in potential function φi. The scalar ci incorporates the information

of all the observed variables participating in φi and we use c to represent the vector

of scalars ci. As a reminder, in full gradient descent (GD), we iteratively optimize by

taking weighted steps in the direction of the energy function’s (Equation 4.1) gradient

until convergence or for T steps. The weight of the steps is determined by the learning

rate, η. Additionally for PSL, Equation 2.1 has a restriction that y ∈ [0, 1]n, therefore

after each step we need to project y back in to the box [0, 1] through truncation. The

49

gradient step update at every step t can be represented as:

yt = yt−1 − η∇yE(y|c) (4.2)

yt = min(max(yt, 0), 1) (4.3)

where∇yE(y|c) =
K∑
i=1

wi∇yφi(y, ci)

The gradient computation for the energy function involves computing projected gradi-

ents for the potential functions. The projected gradients can be written as:

∇yφi(y, ci) =

0 if hinge & yTxi ≤ ci

wiqi if di = 1

2wiqi(yTqi − ci) otherwise

(4.4)

Using the above equations, we can compute the gradient update and run the process to

convergence. Since the objective is convex, the right choice of η will guarantee con-

vergence. However, an issue with GD is that at every step it needs to compute the full

gradient, requiring all terms. This is expensive and does not support our streaming ap-

proach. To make it more compatible with our streaming approach, we use stochastic

gradient descent (SGD). In SGD, the gradient is computed w.r.t. a single potential φi and

an update to the variables can be made without examining all terms.

yt = yt−1 − ηwi∇yφi(y, ci) (4.5)

The variables are then projected as in Equation 4.3. This update is aligned with our

streaming approach, and allows the IE to request a single potential, perform an update

on the participating RVs, and continue on to the next potential.

An important factor to make SGD work in practice is the correct choice of η, and

50

Algorithm 1: SGD for PSL
Data: list of ground terms φ = {φ1, φ2, ..., φK}
Result: RVs y

1 η = learning rate;
2 y ∼ Unif(0, 1)n;
3 t = 1;
4 while not converged and t <= T do
5 for i ∈ {1 . . . K} do
6 Update y using φi with Equation 4.5;
7 y = min(max(y, 0), 1);
8 end
9 t = t+ 1;

10 Update η;
11 end

many approaches have been proposed to compute adaptive learning rates [131]. One of

the more popular and successful methods for adaptive learning rates is SGD-ADAM [79].

In this work we investigate three approaches: 1) using SGD-ADAM, 2) using a time-

decaying learning rate (i.e., η = η
t
), and 3) using a constant learning rate η. In our

experiments, we observe that a time-decaying learning rate is more effective than more

complicated mechanisms such as SGD-ADAM. Finally, the overall process of perform-

ing non-streaming inference using SGD in PSL is shown in Algorithm 1.

Now that we have a streaming grounding infrastructure and the SGD-based PSL IE,

we can perform TI. The algorithm for TI is the same as Algorithm 1, except that the

potentials are read from the GG instead of from memory.

4.4 Empirical Evaluation

In this section, we evaluate the performance of our proposed method on variety of

realworld and two large synthetic datasets. We answer the following questions: Q1)

Can we perform inference on large ground models that were previously intractable?

51

0 500 1,000 1,500

0

10

20

30

40

Time (ms)

E
ne
rg
y
fu
nc
ti
on

admm
sgd
ti

(a) CITESEER

0 500 1,000 1,500 2,000 2,500 3,000

0

10

20

30

Time (ms)

(b) CORA

0 2,000 4,000 6,000 8,000

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

Time (ms)

(c) EPINIONS

0 1,000 2,000 3,000 4,000 5,000 6,000
0

1 · 10−2

2 · 10−2

3 · 10−2

Time (ms)

(d) NELL

0 0.5 1 1.5 2

·104

0

2 · 10−2

4 · 10−2

6 · 10−2

Time (ms)

(e) CITESEER-
ER

0 0.5 1 1.5 2 2.5 3

·105
2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

Time (ms)

E
n
er
gy

fu
n
ct
io
n

(f) LASTFM

0 1 2 3

·104

0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

Time (ms)

(g) JESTER

0 1 2 3 4 5 6

·106

0

5 · 10−3

1 · 10−2

1.5 · 10−2

Time (ms)

(h) JESTER-FULL

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

Time (ms)

(i) FRIENDSHIP-
500M

0 1 2 3

·107

0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

Time (ms)

(j) FRIENDSHIP-
1B

Figure 4.2: Comparison of the runtimes for TI, ADMM, and SGD on 10 datasets.

Q2) Is streaming faster than and as accurate as traditional inference? Q3) How much

memory does TI use? Q4) Can a gradient-based optimizer converge faster than ADMM?

Q5) What is the best strategy for selecting the learning rate? We answer Q1 and Q2

in Section 4.4.1, Q3 in Section 4.4.2, and Q4 and Q5 in Section 4.4.3. For all our

experiments, we set the max number of iterations, T , to 500, a convergence tolerance

of 10−6, and a machine with 400GB of memory.

We perform our experiments on eight realworld datasets and two synthetic datasets

from a data generator previously used to test scaling in PSL [9].2 The details of the

datasets are as follows:

CITESEER: a collective classification dataset with 2,708 scientific documents, seven

document categories, and 5,429 directed citation links.

CORA: a collective classification dataset with 3,312 documents, six categories, and

4,591 directed citation links.

EPINIONS: a trust prediction dataset with 2,000 users and 8,675 directed links which

represent positive and negative trust between users.

2Models, data, and code: https://github.com/linqs/aaai-ti

52

NELL: a knowledge graph construction dataset originally derived from the NELL project

with 27,843 entity labels and 12,438 relations.

CITESEER-ER: an entity resolution dataset with a citation network of 1136 authors

references and 864 paper references.

LASTFM: an artist recommendation dataset with 1,892 users, 17,632 artists, 92,834

user-artist ratings, and 12,717 friendship links.

JESTER: a joke recommendation dataset with 2,000 users, 100 jokes, and 200,000 user-

joke ratings, sampled from the larger JESTER-FULL dataset.

JESTER-FULL: the full Jester dataset. Contains 73,421 users, 100 jokes, and 7.3M

user-joke ratings. To the best of our knowledge, this is the first time the full Jester

dataset has been used in with an SRL framework.

FRIENDSHIP-500M: a synthetic link prediction dataset with 2,000 users and 4M un-

observed edges.

FRIENDSHIP-1B: similar to FRIENDSHIP-500M containing 2,750 users and 7.5M un-

observed edges.

Table 4.1 provides details on number of rules in each model, the number of ground

rules generated, and the amount of memory required to hold each model in memory.

Dataset Rules
Ground Random Memory

Source
Rules Variables (GB)

CITESEER 10 36K 10K 0.10 [11]
CORA 10 41K 10K 0.11 [11]

EPINIONS 20 14K 1K 0.12 [11]
NELL 26 91K 24K 0.13 [124]

CITESEER-ER 9 541K 485K 0.24 [19]
LASTFM 22 1.4M 18K 0.45 [84]
JESTER 7 1M 50K 0.49 [11]

JESTER-FULL 8 110M 3.6M 110 [57]
FRIENDSHIP-500M 4 500M 4M 400+ [9]

FRIENDSHIP-1B 4 1B 7.6M 800+ [9]

Table 4.1: Details of models used and their memory consumption for non-streaming
inference. Memory usage for FRIENDSHIP-500M and FRIENDSHIP-1B are estimates.
The memory consumed by TI depends on the page size chosen. In our comparison
experiments, we use a page size of 10M which uses about 10GB of memory.

53

4.4.1 Scale, Speed, and Convergence

We begin by examining the inference time and convergence of TI, SGD, and ADMM on

all ten datasets (Q1 & Q2). Weights for the rules in each model are learned and re-

scaled to be in the range [0, 1]. Both SGD and TI use a time-decayed learning rate and

the initial learning rate η needs to be tuned. For the LASTFM, FRIENDSHIP-500M,

and FRIENDSHIP-1B datasets we use η = 0.1, for CITESEER-ER we use η = 10, and

for all the other datasets we use η = 1.0. The rational for choosing these learning rates

is explained in Section 4.4.3. TI also has a page size which can be tuned based on the

amount of memory available. Since our machine has 400GB RAM, we choose a page

size of 10M for all datasets, which uses about 10GB of memory. We discuss further

details about trade-offs in page size, memory, and computation in Section 4.4.2.

Scaling to Large Datasets:

Fig. 4.2i and 4.2j show the inference convergence w.r.t. time (in milliseconds)

for FRIENDSHIP-500M and FRIENDSHIP-1B. TI was able to run the FRIENDSHIP-

500M dataset in under four hours using only 10GB of memory. Both SGD and ADMM ex-

hausted the 400GB of memory available on the machine and failed to run. Similarly,

we observe that the FRIENDSHIP-1B dataset, which we estimate to require more than

800GB to hold in memory, was able to run on the same machine in under nine hours

using only 10GB of memory. These results answer Q1 affirmatively, TI can successfully

perform inference on large ground models that were previously intractable.

Speed and Convergence:

In order to address Q2, Fig. 4.2 shows the inference convergence for all datasets

using all three approaches. The time shown includes both the grounding and inference

phases (which happen together in TI). In all datasets except CITESEER and CORA,

54

10 100
1000

10000

100000

1000000

∞0

20

40

60

80

100

120

Page size

M
ax

M
em

U
se
d
(g
b
)

(a) Maximum memory usage
for TI over multiple page sizes.

10 100
1000

10000

100000

1000000

∞0

5 · 106

1 · 107

1.5 · 107

2 · 107

Page size

IO
O
ps

P
er

It
er
at
io
n

(b) Number of I/O operations
per optimization iteration of
TI over multiple page sizes.

10 100
1000

10000

100000

1000000

∞0

50,000

1 · 105

1.5 · 105

2 · 105

Page size

T
im

e
P
er

It
er
at
io
n
(m

s)

(c) Runtime per optimization
iteration of TI over multiple
page sizes.

Figure 4.3: Memory usage, I/O usage, and speed of TI on the JESTER-FULL dataset
w.r.t. page size. Page sizes listed as∞ are run with SGD, which does not use pages.

we observe that TI converges before the other methods even fully finish grounding! In

CITESEER and CORA, possibly due to some rules with high weights, tuning the learning

rate is difficult, and, after the first steep drop, SGD and TI take many more iterations to

converge compared to ADMM. As the ground model size increases, we observe more

significant timing differences. In EPINIONS, CITESEER-ER, and LASTFM, we see that

TI finishes the entire process of grounding and inference in just half the time taken by

ADMM and SGD. For JESTER, TI is over 5 times faster than both ADMM and SGD.

For our largest realworld dataset, JESTER-FULL, TI is about 8 times faster than both

ADMM and SGD. This shows that TI is faster than traditional approaches especially on

larger datasets and converges to the same function value.

4.4.2 Memory Efficiency

To answer Q3, how much memory TI uses, and test the effect of page size, we run

TI on the JESTER-FULL dataset with page sizes between 10 and 1M potentials. We run

SGD to establish baseline behavior. Since SGD holds all components in memory, we

consider it to have an infinite page size. We measure the maximum memory usage dur-

ing the entire run, the mean number of I/O operations performed in a single iteration

55

of optimization, and the mean time to complete a single iteration of optimization. Be-

cause PSL is written in Java, the memory usage we report is the size of the JVM’s heap.

I/O operations are measured by the number of calls made to Java’s low-level I/O meth-

ods FileInputStream.read and FileOutputStream.write. All reported

values are averaged over 10 runs.

Fig. 4.3a shows the peak memory usage over several runs using different page sizes

for TI. Naively, we expect the amount of memory used to decrease with the page size:

the fewer ground terms held in memory, the less overall memory is used. However,

instead we see that very small pages sizes (10 and 100) lead to more memory being

used. To understand why, we must remember that Java is a garbage collected language

and that memory marked for garbage collection will still count as being in use. The

small page sizes cause many I/O operations to happen in quick succession. Every I/O

operation requires Java to allocate memory buffers used in that operation. Therefore,

the discarded buffers are eventually cleaned up but not before being counted in the

memory total. A native language like C that can directly make system calls and that

does not have to go through a virtual machine can avoid these extra allocations and

inflated memory cost. Forcing the JVM to garbage collect more frequently3 shows a

more consistent memory usage over all page sizes. This is because all the page sizes

still fit into memory and Java will continue to accumulate memory until a point where

garbage collection is triggered. This point depends on the maximum size of the heap

and is common among all the runs. From this experiment we can conclude that although

using a smaller page size will use less persistent memory, the JVM’s garbage collector

will keep most reasonable page sizes at the same memory usage levels.

Fig. 4.3b shows the number of I/O operations per optimization iteration. SGD does

not perform any I/O operations. As the page size increases, the number of I/O opera-

3A smaller value for the JVM parameter XX:NewRatio is used to force more frequent garbage
collection.

56

tions decreases. The impact of these additional I/O operations for a small page sizes can

be seen in Fig. 4.3c (per-iteration runtime). The different page sizes result in approx-

imately the same number of bytes read from disk and since the number of potentials

is the same, the time spent in optimization will also be the approximately the same.

However, the overhead of the additional I/O operations causes substantially slower it-

erations for page sizes of 10 and 100. For larger page sizes (1000+), the difference in

I/O overhead becomes negligible and all have similar per iteration runtime.

4.4.3 Optimizer Efficiency and Learning Rate

0 2 4 6 8 10 12

3 · 10−2

4 · 10−2

5 · 10−2

Iterations

E
n
er
g
y
fu
n
ct
io
n

sgd
sgd-const-lr
sgd-adam
admm

(a) LASTFM dataset.

0 2 4 6 8 10 12
0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

Iterations

E
n
er
g
y
fu
n
ct
io
n
sgd

sgd-const-lr
sgd-adam
admm

(b) JESTER dataset.

Figure 4.4: The effect of different optimizers on convergence.

To answer Q4, can SGD converge as fast as ADMM, and Q5, how to choose learning

rate, we run experiments on the LASTFM and JESTER datasets. The results here extend

to other datasets. Here, we compare four different approaches: SGD with a decaying

learning rate (SGD), SGD with a constant learning rate (SGD-CONST-LR), SGD with an

adaptive learning rate (SGD-ADAM), and ADMM.

57

SGD vs. ADMM:

Fig. 4.4 shows the convergence of different approaches w.r.t. number of iterations

for the LASTFM and JESTER datasets. Here, we observe that SGD and ADMM converge

to the same function value in different number of iterations. Typically, SGD takes fewer

iterations to converge than ADMM. However, this is heavily dependent on the learning

rate chosen for SGD. If one cannot find the right learning rate, then it is possible for

SGD to take significantly more iterations than ADMM.

Choice of Learning Rate:

From Fig. 4.4 we observe that SGD-CONST-LR is the slowest to converge, and there

seems to be little difference between SGD which uses time-decayed learning rate and

SGD-ADAM which uses an adaptive learning rate. SGD and SGD-CONST-LR have an

initial learning rate to be chosen. We observed that this can be chosen in range η ∈
[1

10 max(w) ,
10

max(w)] for SGD, and for SGD-CONST-LR, η ∈ [1
100 max(w) ,

100
max(w)]. Thus,

we choose an η of 1.0 and 0.1 for JESTER and LASTFM respectively for SGD, and η

of 0.01 for SGD-CONST-LR. SGD-ADAM has four hyperparameter α, β1, β2, and ε to

tune. This makes it harder to get ideal performance with SGD-ADAM. Further, SGD-

ADAM uses additional parameters equal to three times the number of RVs to perform

adaptive tuning. In our experiments, we choose α = 0.01, and use β1 = 0.9, β2 =

0.999, and ε = 10−8 as suggested by [79]. From our evaluation we conclude that the

simpler strategy, SGD with decaying learning rate performs just as well as SGD-ADAM,

the more complicated adaptive strategy.

58

4.5 Conclusion and Future Work

In this chapter we introduce tandem inference, TI, a new out-of-core method for

performing inference on large ground models that don’t fit into main memory. To

make TI possible, we introduce a streaming method for both grounding and inference.

Through experiments on ten datasets, we have shown that TI can not only reduce run-

time by up to eight times, but it can do so using a fixed amount of memory. The fixed

memory nature of TI enables the SRL community to scale to problems that were previ-

ously unreachable.

While this chapter introduces the fundamentals of TI, there remain several areas for

research. Incorporating lifted inference is a promising extension to TI. Because TI is

orthogonal to lifting, these two can be combined to speed up inference further. Next,

despite impressive performance on large datasets, the overall process of TI is largely

sequential; parallelizing TI can be another way to speeding up inference further. An-

other interesting avenue for research is to create a hybrid IE using ADMM and SGD.

SGD often minimizes quickly during the first few iterations, however may take many

more iterations to fully converge (especially if the learning rate is poorly selected). Con-

versely, ADMM converges more slowly than SGD, but more steadily. A hybrid IE could

start with SGD and then switch to ADMM after the first few iterations. Finally, TI can

be extended to any other SRL framework that can support streaming grounding and

streaming inference.

59

Chapter 5

Real-Time Structured Prediction

Using PSL

In this chapter1 I introduce a new task of collective classification in a product re-

trieval application. Further, I propose the concept of a micrograph, which generates a

small graphical model for real-time structured prediction. We also develop a novel new

inference engine for PSL that can significantly speed up inference and perform struc-

tured prediction in real-time. Through evaluations on realworld datasets, I show the

accuracy of our approach in performing collective classification and efficiency of the

new inference engine at speeding up inference.

5.1 Introduction

When customers shop online, they issue queries that describe their intent along mul-

tiple facets of their desired product: brand, color, product-type, age group, size, gender,

and activity. For example, the query “red adidas shorts for boy age 6” has age, gen-

1Appeared in 28th ACM International Conference on Information and Knowledge Management
(2019)

60

der, color, brand and a product type specified. These facets are critical for matching,

ranking, and navigation. For instance, in the case of navigation, a customer might first

look for a specific brand and then narrow down their choices based on color, obtaining

relevant results that align closely with their intent. However, due to past behavioral as-

sociations (such as clicks, purchases, and cart-adds) or noisy lexical information (such

as low-quality seller supplied keywords), or competition between brands, the search

might result in mismatched products.

Consequently, identifying facet mismatches between a query and products in the

catalog to avoid displaying irrelevant results is an important component of providing

customers with a satisfying shopping experience. A typical model for recognizing facet

mismatches outputs a score for one or more facets given a query-product pair. This

score indicates whether the product is a good match for the query along that specific

facet.

In modern datasets, there are vast amounts of additional structural information about

queries, products, and their relationships. This additional information can manifest it-

self in several ways and can be used as side information during the retrieval, ranking

and mismatch classification training process.

1. Products are typically co-purchased or co-viewed together. We can include this

information as a product-product graph.

2. We can generate query and product latent representations (embeddings) and use

cosine similarity as an affinity score between (query, product), (query, query),

and (product, product) pairs.

3. Customer query reformulations within the same session can be used to compute

query-query similarities.

Incorporating such structural side information typically yields a boost in model per-

61

formance. Indeed, learning with side information has shown to be successful in several

applications such as recommender systems [84, 128], knowledge graphs [100], entity

resolution [118], computer vision [61], and has recently been applied even in deep

learning tasks [165, 161].

However, using additional information and performing graphical model inference

is slower than performing inference using a simple pointwise binary classifier for facet

mismatch. This presents an additional challenge for applying these ideas to product

search, which requires the use of models with extremely fast inference for real-time

retrieval of search results. Existing scalable approaches for graphical model inference

[45, 151] do not meet the latency constraints of search systems. A customer may aban-

don the search if it takes more than a few milliseconds between typing in a query and

obtaining the results. This constraint makes it extremely difficult to use additional side

information or use sophisticated models with higher computational complexity.

In this chapter, we develop a novel approach using the PSL framework for facet

mismatch classification and apply it to the task of detecting product-type mismatches, a

particularly egregious form of facet mismatch since they lead to a significantly degraded

customer experience. As an example, a customer searching for an “iPhone” expects to

see different variety of iPhones in the search results and not an iPhone case or a screen

protector. We show that incorporating additional structural information present in the

data can significantly improve the classification performance. Secondly, to tackle the

problem of near real-time inference, we cast the problem of PSL optimization as mini-

mizing an SVM-like objective function and use a Trust Region Quasi-Newton (TRON)

[93] method to solve it. We show that the resulting method achieves orders of magni-

tude speedups over existing approaches for PSL optimization. Note that the approach

we propose is quite general and can be applied to many different label propagation ap-

plications, but in this chapter we focus on detecting product-type mismatches in search.

62

5.1.1 Contributions and Organization

To summarize, the contributions of our chapter are as follows:

• We introduce a special query-product relationship graph that we refer to as a

micrograph which we show can be used to improve facet mismatch classifiers.

Micrographs ensure that our approach scales independently of the number of

queries, allowing us to use it for industry-sized datasets.

• We show how micrographs can be utilized in the PSL framework to improve

facet mismatch classification by performing collective inference. We refer to this

approach as structured mismatch classification (SMC). We also show that naive

inclusion of structure does not improve the model performance significantly. Fur-

ther, we introduce a variant of SMC which we refer to as strong SMC (S2MC)

which selectively performs joint inference to improve overall mismatch identifi-

cation.

• We perform extensive experiments across multiple datasets and show that the

method we propose improves upon baseline methods in performance by up to a

12% increase in precision and an 11% increase in F1 scores.

• We reformulate the resulting optimization problem which enables us to perform

near real-time inference using quasi-Newton methods. Through a series of exper-

iments, we show that our approach is scalable and can be used to make real-time

predictions. Our approach of using a quasi-Newton method yields up to 150x

speedup over the existing solver (ADMM).

The rest of the chapter is organized as follows. In Section 5.2, we briefly discuss

some work that incorporate structure in information retrieval tasks. Next, in Section 5.3,

we formally set up the problem and discuss traditional solutions to the problem. Next

63

in Section 5.4, we introduce the concept of micrographs, elaborate on them and show

how they can be used in our problem setting. In Section 5.5 we define our approach on

using micrographs to perform collective inference. Next, in Section 5.6, we discuss the

need for extremely fast inference and show how we can efficiently make predictions

using trust region Newton methods, which yields orders-of-magnitude speedups over

existing ADMM solvers. We perform extensive experiments on multiple datasets and

their results in Section 5.7. Finally, we summarize and conclude the chapter in Section

5.8.

5.2 Related Work

Many information retrieval [101, 26, 83, 5] and ranking [164, 166] tasks have used

the structural information to improve their models. These approaches create a graph (or

similar relational structure) using an item’s lexical information and improve the list of

items retrieved for a specific query. However, in this work, we do not focus on using

structural information to retrieve a better list of items, rather we show a way to improve

the quality of the retrieved list by identifying mismatched items. Our approach focuses

on using heterogeneous structural information to identify search mismatches which can

be subsequently used to either reorder or improve the list by replacing the mismatched

items.

5.3 Problem definition and traditional approach

Our task is to improve search results by identifying the products whose facets do

not match that of a query. In this section, we formally define this task as facet mis-

match classification and discuss some traditional approaches to address this problem.

64

5.3.1 Facet mismatch classification

Facet mismatch classification is the general task of classifying a (query, product)

pair as matched (or relevant) along one or more facets. Formally, we define facet mis-

match classification for a single facet as follows. Note that generalizing this definition

for more than one facet is straightforward.

Definition 3 (Facet mismatch classification). Consider a set of all possible queries Q
and a set of all possible products P . Given a query q ∈ Q and a relevance model M

such that M(q) = pq where pq is a ranked list of products returned as relevant to the

query q by the model M . Let f be a facet so that f(q) and f(piq) are indicator variables

for the facet being present in the query, and the ith product in pq. Then piq is a facet

mismatch if γq,piq := 1(f(piq) 6= f(q)) = 1, where 1 is an indicator function.

5.3.2 Traditional approach

The above mentioned problem can be seen as a classification problem with a task of

predicting γq,piq for any given (q, piq) pair. As facet mismatch is a more subtle classifi-

cation problem than traditional relevance, one cannot simply use user logs and CTR to

obtain training data. The data required for training consists of pairs of (q, piq) along with

a label γq,piq where the labels are typically annotated by human curators. Human cura-

tion implies that the training datasets are typically much smaller than standard ranking

datasets.

Any binary (or multilabel) classifier such as logistic regression or deep neural net-

works [20] can be used to perform this task, with the caveat that the method must lend

itself to fast online predictions. We refer to using such traditional classifiers for per-

forming facet mismatch classification as traditional mismatch classification (TMC). To

be able to handle low latency, one can perform this classification task using an off-the-

shelf industry workhorse model like Gradient Boosted Decision Tree (GBDT) [49, 29].

65

q1

q2

q3

q4

p1

p2

p3

p4

Queries Products

Observed Mismatch

Unobserved Mismatch

(a) Facet mismatch classifi-
cation problem as edge la-
beling problem.

q1

q2

q3

q4

p1

p2

p3

p4

Queries Products

query similarity

query reformulation

product similarity

visual similarity

tmc predictions

(b) Structured facet mis-
match classification with
multiple relational structure.

q1p1 p2

p3 p4

p5 p6

(c) A micrograph represen-
tation for a query.

Figure 5.1: The facet mismatch classification problem as a structure prediction prob-
lem. Black dotted edges represent unobserved facet matches. A black solid edge repre-
sents an observed facet mismatch and has a value of zero or one. The prediction task is
to infer the values for the black dotted edges based on the available structural relation-
ships (all other edges).

In particular, for search and information retrieval systems, GBDTs have been shown

to handle both categorical and ordinal features with efficient training and fast real-time

inference [69]. The GBDT models trained in search applications use a mix of text and

behavioral features, depending on either the query, product or both. A set of joint fea-

tures (ϕ(q, piq)) is used to make prediction on the facet mismatch classification problem:

ρq,piq = GBDT (ϕ(q, piq)) (5.1)

In this work we use GBDT models as our TMC. In later sections we show how we make

use of this score (ρq,piq) in our model. TMC uses this score to determine whether there is

a facet mismatch, i.e., γq,piq = 1(ρq,piq > t), where t ∈ (0, 1) is a threshold.

66

5.4 Relational structure and micrographs

The facet mismatch classification problem can also be seen as an edge labeling

problem on a graph. Consider z queries (q1 . . . qz) and j products (p1 . . . pj) as nodes to

the left and right side of a bipartite graph (see Fig. 5.1a, here z and j are set to four).

The existence of an edge between any query q and product p in this graph represents

either textual or behavioral match between a (query, product) pair i.e., p ∈ pq. A solid

edge between a (query, product) pair indicates an observed mismatch or match (human

annotated to one or zero) and dotted edge indicates that the mismatch value need to be

inferred. Our goal here is to infer whether an edge is a mismatch or not given a few

edge labels. Consider an example query “black apple iphone”, all “iphone” products

match on the product-type facet and form an edge to the query with value zero. Other

product types such as iphone cases and screen protectors have an edge to the query with

value one, as they do not match on the product type facet. The label for some edges are

known (manually labeled by human judges) and our task is to use the existing edge

labels to infer the labels for the unknown edges.

While TMCs can be used to perform facet mismatch classification, they suffer from

a major drawback. They assume strong conditional independence in the data (i.e., the

value assigned for ρq,piq is conditionally independent of other pairs in the data given q

and piq). This assumption makes inference very scalable. However, it completely ignores

the relationship between the query and the list of products for which we need to deter-

mine facet mismatch. We depict these additional relationships in Fig. 5.1b. The edge be-

tween queries represents many possible relations, such as semantic similarities between

queries, query intent relation, and so on. Similarly, the connection between products can

be a lexical or semantic similarity and co-purchase behavior. Further, the predictions

produced by TMC can also be represented as an edge between (query,product) and can

be used as preliminary mismatch scores. The presence of additional edges makes the

67

prediction task γq,piq dependent on related products and queries. Therefore, a prediction

ρq,piq is no longer conditionally independent and joint predictions have to be performed.

For instance, if for some query q, γq,p1
q

= 1, and p1
q and p2

q are connected to each other

via a similarity edge, then we’d expect γq,p2
q

= 1 This implies that the label assigned

for both the edges depend on each other and needs to be predicted jointly. This form of

classification is commonly known as collective classification [136].

There have been many approaches proposed in varied applications to perform col-

lective classification [136, 4, 82, 112, 165]. The primary issue with such methods is

that the amount of time required to perform inference grows rapidly with increases in

number of nodes and relations. The heterogeneity of the structural relationships adds to

this complexity.

The models that perform collective classification are typically transductive in na-

ture, meaning we need to perform a full (graphical model) inference for a given cus-

tomer query at run-time. Furthermore, the queries themselves can be arbitrary and pre-

computing the results and serving them at runtime is not possible. These reasons have

precluded the use of such methods for search and information retrieval tasks. We show

that by carefully constructing graphs, we can perform inference at runtime. The idea

is to break up the graph so that we can perform inference over several smaller (query

independent) graphs in parallel. For this reason, we break up the graphs per query and

consider (query, product) and (product, product) relationships. We refer to this smaller,

more tractable graph as a micrograph. Fig. 5.1c shows an illustration. Formally, we

define a micrograph as follows:

Definition 4 (micrograph). A micrograph is a graph G, with the vertices being a query

q and the list of top-k products pq obtained through a retrieval model M(q). The edges

in the graph correspond to known (q, piq) labels, and any product-product (piq, p
j
q) edges.

Typically, a customer does not scroll past a small number of items in response to a

68

query. Hence, we focus our attention to a small k in the above definition, k ≈ 10. This

allows us to use micrographs with very a small number of nodes, making it possible to

perform real-time inference.

In this work, we improve the predictions made by the TMC model using these mi-

crographs. We can generate query-product edges as predicted by the TMC for any given

(query,product) pair. However, some of these edges may be of low-confidence, or in

some cases incorrect. There will also be edges between products, based on co-purchases

or semantic similarities which can be computed for all product pairs. The task now is

to perform a joint prediction on facet mismatch edges between query and product using

all the above mentioned observed data in the micrograph.

Given these micrographs that encode different information in the graph, the next

step is to reason over this graph to improve the facet mismatch score. We view this task

as performing inference in a graphical model provided by the micrograph. A graphi-

cal model created using the micrographs will contain observed random variables as the

observed edges in the micrograph and the unobserved random variables to infer are the

facet mismatch edge between query and products. In Section 5.5, we elaborate on our

SMC and S2MC which combine the micrograph information and perform joint predic-

tions through inference in a graphical model. We use PSL framework to generate the

graphical model and perform inference. The PSL framework produces a specific type

of graphical model called the Hinge Loss Markov Random Field (HL-MRF) [11]. An

advantage of HL-MRFs is that we can cast the HL-MRF inference as a convex opti-

mization program and use existing solvers to obtain an exact solution. In the following

section, we discuss a brief review of HL-MRF and their relation to PSL.

69

5.5 Structured Mismatch Classification

We can represent all relationships in a micrograph using PSL and create an HL-

MRF to perform efficient inference at run-time. In this section, we define the specific

relations that were used to improve facet mismatch classification. We begin by using the

prediction scores produced by a TMC for a particular (query, product) edge and propa-

gate this information to other related products. We construct (product, product) edges

using the semantic similarity between them. We use latent representations of the prod-

ucts (based on their meta-data) to compute the similarity score. Further, we distinguish

high-confidence scores to further improve the overall predictions in the micrograph.

5.5.1 Using TMC Predictions

In the transductive setting, where making a prediction requires an inference step, we

need a large set of edges with labeled data to use in a graphical model [45]. However,

as explained in the previous sections, obtaining such large amounts of ground truth

data is expensive and time-consuming. Instead, one can use the output of an existing

discriminative model as the “seed” labels on the edges of the graph. In particular we

make use of the scores produced by an underlying TMC, trained on existing ground

truth information as labels. The following rules encode the TMC scores:

TMC(Q,P)→Mismatch(Q,P) (5.2)

¬TMC(Q,P)→ ¬Mismatch(Q,P) (5.3)

Mismatch(Q,P) ∈ [0, 1] is the target predicate to be inferred. TMC(Q,P) ∈ [0, 1]

is the prediction score produced by the TMC for facet mismatch. The above rules incor-

porate the pairwise classifier which encodes the signal from multiple behavioural and

lexical features of the query and product. Note that we can combine scores from multi-

70

ple classifiers in this way, creating an ensemble of multiple TMCs. We restrict ourselves

to a single underlying classifier here for ease of exposition. In our subsequent rules we

make use of additional information to improve the predictions.

5.5.2 Using Product Similarities

We can propagate the product scores to similar products to perform joint inference.

The primary idea is as follows: if a particular (query, product) pair is a facet mismatch,

then substitutable products should also be a facet mismatch for the same query.

There are many ways of computing similarities between products, and an advan-

tage of PSL is that it supports the use of multiple similarity functions. Here, we make

use of a latent product representation vp for a product p, and then use cosine simi-

larity to form the rules. Product representations are created by averaging word em-

beddings of the title words, the latter of which is learned using word2vec [103]. A

similarity predicate can be created using the cosine distance between two vectors, i.e.,

Similar(p1, p2) = 〈vp1 ,vp2 〉
‖vp1‖‖vp2‖

. Another common method for defining product similar-

ities is via collaborative filtering, where co-purchased or viewed items can be seen to

be similar to each other. We also tried rules that make use of collaborative filtering in

our model, however we did not see any improvements. The following rules are used to

perform the collective inference on the Mismatch predicate:

Mismatch(Q,P1) ∧ Similar(P1, P2)

→Mismatch(Q,P2) (5.4)

¬Mismatch(Q,P1) ∧ Similar(P1, P2)

→ ¬Mismatch(Q,P2) (5.5)

By combining the above rules with rules (5.2) and (5.3) we can generate an HL-MRF

71

which incorporates micrographs to perform joint predictions. We refer to this model as

SMC.

5.5.3 Incorporating Confidences into Mismatch Detection

Propagating the right information in the micrograph is key to improving the pre-

dictions of the model. Specifically, we want to be able to boost the performance on

(query, product) pairs where the TMC cannot confidently predict whether there ex-

ists a facet mismatch by propagating information from other (query, product) pairs

where the TMC has high confidence. To this end, we introduce two new predicates

called StrongMismatch and StrongTMC. A StrongTMC prediction is one where the

TMC score is above (below) a prespecified threshold indicating a match (mismatch).

StrongTMC(Q,P) exists for all (query, product) pair for which the TMC(Q,P) > limU

or TMC(Q,P) < limL and limU , limL ∈ [0, 1]. To use these strong predictors we in-

troduce two more rules:

StrongTMC(Q,P)→ StrongMismatch(Q,P) (5.6)

¬StrongTMC(Q,P)→ ¬StrongMismatch(Q,P) (5.7)

StrongMismatch(Q,P) is a target predicate to infer. The above rules tell our model

to “trust” the TMC when the latter is confident in its predictions.

It is important to note that the above rules are different from the rules in the previous

subsection (like (5.4) and (5.5)). Specifically, the former rules incorporate all scores

generated by the TMC using behavioural and lexical features. While the rules (5.6) and

(5.7) encode an amount of “trust” in the underlying TMC: the query-product pairs for

which the confidence in the classification is high can be used as an important signal to

incorporate the structure.

72

The predictions made using TMC are usually good on the products with strong be-

havioral data associated with them. However, such information is absent on a majority

of items, either due to lack of user signals or bad product curation. The primary idea is

to improve the predictions on these products by propagating information from similar

products where there is strong behavioral data.

Therefore, we propagate only the strong predictions on micrographs that have them,

i.e., on a filtered set of queries. We consider StrongTMC scores and StrongMismatch

for only those queries that contain at least one product with a strong TMC prediction

score and one product without a strong TMC score. The mismatch values for other

queries are derived directly from TMC scores and are not altered. We refer to this ap-

proach of propagating only the high confidence score as strong SMC (S2MC).

This targets queries for which there are products whose classification can be im-

proved by propagating scores. This can be encoded using the following rules:

StrongMismatch(Q,P1) ∧ Similar(P1, P2)

→ StrongMismatch(Q,P2) (5.8)

¬StrongMismatch(Q,P1) ∧ Similar(P1, P2)

→ ¬StrongMismatch(Q,P2) (5.9)

The above rule states that only a strong prediction from TMC will be propagated to

similar products. Further, this information can be propagated to (Mismatch) using the

following rules:

StrongMismatch(Q,P)→Mismatch(Q,P) (5.10)

¬StrongMismatch(Q,P)→ ¬Mismatch(Q,P) (5.11)

Eventually after performing inference if Mismatch(Q,P) > t then the query-product

73

pair is considered a mismatch.

5.5.4 Regularization via Priors

A prior rule is usually used to regularize the values or adjust for class skewness. A

negative prior is usually placed on the target predicatesMismatch and StongMismatch.

This is encoded in the following manner:

¬Mismatch(Q,P) (5.12)

The prior acts exactly like the priors in the Bayesian inference literature. The negation

in the prior is reasonable: since we expect the majority of (query, product) pairs to be a

match. Further, a negative prior can also be seen as a L2 regularizer used in statistical

machine learning [11].

For our model, we use all the rules described so far. The weights for each of these

rules are learned through grid search. More details about the learned weights are dis-

cussed in Section 5.7.2. Further, we use squared hinge-loss potentials for all our rules.

To solve the HL-MRF generated we derive and use a quasi-Newton (convex) optimiza-

tion approach discussed in the next section.

Note that the final output of the model we build will be Mismatch(Q, P). The rules

we define are to make sure that the value of Mismatch(Q, P) is accurate, and ideally

better than that returned by the baseline TMC.

We round off this section with a representative example to explain the key idea.

Consider the query q to be “black apple iphone”, a popular product (p1
q) to be “black

iphone case” which is falsely associated with q, and a new product (p2
q) to be “golden

iphone case”, which is also falsely associated with the query. The objective is to predict

γq,p1
q
, and γq,p2

q
correctly as a facet mismatch. We train a TMC that makes predictions

74

on the facet mismatch values. Let ρq,p1
q

= 1.0 and ρq,p2
q

= 0.5. In our approach, using

rules (5.8) and (5.9), we improve the γq,p2
q

by propagating ρq,p1
q

and jointly inferring the

values γq,p1
q

and γq,p2
q
. This results in γq,p1

q
= γq1,p2

q
= 1.0.

5.6 Scalability

We want our proposed method to perform efficient inference at web scale (i.e., each

micrograph inference should take only a few milliseconds or less). Typically, inference

in HL-MRFs are solved using ADMM. Although ADMM is scalable and can handle

large datasets, it is not fast enough in terms of convergence to meet the stringent latency

constraints of an e-commerce website. Of the many optimization methods second-order

(Newton) methods are known to have the fastest convergence. However, their per iter-

ation cost increases as the size of data increases. Since we deal with micrographs, for

the inference problem in (2.13) each micrograph can be solved independently. This im-

plies that the instantiated model is small and it becomes feasible to use a quasi-Newton

method. Specifically, we use the trust-region Newton method (TRON) [62]. In this sec-

tion, we show that the optimization problem (2.13) is similar to that of (squared) SVMs,

which in turn enables us to use solvers based on TRON [47].

To be able to use a quasi-Newton method we need to ensure that our objective is

strongly convex, however, (2.13) is not. We thus add an L2 regularizer to the objective.

The new objective function can be written as:

f(Y) =
ι∑
i=1

wiφi(Y,X) + λ||Y||22 (5.13)

argmax
Y

P (Y|X) = argmin
Y

f(Y)

s.t.0 ≤ y ≤ 1, ∀y ∈ Y

φi(Y,X) = max(li(Y,X), 0)2

75

where λ is a hyperparameter. Note that the regularizer effectively replaces the prior rule

for the model [11], and so the value for λ can be the same value as the weight of the

prior rule (5.12). We can write the term li in the potential function φi as the following:

li(Y,X) = YTzi + ci (5.14)

where zi ∈ {1,−1}n is a vector that indicates which unobserved random variables par-

ticipate in the potential i, n is the total number of unobserved random variables, and

ci = XT z̃i, where z̃i ∈ {1,−1}m is a vector that indicates which observed random vari-

ables participate in the potential i, m is the total number of observed random variables.

The first derivative for the new objective can be written as:

δf(Y)
δY

= 2λY +
∑
i∈S

2wizi(YTzi + ci) (5.15)

where S := {i ∈ 1, 2, . . . n, |YTzi > −ci}. The (generalized) Hessian is given by,

δ2f(Y)
δY2 = 2λI +

∑
i∈S

2wizizTi . (5.16)

Using the first and second derivative (5.15 and 5.16) we can use quasi-Newton

methods to perform inference. This has two distinct advantages over first-order methods

like ADMM:

• The number of iterations needed to converge to the optimal value is often orders

of magnitude lower.

• Each iteration of ADMM requires solving a set of linear equations to conver-

76

gence. In contrast, we only take a few steps of conjugate gradient method to ob-

tain an approximate solution. The approximate solution coupled with the second

order updates has shown to be highly successful in practice [58]. This signifi-

cantly reduces the per iteration cost of the second order method.

We make use of the liblinear package [47]. The SVM objective obtained for L2

regularized L2-loss in the primal form is very similar to the Equation 5.14. Specifically,

from (5.14) we see that the ci play the role of a data-specific margin, while the “labels"

for each point can be seen to be −1. Concretely, we can rewrite (5.14) in the squared

SVM form as,

f(Y) =
ι∑
i=1

wimax(0, ci − (−1)Y T (zi))2 + λ‖Y ‖2. (5.17)

The only exception is the extra box constraint on Y which can be easily enforced [92].

5.7 Empirical Evaluation

In this section, we show the power of using micrographs to improve facet mis-

match classification. We use multiple sampled datasets to evaluate our approach. First,

we show that the TRON-based method we proposed (5.17) is up to 150x faster than the

baseline ADMM solver for the PSL, more specifically for facet mismatch classification.

We show that the rules we described earlier are indeed useful and the performance of

the classifier suffers when we omit these rules. Finally, we compare and contrast various

methods and show that our proposed approach significantly outperforms the baseline

methods.

77

5.7.1 Datasets and Models

To evaluate our approach we use three datasets from a popular product listing web-

site where the user issues a query and is returned a ranked list of products. We refer

to these datasets as D1, D2, and D3. The datasets correspond to (query, product) pairs

shown to the users, with other features obtained from search logs. The most egregious

form of facet mismatch is along the product type facet (compared to brand, color, size,

etc.) and we focus on that in this chapter. We used human annotators to obtain the

ground truth data for all our (query, product) pairs. If a (query, product) pair does not

match along the product type facet, the judge marks the pair as mismatched. For exam-

ple (“iphone x”, “iphone x case”) is a product type mismatch and (“iphone x”, “iphone

x refurbished”) is a product type match. We have listed the dataset details in Table 5.1.

We use the human annotated labels to perform evaluation only, i.e., we consider all

variables generated by the Mismatch and the StrongMismatch predicates as unob-

served. We use only aggregated and de-identified information for our experiments (i.e.,

they do not include personally identifying information about individuals in the dataset).

Table 5.1: Details for the three datasets we use. Even though the dataset contain a small
number of queries, the query independent nature of our approach enables our results to
hold for even larger datasets.

Dataset Queries Products
D1 1194 7790
D2 149 866
D3 591 1959

As mentioned earlier, we used TMC as our baseline model. Each training data point

is a (query, product) pair and the features included were lexical (text similarity) and

behavioral (likelihood of click, add, and purchase). The target (or dependent variable)

for this model is binary indicating whether a specific (query, product) pair is a facet

mismatch or not. The TMC model was trained on a human annotated dataset with ∼

78

Table 5.2: Different models and rules used to perform evaluation.

Model name Rules used Weights for rules
(Equation number)

TMC 5.2 and 5.3 1 and 1
STMC 5.2, 5.3, and 5.12 1000, 1000, and 1
SMC 5.2, 5.3, 5.4, 5.5, and 5.12 100, 100, 10, 10 and 1

S2MC
5.2, 5.3, 5.8, 5.9, 5.6, 10, 10, 10, 10, 1000,

5.7, 5.10, 5.11, and 5.12 1000, 100, 100 and 1

200K query-product pairs. We compare this model to the SMC models proposed in this

chapter. The first model defined through PSL adds a prior to the TMC score to regular-

ize/smooth the values (using the prior rule), we refer to this model as smoothed TMC

(STMC). The next PSL model defined uses the micrograph structure defined through

product similarities to propagate the TMC scores and perform a joint prediction on mis-

matches. We refer to this model as SMC. The final model propagates TMC scores only

from high confidence edges through product similarities and perform a joint prediction

on mismatches, which we refer to as S2MC. We describe the rules used by the models

and their weights in Table 5.2.

The weights used here were obtained by performing a grid search over a set of

weight options using a training dataset. To compute the similarities between products,

we train a word2vec model using about 30M product titles from the catalog of a popular

e-commerce website. Each product embedding is the average of the word embeddings

in the title (at first glance this might seem naive, but for our specific datasets title con-

tains sufficient information).

We need to quantify the strength of a strong mismatch using an upper and lower

limit on the TMC scores. Specifically, assume that the classifier predicts the probability

of a (query, product) pair being a match. Then, we need a threshold limU so that any

score above limU is a strong match and any score under a threshold limL is a strong

mismatch. At the limit point when limU = limL, all TMC scores are classified as

79

Table 5.3: Number of queries that uses micrograph (Coverage) for different lower and
upper limit.

limL limU Coverage
0.01 0.94 0.96
0.02 0.88 0.90
0.03 0.82 0.83
0.04 0.76 0.78
0.05 0.70 0.73
0.06 0.64 0.69
0.07 0.58 0.64
0.08 0.52 0.60
0.09 0.47 0.58
0.10 0.40 0.54
0.11 0.35 0.50
0.12 0.30 0.43
0.13 0.25 0.36
0.14 0.20 0.24
0.15 0.15 0.00

tmc stmc s2mc

0.2

0.4

0.6 0.54 0.54
0.59

0.54 0.55
0.59

F
1

HSQ AllQueries

tmc stmc s2mc

0.2

0.4

0.6

0.4 0.4
0.47

0.41 0.41
0.46

P
re
ci
si
on

HSQ AllQueries

tmc stmc s2mc

0.2

0.4

0.6

0.8

1

0.83 0.83 0.810.83 0.83 0.81

R
ec
al
l

HSQ AllQueries

Figure 5.2: Comparison of three models using TMC vs. STMC vs. S2MC on D1 with
HSQ coverage 60%.

strong predictions. While this may increase the coverage of queries that have strong

predictions, it also decreases the quality of the scores used for propagation. At this

limit point, including strong mismatch is the same as the model defined using SMC.

Therefore, we choose to use strong predictions for only those queries that contain at

least one product with strong prediction and one with weak prediction. The intuition

being, a strong prediction can be propagated to a weak prediction if the two products

are similar to improve the overall quality of the predictions.

We denote the set of High Scoring Queries (HSQ) as queries that are covered by

80

0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

Coverage

S
p
ee
d
U
p

D1

D2

D3

Figure 5.3: Speedup obtained by using TRON over ADMM for performing inference.
The speedup increases as coverage increases and we get a speedup of up to 150x on the
D1 dataset.

the strong mismatch rules. In the subsequent sections, the suffix ‘HSQ’ on a model

indicates the score obtained by considering only such queries. Lack of a suffix means

that we evaluate the performance of the entire dataset. A key thing to note is that the

S2MC model uses micrographs for only the HSQs, whereas SMC uses micrograph on all

queries.

As limL → limU , the number of HSQs will approach 0. We refer to the fraction

of HSQs and total queries as the “coverage”, as these will be the queries that make use

of micrograph to predict facet mismatch using the S2MC model. We show the different

values used for limU and limL and the corresponding coverage in Table 5.3. Further,

we use the PSL open source code2 to perform inference.

5.7.2 Experimental setup and evaluation

SPEEDUP FROM USING TRON

We show that using TRON makes the S2MC run significantly faster than ADMM. We

2http://psl.linqs.org/

81

(a) D1 dataset.

0 0.2 0.4 0.6 0.8 1

0.45

0.5

0.55

0.6

Coverage

F
1

s2mc
tmc

s2mc-HSQ
tmc-HSQ
smc

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

Coverage

P
re
ci
si
on

0 0.2 0.4 0.6 0.8 1

0.79

0.8

0.81

0.82

0.83

0.84

Coverage

R
ec
al
l

(b) D2 dataset.

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

Coverage

F
1

s2mc
tmc

s2mc-HSQ
tmc-HSQ
smc

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

Coverage

P
re
ci
si
on

0 0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

Coverage

R
ec
al
l

(c) D3 dataset.

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

Coverage

F
1

s2mc
tmc

s2mc-HSQ
tmc-HSQ
smc

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

Coverage

P
re
ci
si
on

0 0.2 0.4 0.6 0.8 1
0.7

0.72

0.74

0.76

0.78

0.8

Coverage

R
ec
al
l

Figure 5.4: Precision, recall and F1 for TMC, STMC, SMC, and S2MC on three differ-
ent datasets, D1 (top), D2 (middle) and D3 (bottom). We show the metrics for both
HSQs and all queries included. Optimal performance is obtained when S2MC used with
threshold of 0.08 and 0.52 is used as lower and upper limit resulting in S2MC model
affecting 60% of queries.

82

run inference using both TRON and ADMM for all queries in each dataset and report

the speedup obtained. To perform inference using TRON, we make minor changes to

the open source liblinear package [47] to adapt to the HL-MRF objective. To have a fair

comparison, we re-implemented ADMM for HL-MRF in C++.

We report the result of this experiment in Fig. 5.3. As we increase the coverage TRON is

up to 150x faster than ADMM. The speedup obtained is minimal when the coverage is

0, i.e., when we used only TMC, and there are no micrographs that slow down ADMM.

As we start covering more queries, the speedup also increases. This demonstrates why

TRON methods are powerful for online inference when using micrographs, particu-

larly, when we use S2MC. Further, we also observe that when using TRON, per-query

predictions time averages to about 0.1 milliseconds.

IMPACT OF MICROGRAPHS

Next, we quantify how much micrographs help, over and above the TMC predictions.

Specifically, we consider three cases for dataset D1: using the TMC model, including

the prior (rule (5.12)) which we refer STMC, and S2MC. We use the D1 dataset with

HSQ coverage 60% 3 (we obtain similar results for datasets D2 and D3). Fig. 5.2 shows

the result obtained from this experiment. We observe that when TMC is smoothed with

some amount of regularization, there is no improvement in the metrics. However, as

we add the information from the micrographs by using S2MC, we see a significant

boost. We notice about 7% increase in precision, 6% increase in F1. We also observe

similar boost in HSQs. TMC scores tend to be polar for products with high behavioural

information. Therefore, the improvement on HSQs indicates that the predictions on

products with fewer user interactions (likely tail products) have been improved.

3We will show in the sequel that this coverage value performs the best

83

COMPARISONS WITH MULTIPLE BASELINES

Finally, we compare TMC, STMC, SMC, and S2MC as described in Table 5.2 over mul-

tiple coverage values. Note that when coverage is 0, S2MC uses no micrograph and

alternatively, when coverage is 1 S2MC uses micrograph for all the queries. We are in-

terested in determining if there is a certain coverage value that maximizes performance.

Note that a higher coverage need not necessarily translate to higher performance, since

the underlying TMC model might have noisy predictions, leading to noisy edges in the

micrographs, in turn leading to incorrect final predictions.

We report our findings in Fig. 5.4. Here we observe that in all datasets there is a clear

improvement of precision and F1 in both the HSQ and all queries, while the recall is

relatively constant. We observe up to 7% increase in precision for all queries in the D1

dataset and about 6% increase in F1. We see a similar trend in other datasets concerning

precision and F1 with a maximum boost of 12% in precision in D2. However, we see

a relatively small drop of 2% in recall in the D1 dataset and no drop in recall values in

D2 and D3.

We also notice that the evaluation metrics for HSQ in TMC is always lower than the

overall value. This is because HSQ contains at least one product for which the TMC pre-

diction score is not high. This implies that for any HSQ q, there is a product piq such

that γq,piq = 1 but true mismatch label is 0 or vice versa. Therefore, the average number

of erroneous TMC predictions per query is higher for HSQs compared to average error

for all queries.

In Fig. 5.4 we also observe that the dataset generated using limU = 0.52 and

limL = 0.08 resulting in 60% coverage yields the maximum improvement in both

precision and F1. Another thing to note is that we observe the metric values obtained

using SMC are almost the same as that of TMC. Finally, we see that when micrographs

84

are not used at all (coverage = 0), the metric values are almost the same. The slight

difference is due to the regularization of the TMC predictions and noise.

5.8 Conclusion and Future Work

We showed in this chapter that structural information can be used to improve facet

mismatch classification in modern e-commerce search engines. We introduced the con-

cept of a micrograph, that can be used to incorporate additional structure between

queries and products, and reduced the problem to an inference of a graphical model us-

ing PSL. The methods we proposed yield impressive gains over baseline methods. We

also re-cast the problem with a strongly convex objective, allowing us to use scalable

second order approaches and make the inference viable to real time vending of search

results. Through experiments, we show that our approach achieves 150X speedup over

existing solvers and up to 6% improvement in terms of F1 score.

We hypothesize that incorporating the (query, query) edges in our micrograph will

improve the effectiveness of our approach even further. However, keeping in mind the

latency constraints of our approach, we have not included them in this chapter. As part

of the future work, we would like to explore incorporating this additional information,

while not loosing on the latency requirements.

85

Chapter 6

A Taxonomy of Weight Learning

Methods for Statistical Relational

Learning

This chapter1 addresses the issue of weight learning in SRL. Here, I introduce a new

taxonomy of weight learning approaches for SRL models based on search strategies.

We develop and show that these approaches better addresses the issue of learning the

correct set of weights. Further, I show the effectiveness of our approach by comparing

our approach for weight learning with other approaches on several realworld datasets.

6.1 Introduction

Learning the weights of the rules is one of the key challenges for templated rule lan-

guages such as MLNs and PSL, since the weighted rules interact in complex ways and

cannot be optimized independently. Because of their templated nature, the weights, i.e.,

the parameters of the model, are used in multiple places in the instantiated graphical

1Parts of this chapter appeared in 34th AAAI Conference on Artificial Intelligence (2020)

86

model, and the context varies depending on the other rules that have been instantiated.

In addition, the corresponding probability distribution is not easy to compute; specifi-

cally, computing the normalization constant is often intractable. Further, in many appli-

cations the final objective is a user-defined evaluation function which can be arbitrary.

Optimizing for such arbitrary functions can be even more challenging.

In this chapter, we introduce four search-based approaches for finding the best set of

weights for a model (weight configuration) in weighted logic-based SRL frameworks.

The key advantage of these approaches are that they directly optimize the chosen do-

main performance metric and, unlike other approaches, do not require re-derivation of

the loss function for each metric. Our proposed approaches are based on black-box

optimization methods used in learning hyperparameters in other machine learning ap-

proaches [30, 18]. Our first two approaches random grid search for weight learning

(RGS) and continuous random search for weight learning (CRS) are based on sim-

ple yet powerful search approaches popularly used in tuning hyperparameters of deep

learning models [17]. While RGS is simple and its effectiveness is determined by the

human-specified grid, the effectiveness of CRS is determined by the new sampling

space we introduce in this work. Our next approach, Hyperband for weight learning

(HBWL), is based on the Hyperband algorithm [91] that effectively distributes re-

sources to perform efficient random search. Hyperband has been shown to efficiently

allocate resources and maximize the search for the best solution. Finally, our fourth

approach, Bayesian optimization for weight learning (BOWL), is based on Gaussian

process regression (GPR) [129] in a Bayesian optimization (BO) [109] framework. BO

is an effective approach for optimization of black-box functions [95, 99, 146, 22] and

GPR is a non-parametric Bayesian approach that is often used to approximate arbitrary

functions. GPRs have been used extensively with a lot of success for hyperparameter

tuning in machine learning [142].

87

In order to perform efficient and effective search of weights using these approaches,

we introduce a new parameter search space, which we refer to as scaled space (SS),

which is an accurate representation of the true weight space. We show that SS is both

accurate and complete in representing the weights. Further, we also show that SS also

takes into account the impact of model instantiation (also referred to as grounding). As

sampling from SS is challenging, we introduce an approximation of SS which enables

us to efficiently sample weight configurations to perform search-based weight learn-

ing. We develop all our search-based approaches for two powerful SRL frameworks,

PSL and MLNs. We perform our empirical study on both PSL and MLNs to show the

effectiveness of search-based approaches.

Our contributions in this chapter are as follows: 1) we generalize and introduce a

new taxonomy of weight learning approaches in SRL frameworks by reformulating the

problem of weight learning as a black-box optimization problem and introducing four

search-based approaches, referred to as RGS, CRS, HBWL, and BOWL , to perform

this optimization; 2) we introduce a new search space called the scaled space (SS)

which we show is an accurate representation of the true weight space; 3) we introduce

an approximation of SS which generalizes the search-based approaches and simplifies

the process of sampling weight configurations in these methods; 4) we show that the

search-based approaches are effective at learning weights in both PSL and MLNs and

that these approaches outperform likelihood-based approaches on multiple datasets by

up to 10%; and 5) finally we show scalability of search-based approaches and perform

elaborate set of experiments to show that, of the four approaches, BOWL is robust to

initializations, acquisition function (process of choosing next best point, explained in

Section 10), and the hyperparameter used in the sampling of weight configurations.

This chapter is organized as follows. First, in Section 6.2, we briefly discuss the re-

lated work. Then, in Section 6.3, we provide a brief background on MLNs, PSL, black-

88

box optimization, Bayesian optimization, and Gaussian process regression which are

essential in understanding our approaches. Next, along with a motivating example, we

introduce our four search-based weight learning approaches for MLNs and PSL in Sec-

tion 6.4. Then, in Section 6.5, we introduce our novel projection and its approximation

which are crucial to the success of our approaches. We then extend our approaches to

accommodate for negative weights in Section 6.6, which is essential to fully support

MLNs. In Section 6.7, we evaluate all of our approaches on several realworld datasets

and metrics. Finally, in Section 6.8 we conclude and discuss potential future work.

6.2 Related Work

Many effective and efficient weight learning approaches have been proposed for

SRL frameworks. Most approaches introduced maximize some form of likelihood of

the model [96, 14]. Approaches such as [96, 14, 139] perform efficient discriminative

learning by approximating the true likelihood with the MAP estimation. Maximizing

pseudo-likelihood [115] was shown to be efficient at performing weight learning. Other

approaches approximate the likelihood through contrastive divergence [96]. Further ap-

proaches such as [113, 13] assume latent variables and use expectation maximization

to perform effective learning. There are also large-margin based approaches for learn-

ing [63, 152, 66]. Other methods that use SVMs [64, 63, 12] to augment a metric loss

to indirectly optimize a user-defined metric. More recently, [133, 35] attempt to make

the learning process scalable by performing approximate counting in order to avoid

grounding mechanism.

89

6.3 Background

In this section, we first briefly review required background on black-box optimiza-

tion and Gaussian process regression (GPR) which serve as the foundation for our pro-

posed approaches.

6.3.1 Black-box optimization

Black-box optimization is a well studied technique, especially in the context of hy-

perparameter tuning [17, 137].

Definition 5 (Black-box optimization). Given a black-box function γ(x̃) : Rd → R,

where d is the input dimension, the task of finding an x̃ that yields the optimal value for

γ(x̃) in a predefined amount of time is called black-box optimization.

The goal of black-box optimization is to find the best possible value for x̃ that

optimizes the function γ(x̃) in a predefined amount of resources (generally, number of

epochs or time). While this process can be embarrassingly parallel for some approaches,

the general strategy can be defined through a sequential setup. The general approach for

black-box optimization is to define a search space, choose a point x̃, evaluate γ(x̃) to

update a model, and repeat this process until the resources have been exhausted. Fi-

nally, the x̃ with the best γ(x̃) is returned. The procedure is summarized in Algorithm

2. While the process of selection of x̃ and evaluation of γ(x̃) on different points can be

simple and made to run in parallel for algorithms like RGS, CRS, and HBWL intro-

duced in this chapter (Section 6.4), other algorithms like BOWL (also introduced in

this chapter) use BO framework with Gaussian process to approximate γ and assume a

serial setup to ensure optimal selection of the next point on which to evaluate.

In the context of BO, various strategies have been proposed to choose the next point

to evaluate given the previous evaluations [145, 89, 109, 153]. Each strategy is encoded

90

through an acquisition function α. The objective of these strategies is to minimize the

number of epochs required to find the best solution. A simple black-box Bayesian ap-

proach iteratively obtains a point to explore from the acquisition function α using the

prior distribution; then the function γ is evaluated to obtain a new outcome at that point

which is then used to update the posterior. Gaussian process regression (GPR) is a non-

parametric Bayesian approach which is effective in performing black-box optimization

in a BO framework.

Algorithm 2: Black-box optimization via search
Result: x̃∗ : point with the best value for γ(·)

1 X̃ = search space;
2 while stopping criteria not met do
3 choose a x̃ ∈ X̃;
4 update the model of choice with (x̃, γ(x̃));
5 update x̃∗ if current γ(x̃) is better than previous value or based on the

model
6 end

6.3.2 Gaussian Process Regression

A Gaussian process (GP) is fully characterized by its mean function µ0 and either

a positive definite covariance matrix K or a kernel function k. Consider a finite set

of s inputs X̃ = x̃1:s and a random variable gi = γ(x̃i) representing the function γ

evaluated at x̃i and let ỹi be the noisy output of the function. In GP, we assume that

g = g1:s is jointly Gaussian and ỹi given g is Gaussian. The generative model is of the

form: g|X̃ ∼ N (m,K), and ỹ|g ∼ N (g, σ2I), where mi = µ0(x̃i), K is an (s × s)
positive definite matrix such that Ki,j = k(x̃i, x̃j). Since the distributions are Gaussian

and using the kernalization trick [129], the posterior mean and variance given a set of

91

observed data can be written as:

µs(x̃s+1) = µ0(x̃s+1) + k(x̃s+1)T (K + σ2I)−1(y −m)

σs(x̃s+1) = k(x̃s+1, x̃s+1)− k(x̃s+1)T (K + σ2I)−1k(x̃s+1)

where k(x̃s+1) is a kernel function applied to the inputs with observed function eval-

uations and the new input; i.e., it represents the covariance between observed inputs

and any unobserved input. Using the above expressions, the mean and variance for any

point can be computed. There is a suite of kernel functions available in the literature

[129]. Note that the kernel function should be chosen based on the problem domain and

it is often the key to finding the best approximation of the true function.

6.4 Search-Based Approaches for Weight Learning

As mentioned earlier, commonly used approaches for rule weight learning in SRL

are generally based on maximizing a likelihood function. In this section, we first give

a motivating example that highlights the issues with likelihood-based approaches and

then we propose four search-based approaches to learn weights in SRL frameworks.

6.4.1 Motivating Example

Consider the model in Example 1 implemented in PSL. Fig. 6.1 shows the perfor-

mance of the model using PSL as we vary the rule weights logarithmically from 10−6 to

1.0. Fig. 6.1 (a) shows AUROC and Fig. 6.1 (b) shows the log-likelihood of the model.

Lighter shades (yellow) represent a high value and darker shades (dark blue) represent

a low value. We observe that the AUROC is maximized when the first rule’s weight is

0.1 and the second rule’s weight is 10−6. However, the likelihood is not maximized at

these weights. For this model and dataset, we observe that the likelihood is not well

92

(a) AUROC (b) log-likelihood

Figure 6.1: Heat map of AUROC and log-likelihood for the model in Example 1. The
lighter color indicates higher values; higher values are desired for both metrics.

correlated with the AUROC. While this behavior is shown using PSL, similar outcome

can be seen when using MLN models as well.

6.4.2 Problem definition

Consider a SRL model2 with r template rules where each rule i ∈ {1 . . . r} is as-

sociated with a weight wi ∈ R+. Grounding all the rules with data D yields a set

of m observed random variables x = {x1, . . . , xm}, n unobserved random variables

y = {y1, . . . , yn}, and ι potentials φ = {φ1, φ2, . . . , φι}. The unobserved random

variables y are inferred by optimizing Equation 2.3. Further, all unknown random

variables are associated with corresponding ground truth y∗ = {y∗1, . . . , y∗n} used to

compute evaluation metrics. Let w = {w1, . . . , wr} be the vector representing the set

of rule weights, i.e., the weight configuration. Next, let ω(y,y∗) : (y,y∗) → R be

a problem-specific evaluation metric (e.g., accuracy, AUROC, or F-measure) and let

γ(w) : w→ ω(y,y∗) be the same function ω parameterized by w that maps weights to

the metric. Then the objective of weight learning can be expressed as finding the set of

weights that maximize the function γ which represents the true metric function ω, i.e.,

2In this chapter, we only refer to MLN or PSL programs as SRL models

93

argmaxw γ(w). The objective of the search-based approaches is to find an approximate

function g ≈ γ by sampling t weight configurations from a set of possible weight con-

figurations W (the weight space). In order to perform this optimization, we introduce

four approaches based on hyperparameter search methods in other areas of machine

learning. The first two approaches are based on random grid search and continuous

search used in deep learning [17], the next approach is based on Hyperband algorithm

used in statistical machine learning [91], and the last one is based on BO with GPR

used for hyperparameter tuning in deep learning [142].

6.4.3 Random Grid Search for Weight Learning

A straightforward search-based approach to weight learning is an exhaustive ex-

ploration over the set of weight configurations W generated through a user-specified

grid of weights. The user-specified grid to generate weight configurations W is typ-

ically constructed by specifying a finite collection of v values V = {V0, · · · , Vv}
that can be assigned as weights for each of the rules, e.g., V = {0.01, 0.1, 1.0}. If a

model contains r rules, then we can define W to be the r-ary Cartesian product of V ,

W = V × · · · × V , defining a grid with the intersections representing different weight

configurations. Then, for each configuration w ∈ W̃, γ(w) is evaluated after perform-

ing MAP inference in the SRL model. Finally, the weight configuration with the highest

γ(w) is selected.

However, a comprehensive grid search is usually infeasible due to the combinato-

rial explosion in the size of the grid; if a model contains r rules where each rule can

take on one of v possible values, then |W| = vr. Thus, to make the approach tractable

(as mentioned in Algorithm 3), we uniformly draw t unique samples from W to stay

within an established budget of resources; this approach is referred to as random grid

search for weight learning (RGS). It is important to ensure that the resources are used

94

to evaluate distinct weight configurations, therefore at the time of sampling we ensure

that every weight configuration chosen has a possibility of yielding a distinct solution.

In Section 6.5, we show how two weight configurations that look distinct can yield the

same solution at the time of MAP inference (and hence for the value of γ as well) and

how we can identify and avoid wasting resources on such inherently identical weight

configurations. Therefore, to ensure uniqueness of weight configurations explored, we

keep track of a set Wexplored which contains all the weight configurations explored so

far and the configurations that are inherently the same as an explored weight configu-

ration and sample new weight configuration from {W−Wexplored}.

Algorithm 3: Random grid search for weight learning
Result: w∗ : weight configuration with best evaluation metric among samples

1 W = set of weight configurations from the user-defined weight grid;
2 t = maximum number of weight configurations to explore;
3 Wexplored = weight configurations explored so far;
4 for iter ∈ {1, . . . , t} do
5 wnext = Random(W−Wexplored);
6 perform MAP inference to compute γ(wnext);
7 ∀ẇ ∈W such that γ(ẇ) = γ(wnext), add to Wexplored ;
8 if γ(wnext) > γ(w∗) then
9 w∗ = wnext;

10 end
11 end

6.4.4 Continuous Random Search for Weight Learning

A primary drawback of RGS is the need to define a grid over the space which

captures weights that will lead to a good model. While specifying a grid might seem

straightforward, several unique properties of the weight space makes the process of

specifying the right grid non-trivial (details in Section 6.5). Further, specifying grids

can easily result in unexpected biases. For instance, one may be tempted to simply

define a grid of evenly spaced points in a unit hypercube. However, this leads to a

95

sampling bias towards configurations with moderate ratios which might not be ideal

(more details in Section 6.5.4).

Continuous random search for weight learning (CRS) is similar to RGS in that,

rather than exploring the entire space, t weight configurations are chosen for evaluation

and the highest performing configuration is returned. The difference is that CRS does

not define a discrete grid of weights but samples continuously from the search space.

Therefore, it is crucial for the search space to be an accurate representation of the true

weight space. In this approach (as mentioned in Algorithm 4), we sample t weight con-

figurations to explore Wexplore from a Dirichlet distribution as an approximation of the

weight space and finally return the weight configuration with the best value obtained

for the γ function. Here, the Dirichlet distribution represents the weight space W. In

Section 6.5.4, we discuss in detail on why this is an appropriate choice. For CRS the

Dirichlet distribution is parametrized by a r-dimensional hyperparameter A ∈ R+r,

which can be tuned to obtain the best approximation of the space based on the ap-

plication and prior knowledge. Note that a Dirichlet distribution can generate positive

weights only. This can be restrictive for MLNs which support negative weights. In Sec-

tion 6.6, we show how the sampling approach is extended to support negative weights

for MLNs.

Algorithm 4: Continuous random search for weight learning
Result: w∗ : weight configuration with best evaluation metric among samples

1 t = maximum number of weight configurations to explore;
2 Wexplore ∼ Dirichlet(A)t, t distinct samples from a Dirichlet distribution;
3 for wnext ∈Wexplore do
4 perform MAP inference to compute γ(wnext);
5 if γ(wnext) > γ(w∗) then
6 w∗ = wnext;
7 end
8 end

96

6.4.5 Hyperband for Weight Learning

So far, the search-based methods we have discussed iteratively select a set of t

weight configurations to explore, Wexplore, from a set of weight configurations, W

and then run inference until completion for each wi ∈ Wexplore in order to calculate

γ(wi). Then the weight configuration w∗ = argmaxwi∈Wexplore
γ(wi) is chosen as

the model weights. Ideally, in these methods, we want t to be as large as possible, as

increasing the number of weight configurations explored (t) can potentially improve

γ(w∗) obtained. However, it is generally infeasible to have a large t due to limited

resources. In order to maximize our gain with the limited resources, we make use of

a practical observation that the weight configurations which initially show a slow rate

of improvement during inference will tend to converge to a poor γ(·) evaluation. For

instance, let us assume two potential weight configurations w1 and w2 for a SRL model,

if MAP inference for both the weight configurations takes t̂ iterations to converge to

the final solution and results in γ(w1) > γ(w2), then it is highly likely that the γ(·)
computed by interrupting the MAP inference at t̂

ŝ
number of iterations, where ŝ > 1,

will still result in γ(w1) > γ(w2). Therefore, running MAP inference to convergence

for all weight configurations could be wasteful. By early termination of unpromising

weight configurations a larger number of configurations can be explored resulting in a

better overall solution. This idea has been exploited in other areas of machine learning

to tune hyperparameters and is referred to as Hyperband [91]. Here, we adapt this

approach in the context of weight learning and refer to it as Hyperband for weight

learning (HBWL).

HBWL allows for more exploration while still operating within a budget (gen-

erally time or iterations) through adaptive resource allocation and early-stopping. To

understand how the algorithm operates, we will first describe SuccessiveHalving, a

critical subroutine of HBWL, and then describe how SuccessiveHalving is used in

97

HBWL. SuccessiveHalving (as mentioned in Algorithm 5) requires two input parame-

ters, namely t the total number of weight configurations we wish to explore and B the

total number of iterations for MAP inference. 3 Initially t configurations Wexplore =

{w1, · · · ,wt} are sampled from the search space W. Then, SuccessiveHalving pro-

ceeds in rounds. At the start of each round, a fraction of the budget (b = B
t

) is allocated

to the t weight configurations to perform MAP inference and compute γ′(·, b) where

γ′(·, b) is the evaluation metric computed after b iterations of MAP inference. Finally,

the weight configurations are ranked based on γ′(·, b), the bottom half of the weight

configurations are removed, and |Wexplore| is reduced to t
η

where η > 1 is the pro-

portion of configurations to be removed (for classic SuccessiveHalving η = 2). This

process is repeated for multiple rounds until only one weight configuration remains

which is chosen as the w∗.

The hyperparameters B and t of SuccessiveHalving can trade-off between having

a large number of weight configurations with a small amount of resource allocated

to each configuration (a.k.a. exploration), or a small number of weight configurations

with a large amount of resource allocated to each weight configuration (a.k.a. exploita-

tion). The best trade-off between exploration and exploitation is typically unknown.

HBWL (as mentioned in Algorithm 6) extends SuccessiveHalving by trying several

possible values for the t
B

ratio to choose the best explore exploit trade-off. The possible

values for t
B

are constructed strategically from the two user provided parameters for

HBWL, R̂ the maximum amount of resource that can be allocated to a single weight

configuration and η ∈ (1,∞) the proportion of weight configurations to be removed

in each round of SuccessiveHalving. Each complete execution of SuccesiveHalving

in HBWL is referred to as a bracket. Every bracket is parameterized by the values

3Note that, for simplicity, in the algorithm we overload B to be number of iterations in MAP infer-
ence in the first round instead of maximum number of iterations. The maximum number of iterations in
Algorithm 5 is Bηlogη(t), where η is a parameter defined in HBWL which represents the proportion of
weights removed every round in SuccessiveHalving.

98

(t, B, s) that are constructed uniquely for each bracket using R̂ and η, where s is the

number of initial configurations being tested in that bracket. HBWL chooses a bracket

size of s = blogη(R̂)c+ 1] and decrements it every round until one. Finally, the weight

configuration with the best value for function γ is returned.

Algorithm 5: SuccessiveHalving
Result: w∗, γ∗ : weight configuration with the best evaluation metric and the

metric value γ(·)
1 B = number of iterations in MAP inference for first round;
2 η = the proportion of weight configurations to be removed in each round;
3 Wexplore = weight configurations to be evaluated;
4 t = |Wexplore|;
5 b = B ;
6 iter = 0;
7 while t > 1 do
8 iter++;
9 ∀w ∈Wexplore perform MAP inference with max iterations set to b;

10 if argmaxw∈Wexplore
γ′(w, b) > γ∗ then

11 γ∗ = maxw∈Wexplore
γ′(w, b);

12 w∗ = argmaxw∈Wexplore
γ′(w, b);

13 end
14 t = b t

η
c;

15 b = Bηiter;
16 Wexplore = topt(Wexplore), ;
17 // topt ranks Wexplore based on γ′ and returns top t weights;
18 end

6.4.6 Bayesian Optimization for Weight Learning

Next, we introduce BOWL (Bayesian Optimization for Weight Learning), which

uses GPR to perform weight learning in the BO framework.4 Previously discussed ap-

proaches make no assumptions about the search space and the evaluation function (γ).

They randomly sample weight configurations from the search space and evaluate the

4Note that, in our method we loosely refer to this specific way of using GPR in BO framework as
Bayesian optimization.

99

Algorithm 6: Hyperband for weight learning
Result: w∗ : weight configuration with best evaluation metric

1 R̂ = maximum number of resources to be allocated;
2 η = the proportion of weight configurations to be removed in each round;
3 smax = blogη(R̂)c, maximum bracket size;
4 γ∗ = −∞, the best γ value obtained so far;
5 for s ∈ {smax, smax − 1, · · · , 1} do
6 t = b (smax+1)ηs

(s+1) c;
7 B = R̂η−s;
8 Wexplore ∼ Dirichlet(A)t, t distinct samples from a Dirichlet distribution;
9 ws, γs = SuccessiveHalving(B,Wexplore);

10 if γs > γ∗ then
11 γ∗ = γs;
12 w∗ = ws;
13 end
14 end

function γ. This process can be made more efficient by assuming that the metric ob-

tained by two weight configurations w1 and w2 are likely to be similar (γ(w1) ≈
γ(w2)) if the distance between them is small. This implies that when searching the

space we can make use of this information and either explore more diverse weight

configurations or exploit and choose weight configurations closer to previously best

performing configurations. This can be obtained by using BOWL . Next we explain

BOWL and our choices for both the kernel function in GPR and the acquisition func-

tion in BO which are key in determining the performance of BOWL .

A high-level sketch for BOWL (as mentioned in Algorithm 7) is as follows: first,

a weight configuration w ∈W is chosen using an acquisition function α (discussed in

Section 10). Next, inference is performed using the current weight configuration w, and

γ(w) is computed. Then GPR is updated with w and γ(w). Finally, after t iterations,

the weight configuration that resulted in highest value for γ is returned. As mentioned

earlier, there are two primary components of BOWL that need to be defined: the kernel

function used in GPR and the acquisition function α.

100

In order to use GPR and choose a kernel function, we must make an assumption

about the function γ. Here, we assume that the function γ is smooth. This assumption

is true if the problem is well-conditioned and the metric function ω being optimized is a

smooth function, such as mean square error (MSE). For now, we make this assumption

(justified further in Section 10), and choose the squared exponential kernel as the kernel

for the GP:

k(wi,wj) = σ̃ · exp{
∆i,j
2ρ2 } (6.1)

where σ̃ is the amplitude, ρ is the characteristic length-scale, and ∆i,j is the distance

between the two weight configurations wi and wj . ρ and σ are the kernel hyperparam-

eters. The scaling factor ρ affects the smoothness of the approximation (a large value

implies more smooth) and the number of iterations required to explore the space. We

choose ρ such that a reasonable exploration of the space is possible in t iterations. The

value of σ̃ is chosen based on the range of the metric being learned.

The distance function ∆ is crucial in determining the co-variance between two

weight configurations. Ideally, if the distance between two weight configurations is zero

then the output of the function γ should be the same. And, as the distance between the

two weight configurations increases, the correlation between the output of the γ func-

tion should go to zero. In Section 6.5.2 we introduce a new projection for the weights

and show that distances measured in the projected space exhibit these properties.

Justification for Squared Exponential Kernel

As mentioned earlier, the squared exponential kernel makes a strong smoothness

assumption on the γ function. While this might seem restrictive, we argue that this

is a reasonable assumption in the context of weight learning in SRL. To do this, we

constrain ourselves to only those metrics (ω(y,y∗)) that are smooth with respect to the

101

Algorithm 7: Bayesian optimization for weight learning
Result: w∗ : weight configuration with best evaluation metric among samples

1 W = Dirichlet(A);
2 t = maximum number of weight configurations to explore;
3 for iter ∈ {1, . . . , t} do
4 wnext = argmaxw∈W α(w); α//an acquisition function chosen from

Section 10;
5 perform MAP inference to compute γ(wnext);
6 update GPR with γ(wnext);
7 if γ(wnext) > γ(w∗) then
8 w∗ = wnext;
9 end

10 end

random variables (such as MSE). Note, our assumption is that the function γ is smooth

and γ is parametrized with w and not the random variables y. Hence, it is non-trivial to

prove smoothness in γ. With the above constraint on the possible metrics, we know that

if a small change in w leads to a small change in y, then the function γ is also smooth.

We formally define smoothness of the function γ as follows:

Definition 6. Given two sets of weight configurations w1 and w2 for a SRL model with

r rules that generates n unobserved random variables y, the function γ is considered

to be smooth if ∆1,2 < ε where ε → 0, then ||y1 − y2||2 < ν where ν → 0, y1 and y2

are the random variables inferred using weights w1 and w2 respectively.

This directly leads to the conditioning of the problem. If a problem is well-conditioned

then our assumption about the smoothness of γ is precise. If the problem is ill-conditioned

then this assumption fails to hold and the function learned in BOWL could be a poor

approximation of γ. Further, in practice we observe that small changes in weights gener-

ally do not affect the γ function significantly which indicates smoothness. Even though

we assume ω(y,y∗) is a smooth function such as the MSE to justify squared expo-

nential kernel, in our empirical evaluation we observe this is effective even on other

non-smooth evaluation functions such as accuracy.

102

Acquisition Function

Another crucial component of our algorithm to be defined is the acquisition func-

tion α. The function α determines the next weight configuration on which to evaluate

the function γ, i.e., wnext = argmaxw∈W α(w). Since our approach approximates the

function γ with g, we would like to choose points that allow us to learn the approxi-

mation g while also maximizing the metric γ. To achieve this, we consider four well

studied acquisition functions in the context of BO.

Upper confidence bound (UCB) [145]: is an optimistic policy with provable cumula-

tive regret bounds. The acquisition function can be written as:

α(W) = µ(w) + ψ · σ(w)

where µ and σ are the mean and variance predicted by the GP and ψ ≥ 0 is a hyperpa-

rameter set to achieve optimal regret bounds.

Thompson sampling (TS) [153]: is an information-based policy that considers the

posterior distribution over the weights W. The acquisition function can be written as:

α(W) = p̃(w)

p̃(w) ∼ N (µ(w), σ(w))

where p̃ are samples obtained from the distribution computed at the point w.

Probability of improvement (PI) [89]: is an improvement-based policy that favors

points that are likely to improve an incumbent target τ . The acquisition function can be

written as:

α(W) = P(γ(w) > τ) = F
(
µ(w)− τ
σ(w)

)

103

where F is the standard normal cumulative distribution function and τ is set adaptively

to the current best observed value for γ.

Expected improvement (EI) [110]: is an improvement-based policy similar to PI. But,

instead of probability, it measures the expected amount of improvement. The acquisi-

tion function can be written as:

α(W) =
{

(µ(w)− τ)F
(
µ(w)− τ
σ(w)

)
+ (σ(w))F

(
µ(w)− τ
σ(w)

)}

where F is the probability density function of a standard normal distribution function.

6.4.7 Efficiency of Search-Based Approaches

In practice, it is inefficient to use search-based approaches for high-dimensional

problems. For instance, GPR has been shown to work best when the number of dimen-

sions is less than 50 [162]. This makes weight learning an ideal use case for search-

based approaches, because typically SRL models have just tens of rules and most often

the number of rules does not exceed 50.

The success of all the weight learning approaches discussed so far relies on two

important factors: 1) the weight configurations chosen are accurate representation of

the true search space; and 2) the distances measured between weight configurations

correlate to the solution obtained by using them. In the next section, we first show

that the weight space in both PSL and MLN are redundant making the representation

imprecise and weight configuration distances do not correlate to the solution obtained.

Next, assuming positive weights for rules, we introduce a novel projection that address

these challenges. Finally, we also provide an efficient strategy to approximately sample

from the projected space ensuring the effectiveness of the search-based approaches

introduced.

104

6.5 Efficient Space to Search for Weights

The weights of a SRL model consisting of r rules is represented via a vector in

an r-dimensional space and is referred to as original space (OS). However this is an

inefficient space to preform weight learning using a search-based approach. This is

because there exists many weight configurations which yield the same solution when

performing MAP inference in SRL models. The main reason for this is because weights

in SRL models are relative and scale invariant at the time of MAP inference. We can

show that any SRL model with weights in R can be re-scaled with a positive constant c̃

without any change to the solution obtained through the objective in Equation 2.3. This

shows that weights in SRL models are scale invariant when performing MAP inference.

Theorem 2. Consider any SRL model with r rules and weights w = {wi, . . . , wr}, wi ∈
R+ (wi ∈ R for MLN). For all weight configurations c̃ · w where c̃ > 0, the solution

obtained for y by performing MAP inference using weights w and c̃ ·w are the same,

i.e., argmaxy ŝ · E(y|x,w) = argmaxy ŝ · E(y|x, c̃ ·w).

Proof. The objective generated by using weights c̃ ·w can be written as:

argmax
y

ŝ · E(y|x, c̃ ·w) = argmax
y

ŝ ·
ι∑
i

c̃ · wiφi(x,y)

= argmax
y

c̃ · ŝ ·
ι∑
i

wiφi(x,y)

= argmax
y

c̃ · ŝ · E(y|x,w)

Since the MAP inference objective using both Epsl and Emln are scale invariant, the

re-scaling of the weight configuration w to c̃ · w leaves the solution of the inference

unchanged.

Since in our search-based approaches we optimize w.r.t. a user-defined evaluation

105

metric, and this function depends only on the random variables obtained by MAP in-

ference, we have that the user-defined evaluation metric function is also scale invariant.

6.5.1 Challenges in the Original Space

OS for weights has two fundamental challenges for search-based approaches: 1)

OS is redundant and 2) the distance between weights in OS does not translate to true

correlation of the solution obtained by using these weights. The redundancy of space

is clear from Theorem 2 as the weights on any line intersecting origin in OS will have

the same solution. This also means that the Euclidean distance δi,j between two weight

configurations wi and wj can be extremely large and still result in the exact same

solution and vice versa. The example below clearly illustrates this phenomenon:

Example 6. Consider a model with two rules w = {w1, w2}. Let us assume three pos-

sible weight configurations for this problem: w1 = {0.1, 0.1}, w2 = {1.0, 1.0}, and

w3 = {0.1, 0.0001}. Assuming that the number of groundings for both rules are the

same, the weights of the rules in w1 and w2 indicate that both rules are equally impor-

tant and lie on a line intersecting origin, while in w3 the first rule is 1000 times more

important than the second rule and is not on the same line. This results in the function

γ producing the same output for w1 and w2, and potentially a different value for w3.

Based on this, the weight configuration w3 should be significantly different from the

weight configurations w1 and w2, while w1 and w2 should be similar. Unfortunately,

the Euclidean distances measured between the weight configurations, δ1,2 = 1.27,

δ1,3 = 0.09, and δ2,3 = 1.34, do not behave in this manner. The distance δ1,2 is

much larger than distance δ1,3. Therefore, some of the search-based approaches such

as BOWL would incorrectly infer that the function value of γ(w1) is more correlated

with γ(w3) than γ(w2). However, as argued above, we want the opposite behavior.

In order to address these challenges, we introduce a new projection for the weights.

106

For the remainder of this section we assume weights of the rules to be positive. While

this does not restrict PSL which supports only positive weights, it does constrain MLNs

which support negative weights. However, it has been shown that a negative weighted

rule in MLNs can be replaced with a negated rule and positive weight with the same

magnitude. Further in Section 6.6, we show how we extend and accommodate for pos-

itive and negative weights in MLNs when using the search-based approaches.

6.5.2 Scaled Space

In order to perform efficient and effective search, we define a new space for the

weight configurations called scaled space (SS). SS is a projection of weights onto a

relative space. We use the ratio of weights between the rules to define the relative im-

portance of weights in the configuration. This projection eliminates redundancies and

results in distances that correspond to the actual correlation between the weight config-

urations. Formally, we define SS as:

Definition 7. Given a set of weights w = {w1, . . . , wr} ∈ (0,∞]r, SS E is a projection

defined on w such that E(w) ∈ R(r−1) is given by:

E(w) = {∀ri=2(ln(wi)− ln(w1))} (6.2)

Given the definition of SS, we next define the distance between two weight config-

urations in SS as:

Definition 8. The distance ∆ between two weight configurations wi and wj in SS is

defined as:

∆i,j = ||E(wi)− E(wj)||22 (6.3)

107

Given the definition of SS, we can now show that SS does not have the two chal-

lenges mentioned for OS. We first show that any weight configuration on a line inter-

secting the origin in OS will be represented by the same point in SS eliminating the

redundancy that exist in OS. Next we show that in SS (E), a distance of zero (∆i,j = 0)

between two weight configurations wi and wj , implies that the two weight configura-

tions yield the same solution for the random variables y at the time of MAP inference

hence proving accurate representation of distances between weight configurations.

Theorem 3. Given two weight configurations w1 and w2, if w1 = c ·w2, i.e., w1 and

w2 lie on a line intersecting the origin in OS then the resultant value in SS will be the

same, i.e., E(w1) = E(w2)

Proof. Given, w1 = c ·w2 implies:

w1,i = c · w2,i; i ∈ 1, . . . , r

E(w1) by definition is given by {∀ri=2(ln(w1,i) − ln(w1,1))}. By replacing w1,i with

cw2,i we get:

E(w1) = {∀ri=2(ln(w2,i)− ln(w2,1))} = E(w2)

Therefore, if w1 = c ·w2 then E(w1) = E(w2).

Theorem 4. Given two weight configurations w1 and w2, if E(w1) = E(w2) (i.e.,

∆1,2 = 0) then the solution obtained for y by optimizing Equation 2.3 with both the

weight configurations are the same.

Proof. Let w1 = {w1,1, . . . , w1,r}, w2 = {w2,1, . . . , w2,r} and E(w1) = E(w2). As the

108

two weight configurations are the same in SS, the equality can be written as:

ln(w1)− ln(w1,1) = ln(w2)− ln(w2,1)

w1 = w1,1

w2,1
w2

Since w1,1 ∈ (0, 1] and w2,1 ∈ (0, 1] are constants, the resulting optimization problems

are equivalent:

argmax
y

ŝ · E(y|x,w1) = argmax
y

w1,1

w2,1
ŝ · E(y|x,w2)

= argmax
y

ŝ · E(y|x,w2)

Therefore, if the distance between two weight configurations is 0 in SS, then the solu-

tions of their corresponding SRL model by optimizing Equation 2.3 are the same.

Theorem 3 shows that SS is not redundant and Theorem 4 proves the distances in

SS are accurate. These theorems show the correctness of SS for weight learning using

search-based approaches. Note that in the definition of SS we use the weight of the first

rule to compute the projection. This choice is arbitrary and can be switched to any rule

without affecting the space.

Example 6. (Continued) Consider our earlier example. The weights and the distances

of our running example in SS E using Equation 6.2 and 6.3 are: E(w1) = {0}, E(w2) =

{0}, E(w3) = {6.907}, ∆1,2 = 0, ∆1,3 = 47.7, and ∆2,3 = 47.7.

A drawback of SS is that it does not support a weight of zero for any rule in the

model. This means that all rules in the configuration must participate in the model.

However, in practice, we mitigate this by using SS only to measure distances between

weight configurations which is performed by adding a small positive value (e.g., 10−%,

where % ∈ Z+, %� 0) to all weights. In order to generate weight configurations for the

109

search, we sample from a hypersphere in OS which has similar properties as SS. We

discuss this in detail in the Section 6.5.4.

6.5.3 The Effect of Varied Number of Groundings in the Scaled

Space

Our discussion on SS so far has made a very important simplifying assumption, that

the number of groundings for each rule in the model is the same. However, the num-

ber of groundings produced by different rules are seldom the same and the number of

groundings produced by a rule has an impact on the inference of the random variables.

The weight associated with each rule is repeated for each ground instance of that rule.

This leads to the weight of each rule having varied influence on the minimization of the

energy function. For instance, if a model has two equally weighted rules, but one rule

produces 10 times more groundings than the other, then that rule implicitly becomes 10

times more important in the model.

Next we show that while the number of groundings has an impact on the solution

obtained by SRL models, it does not impact the correctness of SS. We can modify the

weights to accommodate the number of groundings of the rules in the model. Consider

a model with r rules and let β = {β1, . . . , βr} be the number of groundings for each

of the r rules. We define a grounding factor κ for each rule. For rule z, the ground-

ing factor κz = βz
max(β) , where κ = {κ1, . . . , κr} is the vector of grounding factors.

Therefore, the true weight associated with the zth rule is κz · wz and the grounding ad-

justed weight configuration can be represented as an element-wise dot product between

κ and w, i.e., w̃ = κ · w. The distance between two weight configurations i and j in

OS can be re-written as ||w̃i − w̃j||22. Similarly the distance in SS can be re-written as

||E(w̃i)− E(w̃j)||22. However, the scaling factor κ does not affect the distance in SS as

κ is constant for both weight configurations and cancels when computing the distance

110

leaving the distance in SS unchanged.

Theorem 5. Given two weight configurations wi and wj , a set of grounding factors of

κ, and grounding adjusted weight configurations w̃i = κ · wi and w̃j = κ · wj , the

distance measured between both (wi,wj) and (w̃i, w̃j) in SS are equal, i.e. ||E(wi)−
E(wj)||22 = ||E(w̃i)− E(w̃j)||22.

Proof. To prove the above theorem we consider the difference between the weight con-

figurations E(w̃i)− E(w̃j):

E(w̃i)− E(w̃j) = (ln(κ ·wi)− ln(κ1 · wi,1))−

(ln(κ ·wj)− ln(κ1 · wj,1))

= (ln(wi)− ln(wi,1))−

(ln(wj)− ln(wj,1))

= E(wi)− E(wj)

Since E(w̃i)− E(w̃j) = E(wi)− E(wj), the distances are also equal.

Theorem 5 shows that the distance measured between two weight configurations in

SS is robust while considering the size of their groundings.

6.5.4 Sampling Weight Configurations for Search

Most search-based approaches work by choosing different possible weight config-

urations to explore and search for the weight configuration with the best evaluation

score. In order to do this effectively, we must ensure that the samples generated for

exploration are representative of the space. While it might be ideal to directly sam-

ple uniformly from SS, this is challenging due to the one-to-many mapping between

SS and OS and, as mentioned earlier, points in SS cannot represent rules with zero

111

weights. One straightforward approach to handle this is to uniformly sample weight

configurations from the positive quadrant of a unit hypercube in OS and and project the

points on to SS to measure distances. The approach can be summarized as:

w ∼ Unif([0, 1])r

where Unif generates uniform random numbers between [0, 1]r. Since, the influence

of weights in SRL models are scale invariant for MAP inference, we can ensure all

possible weight configurations that can be represented in the R+r can be represented in

[0, 1]r. However the main problem with this approach is that the resulting configurations

will have a low spread in SS as OS has a lot of redundancies and the projection will

place several weight configurations around the same region. This is not desirable as we

would prefer to have a uniform/large spread of possible weight configurations in SS.

As mentioned earlier, MAP inference in SRL models are scale invariant and hence

weights along a line passing through 0 in OS are equivalent, i.e., the direction of a

vector starting at the origin in OS is sufficient to represent all weight configurations in

SRL models. This implies that the weight configurations obtained by sampling from

the surface of an r-dimensional unit hypersphere in the positive quadrant represents all

possible weight configurations in OS. Therefore, uniformly sampling from the surface

of this hypersphere (we only refer to the positive quadrant of the unit hypersphere) is a

close approximation of SS.

To show that this is a reasonable space to sample weights from we need to show:

first, the surface of the hypersphere is complete and non-redundant and second, if two

weight configurations in OS are represented by the same weight configurations on the

hypersphere then the solution obtained for y by both the weight configurations are

the same. Every weight configuration given in OS can be easily projected on to the

112

hypersphere in the following way:

H(w) = w
||w||2

(6.4)

where ||w||2 is the L-2 norm of the vector.

Theorem 6. Every weight configuration w in OS has an equivalent weight configura-

tion w̃ on the hypersphere such that argmaxy ŝ ·E(y|x,w) = argmaxy ŝ ·E(y|x, w̃).

Proof. From Theorem 2 we know that weights are scale invariant when performing

MAP inference and this implies that the magnitude of the vector generated by a weight

configuration does not affect the solution obtained when performing inference in PSL

and MLNs. This implies that all r-dimensional unit vectors in the positive quadrant

is sufficient to represent all possible weight configuration for MAP inference in PSL

and MLNs. All unit vectors can be represented using the surface of a hypersphere.

Therefore, surface of an r-dimensional hypersphere removes redundancies of OS and is

complete.

Theorem 7. Given two weight configurations w1 and w2 such that the projection H
of the weight configurations are equal, i.e., H(w1) = H(w2), then the optimization

solution obtained for y by performing inference is the same.

Proof. This is easy to show as the definition of the projection defined in Equation 6.4

is very similar to the projection defined in Theorem 2. The weights are simply rescaled

and therefore, by definition and from Theorem 2, it is clear to see that if H(w1) =

H(w2) then argmaxy ŝ · E(y|x,w1) = argmaxy ŝ · E(y|x,w2).

This shows that the projection on to the surface of a unit hypersphere has properties

similar to SS. However, these two are not entirely equivalent as the grounding factor

κ plays an important role in the actual impact of weights at the time of inference.

113

While SS is ideal and distances between weights are preserved even after adjusting for

grounding, the distances are not preserved after adjusting for grounding.

Theorem 8. Given two weight configurations w1 and w2 and their grounding adjusted

weights κ ·w1 and κ ·w2 (an element-wise dot), the distance between the two weights

before and after grounding adjustment are not the same, i.e., ||w1−w2|| 6= κ·w1−κ·w2.

Therefore, we can conclude that while the surface of a hypersphere does not have all

the properties of SS it is a reasonable approximation of SS and weights can be samples

from the hypersphere.

Therefore, we treat the hypersphere as an approximation of SS and sample weight

configurations from the hypersphere but compute distances in SS. Uniform samples

of weight configurations from the surface of the hypersphere can be obtained by first

sampling points from a standard multivariate-normal distribution and projecting the

values to the hypersphere [111, 98] (since we want samples only from the positive

quadrant we project all samples on to this quadrant by taking the absolute value):

s ∼ N (0, I)

w = | s
||s|| |

0 is a r-dimensional zero vector and I is an r-dimensional identity matrix.

While uniform sampling from the surface of a hypersphere ensures that every ori-

entation of the weight vector is equiprobable, in practice this might not always be de-

sirable. The primary reason for this is that for any weight configuration sampled from

the hypersphere, if we choose two weights wi < wj the P (wi
wj
< 0.1) ≈ 0.11 (assuming

r = 2). This implies that the ratio between weights will typically be close to one which

is not ideal as we would expect the evaluation metric to show large variance with larger

ratios. In order to circumvent this, we propose another sampling strategy which gives

114

us full control over the distribution of the weight configurations. We sample from an

r-dimensional Dirichlet distribution which generates samples from the probability sim-

plex. It is easy to see a one-to-one correspondence of the probability simplex and the

surface of a sphere. The hyperparameter of the Dirichlet distribution can be modified to

generate samples skewed towards the center (all equal weights) or the poles (extreme

ratios) or anywhere in between. The sample generation process is as follows:

w ∼ Dirichlet(A) (6.5)

where A ∈ R+r is the hyperparameter that defines the Dirichlet distribution.

While sampling from a hypersphere with different densities can be tricky one easy

way to do this is to sample from a Dirichlet distribution which samples from the proba-

bility simplex and project the values on to the sphere. The Dirichlet distribution accepts

the hyperparameter A ∈ R+r which controls the spread of the distribution. It is easy

to see that every point on a probability simplex can be uniquely projected on to a hy-

pershpere. Here in Fig. 6.2 we visualize the distribution generated by using different

values of A for a model with three rules. We vary the value of alpha form all 10s to all

0.001 and plot the projection on to a sphere which is in OS on the left and SS (which is

2-dimensional space) on the right. We can observe that as the value of A is reduced the

samples in OS are getting concentrated to the poles and in SS we see the samples spread

wider and choosing larger ratios. We can choose this value based on our application.

For instance when the task is to perform rule pruning, it is more desirable for the ratio

of weights to be more extreme and hence choose a small value for A and if the task is

to fine tuning weights without making large changes, then a higher value of A might be

more suitable.

115

6.6 Accommodating Negative Weights in Markov Logic

Networks

In this section we discuss how the sampling strategy discussed in Section 6.5.4

is modified for MLNs to accommodate negative weights when using CRS, HBWL,

and BOWL . Since the Dirichlet distribution samples from the probability simplex,

the weights sampled are strictly non-negative. To introduce the possibility of negative

weights, we first sample weight configurations from the Dirichlet distribution and then

randomly select an orthant in the r-dimensional Euclidian space. This random selection

of an orthant has the same effect as independently flipping the sign of each weight

in the sampled configuration so every orthant is equiprobable. We further apply the

positive scale invariance property for weight configurations to ensure the uniqueness

of samples. While no sampling is needed for RGS in MLNs, we ensure uniqueness of

explored configurations by projecting the values on to a unit hypersphere instead of SS.

In order to use BOWL in MLNs, instead of computing distance in SS, we compute

the Euclidean distances of the weight configurations by projecting the weights onto the

hypersphere. 5

6.7 Empirical Evaluation

In this section, we evaluate the search-based approaches for weight learning on vari-

ous realworld datasets. We investigate four research questions through our experiments:

[Q1] How do search-based approaches perform on realworld datasets compared to

the existing methods?

5Note this may lead to over generalization of the function as two points might be very close to each
other but have significantly different outcome on the γ function (as mentioned in Example 6).

116

[Q2] Which search-based approach performs better weight learning in SRL?

[Q3] Are search-based approaches scalable?

[Q4] Are search-based approaches robust?

In order to answer these questions we selected five realworld datasets from differ-

ent domains for which SRL models have promising results [11, 84].6 Details of these

datasets are as follows:

Jester: contains 2,000 users and 100 jokes [57]. The task is to predict user’s preference

to jokes.

LastFM: contains 1,892 users and 17,632 artists. The task is to recommend artists to

users by predicting the ratings for user-artist pairs.

Citeseer: contains 2,708 scientific documents, seven categories, and 5,429 directed ci-

tations. The task is to assign a category to each document.

Cora: is similar to Citeseer dataset, but contains 3,312 documents, six categories and

4,591 directed citations.

Epinions: contains 2,000 users and 8,675 directed links which are positive and negative

trust links between users. The task is to predict the trust relation.

We evaluate the three search-based methods (RGS, CRS, and BOWL) for both

MLNs and PSL, and HBWL for PSL only. While the implementation of RGS, CRS,

and BOWL are efficient to run for both MLNs and PSL (more details in Section 6.7.2),

HBWL with MLNs on our datasets is not as efficient and each experiment was esti-

mated to take about a month. While the search-based approaches have been fully inte-

grated into PSL codebase, for MLNs, we implement search-based methods as wrappers,

i.e., we use an external script to generate weights and use Tuffy as a black-box eval-

uator. Because of this, in HBWL, the SuccessiveHalving step requires us to reground

the same model multiple times which substantially increases time required to run. We

6Models, code, and data: https://github.com/linqs/srinivasan-mlj20

117

use MLE, MPLE, and LME as baseline methods for PSL and use DN implemented in

Tuffy as our baseline for MLN. As MLNs are discrete, we perform evaluations only on

the three discrete datasets, Citeseer, Cora, and Epinions. For each dataset, depending on

the problem, we leverage the metric that has been used for the problem to measure its

performance. Hence, we report MSE and AUROC for the Jester and LastFM datasets,

categorical accuracy (CA) and F1 for the Cora and the Citeseer datasets, and AUROC

and F1 for the Epinions dataset. Further, all our experiments were run on a machine

with 16 cores and 64GB of memory.

6.7.1 Performance analysis

To address [Q1] and [Q2], we compare the performance of all search-based ap-

proaches RGS, CRS, HBWL, and BOWL with MLE, MPLE, and LME in PSL and

DN in MLN on several metrics. For the datasets, we use the 8 folds generated by [11]

for Citeseer, Cora, Epinions and Jester and 5 folds generated by [84] for LastFM and

perform cross validation. We perform a paired t-test (p-value ≤ 0.05) across meth-

ods to measure statistical significance. In RGS for PSL, we specify the set V =

{0.001, 0.01, 0.1, 1, 10}, while for MLNs we use V ∪ −V . For CRS, HBWL, and

BOWL , we specify each dimension of A to be 0.05 for PSL (more experiments with

different values can be found in Section 6.7.3) and 0.1 for MLNs. In HBWL for PSL,

R̂ represents the number of iterations of ADMM inference and is set to 25000 and η

is set to 4. For RGS, CRS, HBWL, and BOWL , the maximum number of weight

configurations to explore in order to approximate the user-defined evaluation metric

function is set to t = 50. Although in our experiments we observed that the best metric

value is usually obtained at t < 25 (especially for BOWL , this is likely because the

function we intend to learn has several flat regions). We also use a stopping criterion

for BOWL which terminates the exploration if the standard deviation at all sampled

118

Table 6.1: Performance of PSL weight learning methods across datasets. The best scor-
ing methods (with p < 0.05) are shown in bold. Note: the metric values are rounded
to three points of precision, making some numbers the same, but the significance tests
were performed on values with six point precision.

Method (Metric) MLE MPLE LME RGS CRS HBWL BOWL
Jester (MSE) 0.053 0.068 0.063 0.053 0.053 0.052 0.053
Jester (AUROC) 0.730 0.700 0.702 0.762 0.744 0.756 0.761
LastFM (MSE) 0.061 0.060 0.061 0.061 0.062 0.064 0.063
LastFM (AUROC) 0.548 0.552 0.549 0.574 0.572 0.556 0.587
Citeeseer (CA) 0.835 0.837 0.839 0.844 0.844 0.845 0.844
Citeeseer (F1) 0.283 0.293 0.303 0.321 0.322 0.321 0.319
Cora (CA) 0.881 0.888 0.889 0.888 0.887 0.888 0.889
Cora (F1) 0.404 0.439 0.442 0.438 0.438 0.438 0.443
Epinions (AUROC) 0.811 0.792 0.807 0.814 0.797 0.810 0.780
Epinions (F1) 0.712 0.711 0.712 0.711 0.712 0.711 0.713

weight configurations is less than 0.5. MLE, MPLE, LME, and DN are allowed to

run for 100 iterations or until convergence whichever is smaller. For BOWL , we use

UCB as our acquisition function with ψ = 1 to favor modest exploration. However in

Section 6.7.3 we show that similar performance can be obtained with PSL by using the

other acquisition functions discussed in Section 10. Other hyperparameters that we use

for BOWL are: σ̃ = 0.5, ρ = 1, and the mean function is a constant 0.5. We set the

value of ρ to one after exploring different values in [105, 10−5], and we set σ̃ to 0.5 as

our metrics are mostly in the range [0, 1].

Table 6.1 and 6.2 show the comparison between search-based approaches and other

methods across the different datasets for both PSL and MLN respectively. In each row

of the table, the best performing method and those that are not significantly different

from the best performing method are shown in bold. We first analyze the performance

results of PSL in Table 6.1. Here we observe that the search-based approaches are

the best performing method across all the datasets and metrics. Specifically, we ob-

serve that BOWL is the best or not significantly different from the best performing

method on all datasets and metrics (except LastFM MSE). For the Epinions and Cora

119

datasets, we observe that there is no statistically significant difference among all ap-

proaches on both metrics. However, on the Citeseer dataset, we observe that, for CA,

all search-based approaches perform better than other approaches. An interesting ob-

servation here is that on Citeseer dataset the weights found by MLE and LME perform

as well as search-based approaches on F1 but not on CA. This further strengthens our

motivation to directly optimize for the evaluation metric rather than the likelihood. In

LastFM, we observe that BOWL is significantly better than all other approaches on

AUROC, however, RGS outperforms BOWL in the MSE metric on LastFM. One

reason for likelihood-based approaches to perform better in LastFM MSE could be

because the rating values mentioned in LastFM was constructed by fitting a negative

binomial distribution [84]. This could potentially imply that maximizing the likelihood

in PSL could lead to minimizing the MSE. Finally on the Jester dataset, HBWL and

BOWL perform the best on both metrics. Overall, as mentioned earlier, search-based

approaches perform better than other approaches and in general even the worst per-

forming search-based method is better than likelihood-based approaches (like in Jester

and LastFM AUROC). These experiments clearly show that search-based approaches

are better suited for weight learning in PSL. Further, of the search-based weight learn-

ing approaches we observe that BOWL performs the best followed by HBWL. This

is because BOWL performs smart exploration of space to approximate the evaluation

function and HBWL evaluates more points by smart resource allocation to get better

approximation compared to CRS and RGS.

Next, in Table 6.2 we analyze the performance of the MLN weight learning methods

on all datasets and metrics. We again see that search-based methods achieved the best

performance for every dataset and metric. Except for F1 score in the Cora dataset, where

DN performs as well as search-based approaches, DN performs worse than search-

based approaches on all datasets and metrics. This observation further supports the use

120

Table 6.2: Performance of MLN weight learning methods across datasets. The best
scoring methods (with p < 0.05) are shown in bold.

Method (Metric) DN RGS CRS BOWL
Citeeseer (CA) 0.829 0.828 0.829 0.833
Citeeseer (F1) 0.267 0.251 0.253 0.281
Cora (CA) 0.867 0.865 0.866 0.871
Cora (F1) 0.339 0.333 0.342 0.355
Epinions (AUROC) 0.614 0.689 0.699 0.659
Epinions (F1) 0.705 0.708 0.711 0.710

of search-based weight learning methods across SRL frameworks. Similar to the PSL

experiments, we observe that overall BOWL performs the best followed by HBWL.

BOWL is either the best method and or not significantly different from the best method

on all but the Epinions dataset when evaluating the AUROC metric. The reason for

poor performance of BOWL in Epinions with AUROC could be because Epinions

has the maximum number of rules (20 rules) compared to all other datasets. Further,

since distances for BOWL in MLN are computed in OS, the function approximated

for AUROC might need more fine tuning which might not be possible in OS leading

to poor exploration. On the same dataset for F1 we observe that BOWL performs as

well as CRS which is the best. This indicates that the approximation of the evaluation

function through BOWL is dependent on the function being approximated as well.

6.7.2 Scalability

In this section, we compare the runtimes of MLE, MPLE, LME, RGS, CRS,

HBWL, and BOWL in PSL to measure the scalability of search-based approaches

and address [Q3]. We do not compare runtimes of our experiments with Tuffy. While

DN is fully integrated in Tuffy, our search-based approaches were implemented as a

wrapper to Tuffy. Hence, the runtime numbers of different approaches will not be a

121

fair comparison.7 The number of parameters to learn in PSL and MLN is equal to the

number of rules in the model and the data size translates to the number of groundings

generated by the model. In Fig. 6.3a, we show the number of groundings generated by

each of the datasets.We also show the number of rules in each model. The Jester dataset

produces the largest number of groundings (∼1M) using seven rules and the Epinions

dataset produces the least number of groundings (∼14K) using the largest model (20

rules).

In Fig. 6.3b, we show the average runtimes measured accross all folds for all ap-

proaches on all datasets. Runtimes for some approaches depend on number of ground-

ings while some others depend on number of rules. The runtime for MPLE primarily

depends on number of groundings and we observe that as the number of groundings

increases the runtime also increases by a factor of ∼45 from Epinions to Jester dataset.

The time taken to run LME depends not only on the number of groundings, but also the

complexity of finding the margin. Therefore, we observe that the runtime of LME on

the LastFM dataset is higher than the Jester dataset. MLE, RGS, CRS, HBWL, and

BOWL depend on number of groundings through the time taken to perform inference

on larger models. Since inference in PSL is efficient due to its convex objective, these

approaches can scale better with the number of groundings compared to the other ap-

proaches. Further, inference time in PSL depends on both the number of groundings

(which affects per iteration cost in solving) and ease of solving the optimization (which

affects the number of iterations required to converge). This can be observed when

we compare runtimes of the above mentioned five methods on the Epinions dataset

and Cora dataset. The time taken to run Epinions is two times greater for MLE even

though the number of groundings of Epinions is three times smaller. Overall we ob-

serve that MLE has the largest increase in runtime (∼150 fold increase) from Cora to
7Even though we reground the model every iteration for search-based methods in Tuffy, we observed

that the search-based approaches were at least two times faster than DN in Citeseer and Cora datasets
and due to early-stopping, BOWL in MLN was at least 5 times than DN.

122

Jester dataset. The runtimes of search-based approaches also depend on the number of

evaluations (or resources allocated) they are allowed. For a good approximation of the

evaluation function the number of evaluation points required increases exponentially

with number of rules in the model. Since we fix the maximum number of iterations

to 50 for all models, it does not affect our approaches. Specifically, we observe that

the runtimes of BOWL across datasets does not vary as much as other approaches.

BOWL has the smallest increase in runtime (∼3 fold) between the Cora and Jester

datasets across all methods. This is because BOWL has a constant overhead for per-

forming updates in the GP and retrieving the best next set of weight configurations. This

also ensures bad weights that converge poorly are chosen less often (as they are likely to

yield poor evaluation metric value), hence making it efficient and scalable with number

of groundings. Overall we observe that search-based approaches can scale with a large

number of groundings and produce the best results on the evaluation metric function.

6.7.3 Robustness

To address [Q4], we ran three sets of experiments: the first experiment is to check

how robust search-based methods are w.r.t. different initialization, the second is to eval-

uate the robustness of CRS, HBWL, and BOWL to the hyperparameter A from the

Dirichlet distribution, and the third experiment is to test the effects of choosing an ac-

quisition function on the performance of BOWL .

Varied Initialization

For the first experiment, we perform weight learning with all four search-based ap-

proaches using 30 random initializations and report the mean and standard deviation

(std) of a metric per dataset in Table 6.3. Note that for this experiment we use UCB as

our acquisition function in BOWL . Further, we use only one fold (of the eight folds)

123

per dataset as we intend to measure the variance introduced by different initialization.

In Table 6.3, we observe that the standard deviation is very small for Jester dataset and

on other datasets except LastFM we observe that the standard deviation introduced by

different folds is much higher than initializations indicating robustness to initialization.

Finally, on the LastFM dataset, on all approaches except HBWL, we observe a standard

deviation larger than the standard deviation across folds obtained in Table 6.1. This is

likely because HBWL explores more weight configurations using smart resource allo-

cation. We can conclude that while the search-based approaches are reasonably robust

to initialization, this can depend on the dataset and the number of weight configurations

they are allowed to try.

Table 6.3: Mean (std) of the metrics obtained by running search-based approaches with
varied initialization. We observe that the performance of BOWL is least affected by
both initialization.

Datasets
Varied initializations

RGS CRS HBWL BOWL
Jester (MSE) 0.053 (0.001) 0.053 (0.001) 0.052 (0.001) 0.053 (0.001)
LastFM (MSE) 0.067 (0.008) 0.067 (0.006) 0.065 (0.002) 0.067 (0.006)
Citeseer (F1) 0.319 (0.007) 0.321 (0.007) 0.322 (0.008) 0.320 (0.007)
Cora (F1) 0.412 (0.006) 0.409 (0.005) 0.411 (0.005) 0.411 (0.005)
Epinions (F1) 0.714 (0.002) 0.713 (0.002) 0.714 (0.002) 0.716 (0.001)

Impact of Hyperparameter A

Here we evaluate the robustness of CRS, HBWL, and BOWL to the hyperparam-

eter A in the Dirichlet distribution when sampling for the weight configurations. We

chose four different values for A = {10, 1, 0.1, 0.01} and evaluated on one discrete

(Citeseer) dataset and one continuous (Jester) dataset. For Citeseer, we use CA as the

evalaution metric and we use MSE for the Jester dataset. We evaluate the three ap-

proaches, CRS, HBWL, and BOWL , that are impacted by A in PSL. Table 6.4 shows

the metrics obtained for different values of A on both datasets and all methods. Here,

124

we observe that the effect of A on the Citeseer datasest is minimal in all methods. This

is likely because the CA function w.r.t. weights is reasonably flat and small changes in

weights have minimal impact. Therefore as long as there is at least one sampled point

in a region, it is sufficient to get an optimal value and thus all approaches seem robust.

Next, when we consider the Jester dataset, we observe that the parameter A has a large

impact on CRS followed by HBWL. For a value of A = 0.1 CRS and HBWL per-

form the best and as it is increased to 10, we observe that both approaches produce

the worst MSE value. This is because the space generated by the Dirichlet distribution

using these parameter values is not representative of the true weight space for these two

approaches. The impact of A is smaller on HBWL than CRS as HBWL explores more

weight configurations via smart exploration. Finally, we observe that BOWL is robust

to the parameter A as it uses GP to choose the next point.

Table 6.4: Performance of different search-based approaches by varying the hyperpa-
rameter A in the Dirichlet distribution. The best metric values in every row is shown in
bold.

Datasets Methods A = 10 A = 1 A = 0.1 A = 0.01

Citeseer (CA)
CRS 0.844 0.844 0.843 0.844
HBWL 0.843 0.844 0.843 0.843
BOWL 0.844 0.844 0.845 0.843

Jester (MSE)
CRS 0.064 0.054 0.053 0.056
HBWL 0.061 0.053 0.052 0.054
BOWL 0.053 0.053 0.053 0.053

Impact of Acquisition function in BOWL

Our third experiment measures the robustness of BOWL to different acquisition

functions. In Table 6.5 we compare the performance of BOWL using four different

acquisition functions (UCB, TS, PI, and EI) for all five datasets in PSL (one metric per

dataset). On all datasets and metrics, we observe that BOWL is relatively robust to

acquisition function and performs similarly for all.

125

Table 6.5: Effect of metrics obtained by using different acquisition function with
BOWL . We observe that the performance of BOWL is unaffected by both acqui-
sition function.

Datasets
Different acquisition functions
UCB TS PI EI

Jester (MSE) 0.053 0.055 0.053 0.053
LastFM (MSE) 0.065 0.065 0.066 0.067
Citeseer (F1) 0.324 0.323 0.323 0.323
Cora (F1) 0.440 0.437 0.442 0.439
Epinions (F1) 0.711 0.712 0.713 0.713

Finally, based on these experiments it can be observed that BOWL is the most

robust to initialization, hyperparameter, and acquisition function and produces the best

evaluation metric.

6.8 Conclusion and Future work

In this chapter, we introduce four search-based approaches to learn weights in SRL.

We introduce a novel projection which results in efficient search over the best weight

configuration that maximizes a user-defined evaluation metric. We show that search-

based approaches improved performance across several metrics on a variety of differ-

ent realworld datasets. There are many avenues for expanding our work. In this chapter

we evaluate the new weight learning approaches on PSL and MLN, as two well-known

SRL frameworks. Exploring the effect of search-based approaches on the performance

of other SRL frameworks remains as an open path to explore in the future. To per-

form weight learning using search-based approaches, the SRL model needs to be fully

grounded. There are a variety of approaches for avoiding full grounding [132, 133] that

would be interesting to integrate into our approach. Further, performance of GPs are

highly dependent on the kernel function used. Therefore, in one of our search-based

approaches (Bayesian optimization for weight learning (BOWL)) that use GP, an ex-

126

ploration of different kernels for BOWL could further improve the performance of our

method.

127

A = 10, 10, 10

(a) In OS (b) In SS

A = 1, 1, 1

(c) In OS (d) In SS

A = 0.1, 0.1, 0.1

(e) In OS (f) In SS

A = 0.01, 0.01, 0.01

(g) In OS (h) In SS

Figure 6.2: Visualization of Dirichlet distribution with different values of hyperparam-
eter A for a model with three rules. Visualization shown both in OS and SS.

128

Jester LastFM Citeseer Cora Epinions
104

105

106
13.83

12.84

10.4
10.62

9.58

Datasets

N
u
m
b
e
r
o
f
G
ro

u
n
d
in
g
s
(l
o
g
sc
a
le
)

7 5 10 10 20

Number of rules

(a) Groundings generated by different datasets.

7 5 10 10 20

101

102

103

104

Number of rules

T
im

e
in

S
e
c
o
n
d
s
(l
o
g
sc
a
le
) MLE

MPLE

LME

RGS

CRS

HBWL

BOWL-SS

Jester LastFM Citeseer Cora Epinions

1M 400K 33K 41K 14K
Number of groundings

(b) Time to learn vs. # of rules and groundings in datasets.

Figure 6.3: Analyzing the scalability of different approaches w.r.t. the number of rules
and groundings. When the number of iterations is fixed, search-based approaches scale
better with both the number of rules and groundings.

129

Chapter 7

Conclusion and Future Work

In this dissertation, I addressed several challenges that improve the scalability and

accuracy of models generated using probabilistic soft logic (PSL). Specifically, I ad-

dressed four fundamental challenges in PSL: 1) how to scale structured prediction using

large graphical models; 2) how to perform structured prediction with limited memory;

3) how to perform real-time structured prediction; and 4) how to learn weights in SRL

that can maximize arbitrary evaluation functions. To tackle these challenges, I pro-

posed three novel approaches for scaling inference and taxonomy of weight learning

approaches that can optimize arbitrary evaluation functions.

7.1 Summary of Contributions

I first introduced a new method to scale MAP inference in graphical models gener-

ated through PSL that exploits symmetries in the graphical model referred to as lifted

hinge-loss Markov random fields (LHL-MRF). I showed that this approach eliminates

symmetries and perform inference on a smaller graph to recover the exact solution

obtained by performing inference on the full model. Through extensive empirical eval-

uation, I showed that this approach can have a significant impact on realworld datasets.

130

Further, I also performed an analysis to understand the impact of the approach on in-

ference and runtimes on different scenarios.

Next, I addressed the challenge of performing inference in large graphical models

on a machine with limited memory by proposing a novel approach called tandem infer-

ence (TI). This approach interleaves model instantiation and inference by performing

them both in tandem, eliminating the need for large memory. Further, by disk space to

stream data and eliminating the need to keep models in memory, the approach scales

based on disk space, which is significantly larger than the main memory. Evaluation of

several datasets showed that TI can run consistently with limited memory and run faster

than traditional approaches making them great for all large datasets.

Next, to address the challenge of performing real-time structured prediction, I in-

troduced an approach based on the trust region Newton method (TRON) for efficient

inference on small datasets. To show the power of this approach, I introduced a new

collective classification task in a product retrieval domain. I also proposed a structured

prediction approach that could outperform traditional methods in this task. Combined

with the TRON-based inference engine, I showed that it is possible to perform the struc-

tured prediction task in realtime. Through evaluations on multiple realworld datasets,

I showed that this structured prediction approach, combined with TRON-based infer-

ence, can improve precision by 12% and perform inference 150 times faster than alter-

nating directions method of multipliers.

Finally, to learn rule weights in SRL that directly optimize for evaluation metrics,

I proposed a new taxonomy of approaches based on search strategies in black-box op-

timizations. I introduced a novel and accurate projection space for the weights cru-

cial in learning the approximations of the evaluation functions. I proposed four pow-

erful weight learning strategies that can learn any arbitrary evaluation function, such

as the F1 score, using the projection space. Through empirical evaluation with five

131

realworld datasets and two metrics each on two SRL frameworks, I showed that search-

based weight learning approaches could significantly outperform likelihood-based ap-

proaches. I also analyzed the scalability and robustness of these approaches and showed

that some of the search-based methods are scalable and robust to multiple hyperparam-

eters.

7.2 Future Work

In this dissertation, I focused on addressing the challenges of three types of scal-

ability and parameter estimation in graphical models generated through SRL models.

While I primarily focused on using PSL as our SRL framework, the approaches intro-

duced in this dissertation are generic. Several of these approaches can be extended to

several other SRL frameworks to improve their scalability and accuracy. TI in specific

is a powerful technique that can improve the scalability of many other graphical models

by eliminating the need to have a large main memory. While this dissertation applies the

weight learning approaches to MLNs, a much more involved integration can extend or

introduce a new projection space that is more expressive for MLNs. While we showed

that search-based approaches are robust to hyperparameters in PSL, we observed this

to not be true for MLNs as the projection space introduced for PSL doesn’t fully apply

for MLNs. Generalizing the projection space can help improve parameter estimation

for other SRL frameworks.

In LHL-MRF, we observed that the improvement depended on not just the reduc-

tion in model size but also the hardness of the problem generated. While in general, it

is common to expect a smaller graphical model to have lower runtimes, in some cases,

this is not true. The number of iterations required for ADMM to converge can increase

when we eliminate symmetries. This can significantly increase the runtime of the ap-

proach, making LHL-MRF ineffective. Three factors affect the hardness of a problem

132

in PSL inference: 1) the structure of the problem induced from rules; 2) structure of the

problem induced from data; and 3) weights used in PSL. Analyzing and understanding

how each of these factors affects inference in PSL can significantly help address the

scalability challenge in PSL.

Next, to address the challenge of memory-constrained optimization, I introduced

TI which makes use of the disk to stream the model to perform inference. While this is

an effective approach, it is inherently serial, and the gradient-based approach proposed

can be sensitive to hyperparameters like learning rate. On the other hand, ADMM-

based inference is generally more robust to hyperparameters and is inherently parallel.

Combining multiple inference engines such that one can exploit the gradient-based ap-

proach’s streaming nature and robustness and parallelism of the ADMM-based method

could result in a significantly more scalable and efficient mechanism.

While TI and LHL-MRFs address two different types of challenges, they are orthog-

onal approaches that can be combined to improve the system’s scalability significantly.

There have been several attempts at performing lifted inference in SRL, and since most

of the are bottom-up approaches, they fail to work when model size is too large. TI on

the other hand ignores the existence of symmetries and naively assumes no symmetries

in the model. By combining these two powerful approaches, we can minimize disk

access in TI (the most expensive operation) and perform more efficient inference.

A fundamental challenge this dissertation does not address is structure learning in

graphical models generated through SRL frameworks. We improved the accuracy of a

model by optimizing the weights of the rules. However, these rules might not be the op-

timal set of rules one can use with a dataset. We refer to the task of identifying relevant

rules from data as structure learning. Many previously proposed approaches perform

structure learning in SRL frameworks [102, 80, 81, 126]; however, they generally do

not scale to large datasets. Some scalable systems however, limit themselves to only

133

path-based rules [51, 52] or non-collective rules [73, 74]. These generally limit the

models learned. By exploiting many of the techniques mentioned in the dissertation,

creating a scalable structure learning system could significantly improve the model ac-

curacy.

Another growing area of research in machine learning is interpretability and ex-

plainability [1]. With the prolific use of machine learning across applications, it be-

comes critical to have the ability to explain predictions [44, 2]. Many statistical learning

methods are both not very interpretable and explainable. Generally, they need several

post-processing steps to be able to interpret the model and generate explanations. How-

ever, SRL approaches are uniquely placed as they define a model through weighted

logical rules which are inherently interpretable which makes generating explanations

more straightforward and accurate [76, 94, 88, 87]. While generating explanations us-

ing SRL models can be simpler than statistical methods, they still pose several of the

scaling challenges that exist in inference. It will be crucial to ensure that we can gener-

ate explanations on large graphical models with high accuracy.

134

Bibliography

[1] ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT).
https://facctconference.org/.

[2] A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018.

[3] Somak Aditya, Yezhou Yang, and Chitta Baral. Explicit reasoning over end-to-
end neural architectures for visual question answering. In AAAI, 2018.

[4] Charu C. Aggarwal. Data Classification: Algorithms and Applications. Chap-
man & Hall/CRC, 2014.

[5] Sanjay Agrawal, Kaushik Chakrabarti, Surajit Chaudhuri, Venkatesh Ganti,
Arnd Christian Konig, and Dong Xin. Exploiting web search engines to search
structured databases. In WWW, 2009.

[6] Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Ex-
ploiting symmetries for scaling loopy belief propagation and relational training.
MLJ, 92:91–132, 2013.

[7] Babak Ahmadi, Kristian Kersting, and Scott Sanner. Multi-evidence lifted mes-
sage passing, with application to pagerank and the kalman filter. In IJCAI, 2011.

[8] Duhai Alshukaili, Alvaro A. A. Fernandes, and Norman W. Paton. Structuring
linked data search results using probabilistic soft logic. In ISWC, 2016.

[9] Eriq Augustine and Lise Getoor. A comparison of bottom-up approaches to
grounding for templated Markov random fields. In SysML, 2018.

[10] Eriq Augustine, Theodoros Rekatsinas, and Lise Getoor. Tractable probabilistic
reasoning through effective grounding. In ICML workshop on Tractable Proba-
bilistic Modeling, 2019.

[11] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-loss
Markov random fields and probabilistic soft logic. Journal of Machine Learning
Research, 18:109:1–109:67, 2017.

135

https://facctconference.org/

[12] Stephen H. Bach, Bert Huang, and Lise Getoor. Large-margin structured learning
for link ranking. In NIPS Workshop on Frontiers of Network Analysis: Methods,
Models, and Applications, 2013.

[13] Stephen H. Bach, Bert Huang, and Lise Getoor. Learning latent groups with
hinge-loss Markov random fields. In ICML Workshop on Inferning: Interactions
between Inference and Learning, 2013.

[14] Stephen H. Bach, Bert Huang, Ben London, and Lise Getoor. Hinge-loss Markov
Random Fields: Convex Inference for Structured Prediction. In UAI, 2013.

[15] Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola,
Ben Taskar, and S. V. N. Vishwanathan. Predicting Structured Data (Neural
Information Processing). The MIT Press, 2007.

[16] Islam Beltagy, Katrin Erk, and Raymond J. Mooney. Probabilistic soft logic for
semantic textual similarity. In ACL, 2014.

[17] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. JMLR, 13(null):281–305, 2012.

[18] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. In NIPS, 2011.

[19] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational
data. TKDD, 1:1–36, 2007.

[20] Christopher M Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, 2006.

[21] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine Learning, 2011.

[22] Eric Brochu, Tyson Brochu, and Nando de Freitas. A Bayesian Interactive Opti-
mization Approach to Procedural Animation Design. In SIGGRAPH, 2010.

[23] Guy Van den Broeck and Adnan Darwiche. On the complexity and approxima-
tion of binary evidence in lifted inference. In NIPS, 2013.

[24] Hung Hai Bui, Tuyen N. Huynh, and Sebastian Riedel. Automorphism groups
of graphical models and lifted variational inference. In UAI, 2013.

[25] Hung Hai Bui, Tuyen N. Huynh, and David Sontag. Lifted tree-reweighted vari-
ational inference. In UAI, 2014.

136

[26] Michael J. Cafarella, Michele Banko, and Oren Etzioni. Relational web search.
In WWW, 2006.

[27] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted
model counting. Artif. Intell., 172(6-7):772–799, 2008.

[28] Po-Ta Chen, Feng Chen, and Zhen Qian. Road traffic congestion monitoring in
social media with hinge-loss Markov random fields. In ICDM, 2014.

[29] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
KDD, 2016.

[30] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning.
arXiv, 2015.

[31] Paolo Codenotti, Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Conflict
analysis and branching heuristics in the search for graph automorphisms. In
ICTAI, 2013.

[32] Michael Collins. Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms. In EMNLP, 2002.

[33] Mayukh Das, Devendra Singh Dhami, Gautam Kunapuli, Kristian Kersting, and
Sriraam Natarajan. Fast relational probabilistic inference and learning: Approx-
imate counting via hypergraphs. In AAAI, 2019.

[34] Mayukh Das, Yuqing Wu, Tushar Khot, Kristian Kersting, and Sriraam Natara-
jan. Scaling lifted probabilistic inference and learning via graph databases. In
SDM, 2016.

[35] Mayukh Das, Yuqing Wu, Tushar Khot, Kristian Kersting, and Sriraam Natara-
jan. Scaling lifted probabilistic inference and learning via graph databases. In
SDM, 2016.

[36] L. De Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical Relational Ar-
tificial Intelligence: Logic, Probability, and Computation. Morgan & Claypool,
2016.

[37] Luc De Raedt and Kristian Kersting. Statistical relational learning. In Encyclo-
pedia of Machine Learning. 2011.

[38] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic
inference. In IJCAI, 2005.

[39] Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical mod-
els. Artif. Intell., 171(2-3):73–106, 2007.

137

[40] Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Lifted relax, compen-
sate and then recover: From approximate to exact lifted probabilistic inference.
In UAI, 2012.

[41] Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De
Raedt. Lifted probabilistic inference by first-order knowledge compilation. In
IJCAI, 2011.

[42] Lingjia Deng and Janyce Wiebe. Joint prediction for entity/event-level sentiment
analysis using probabilistic soft logic models. In EMNLP, 2015.

[43] Javid Ebrahimi, Dejing Dou, and Daniel Lowd. Weakly supervised tweet stance
classification by relational bootstrapping. In EMNLP, 2016.

[44] Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baro, Yagmur Gu-
cluturk, Umut Guclu, and Marcel van Gerven. Explainable and Interpretable
Models in Computer Vision and Machine Learning. Springer, 2018.

[45] Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, and
Mohit Kumar. Zoobp: Belief propagation for heterogeneous networks. VLDB,
2017.

[46] Shobeir Fakhraei, Bert Huang, Louiqa Raschid, and Lise Getoor. Network-based
drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 2014.

[47] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. JMLR, 9:1871–1874,
2008.

[48] Sholeh Forouzan and Alexander Ihler. Linear approximation to admm for map
inference. In JMLR W&CP, pages 48–61, 2013.

[49] Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics, 2000.

[50] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-
tems: The Complete Book. Prentice Hall Press, 2008.

[51] Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel, and Tom Mitchell. Improv-
ing learning and inference in a large knowledge-base using latent syntactic cues.
2013.

[52] Matt Gardner, Partha Pratim Talukdar, Jayant Krishnamurthy, and Tom Mitchell.
Incorporating vector space similarity in random walk inference over knowledge
bases. In EMNLP, 2014.

138

[53] Lise Getoor. Learning probabilistic relational models. In SARA. Springer, 2000.

[54] Lise Getoor and John Grant. Prl: A probabilistic relational language. Machine
Learning, 2006.

[55] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. The
MIT Press, 2007.

[56] Vibhav Gogate and Pedro M. Domingos. Exploiting logical structure in lifted
probabilistic inference. In StarAI Workshop at AAAI, 2010.

[57] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A
constant time collaborative filtering algorithm. IR, 4:133–151, 2001.

[58] Siddharth Gopal and Yiming Yang. Distributed training of large-scale logistic
models. In ICML, 2013.

[59] Mourad Gridach, Hatem Haddad, and Hala Mulki. Churn identification in mi-
croblogs using convolutional neural networks with structured logical knowledge.
In ACL workshop on Noisy User-generated Text, 2017.

[60] Martin Grohe, Kristian Kersting, Martin Mladenov, and Pascal Schweitzer. An
Introduction to Lifted Probabilistic Inference, chapter Color Refinement and its
Applications. Cambridge University Press, 2017.

[61] Benjamin Haeffele, Eric Young, and Rene Vidal. Structured low-rank matrix
factorization: Optimality, algorithm, and applications to image processing. In
ICML, 2014.

[62] Chih-Yang Hsia, Ya Zhu, and Chih-Jen Lin. A study on trust region update rules
in newton methods for large-scale linear classification. In ACML, 2017.

[63] Tuyen N Huynh and Raymond J Mooney. Max-margin weight learning for
markov logic networks. In ECML, 2009.

[64] Tuyen N. Huynh and Raymond J. Mooney. Online Max-margin Weight Learning
with Markov Logic Networks. In AAAI, 2010.

[65] M. M. Islam, K. Mohammad Al Farabi, S. Sarkhel, and D. Venugopal. Scaling
up inference in mlns with spark. In Big Data, 2018.

[66] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane
training of structural svms. Mach. Learn., 77:27–59, 2009.

[67] Henry Kautz, Bart Selman, and Yueyen Jiang. A general stochastic approach to
solving problems with hard and soft constraints. In SAT, 1996.

139

[68] Seyed M Kazemi and David Poole. Knowledge compilation for lifted probabilis-
tic inference: Compiling to a low-level language. In KR, 2016.

[69] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting de-
cision tree. In NIPS. 2017.

[70] Kristian Kersting. Lifted probabilistic inference. In ECAI, 2012.

[71] Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan. Counting belief prop-
agation. In UAI, 2009.

[72] Kristian Kersting, Youssef El Massaoudi, Babak Ahmadi, and Fabian Hadiji.
Informed lifting for message-passing. In AAAI, 2010.

[73] Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude Shavlik. Learning
Markov logic networks via functional gradient boosting. In ICDM, 2011.

[74] Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude Shavlik. Gradient-
based boosting for statistical relational learning: the markov logic network and
missing data cases. Machine Learning, 100(1):75–100, 2015.

[75] Dae Il Kim, Prem K Gopalan, David Blei, and Erik Sudderth. Efficient online
inference for bayesian nonparametric relational models. In NIPS. 2013.

[76] Angelika Kimmig, Luc De Raedt, and Hannu Toivonen. Probabilistic explana-
tion based learning. In ECML, 2007.

[77] Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. Lifted graphical mod-
els: a survey. Machine Learning, 99(1):1–45, 2015.

[78] Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. Lifted graphical mod-
els: a survey. MLJ, 99:1–45, 2015.

[79] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2014.

[80] Stanley Kok and Pedro Domingos. Learning Markov logic network structure via
hypergraph lifting. In ICML, 2009.

[81] Stanley Kok and Pedro Domingos. Learning Markov logic networks using struc-
tural motifs. In ICML, 2010.

[82] Xiangnan Kong, Philip S. Yu, Ying Ding, and David J. Wild. Meta path-based
collective classification in heterogeneous information networks. In CIKM, 2012.

140

[83] Arlind Kopliku, Karen Pinel-Sauvagnat, and Mohand Boughanem. Aggregated
search: A new information retrieval paradigm. ACM CS, 46(3):41:1–41:31,
2014.

[84] Pigi Kouki, Shobeir Fakhraei, James Foulds, Magdalini Eirinaki, and Lise
Getoor. HyPER: A flexible and extensible probabilistic framework for hybrid
recommender systems. In RecSys, 2015.

[85] Pigi Kouki, Jay Pujara, Christopher Marcum, Laura M. Koehly, and Lise Getoor.
Collective entity resolution in familial networks. In ICDM, 2017.

[86] Pigi Kouki, Jay Pujra, Christopher Marcum, Laura Koehly, and Lise Getoor. Col-
lective entity resolution in multi-relational familial networks. KAIS, 2018.

[87] Pigi Kouki, James Schaffer, Jay Pujara, John O’Donovan, and Lise Getoor. Gen-
erating and understanding personalized explanations in hybrid recommender
systems. 9, 2019.

[88] Pigi Kouki, James Schaffer, Jay Pujara, John O’Donovan, and Lise Getoor. Per-
sonalized explanations for hybrid recommender systems. In IUI, Marina del Ray,
CA, USA, 2019. ACM.

[89] H. J. Kushner. A new method of locating the maximum point of an arbitrary mul-
tipeak curve in the presence of noise. Journal of Basic Engineering, 86(1):97–
106, 1964.

[90] Sarasi Lalithsena, Sujan Perera, Pavan Kapanipathi, and Amit P. Sheth. Domain-
specific hierarchical subgraph extraction: A recommendation use case. In IEEE
Big Data, 2017.

[91] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter opti-
mization. JMLR, 18:1–52, 2018.

[92] Chih-Jen Lin and Jorge J. Moré. Newton’s method for large bound-constrained
optimization problems. SIAM J. on Optimization, 1999.

[93] Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. Trust region newton method
for logistic regression. JMLR, 9(Apr):627–650, 2008.

[94] M. Lippi. Statistical relational learning for game theory. T-CIAIG, 8(4):412–425,
2016.

[95] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic
gait optimization with gaussian process regression. In IJCAI, 2007.

141

[96] Daniel Lowd and Pedro Domingos. Efficient Weight Learning for Markov Logic
Networks. In KDD, 2007.

[97] Sara Magliacane, Philip Stutz, Paul Groth, and Abraham Bernstein. foxPSL: A
fast, optimized and extended psl implementation. IJAR, 67:111–121, 2015.

[98] George Marsaglia. Choosing a point from the surface of a sphere. Ann. Math.
Statist., 43(2):645–646, 1972.

[99] Ruben Martinez-Cantin, Nando de Freitas, Eric Brochu, José A. Castellanos,
and Arnaud Doucet. A Bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot. Auton. Robots,
27(2):93–103, 2009.

[100] Nickel Maxmilien, Murphy Kevin, Tresp Volker, and Gabrilovich Evgeniy. A
review of relational machine learning for knowledge graphs. Proceedings of the
IEEE, 104(1):11–33, 2016.

[101] Rada F. Mihalcea and Dragomir R. Radev. Graph-based Natural Language Pro-
cessing and Information Retrieval. Cambridge University Press, 2011.

[102] Lilyana Mihalkova and Raymond J Mooney. Bottom-up learning of Markov
logic network structure. In ICML, 2007.

[103] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
NIPS. 2013.

[104] Martin Mladenov, Babak Ahmadi, and Kristian Kersting. Lifted linear program-
ming. In AIStats, 2012.

[105] Martin Mladenov, Danny Heinrich, Leonard Kleinhans, Felix Gonsior, and Kris-
tian Kersting. Reloop: A python-embedded declarative language for relational
optimization. In Workshops at the Thirtieth AAAI Conference on Artificial Intel-
ligence, 2016.

[106] Martin Mladenov and Kristian Kersting. Equitable partitions of concave free
energies martin. In UAI, 2015.

[107] Martin Mladenov, Kristian Kersting, and Amir Globerson. Efficient lifting of
MAP LP relaxations using k-locality. In AIStats, 2014.

[108] Martin Mladenov, Leonard Kleinhans, and Kristian Kersting. Lifted inference
for convex quadratic programs. In AAAI, 2017.

[109] Jonas Mockus. On Bayesian Methods for Seeking the Extremum and their Ap-
plication. In IFIP Congress, 1977.

142

[110] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of
Bayesian methods for seeking the extremum. In TGO, 1978.

[111] Mervin E. Muller. A note on a method for generating points uniformly on n-
dimensional spheres. Commun. ACM, 2(4):19–20, 1959.

[112] Houssam Nassif, Yirong Wu, David Page, and Elizabeth S. Burnside. Logical
differential prediction bayes net, improving breast cancer diagnosis for older
women. In AMIA, 2012.

[113] Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G Dietterich, Alan
Fern, and Angelo Restificar. Learning first-order probabilistic models with com-
bining rules. In ICML, 2005.

[114] Aniruddh Nath and Pedro Domingos. Efficient lifting for online probabilistic
inference. In AAAI Workshop on StarAI, 2010.

[115] Jennifer Neville and David Jensen. Relational dependency networks. pages
653–692, 2007.

[116] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling up
statistical inference in Markov logic networks using an rdbms. In VLDB, 2011.

[117] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Com-
parative analysis of approximate blocking techniques for entity resolution.
PVLDB Endow., 9(9):684–695, 2016.

[118] Singla Parag and Domingos Pedros. Entity resolution with markov logic. In
ICDM, 2006.

[119] David Poole. First-order probabilistic inference. In IJCAI, 2003.

[120] Hoifung Poon and Pedro Domingos. Sound and efficient inference with proba-
bilistic and deterministic dependencies. In AAAI, 2006.

[121] Jay Pujara, Eriq Augustine, and Lise Getoor. Sparsity and noise: Where knowl-
edge graph embeddings fall short. In EMNLP, 2017.

[122] Jay Pujara, Ben London, and Lise Getoor. Budgeted online collective inference.
In UAI, 2015.

[123] Jay Pujara, Ben London, Lise Getoor, and William Cohen. Online inference for
knowledge graph construction. In StarAI, 2015.

[124] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph iden-
tification. In ISWC, 2013.

143

[125] Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman. Fractional
isomorphism of graphs. Discrete Mathematics, 1994.

[126] Nandini Ramanan, Gautam Kunapuli, Tushar Khot, Bahare Fatemi,
Seyed Mehran Kazemi, David Poole, Kristian Kersting, and Sriraam Natarajan.
Structure learning for relational logistic regression: An ensemble approach. In
KRR, 2018.

[127] Arti Ramesh, Mario Rodriguez, and Lise Getoor. Multi-relational influence mod-
els for online professional networks. In WI, 2017.

[128] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Col-
laborative filtering with graph information: Consistency and scalable methods.
In NIPS, 2015.

[129] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[130] Matthew Richardson and Pedro Domingos. Markov logic networks. MLJ,
62:107–136, 2006.

[131] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[132] Somdeb Sarkhel, Parag Singla, and Vibhav Gogate. Fast lifted map inference via
partitioning. In NIPS, 2015.

[133] Somdeb Sarkhel, Deepak Venugopal, Tuan Anh Pham, Parag Singla, and Vibhav
Gogate. Scalable training of Markov logic networks using approximate counting.
In AAAI, 2016.

[134] Somdeb Sarkhel, Deepak Venugopal, Parag Singla, and Vibhav Gogate. Lifted
MAP inference for Markov logic networks. In AIStats, 2014.

[135] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Bisimulation-based approxi-
mate lifted inference. In UAI, 2009.

[136] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
lagher, and Tina Eliassi-Rad. Collective classification in network data. vol-
ume 29, pages 93–106, 2008.

[137] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Fre-
itas. Taking the Human Out of the Loop: A Review of Bayesian Optimization.
Proceedings of the IEEE, 104(1):148–175, 2016.

144

[138] Jude Shavlik and Sriraam Natarajan. Speeding up inference in Markov logic
networks by preprocessing to reduce the size of the resulting grounded network.
In IJCAI, 2009.

[139] Parag Singla and Pedro Domingos. Discriminative Training of Markov Logic
Networks. In AAAI, 2005.

[140] Parag Singla and Pedro M. Domingos. Lifted first-order belief propagation. In
AAAI, 2008.

[141] Parag Singla, Aniruddh Nath, and Pedro Domingos. Approximate lifting tech-
niques for belief propagation. In AAAI, 2014.

[142] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Opti-
mization of Machine Learning Algorithms. In NIPS, 2012.

[143] Dhanya Sridhar, Shobeir Fakhraei, and Lise Getoor. A probabilistic approach
for collective similarity-based drug-drug interaction prediction. Bioinformatics,
32(20):3175–3182, 2016.

[144] Dhanya Sridhar, Jay Pujara, and Lise Getoor. Scalable probabilistic causal struc-
ture discovery. In IJCAI, 2018.

[145] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaus-
sian process optimization in the bandit setting: No regret and experimental de-
sign. In ICML, 2010.

[146] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger.
Information-theoretic regret bounds for gaussian process optimization in the ban-
dit setting. information theory. IEEE Transactions on, page 3265, 2012.

[147] Sriram Srinivasan*, Eriq Augustine*, and Lise Getoor. Tandem inference: An
out-of-core streaming algorithm for very large-scale relational inference. In
AAAI, 2020.

[148] Sriram Srinivasan, Behrouz Babaki, Golnoosh Farnadi, and Lise Getoor. Lifted
hinge-loss Markov random fields. In AAAI, 2019.

[149] Sriram Srinivasan, Golnoosh Farnadi, and Lise Getoor. Bayesian optimization
for weight learning in probabilistic soft logic. In AAAI, 2020.

[150] Sriram Srinivasan, Nikhil S Rao, Karthik Subbaian, and Lise Getoor. Identifying
facet mismatches in search via micrographs. In CIKM, 2019.

[151] Charles Sutton and Andrew McCallum. An introduction to conditional random
fields. FTML, 4:267–373, 2012.

145

[152] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks.
In NIPS, 2003.

[153] W.R. Thompson. On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples. Biometrika, 25(3–4):285––294,
1933.

[154] Ingo Thon, Niels Landwehr, and Luc De Raedt. Stochastic relational processes:
Efficient inference and applications. MLJ, 82(2):239–272, 2011.

[155] Deepak Venugopal and Vibhav Gogate. Evidence-based clustering for scalable
inference in markov logic. In ECML, 2014.

[156] Deepak Venugopal and Vibhav Gogate. Evidence-based clustering for scalable
inference in Markov logic. In ECML, 2014.

[157] Deepak Venugopal, Somdeb Sarkhel, and Vibhav Gogate. Just count the satisfied
groundings: scalable local-search and sampling based inference in MLNs. In
AAAI, 2015.

[158] Deepak Venugopal, Somdeb Sarkhel, and Vibhav Gogate. Magician: Scalable
inference and learning in markov logic using approximate symmetries. Technical
report, Department of Computer Science, The University of Memphis, 2016.

[159] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey
of approaches and applications. TKDE, 29(12):2724–2743, 2017.

[160] Wei-Chung Wang and Lun-Wei Ku. Identifying chinese lexical inference using
probabilistic soft logic. In ASONAM, 2016.

[161] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P. Yu, and Yanfang Ye.
Heterogeneous graph attention network. In ICWC, 2019.

[162] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Fre-
itas. Bayesian optimization in a billion dimensions via random embeddings. J.
Artif. Int. Res., 55(1):361–387, 2016.

[163] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian.
Large-scale knowledge base completion: Inferring via grounding network sam-
pling over selected instances. In CIKM, 2015.

[164] Benyu Zhang, Hua Li, Yi Liu, Lei Ji, Wensi Xi, Weiguo Fan, Zheng Chen, and
Wei-Ying Ma. Improving web search results using affinity graph. In SIGIR,
2005.

146

[165] Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and
Yangyong Zhu. Deep collective classification in heterogeneous information net-
works. In WWW, 2018.

[166] Xiaojin Zhu, Andrew Goldberg, Jurgen Van Gael, and David Andrzejewski. Im-
proving diversity in ranking using absorbing random walks. In ACL, 2007.

147

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Structured Prediction Using SRL Frameworks
	Challenge 1: Structured Prediction Using Large Graphical Models
	Challenge 2: Memory-Constrained Structured Prediction
	Challenge 3: Real-time Structured Prediction
	Challenge 4: Metric-Optimized Parameter Estimation

	Contributions
	Organization

	Background in SRL
	Statistical Relational Learning
	Markov Logic Networks
	Diagonal Newton Method for Weight Learning (DN)

	Probabilistic Soft Logic
	Maximum Likelihood Estimation (MLE)
	Maximum Pseudolikelihood Estimation (MPLE)
	Large-Margin Estimation (LME)

	Lifted hinge-loss Markov random field
	Introduction
	Related work
	Background
	Color refinement

	Method
	Lifted HL-MRFs (LHL-MRFs)
	Correctness of the method

	Empirical Evaluation
	Conclusion and Future work

	Tandem Inference: An Out-of-Core Streaming Algorithm For Very Large-Scale Relational Inference
	Introduction
	Related Work
	Tandem Inference
	Streaming Grounding
	Streaming Inference

	Empirical Evaluation
	Scale, Speed, and Convergence
	Memory Efficiency
	Optimizer Efficiency and Learning Rate

	Conclusion and Future Work

	Real-Time Structured Prediction Using PSL
	Introduction
	Contributions and Organization

	Related Work
	Problem definition and traditional approach
	Facet mismatch classification
	Traditional approach

	Relational structure and micrographs
	Structured Mismatch Classification
	Using tmc Predictions
	Using Product Similarities
	Incorporating Confidences into Mismatch Detection
	Regularization via Priors

	Scalability
	Empirical Evaluation
	Datasets and Models
	Experimental setup and evaluation

	Conclusion and Future Work

	A Taxonomy of Weight Learning Methods for Statistical Relational Learning
	Introduction
	Related Work
	Background
	Black-box optimization
	Gaussian Process Regression

	Search-Based Approaches for Weight Learning
	Motivating Example
	Problem definition
	Random Grid Search for Weight Learning
	Continuous Random Search for Weight Learning
	Hyperband for Weight Learning
	Bayesian Optimization for Weight Learning
	Efficiency of Search-Based Approaches

	Efficient Space to Search for Weights
	Challenges in the Original Space
	Scaled Space
	The Effect of Varied Number of Groundings in the Scaled Space
	Sampling Weight Configurations for Search

	Accommodating Negative Weights in Markov Logic Networks
	Empirical Evaluation
	Performance analysis
	Scalability
	Robustness

	Conclusion and Future work

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography

