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ABSTRACT OF THE DISSERTATION 
 

Revealing translational and fundamental biological insights via computational analysis of single-

cell sequencing data 

 

 

by 

 

Jessica Lu Zhou 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2023 

Professor Graham McVicker, Chair 

Professor Bing Ren, Co-Chair   
 

Single-cell sequencing has emerged as a powerful tool for dissecting cellular heterogeneity and 

providing cell type-specific biological insights. Single-cell sequencing technologies have rapidly 

proliferated over the last decade, leading to an explosion of data generated from such 

experiments. However, several challenges exist in the computational analysis of single-cell 

sequencing data due to its large and complex nature, including the need for sophisticated 

statistical methods to distinguish biologically meaningful signals from noise, the integration of 

single-cell sequencing data with other types of biological information, and the development of 

scalable and reproducible computational pipelines that can handle the large and complex nature 

of the data. In this dissertation, I present two distinct projects analyzing single-cell sequencing 
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data. The first is of an analytical nature and tackles a translational question. In this project, I built 

computational pipelines for processing and analyzing single-nucleus RNA- and ATAC-

sequencing datasets generated from the amygdalae of genetically diverse heterogenous stock 

rats, which were subjected to a behavioral protocol for studying addiction-like behaviors 

following cocaine self-administration. In doing so, I provide a standard reference for analyzing 

such data as well as reveal cell type-specific insights into the molecular underpinnings of cocaine 

addiction. The second project is oriented towards methods development and seeks to understand 

the fundamental biological question of transcriptional regulation. Here, I developed a statistical 

framework for simulating and modeling data from single-cell CRISPR regulatory screens and 

used it to perform a genome-wide interrogation of epistatic-like interactions between enhancer 

pairs. I found that multiple enhancers act together in a multiplicative fashion with little evidence 

for interactive effects between them. This work revealed novel insights into the collective 

behavior of multiple regulatory elements and provides a tool that can be applied to future 

datasets generated from such experiments. This dissertation exemplifies how computational 

methods can be applied in different contexts to extract meaning from a variety of single-cell 

sequencing modalities. By tackling both a translational and fundamental biological question, I 

have showcased the breadth of what can be revealed by studying single-cell sequencing data and 

the computational methods necessary to extract this information. 
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INTRODUCTION 

Single-cell sequencing is a powerful technology that allows the genetic material of 

individual cells to be captured and analyzed, providing unprecedented insights into the genomic 

landscapes of complex biological systems. The origins of single-cell sequencing can be traced 

back to the early 1990s1,2, when the first methods for amplifying and analyzing DNA from single 

cells were developed. However, it was not until the advent of next-generation sequencing 

technologies in the mid-2000s that single-cell sequencing began to truly revolutionize genomics 

research. The first report of single-cell transcriptome analysis using a next-generation sequencing 

platform was published by Tang et al. in 20093, which studied a single mouse blastomere and 

reported improvements over microarray techniques.   

Since then, advances in single-cell sequencing technologies have rapidly proliferated and 

it has become a critical tool for many areas of biology, including developmental biology, 

immunology, neurobiology, cancer research, and microbiology. By enabling the study of 

individual cells rather than entire tissues or populations of cells, single-cell sequencing has 

revealed previously hidden cellular diversity, identified novel cell types and subpopulations, and 

provided new insights into the mechanisms underlying cell differentiation and disease. 

The popularity of single-cell sequencing over the past decade has also led to an explosion 

of datasets generated from such experiments, which must be carefully analyzed to extract 

valuable biological insights. However, the computational analysis of single-cell sequencing data 

presents several notable challenges. First, the data generated by single-cell sequencing 

technologies are large and complex, consisting of millions of short reads or transcript counts for 

each individual cell. This requires significant computational resources and specialized algorithms 

for data processing, normalization, and analysis. 
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Second, single-cell sequencing data are highly heterogeneous, reflecting the inherent 

variability in gene expression, chromatin accessibility, or other molecular features across 

individual cells. This can also include technical noise introduced during sample preparation and 

sequencing, such as batch effects, dropouts, and amplification bias, which can affect the 

accuracy and reproducibility of downstream analyses. This requires sophisticated statistical 

methods for identifying biologically meaningful signals and distinguishing them from noise. 

Finally, the interpretation of single-cell sequencing data requires integration with other 

types of biological information, such as gene annotations, pathway databases, and cell type 

reference maps. This requires the development of sophisticated computational tools for data 

integration and visualization, as well as a deep understanding of the biological context and 

hypotheses under investigation. 

For these reasons, conducting proper analyses of single-cell sequencing data with the 

goal of extracting meaningful and accurate biological insights is no trivial task. In my 

dissertation, I have performed computational analyses of different single-cell sequencing 

modalities and demonstrated how the findings can answer both translational and fundamental 

biological questions. In the first chapter, I conducted an exploratory analysis of single-nucleus 

RNA- and ATAC-sequencing data generated from the amygdala of rats subjected to a behavioral 

protocol for intravenous cocaine self-administration. In doing so, I revealed cell type-specific 

molecular features that are associated with addiction-like behaviors and present standardized 

computational pipelines for processing and analyzing these data. In my second chapter, I present 

a statistical framework for simulating and modeling single-cell RNA-sequencing (scRNA-seq) 

readout from a CRISPR interference (CRISPRi) experiment that targeted putative enhancers in 

the genome. My models were designed to evaluate whether pairs of enhancers display epistatic-
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like interaction effects on target gene expression and is the first genome-wide evaluation of this 

phenomenon. My findings provide novel insights into the activity of multiple enhancers acting in 

tandem to answer important questions in the field of gene regulation. Additionally, my statistical 

framework is one of the first designed specifically for interpretation of CRISPR screens 

performed in single cells. Such experiments integrate two cutting-edge and powerful 

technologies that each come with their own set of challenges when it comes to data analysis and 

interpretation. Thus, in developing my models, I explored the unique statistical considerations 

that must be accounted for when analyzing data from single-cell sequencing experiments 

performed in unique contexts.  

In conclusion, single-cell sequencing has had a profound impact on genomics research, 

revealing the complexity and diversity of biological systems in ways that were previously 

impossible. Its continued development and application are likely to have far-reaching 

implications for our understanding of biology and for the development of new therapeutic 

approaches. Therefore, ensuring that we have a thorough understanding of the best practices for 

how to analyze the data generated by such experiments is an essential area of study. My 

dissertation details several computational approaches for analyzing data from different types of 

single-cell sequencing experiments and demonstrates the value of these analyses through the 

biological insights that they provide, both for translational and fundamental questions in 

biological research. Altogether, my work has made important contributions towards our 

understanding of best practices for computational analysis of single-cell sequencing data while 

also providing impactful biological findings along the way.  
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CHAPTER 1: Cocaine addiction-like behaviors are associated with long-term changes in gene 

regulation, energy metabolism, and GABAergic inhibition within the amygdala 

1.1: Abstract 

The amygdala processes positive and negative valence and contributes to the 

development of addiction, but the underlying cell type-specific gene regulatory programs are 

unknown. We generated an atlas of single nucleus gene expression and chromatin accessibility in 

the amygdala of outbred rats with low and high cocaine addiction-like behaviors following 

prolonged abstinence. Between rats with different addiction indexes, we identified thousands of 

cell type-specific differentially expressed genes enriched for energy metabolism-related 

pathways that are known to affect synaptic transmission and action potentials. Rats with high 

addiction-like behaviors showed enhanced GABAergic transmission in the amygdala, which, 

along with relapse-like behaviors, were reversed by inhibition of Glyoxalase 1, which 

metabolizes the GABAA receptor agonist methylglyoxal. Finally, we identified thousands of cell 

type-specific chromatin accessible sites and transcription factor (TF) motifs where accessibility 

was associated with addiction index, most notably at motifs for pioneer TFs in the Fox, Sox, 

helix-loop-helix, and AP1 families. 

1.2: Introduction 

 The amygdala is a key brain region involved in regulating a wide range of behaviors, 

including those related to emotions, motivation and memory1. In response to rewarding or 

aversive environmental stimuli, the amygdala allows organisms to engage in subsequent valence-

specific behaviors by determining the value of different stimuli and guiding decision-making 

based on potential outcomes1. The amygdala is implicated in numerous neuropsychiatric 

disorders including addiction2–4. Repeated drug use leads to a heightened sense of pleasure, 
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which engages the amygdala to form drug-associated memories and reinforces drug-seeking 

behavior, as the individual is motivated to seek out and use the drug again to experience the 

rewarding effects5. In addition, during withdrawal from addictive drugs, the amygdala mediates 

negative emotional states, such as anxiety, fear, and irritability5. Avoidance of these aversive 

emotions enhances the incentive value of the drug, leading to sustained drug-seeking behaviors 

and relapse6–8. Because prevention of relapse is the cornerstone of effective treatments for 

addiction, it is important to understand the amygdala’s role in addiction and relapse. 

The amygdala is composed of multiple discrete and interconnected subregions, each 

characterized by highly specialized neuronal populations distinguishable by their morphology 

and electrophysiological properties9. The major subdivisions include the basolateral amygdala 

(BLA), composed of excitatory glutamatergic neurons and GABAergic inhibitory interneurons, 

and the central amygdala (CeA), composed of GABAergic neurons10–12. While the behavioral 

function and connectivity of individual subregions of the amygdala have recently been 

established1, the mechanisms by which distinct subpopulations of neuronal and non-neuronal 

cells contribute to its function remains unclear. 

Single-cell genomics is a powerful new approach for determining the cellular function 

and diversity of complex tissues like the amygdala. Single-cell RNA-sequencing (scRNA-seq), 

which profiles gene expression in individual cells, has identified and cataloged diverse cell types 

in human, mouse, and non-human primate brains13–19. In addition, single-cell assays for 

transposase-accessible chromatin (scATAC-seq), which profile chromatin accessibility at single 

cell resolution, have identified regulatory DNA sequences in the rodent and human brain13,20–26. 

Regulatory elements identified by scATAC-seq include promoters and enhancers, which confer 
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cell type-specificity to gene expression by recruiting sequence-specific transcription factors 

(TFs)27–30.  

Single cell assays have the potential to reveal, at a molecular level, how specialized 

amygdalar cell populations are involved in addiction. For example, given that most genetic 

variants associated with complex human diseases like addiction are located in noncoding regions 

of the genome31, snATAC-seq could uncover genetically determined, cell-type specific 

differences and facilitate functional interpretation of genetic variants32. Thus far, however, the 

application of single-cell assays to the study of addiction-like behaviors in rodents has been 

limited. Single nucleus RNA-seq (snRNA-seq) has been applied to characterize cellular diversity 

in brain regions involved in the reward system33–36 and has been used to analyze transcriptional 

changes induced by cocaine and morphine37,38. However, these prior studies used isogenic 

rodents, which means that genetically-mediated differences in susceptibility to addiction-like 

behaviors were not examined. Furthermore, these studies performed experiments following 

acute, experimenter-administration of drug treatments, which means that they reflect the acute 

effects of involuntary drug use rather than molecular differences associated with the 

development of long-lasting addictive-like behaviors. For these reasons, the results from prior 

single nucleus studies have significant limitations. 

To address this knowledge gap, we performed snRNA-seq and snATAC-seq using 

amygdala tissue from outbred rats obtained from a large genetic study of cocaine addiction-

related traits39. These rats are subjected to prolonged abstinence from voluntary cocaine intake in 

a well-validated model of extended access to drug intravenous self-administration (IVSA)6,39–41. 

IVSA is associated with neurochemical changes in key brain regions, which are thought to be 

similar to those observed in humans with cocaine use disorder42. This study used outbred 
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heterogeneous stock (HS) rats because they have high levels of genetic variation and rich 

phenotypic diversity43–46. By analyzing differences in gene expression and chromatin 

accessibility in rats with high and low addiction indexes (AI), we identified genes and 

transcriptional regulators associated with cocaine addiction-like behaviors, including those 

implicated in energy metabolism and neurotransmitter pathways. Furthermore, using genetic 

predictions of gene expression, we found that genetic differences contribute to the gene 

expression differences between high and low AI rats. Finally, we performed pharmacological 

manipulation of GABAA receptor signaling in amygdalar tissue slices and in rats to validate 

insights gained from the transcriptomic data. 

1.3: Results 

1.3.1: Behavioral characterization of HS rats exhibiting low or high cocaine addiction-like traits 

To investigate how chronic cocaine use influences cellular states associated with 

addiction-like behaviors, we performed snRNA-seq and snATAC-seq on amygdala tissues from 

HS rats subjected to protracted abstinence (4 weeks) following extended access to cocaine IVSA 

39,47–50 (Figure 1.1a). The animals were trained to self-administer cocaine via lever press (0.5 

mg/kg/infusion) in operant chambers in short access (ShA, 2h/day, 5 days per week) and long 

access (LgA, 6h/day, 5 days/week) sessions. We measured the number of cocaine infusions, or 

lever presses, during each session of the behavioral protocol to quantify escalation of intake, 

motivation, and compulsive-like behavior. Specifically, we measured escalation as the increase 

in the mean number of cocaine rewards during each of the LgA sessions compared to the first 

day of the LgA phase; we measured motivation as the mean number of cocaine rewards over the 

ShA and LgA sessions under a progressive ratio (PR) schedule of reinforcement, which is when 

the number of lever presses required to obtain a cocaine infusion was progressively increased; 
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and we measured compulsive-like behavior as drug taking despite adverse consequences, by 

pairing 30% of lever presses with an electric foot shock (Figure 1.1b). Based on individual 

behavioral measures for each rat (Figure 1.1c), we calculated an addiction index (AI)39 as the 

average of the normalized values (z-scores) of the three behavioral measures. Prior work has 

demonstrated that AI measures vulnerability (high AI) or resilience (low AI) to developing 

cocaine addiction-like behaviors39,51–53.  

We classified rats into high and low AI groups (Figure 1.1d). Both high and low AI rats 

acquired fewer cocaine rewards in the ShA compared to the LgA sessions of the IVSA protocol 

(Figure 1.1e, two-way repeated measures ANOVA, addiction index × phase interaction 

p<0.0001, F23,1012=8.523). There was no difference between groups in cocaine rewards during 

ShA sessions. However, we observed a contrasting pattern in escalation during LgA sessions. 

During LgA sessions, rats with high AI exhibited a progressive escalation of drug intake 

compared to rats with low AI as evidenced by their increased number of cocaine infusions over 

the course of this phase of the IVSA protocol (two-way repeated measures ANOVA interaction 

time x group F13,572=4.175, p < 0.0001, Figure 1.1e). In contrast, low AI rats did not show 

escalation during the LgA sessions (Figure 1.1e). 

During PR sessions, motivation for cocaine increased in the high AI rats but not in low 

Al rats when comparing ShA versus LgA (Figure 1.1f, mixed effect model, addiction index × 

phase interaction, p=0.0049, F1,41=8.83; Bonferroni corrected p=0.0001, post hoc comparisons). 

Finally, high AI rats showed increased responses despite adverse consequences compared to low 

AI rats, as demonstrated by the higher number of cocaine infusions when the reward was paired 

with an electric foot shock (Figure 1.1g, p<0.001, unpaired Student's t-test, t44=3.936), which 

may reflect compulsive-like drug use. These results show that we can capture multiple 



 

 

10 

behavioral aspects that are relevant to cocaine use disorders by using this model of extended 

access to cocaine IVSA in outbred rats. 

 

 

Figure 1.1: Experimental design and rat IVSA cocaine model of addiction.a) Schematic of the study design. b) 

Timeline of the behavioral protocol. c) Individual differences in total number of lever presses in self-administration 

(SA), progressive ratio (PR) and shock-paired (Shock) sessions for each rat. d) Mean addiction index scores in high 

and low AI rats. e) Mean number of lever presses across each ShA and LgA IVSA session in high (n=21) and low 

(n=25) AI rats (*** p < 0.001, two-way repeated measures ANOVA interaction time x group F13,572=4.175). f) 

Breakpoint analysis of high (n=21) and low (n=25) AI rats under ShA versus LgA (*** p<0.001 mixed effect model, 

addiction index × phase interaction, p=0.0049, F1,41=8.83). g) Mean number of lever presses when paired with 

electric footshock in high (n=21) and low AI (n=25) rats (***p<0.001, unpaired Student's t-test, t44=3.936). Error 

bars in panels d-g represent the standard error of the mean. 

1.3.2: snRNA-seq and snATAC-seq defines distinct populations of cell types in the amygdala 

The amygdala is thought to contribute to the development of addiction through its 

regulation of drug-seeking behavior, which, in rats, progressively increases after withdrawal 

from drug IVSA6,54. To identify neuroadaptations that persist in the amygdala after chronic drug 

exposure during the withdrawal stage, we collected amygdalae after 4 weeks of abstinence from 
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cocaine IVSA (Figure 1.1a). We purified nuclei and measured the gene expression and 

chromatin accessibility profiles of individual nuclei by performing snRNA-seq and snATAC-seq 

with the 10X Genomics Chromium workflow. We performed these experiments on high and low 

AI rats, as well as naive rats never exposed to cocaine. For snRNA-seq, we used 19 rats 

including 6 with high AI, 6 with low AI, and 7 naive rats (Table 1.1). For snATAC-seq we used 

12 rats including 4 with high AI, 4 with low AI, and 4 naive rats (Table 1.2).   

After filtering low quality nuclei and potential doublets based on quality metrics, we 

obtained a combined total of 163,003 and 81,912 high quality nuclei from the snRNA-seq and 

snATAC-seq samples, respectively (Supplemental Files 1.1-1.2). Across the snRNA-seq 

samples, the mean reads per cell varied from 11,967 to 50,343 and the median number of 

detected genes ranged from 1,293 to 2,855. Across the 12 snATAC-seq samples, the median 

number of high-quality fragments per nucleus ranged from 7,111 to 22,018. Across samples, we 

observed means of 8579 and 6826 nuclei per rat in the snRNA-seq and snATAC-seq datasets. 

The above metrics are consistent with previously published single-nucleus sequencing studies of 

the amygdala33,55. Using these data, we performed normalization, integration across rats, 

dimensionality reduction and clustering using Seurat56 (for snRNA-seq) and Signac57 (for 

snATAC-seq). In total, we identified 49 cell type clusters in the integrated snRNA-seq dataset 

and 41 cell type clusters in the integrated snATAC-seq dataset (Supplemental Figure 1.1). 

Visualization of the integrated data indicated that the clustering is not influenced by batch effects 

such as sequencing library, percentage of mitochondrial DNA, or individual rats58 (Supplemental 

Figure 1.2).  

We annotated the snRNA-seq clusters based on the expression of established cell type-

specific marker genes59–63 (Figure 1.2a-b). The major cell types included excitatory neurons 
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(denoted by expression of Slc17a7), inhibitory GABAergic neurons (Gad1/Gad2), astrocytes 

(Gja1), microglia (Ctss), mature oligodendrocytes (Cnp), oligodendrocyte precursor cells (OPC) 

(Pdgfra), and endothelial cells (Cldn5) (Figure 1.2c). To annotate the snATAC-seq clusters, we 

estimated gene activity from pseudo bulk chromatin accessibility at promoter regions of cell 

marker genes and used these gene activity scores to impute gene expression in the snATAC-seq 

samples. The imputed gene expression clearly delineates the cell clusters into the same major 

cell types described above demonstrating strong concordance between our snRNA-seq and 

snATAC-seq data (Figure 1.2d). In addition to the major cell types, we also identified seven 

subtypes of inhibitory neurons based on the expression of known cell marker genes (Figure 

1.2e). We also sub-clustered the excitatory neurons and identified 18 distinct clusters 

(Supplemental Figure 1.3), with top markers including known subpopulation markers such as 

Cdh13, Nr4a2, Bdnf64. 

The total number of nuclei we obtained for each cell type varied substantially (Figure 

1.2f). As expected, excitatory and inhibitory neurons are the most common major cell types. The 

snRNA-seq dataset contains 52,579 (~32.3%) nuclei from inhibitory neurons and 23,943 

(~14.7%) nuclei from excitatory neurons (Table 1.3). The snATAC-seq dataset contains 18,208 

(~22.2%) nuclei from inhibitory neurons and 20,169 (~24.6%) nuclei from excitatory neurons 

(Table 1.3). Endothelial cells and some subtypes of inhibitory and excitatory neurons have small 

numbers of nuclei in the dataset, so for most downstream analyses we focused on the six most 

common major cell types (Figure 1.2a-b).  

To determine how the cell types we identified in the whole amygdala correspond to cell 

types within spatially defined amygdalar subregions, we generated snRNA-seq data from the 

CeA and BLA. We found that cell clusters from the CeA and BLA were distinct from one 
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another, but these regions collectively contained most cell types also identified in the whole 

amygdala (Supplemental Figure 1.4a). Consistent with the known cell type composition of the 

CeA and BLA65, the cell clusters from the CeA co-clustered primarily with inhibitory neurons 

while the cell clusters from the BLA co-clustered with excitatory neurons (Supplemental Figure 

1.4b). Glial cell types from the whole amygdala contained cells from both subregions, except for 

astrocytes, which mostly co-clustered with cells from the CeA but not the BLA, suggesting that 

astrocytes might play a specific role in BLA-related function (Supplemental Figure 1.4).  

In combination, the snRNA-seq and snATAC-seq datasets that we generated are the first 

single-cell atlas of molecularly defined cell types in the rat amygdala. The inclusion of multiple 

high AI, low AI, and naive rats make these datasets an important resource for studying gene 

expression and chromatin accessibility in the amygdala under both normal conditions as well as 

in the context of cocaine addiction-like behaviors.  
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Figure 1.2: Summary of single nucleus RNA-seq and ATAC-seq data from the rat amygdala.  

a) Uniform Manifold Approximation and Projection (UMAP) plot of single nucleus RNA-seq (snRNA-seq) data 

from the rat amygdala. Data are combined across 19 samples, with high, low, and naive addiction index labels. Cells 

are colored by cluster assignments performed with K-nearest neighbors. We assigned cell type labels to the clusters 

based on the expression of known marker genes. b) UMAP plot of single nucleus ATAC-seq data from 12 rat 

amygdala samples. snATAC-seq data was integrated with the snRNA-seq data and cluster labels were transferred to 

the snATAC-seq cells. c) Feature plot showing expression of marker genes used to label major subsets of cells: Gja1 

(astrocytes), Ctss (microglia), Cnp (oligodendrocytes), Pdgfra (oligodendrocyte precursor cells (OPCs), Slc17a7 

(excitatory neurons), Gad1 and Gad2 (inhibitory neurons), and Cldn5 (endothelial cells). d) Feature plot showing 

imputed gene expression of cell type-specific marker genes in snATAC-seq dataset. e) Expression of marker genes 

in cell clusters corresponding to highly specific subsets of inhibitory neurons. The shading and diameter of each 

circle indicate the estimated mean expression and the percentage of cells within the cluster in which the marker gene 

was detected. f) The number of nuclei assigned to each cell type cluster for the snATAC-seq and snRNA-seq 

datasets. 
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Table 1.1: Overview of rats used for snRNA-seq experiments.  

Rat sample identifiers are found in RFID column. 

RFID Addiction index batch Estimated Number of Cells 

933000320047328 High 1 6,573 

933000120138592 Low 1 7,512 

933000120138586 Naïve 1 8,497 

933000320046084 Naïve 1 9,945 

933000320046077 Naïve 2 8,021 

933000120138609 Low 2 8,781 

933000320186802 High 2 12,957 

933000320047225 High 2 9,903 

933000320046609 High 3 6,512 

933000320047001 High 3 10,691 

933000320047132 High 3 9,753 

933000320186801 Naïve 3 7,668 

933000320046621 Naïve 4 6,536 

933000320046625 Naïve 4 13,217 

933000320047104 Low 4 6,264 

933000320045674 High 4 9,834 

933000120138730 High 5 9,402 

933000120138414 Low 5 8,539 

933000320046549 Naïve 6 5,458 
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Table 1.2: Overview of rats used for snATAC-seq experiments.  

Rat sample identifiers are found in RFID column.

RFID Addiction index Library date (batch) Estimated number of cells 

933000320186811 High 1-12-21 6491 

933000320047166 Low 1-12-21 6354 

933000320187130 Naïve 1-12-21 8473 

933000320047651 Naïve  1-26-21 6756 

933000320047161 Naïve  1-26-21 6951 

933000120138730 High 11-14-19 11287 

933000120138414 Low 11-14-19 15391 

933000320187092 High 1-26-21 6603 

933000320047019 High 2-17-21 4658 

933000320046611 Low 2-17-21 3191 

933000320045785 Low 2-17-21 5969 

933000320047174 Naïve  2-23-21 4899 

 
Table 1.3: Overview of cell types in snRNA-seq and snATAC-seq datasets.  

Provides number of nuclei of each cell type found in each the snRNA-seq and snATAC-seq datasets, as well as the 

percentage of all cells in the dataset are represented by each cell type. 

cluster ncells.snRNA percent.snRNA ncells.snATAC percent.snATAC 

Astrocytes 19651 12.05560634 7337 8.957173552 

Cck+/Vip+ 3959 2.428789654 1496 1.82635023 

Chat+ 1628 0.9987546241 1043 1.273317707 

Endothelial 699 0.4288264633 949 1.158560406 

ExNeuron 23943 14.68868671 20169 24.6227659 

InhNeuron 52579 32.25646154 18208 22.22873327 

Microglia 8834 5.419532156 4574 5.58404141 

Nos1+ 4114 2.523879929 1232 1.50405313 

Oligodendrocytes 29140 17.87697159 19391 23.67296611 

OPC 9780 5.999889573 4031 4.921134876 

Pvalb+ 423 0.2595044263 213 0.2600351597 

Reln+ 1008 0.6183935265 426 0.5200703194 

Sst+ 7245 4.444703472 2843 3.470797929 
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1.3.3: Measuring cell type-specific differential gene expression between rats displaying a high 

versus a low addiction index for cocaine 

We used the negative binomial test to identify differentially expressed genes (DEGs) 

between high and low AI rats in each cell type (Figure 1.3a-b, Supplemental File 1.3). To control 

for batch effects or violations in the differential expression model assumptions (for example, 

unaccounted for overdispersion in the data) that can cause deflated (overly significant) p-values, 

thereby yielding false signals of differential expression66,67, we performed the same statistical 

test after permuting the AI labels of the rats. This permutation simulates a null distribution where 

there is no association between AI and gene expression. This approach is often used to assess p-

value calibration in QTL studies68,69. While the results from the unpermuted data are highly 

enriched for low p-values, the p-values from the permuted data resemble the null expectation. 

This indicates that the highly significant DEGs we identified are not due to poor p-value 

calibration or batch effects (Supplemental Figure 1.5).  

We grouped DEGs into small (abs(log2FC)<0.1) or large effect size groups 

(abs(log2FC)≥0.1) and observed that most of the significant DEGs (FDR<10%) have small effect 

sizes (Supplemental Figure 1.6). In total, we identified 557 unique significant DEGs with large 

effect sizes in at least one cell type and 8,775 unique significant DEGs with small effect sizes in 

at least one cell type. The number of significant DEGs between high and low AI rats correlates 

with the size of the cell type population, which likely reflects greater power to detect differential 

expression in common cell types. Most of the large effect DEGs (431, or 75%) are also small-

effect DEGs in at least one other cell type, indicating that while there are shared patterns of 

differential expression across cell types, the effect sizes vary across cell types. We also found 

that significant DEGs were enriched for gene expression quantitative trait loci (eQTLs), which 
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are genetic variants associated with a gene’s expression, in rat brain tissues70 in almost every cell 

type tested (Chi-squared test with 1 degree of freedom, p<0.05) (Table 1.4). This suggests that 

heritable differences influence the changes in expression that we observed. Among the most 

significant DEGs with eQTLs (Supplemental File 1.4), we identified genes with previously 

reported roles in cocaine or other substance use disorders. For example, Kcnq3 was differentially 

regulated across neuronal and glial cell types, and this gene encodes a subunit of a potassium 

channel implicated in the regulation of reward behavior and susceptibility to drug addiction 

(Figure 1.3c)71–73. Additionally, Fkbp5 and Sgk1, two transcriptional targets of the glucocorticoid 

receptor, were differentially regulated specifically in glial cell types, and these genes are 

associated with reward behavior and drug addiction vulnerability (Figure 1.3d-e)74–76. These 

results suggest that genetic differences contribute to the gene expression differences between rats 

with high and low AI.  

The observed DEGs could reflect pre-existing genetic differences or the differential 

exposure to cocaine in the high versus low AI groups. To further examine the contribution of 

genetics to observed differences in gene expression, we leveraged genotypes and gene 

expression data from a previously published reference population of 339 naive HS rats70. This 

allowed us to predict gene expression based on cis-genetic variation in the absence of cocaine 

exposure. Specifically, we trained models which predict gene expression from SNP genotypes77 

using whole brain bulk RNA-seq from 339 naive HS rats. We then used these models to predict 

the expression of genes with at least one cis-acting eQTL (8,997 genes) in each of the rats in our 

snRNA-seq dataset. We compared the differences in mean predicted expression in the high 

versus low AI rats to the observed differences in expression for each cell type. Before correlating 

predicted expression to observed expression, we filtered out genes for which the predictive 
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models had low Pearson 𝑟2, because genes with higher 𝑟2 have more of their variance in 

expression explained by cis-genetic variation (Table 1.5). Among our major cell types, the 

observed and predicted expression differences were significantly correlated (Spearman’s 𝜌, 

p<0.05) for microglia, oligodendrocytes and inhibitory neurons (Table 1.5). We found that 

increasing the stringency of the 𝑟2 cutoff increased the strength of these correlations (Table 1.5). 

These observations indicate that genetic differences in high versus low AI rats contribute to at 

least some of the observed differences in expression between high vs. low AI rats. Cocaine is 

also likely to contribute to the differences in expression; however, the relative contributions of 

cocaine and genetics are difficult to quantify due to limitations in the genetic predictions of gene 

expression.  

To identify pathways with altered regulation between high and low AI rats, we performed 

gene set enrichment analysis (GSEA)78,79 of KEGG pathways using estimates of differential gene 

expression (log2 fold change) for each cell type. We identified significant enrichment of several 

pathways related to addiction (e.g. amphetamine, nicotine, and morphine addiction), 

neurotransmission (e.g. synaptic vesicle cycle, GABAergic synapse, glutamatergic synapse, and 

dopaminergic synapse), energy metabolism (e.g. glycolysis, pyruvate metabolism, and oxidative 

phosphorylation), and others (Figure 1.3f, Supplemental File 1.5). Most cell types showed 

enrichment of genes belonging to the oxidative phosphorylation pathway, which, together with 

glucose metabolism, is the main energy source for synaptic activity and action potentials80,81. 

Moreover, different subtypes of inhibitory neurons as well as excitatory neurons were enriched 

for synaptic vesicle cycle and synapse-related pathways. In combination, these observations 

suggest that addiction-like behaviors are associated with alterations in the metabolic state of 
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amygdalar cell populations, which can directly impact neural network activity within the 

amygdala by affecting neurotransmission and synaptic pathways.  

 

Figure 1.3: Differential gene expression between high and low AI rats. 

a) Volcano plot summarizing differential gene expression between high and low AI rats. Points are colored by cell 

type, and the five most significant (FDR<10%) up- and downregulated genes in each cell type are indicated with 

labels. Within each cell type, we normalized the log fold changes reported by Seurat with a z-score and plotted the 

cell type-specific z-scores of the log fold changes on the x-axis (positive fold change = higher expression in high AI 

rats; negative fold change = higher expression in low AI rats). The -log10 false discovery rate (FDR) corrected p-

values (q-values) are plotted on the y-axis. b) Volcano plot summarizing differential gene expression between high 

and low AI rats for non-neuronal (glial) cell type clusters. c-e) Violin plots showing distribution of log2FC from the 

negative binomial test performed in 1000 bootstrap iterations. Fractions indicate the number of bootstrap iterations 

in which the log2FC estimate was significantly different than 0. Bootstrap distributions were obtained for cell types 

in which the following genes had significant differential expression (FDR<10%): c) Kcnq3; d) Fkbp5; e) Sgk1. f) 

KEGG pathways that are enriched for differentially expressed genes by cell type. Size of dot indicates -log10(q) 

while color indicates normalized enrichment score (NES), which is a metric of GSEA. Only pathways/cell types 

where q<0.1 are visualized. 
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Table 1.4: Enrichment of DEGs with eQTLs in the rat brain.  

 

Results of Chi-squared test with Yates’ continuity correction for enrichment of significant DEGs (FDR<10%) that 

also have eQTLs in the rat brain in each cell type. 

 

statistic p.value parameter celltype q.value 

32.00156145 1.54E-08 1 Astrocytes 9.24E-08 

5.620791222 0.017748634 1 Cck+-Vip+ 0.050195845 

263.0825833 3.65E-59 1 ExNeuron 3.29E-58 

115.3577062 6.57E-27 1 InhNeuron 5.26E-26 

8.589987545 0.003380163 1 Microglia 0.013520653 

0.293805179 0.587792337 1 Nos1+ 0.587792337 

30.98112175 2.61E-08 1 Oligodendrocytes 1.30E-07 

5.724274495 0.016731948 1 OPC 0.050195845 

43.28438553 4.73E-11 1 Sst+ 3.31E-10 
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Table 1.5: Predicted versus observed differential gene expression.  

 

Spearman correlations (rho, pvalue) between difference in mean predicted expression and observed avg_logFC of 

expression between high vs. low AI rats for subsets of genes passing each Pearson r2 cutoff for gene expression 

prediction models. 
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celltype r2_cutoff correlation pvalue ci_low ci_high n_genes 

Astrocytes 0 0.0187 0.2834 -0.0155 0.0528 3292 

Astrocytes 0.025 0.0187 0.3575 -0.0211 0.0584 2426 

Astrocytes 0.05 0.0275 0.2503 -0.0194 0.0742 1754 

Astrocytes 0.075 0.0369 0.1705 -0.0159 0.0894 1383 

Astrocytes 0.1 0.0398 0.1804 -0.0185 0.0978 1133 

ExNeuron 0 0.0253 0.1460 -0.0088 0.0595 3292 

ExNeuron 0.025 0.0347 0.0876 -0.0051 0.0744 2426 

ExNeuron 0.05 0.0427 0.0737 -0.0041 0.0893 1754 

ExNeuron 0.075 0.0488 0.0698 -0.0039 0.1012 1383 

ExNeuron 0.1 0.0500 0.0926 -0.0083 0.1079 1133 

InhNeuron 0 0.0336 0.0538 -0.0006 0.0677 3292 

InhNeuron 0.025 0.0465 0.0219 0.0067 0.0862 2426 

InhNeuron 0.05 0.0649 0.0065 0.0181 0.1114 1754 

InhNeuron 0.075 0.0574 0.0329 0.0047 0.1097 1383 

InhNeuron 0.1 0.0646 0.0297 0.0064 0.1224 1133 

Microglia 0 0.0356 0.0409 0.0015 0.0697 3292 

Microglia 0.025 0.0603 0.0030 0.0206 0.0999 2426 

Microglia 0.05 0.0626 0.0088 0.0158 0.1091 1754 

Microglia 0.075 0.0620 0.0211 0.0093 0.1143 1383 

Microglia 0.1 0.0507 0.0882 -0.0076 0.1086 1133 

OPC 0 0.0154 0.3760 -0.0187 0.0496 3292 

OPC 0.025 0.0139 0.4944 -0.0259 0.0536 2426 

OPC 0.05 0.0128 0.5915 -0.0340 0.0596 1754 

OPC 0.075 0.0125 0.6435 -0.0403 0.0651 1383 

OPC 0.1 -0.0028 0.9244 -0.0611 0.0554 1133 

Oligodendrocytes 0 0.0620 0.0004 0.0279 0.0960 3292 

Oligodendrocytes 0.025 0.0741 0.0003 0.0344 0.1136 2426 

Oligodendrocytes 0.05 0.0841 0.0004 0.0374 0.1304 1754 

Oligodendrocytes 0.075 0.0970 0.0003 0.0445 0.1489 1383 

Oligodendrocytes 0.1 0.1026 0.0005 0.0447 0.1599 1133 
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1.3.4: The development of cocaine addiction-like behaviors is linked to elevated GABAergic 

transmission in the amygdala 

To test the hypothesis that altered metabolic state in amygdalar cells changes neural 

activity within the amygdala, we focused on GABAergic transmission because alterations of this 

neurotransmitter system have been previously described in the amygdala in the context of 

addiction-related phenotypes2. Specifically, we measured GABAergic transmission by recording 

spontaneous inhibitory postsynaptic currents (sIPSCs) in the central amygdala (CeA). CeA slices 

were collected from a separate cohort of 5 low AI and 5 high AI HS rats that were subjected to 

prolonged abstinence following the same behavioral protocol described for the snRNA-seq and 

snATAC seq experiments (Figure 1.4a). As a control, we used CeA slices prepared from 5 age-

matched naive HS rats to record baseline GABAergic transmission. There were differences in 

mean sIPSC frequencies among the groups (one-way ANOVA F2,22=6.77, p=0.0051), reflecting 

a progressive increase in GABAergic transmission from naive to low AI to high AI rats (Figure 

1.4b, Supplemental Figure 1.7a), without detectable changes in amplitude (Supplemental Figure 

1.7b-c). These results are consistent with the hypothesis that the cocaine addiction-like behaviors 

exhibited by high AI rats alters GABAergic transmission. 

To further investigate the link between GABAergic transmission and energy metabolism 

in the amygdala with cocaine addiction-like behaviors, we measured siPSCs frequency and 

amplitude before and after application of S-bromobenzylglutathione cyclopentyl diester 

(pBBG)82,83. pBBG is a small molecule inhibitor of glyoxalase 1 (GLO1), the rate limiting 

enzyme for the metabolism of methylglyoxal (MG), which is a byproduct of glycolysis that acts 

as a competitive partial agonist of GABAA receptors82. We found that pBBG reduced the sIPSC 

frequency compared to vehicle for both high and low AI rats (paired t-tests, t5=11.83, p=7.6e-5 
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and t5=5.07, p=3.9e-3, respectively), but not naive rats (t5=0.71, p=0.51) (Figure 1.4c-f, 

Supplemental Figure 1.7a). We observed no effect on iPSCs amplitude (Supplemental Figure 

1.7b-c). In most situations, changes in frequency of events indicate presynaptic modulation while 

changes in amplitude of events reflect postsynaptic modulation; however, previous studies have 

shown that GABA modulates synaptic transmission presynaptically84,85. These findings suggest 

that Glo1 inhibition may alter presynaptic GABA-A receptor function, leading to reduced GABA 

release at inhibitory terminals and suppression of inhibitory connections within the CeA.  

These results led us to hypothesize that GLO1 inhibition would revert behavioral 

responses after prolonged abstinence from cocaine IVSA. To test this hypothesis, we measured 

cue-induced reinstatement of cocaine seeking behavior in a separate cohort of 26 low and high 

AI rats 30 minutes after systemic injection of pBBG or vehicle86 following 4 weeks of abstinence 

from cocaine IVSA (Figure 1.4g). During this test, rats were subjected to the same operant 

conditions of cocaine IVSA, but without drug availability. Then, reinstatement was triggered by 

re-exposure to the cocaine infusion-associated light cue. The two-way repeated measures 

ANOVA showed a significant interaction between AI and pBBG treatment (F1,24=6.609, 

p<0.05), indicating that pBBG versus vehicle reduced cue-induced reinstatement in high AI rats 

(p-value<0.05, post hoc comparisons with Bonferroni correction), but not in low AI rats 

(p>0.05). Overall, these results demonstrate that modulating GABAA transmission via the 

pharmacological inhibition of GLO1 decreases relapse-like behaviors in animals with high 

cocaine AI. 
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Figure 1.4: Electrophysiology and GLO1 inhibition experiments implicate GABAergic inhibition in 

cocaine addiction-like behaviors.  

a) Schematic showing animal model used for electrophysiology recording in CeA slices from HS rats 

subjected to 4 weeks of abstinence from cocaine IVSA. Electrophysiological recordings were taken before 

and after pBBG (S-bromobenzylglutathione cyclopentyl diester) treatment. b) Baseline iPSC frequency 

(measured before pBBG injection). Significant differences in the means between the three groups were 

observed (**p < 0.01; one-way ANOVA F2,22=6.77, followed by post-hoc comparison using Tukey's HSD). 

c) sIPSC frequency following pBBG treatment. We observed reduced frequency in the CeA slices from 

high and low AI rats following pBBG treatment (**p < 0.01, *p<0.05 following Bonferroni correction; 

unpaired two-sided Student's t-test). Change in sIPSC frequency following pBBG treatment in d) naive, e) 

low, and f) high rats. g) Schematic of animal model used to test cocaine-seeking behavior. Rats were 

injected with pBBG following a period of prolonged abstinence and re-exposed to the self-administration 

chambers in the absence of cocaine. h) Following injection of pBBG, high AI rats (n=12) showed 

significantly higher cocaine-seeking behavior compared to low AI rats (n=14), which was reduced by 

pBBG treatment (## p<0.001, *p<0.05 following Bonferroni correction; two-way ANOVA for each 

measure). Error bars in panels b,c, and h represent the standard error of the mean. 

1.3.5: Mapping differences in chromatin accessibility associated with cocaine addiction-like 

behaviors 

To identify regions of accessible chromatin from the snATAC-seq data, we used 

MACS287 to call peaks from the aligned reads for each rat and created a union peak set across 
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rats. We examined pseudo bulk chromatin accessibility at the transcription start site (TSS) of 

selected cell type marker genes and observed cell type-specific patterns of accessibility at the 

expected marker genes of each cell type (Figure 1.5a, Figure 1.2c-d), indicating that the 

chromatin accessibility corresponds well with the transcriptome measurements. 

To better understand the regulatory mechanisms involved in cocaine addiction, we 

analyzed differences in chromatin accessibility between high and low AI rats. We performed 

negative binomial88,89 tests to measure cell type-specific differential chromatin accessibility 

(Supplemental File 1.6) and compared the observed p-values to those obtained from permuted 

data (as we did for our DEG analysis). The p-values of the permuted data resemble the null 

expectation, confirming that the differential peaks between high and low AI are likely true 

biological differences rather than artifacts (e.g. batch effects) (Supplemental Figure 1.8). In total 

we identified >20,000 peaks across cell types with significant differential accessibility between 

the high and low AI groups (FDR<10%) (Supplemental Figure 1.9); however, as with gene 

expression, most differences were small (log2FC < 0.1). This indicates that differences in 

addiction-like behaviors between rats are associated with modest regulatory changes at a large 

number of sites.  

The differential peaks can be subdivided into those where accessibility is higher 

(upregulated) or lower (downregulated) in the high AI rats (Supplemental Figure 1.9). In 

astrocytes, there were roughly equal numbers of up- and downregulated peaks, but the other cell 

types showed profound directional biases. Excitatory neurons were the most biased with only 

two detected downregulated peaks, and over 8000 upregulated peaks in the high AI group. 

Inhibitory neurons showed the opposite bias with over 4000 downregulated peaks but only ~500 



 

 

28 

upregulated peaks in the high AI group (Supplemental Figure 1.9). These biases likely reflect 

differences in the activity of specific TFs that control large transcriptional programs.  

To determine whether the differential chromatin accessibility is consistent with the 

differential gene expression, we tested whether the promoters of DEGs are enriched for 

differential accessibility. We overlapped the significant differentially accessible chromatin peaks 

in each cell type with the promoters of significant DEGs and computed a log odds ratio (log2OR) 

as a measure of enrichment. Across all the major cell types, differentially accessible peaks are 

enriched (FET, p<0.05) at the promoters of DEGs compared to non-DEGs (Figure 1.5b, Table 

1.6). We also examined chromatin accessibility at promoter regions for genes belonging to the 

oxidative phosphorylation pathway because genes within this pathway were enriched for gene 

expression differences between high vs. low AI rats in most cell types. These genes are also 

significantly enriched for differentially accessible promoter peaks in inhibitory neurons, 

excitatory neurons, and oligodendrocytes (Table 1.7). These findings confirm that the observed 

differences in chromatin accessibility and gene expression are concordant. 

The genomic annotations of the significant differential peaks showed that 3.19% of these 

regions were annotated as promoter or TSS regions (Supplemental Figure 1.10). While this is a 

small percentage of the peaks, it is consistent with other studies26. We then studied the subset of 

significant differential peaks in each cell type by examining their genomic annotations to 

determine if they were enriched for promoter/TSS regions compared to the set of all peaks. We 

observed that differentially accessible peaks were highly enriched in promoter regions, occurring 

at least four times more frequently than expected given the genomic annotations of all accessible 

chromatin regions in most of the major cell types (FET, FDR<10%) (Figure 1.5c, Table S1.8). 

This enrichment may indicate that long-term changes in chromatin associated with addiction-like 



 

 

29 

behaviors are more concentrated at promoters, or that we have greater statistical power to detect 

changes at promoters, due to larger effect sizes or greater overall chromatin accessibility.  

We hypothesized that differences in chromatin accessibility between high and low AI rats 

are caused by differential TF activity. To test this hypothesis, we analyzed the snATAC-seq data 

using ChromVar (Supplemental File 1.7), which identifies TF motifs associated with differential 

accessibility using sparse single cell data90. Many motifs showed significant differences in 

accessibility between the high and low AI rats, and since many TFs recognize similar motifs, we 

grouped them into motif clusters and summarized results across cell types (Figure 1.5d).  

The motif cluster with the most significant difference in accessibility between high and 

low AI rats contains motifs for basic helix-loop-helix (bHLH) TFs. This motif cluster has 

substantially higher accessibility within the excitatory neurons of high AI rats compared to low 

AI rats (deviance 3.8, p=1e-280), as well as a modest increase in accessibility in inhibitory 

neurons (deviance 0.38, p=1e-34) (Figure 1.5e-g). The top-ranked motifs in this cluster all harbor 

the sequence CAGATGG, which is a close match to binding site motifs for multiple neuronal 

pioneer TFs including those of the bHLH, RFX and FOX families91,92. Thus, the widespread 

increases in chromatin accessibility in excitatory neurons of high AI rats could reflect increased 

activity of pioneer TFs that recruit chromatin remodelers. However, we did not observe 

corresponding upregulation in the expression of genes encoding the TFs belonging to these 

clusters (Supplemental Files 1.3 and 1.7), suggesting that a different mechanism might affect 

their activity. 

We noticed that many motif clusters with increased accessibility in the neurons of high 

AI rats have decreased accessibility in oligodendrocytes (Figure 1.5d-g). Prominent among these 

motif clusters are those containing FOX and RFX motifs (Figure 1.5d-g). 
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Several motif clusters also have opposite effects between excitatory and inhibitory 

neurons. SOX motifs have decreased accessibility in high AI rats in excitatory neurons but 

increased accessibility in all other major cell types including inhibitory neurons (Figure 1.5d). 

MEF2 and Fos (AP1) motifs all have increased accessibility in the excitatory neurons of high AI 

rats but decreased accessibility in inhibitory neurons (Figure 1.5d). AP1 and MEF2 motifs are of 

particular interest because they are associated with addiction93–96 and their expression changes in 

the brain following chronic exposure to cocaine and other drugs97–101. Consistent with these 

results, we observed that the expression of TFs of the AP1, including Fosl1, Fos, Jun, Junb, and 

Jund, was decreased in high versus low AI rats (Supplemental Figure 1.11), suggesting that 

differences in their expression level affect their transcriptional activity. While our analysis 

cannot pinpoint the precise TFs involved, it implicates many motif clusters that are associated 

with addiction-like behaviors across thousands of regulatory regions and in a cell type-specific 

manner. 

Accessible chromatin regions harbor cell type-specific regulatory elements102,103, and 

enrichment analyses that measure intersections between ATAC-seq peaks and GWAS signals 

can yield insight into the mechanisms by which genetic variants confer risk104. However, cell 

type-specific measurements of chromatin accessibility are difficult to obtain from human brain 

tissues. To assess whether our rat snATAC-seq data is meaningful for interpreting human 

addiction-related traits, we mapped the accessible chromatin peaks to the human reference 

genome and performed cell type-specific LD score regression105. We chose to use summary 

statistics from well-powered GWAS for alcohol and tobacco use106,107 because there is 

significant genetic overlap among GWAS for all known substance use disorders108 and because 

available GWAS for cocaine use disorder are much smaller and less powerful. We found 
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significant enrichments (FDR<10%) of SNP heritability in every trait tested in almost every cell 

type (Figure 1.5h), with the most significant enrichments in neurons, astrocytes, 

oligodendrocytes and OPCs. Overall, these results support the hypothesis that, despite the 

millions of years of evolution separating humans and rats, the regulatory architecture of HS rats 

is relevant for human addiction-related traits. 
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Figure 1.5: Analysis of chromatin accessibility and regulatory elements involved in cocaine dependence.  

 

a) Pseudobulk chromatin accessibility at the promoter regions of marker genes for major cell types identified in our 

analysis. b) Significant DEGs (FDR<10%) for each major cell type are enriched for promoters with differentially 

accessible chromatin accessibility (FDR<10%; Fisher's exact test) in the snATAC-seq data. This indicates that the 

snRNA-seq and snATAC-seq results are consistent and indicate that long-term transcriptional changes are 

associated with changes in chromatin accessibility of gene promoters. c) Cell type-specific differentially accessible 

peaks (FDR<10%; Fisher's exact test) are enriched in TSS/promoter regions compared to non-TSS/promoter 

regions. Error bars in b,c represent 95% confidence intervals for log2 odds ratios (ORs). d) Heatmap showing 

differential activity of various motifs in the significant differential peaks of each cell type. Values indicate average 

difference of chromVar deviation scores with -log10(p) in parentheses below. There are many cases where motifs 

display increased activity in the peaks which are more accessible in upregulated peaks in neurons while also 

displaying decreased activity in downregulated peaks in oligodendrocytes. e-g) Volcano plots showing average 

difference (x-axis) and -log10(q) (y-axis) of chromVAR deviation scores for top 50 motif clusters in e) excitatory 

neurons, f) inhibitory neurons, and g) oligodendrocytes. h) LD score regression results showing significance (-

log10p) of enrichment of heritability for several traits related to alcohol and nicotine addiction in cell type-specific 

accessible chromatin regions (mapped to hg19). 
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Table 1.6: Enrichment of DEGs with differentially accessible promoter regions.  

Results of two-sided Fisher’s exact test measuring enrichment of DEGs with differentially accessible promoters. 

estimate p.value conf.low conf.high celltype q.value 

18.81516404 0 17.77574265 19.9175995 Astrocytes 0 

30.37291625 0.005840132 2.201548611 415.3908706 Endothelial 0.005840132 

23.96758633 0 22.74043054 25.23646105 ExNeuron 0 

17.57693406 0 16.48571015 18.74700536 InhNeuron 0 

21.28725044 0 19.94126124 22.71783229 Microglia 0 

27.72361083 0 26.31595904 29.21625885 Oligodendrocytes 0 

10.28809974 7.95E-48 7.889775684 13.29876263 OPC 1.06E-47 

30.37610297 0.000602346 4.068618798 226.6446137 Pvalb+ 0.000688396 

 

Table 1.7: Enrichment of genes belonging to oxidative phosphorylation pathway with differentially accessible 

promoter regions.  

Results of two-sided Fisher’s exact test measuring enrichment of differentially accessible promoter regions 

(FDR<10%) in genes belonging to the oxidative phosphorylation pathway. 

estimate p.value conf.low conf.high celltype 

1.590213356 0.027413877 1.036306859 2.4171411 Astrocytes 

0 1 0 Inf Cck+-Vip+ 

0 1 0 Inf Chat+ 

0 1 0 542.2633381 Endothelial 

2.603860013 2.75E-06 1.705313547 4.02696631 ExNeuron 

2.077830782 0.00082396 1.33980214 3.17681751 InhNeuron 

1.50676579 0.06905433 0.945014063 2.350921065 Microglia 

0 1 0 181.0640654 Nos1+ 

3.044756686 6.43E-08 1.985216478 4.741095202 Oligodendrocytes 

1.879741784 0.294615891 0.222019752 7.117370798 OPC 

0 1 0 106.9419357 Pvalb+ 

0 1 0 Inf Sst+ 
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Table 1.8: Enrichment of differentially accessible peaks with TSS/promoter annotations.  

Results of two-sided Fisher’s exact test measuring enrichment of differential peaks with TSS/promoter annotations. 

estimate p.value conf.low conf.high celltype q.value 

18.81516404 0 17.77574265 19.9175995 Astrocytes 0 

30.37291625 0.005840132 2.201548611 415.3908706 Endothelial 0.005840132 

23.96758633 0 22.74043054 25.23646105 ExNeuron 0 

17.57693406 0 16.48571015 18.74700536 InhNeuron 0 

21.28725044 0 19.94126124 22.71783229 Microglia 0 

27.72361083 0 26.31595904 29.21625885 Oligodendrocytes 0 

10.28809974 7.95E-48 7.889775684 13.29876263 OPC 1.06E-47 

30.37610297 0.000602346 4.068618798 226.6446137 Pvalb+ 0.000688396 

 

1.4: Discussion 

To better understand the molecular basis of addiction and illuminate long-term changes in 

gene regulation and chromatin accessibility associated with chronic drug use, we have generated 

an atlas of single-cell gene expression and chromatin accessibility in the amygdala of rats that 

showed divergent cocaine addiction-like behaviors after a prolonged period of abstinence. Our 

dataset is the largest resource of cell types in the mammalian amygdala, with over 163,000 nuclei 

in our snRNA-seq dataset and 81,000 nuclei in our snATAC-seq dataset (Figure 1.2a-b, 

Supplemental Files 1.1-1.2). The snATAC-seq dataset provides the first map of cell type-specific 

regulatory elements in the amygdala, which has allowed us to identify TF motifs that may drive 

addiction-related processes.  

Previous single cell transcriptomic studies have focused on the effects of acute passive 

treatment with psychoactive drugs in rodents37,38, which cannot fully capture the motivational 

processes underlying addiction. In contrast, our behavioral protocol involves extended access to 

cocaine IVSA and reflects several key aspects of cocaine addiction, including escalation of drug 
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use, enhanced motivation for drug seeking and taking, and persistent drug use despite adverse 

consequences, which might reflect compulsive-like drug consumption109. In addition, using an 

outbred population of rats with divergent addiction-like traits allowed us to correlate molecular 

differences not only a high AI phenotype, which reflects vulnerability to severe addiction-like 

phenotypes, but also to a low AI phenotype, which reflects resiliency to developing behaviors 

that are hallmarks of addiction. Thus, our study is the first to examine long-term molecular 

changes in distinct brain cell populations following abstinence from chronic voluntary cocaine 

use in vulnerable and resilient rats.  

One striking finding from our study is that there were thousands of significant cell type-

specific differences in gene expression and chromatin accessibility between high and low AI rats, 

with strong biases in the direction of regulation of open chromatin regions in several major cell 

types (Supplemental Figures 1.6 and 1.9). Most of these differences were small, which suggests 

that cocaine addiction-related behaviors may result from the combined action of many small 

effects on gene expression and chromatin accessibility. Because the HS rats are genetically 

diverse, the molecular differences between high and low AI rats could arise from genetic 

differences or from the consumption of different quantities of cocaine. These results are 

consistent with a polygenic model wherein addiction-like behaviors would result from the 

collective action of a large number of genetic risk loci with small individual effects. This is a 

plausible explanation because of the high genetic diversity in the HS rats and because complex 

traits in humans are highly polygenic105,110. Further support for this hypothesis comes from the 

observation that the majority of DEGs have eQTLs identified in HS rat brains70 (Supplemental 

File 1.4), including DEGs such as Kcnq3, Fkbp5 and Sgk1 (Figure 1.3a-e).  
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Alternatively, the effects could be mediated by a relatively small number of TFs that 

affect many downstream genes and chromatin sites. Because some of the motifs with the 

strongest chromatin accessibility differences (Figure 1.5e-h) are recognized by pioneer TFs (e.g., 

BHLH, Sox, Fox), it is tempting to speculate that widespread differences in accessibility are due 

to pioneer TFs, which have an intrinsic ability to modify chromatin111. These explanations are 

not mutually exclusive, and it is likely that some differences are caused by eQTLs while others 

are caused by differences in the activity of upstream regulators (which themselves may be 

affected by genetics or other factors).  

In an effort to uncouple pre-existing genetically controlled gene expression differences 

from cocaine-induced neuroadaptations, we performed an analysis comparing our observed 

DEGs to differences in expression obtained from genotype-based prediction models (Table 1.5). 

This allowed us to leverage the genotype data from our cohort of genetically diverse HS rats. We 

found significant correlations in observed versus predicted differential gene expression between 

high vs. low AI rats, suggesting that genetics does play a role in long-term transcriptional 

neuroadaptations that are observed following cocaine use. While the correlation metrics we 

obtained from our analysis are modest, this is expected due to three limitations of the predictive 

model. First, the models are trained on whole brain tissue and do not have the same cell type-

specific resolution as our snRNA-seq data. Second, the size of the cohort on which the predictive 

models were trained was quite modest. Third, the models are only capable of capturing a small 

fraction of variation in expression and do not account for other influences on gene expression. 

Finally, it is likely that the DEGs we discovered are biased towards highly expressed genes, and 

eQTLs are less detectable in genes with very low expression. While these limitations make it 

difficult to quantify how much of the variance in expression is due to genetics, it establishes that 
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at least some of the differences are due genetic variation (Table 1.5). To properly uncouple pre-

existing genetically controlled gene expression differences from cocaine-induced 

neuroadaptations would require a larger dataset of genotyped rats. One way this could be 

accomplished is by using polygenic risk scores for addiction-related traits, which will become 

possible as more rat behavioral GWAS are completed43,45–47,112. 

Human and animal studies have provided genetic and behavioral evidence that alterations 

in GABAergic transmission are involved in addiction2,113–117. Consistent with prior findings 

showing that GABAergic transmission is enhanced following excessive cocaine use118, our 

differential gene expression analysis showed enrichment of genes belonging to the GABAergic 

synapse pathway (Figure 1.3f) and our electrophysiology results provided evidence for enhanced 

GABAergic transmission in the high AI rats (Figure 1.4b). Moreover, we found that inhibition of 

GLO1, the enzyme responsible for MG metabolism, normalizes electrophysiological (Figure 

1.4c-f) and behavioral differences (Figure 1.4h) associated with severe addiction-like behaviors. 

Specifically, while pBBG normalized the increased GABA transmission in electrophysiological 

recordings for both low and high AI rats (Figure 1.4c), it had a normalizing effect on the drug-

seeking behaviors in high AI rats but not low AI rats (Figure 1.4h). This suggests that the 

inhibitory effects of pBBG on relapse-like behaviors depend on a given threshold of GABAergic 

transmission. These results corroborate previous findings that MG acts as an endogenous 

competitive agonist for GABAA receptors113,119. GABAA receptor agonists used in the context of 

cocaine-seeking behavior have shown contrasting results leading to both reduction and increase 

in cocaine-seeking behaviors120–128. Since MG is generated in proportion to glycolytic activity of 

nearly every cell and does not accumulate in synaptic vesicles, it diffuses and may activate 

GABAA receptors at synaptic and extra synaptic sites; thus, manipulating the endogenous levels 
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of MG by GLO1 inhibition probes a mechanism of GABAA receptor regulation that is 

fundamentally different from the canonical modulation of synaptic GABAA receptors. In our 

study, electrophysiological recordings suggest that there is an increase in GABAergic 

transmission without changes in postsynaptic currents in the CeA; thus, we speculate that MG-

based pharmacological manipulations may alter presynaptic GABAA receptor function, reducing 

GABA release at inhibitory terminals and suppressing inhibitory connections within the CeA. 

Consistently, previous studies demonstrated that the activation of presynaptic GABAB receptors 

suppresses inhibitory connection within the CeA84 and that negative regulation of GABAergic 

transmission can occur through a presynaptic mechanism85. An alternative scenario is that the 

magnitude of effects is not sufficient to cause detectable changes in amplitude. Overall, these 

results offer a promising pharmacological target for improving therapeutic approaches for 

cocaine addiction that was identified by our single cell analysis of the amygdala in high and low 

AI rats. 

While the pharmacological inhibition experiments are not cell type-specific, the pathway 

enrichment analysis of the transcriptomic data suggest that GABAergic synapse-related genes 

may be specific to Cck+Vip+ and Nos1+ subtypes of inhibitory neurons. Previous studies 

manipulating GLO1 activity directly in the mouse amygdala by transgenic expression of Glo1 or 

MG microinjection were sufficient to reduce anxiety-like behaviors129. Future experiments 

targeting specific subregions or cell types of the amygdala will be necessary to further 

characterize the effects of GLO1 inhibition on cocaine addiction-related phenotypes.  

The results from the GLO1 inhibition experiments indicate a close connection between 

localized energy metabolism and neurotransmission130. Moreover, genes which are differentially 

regulated in high versus low AI rats are enriched in pathways related to energy metabolism, 
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including glycolysis, pyruvate metabolism, and oxidative phosphorylation (Figure 1.3f). Most 

notably, the expression levels of genes related to oxidative phosphorylation, which determines 

cellular ATP levels131, are altered across most amygdalar cell types. Not only is ATP crucial for 

sustaining electrophysiological activity and cell signaling in the brain132,133, but it is also required 

for ATP-dependent chromatin remodeling events initiated by pioneer TFs134. This could 

potentially explain why excitatory and inhibitory neurons show opposite directions of regulation 

in chromatin accessibility (Supplemental Figure 1.9) and in the enrichment of DEGs in the 

oxidative phosphorylation pathway (Figure 1.3f). In combination, these observations suggest that 

an altered metabolic state within the amygdala impacts multiple cellular processes that are 

involved in vulnerability to and development of addiction. Future experiments that directly 

manipulate the expression of specific metabolic enzymes or pioneer TFs in a cell type-specific 

manner will be necessary to fully elucidate their role in addiction. 

In conclusion, the cellular atlas created by this study is a valuable resource for 

understanding cell type-specific gene regulatory programs in the amygdala and their role in the 

development of cocaine addiction-related behaviors. Our results emphasize the contribution of 

cellular energetics and the GABAA-mediated signaling to the enduring effects of cocaine use, 

which led us to perform experiments that manipulate GABAA transmission via the 

pharmacological inhibition of GLO1 and identify a novel potential target for treatment of 

cocaine addiction. We anticipate that future studies will utilize our data to further investigate 

novel cell type-specific mechanisms involved in addiction. 
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1.5: Methods 

1.5.1: Animals 

All protocols were reviewed and approved by the institutional Animal Care and Use 

Committee at the University of California San Diego. HS rats (Rat Genome Database 

NMcwiWFsm #13673907, sometimes referred to as N/NIH) which were created to encompass as 

much genetic diversity as possible at the NIH in the 1980’s by outbreeding eight inbred rat 

strains (ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N) were provided 

by Dr. Leah Solberg Woods (Wake Forest University School of Medicine). To minimize 

inbreeding and control genetic drift, the HS rat colony consists of 64 or more breeder pairs and is 

maintained using a randomized breeding strategy, with each breeder pair contributing one male 

and one female to subsequent generations. To keep track of the rats, their breeding, behavior, 

organs and genomic info, each rat received a chip with an RFID code. Rats were shipped at 3-4 

weeks of age, kept in quarantine for 2 weeks and then housed two per cage on a 12 h/12 h 

reversed light/dark cycle in a temperature (20-22°C) and humidity (45-55%) controlled vivarium 

with ad libitum access to tap water and food pellets (PJ Noyes Company, Lancaster, NH, USA). 

We used 46 HS rats for the behavioral experiments presented in Figure 1.1, of which 20 male 

rats (high and low AI) were used for the generation of snRNA-seq (Table 1.1) and snATAC-seq 

data (Table 1.2), along with 11 naive male rats (Tables 1.1 and 1.2). Additionally, 26 of these 46 

behaviorally phenotyped rats (13 female, 13 male) were used for the cue-induced reinstatement 

experiments. For snRNA-seq, we used 19 male rats (6 high AI, 6 low AI, 7 naive) (Table 1.1). 

For the snATAC-seq, we used 12 male rats (4 high AI, 4 low AI, 4 naive) (Table 1.2). In 

addition, we used a different cohort of 15 female and male rats (5 high AI, 5 low AI, 5 naive) for 

the electrophysiology experiments.  
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1.5.2: Drugs 

Cocaine HCl (National Institute on Drug Abuse, Bethesda, MD, USA) was dissolved in 

0.9% saline (Hospira, Lake Forest, IL, USA) and administered intravenously at a dose of 0.5 

mg/kg/infusion as described below. pBBG was synthesized in the laboratory of Prof. Dionicio 

Siegel (University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical 

Sciences). pBBG was dissolved in a vehicle of 8% dimethylsulfoxide, 18% Tween-80, and 74% 

distilled water and administered intraperitoneally 30 minutes before the test session. 

1.5.3: Brain Samples 

Brain tissues were obtained from the cocaine brain bank at UCSD39, which collects 

tissues from HS rats that are part of an ongoing study of addiction-like behavior43. We used 31 

HS rats for generating the single-nucleus sequencing data reported in this study, which included 

20 rats that had low or high AI for cocaine addiction-related behaviors, using behavioral methods 

previously described48 were kept in their home cages and never subjected to the catheter 

implantation or the behavioral protocol for cocaine IVSA. Brain tissues were collected after four 

weeks of abstinence from cocaine self-administration, which has been used in prior studies to 

examine long-lasting effects of self-administration47,135–140. Brain tissues were extracted and 

snap-frozen (at −30°C). Cryosections of approximately 500 microns (Bregma -1.80 - 3.30mm) 

were used to dissect the amygdala on a −20°C frozen stage, including the CeA, BLA, and medial 

amygdala from both hemispheres. Punches from three sections were combined for each rat. In 

addition, 6 ACI/EurMcw rats were used for the dissection of the CeA and BLA. 

1.5.4: Single-cell library preparation, sequencing, and alignment 

snRNA-seq libraries from the whole amygdala tissues were performed by the Center for 

Epigenomics, UC San Diego using the Droplet-based Chromium Single-Cell 3’ solution (10x 
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Genomics, v3 chemistry). Briefly, frozen tissue was homogenized via glass dounce. Nuclei were 

then resuspended in 500 µL of nuclei permeabilization buffer (0.1% Triton-X-100 (Sigma-

Aldrich, T8787), 1X protease inhibitor, 1 mM DTT, and 1U/µL RNase inhibitor (Promega, 

N211B), 2% BSA (Sigma-Aldrich, SRE0036) in PBS). Sample was incubated on a rotator for 5 

min at 4°C and then centrifuged at 500 rcf for 5 min (4°C, run speed 3/3). Supernatant was 

removed and pellet was resuspended in 400 µL of sort buffer (1 mM EDTA 0.2 U/µL RNase 

inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich, SRE0036) in PBS) and stained with 

DRAQ7 (1:100; Cell Signaling, 7406). Up to 75,000 nuclei were sorted using a SH800 sorter 

(Sony) into 50 µL of collection buffer consisting of 1 U/µL RNase inhibitor in 5% BSA; the 

FACS gating strategy sorted based on particle size and DRAQ7 fluorescence. Sorted nuclei were 

then centrifuged at 1000 rcf for 15 min (4°C, run speed 3/3) and supernatant was removed. 

Nuclei were resuspended in 35 µL of reaction buffer (0.2 U/µL RNase inhibitor (Promega, 

N211B), 2% BSA (Sigma-Aldrich, SRE0036) in PBS) and counted on a hemocytometer. 12,000 

nuclei were loaded onto a Chromium Controller (10x Genomics). Libraries were generated using 

the Chromium Single-Cell 3′ Library Construction Kit v3 (10x Genomics, 1000075) with the 

Chromium Single-Cell B Chip Kit (10x Genomics, 1000153) and the Chromium i7 Multiplex Kit 

for sample indexing (10x Genomics, 120262) according to manufacturer specifications. cDNA 

was amplified for 12 PCR cycles.  

For snATAC-seq libraries from the whole amygdala tissues, nuclei were purified from 

frozen tissues using an established method141. Briefly, frozen amygdala tissue was homogenized 

using a 2 ml glass dounce with 1 ml cold 1x Homogenization Buffer (HB). The cell suspension 

was filtered using a 70 μm Flowmi strainer (BAH136800070, Millipore Sigma) and centrifuged 

at 350g for 5 min at 4°C. Nuclei were isolated by iodixanol (D1556, Millipore Sigma) density 
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gradient. The nuclei iodixanol solution (25%) was layered on top of 40% and 30% iodixanol 

solutions. Samples were centrifuged in a swinging bucket centrifuge at 3,000g for 20 min at 4°C. 

Nuclei were isolated from the 30-40% interface. Libraries were generated using the Chromium 

Next GEM Single Cell ATAC v1.1 (10x Genomics, PN-1000175) with the Chromium Next 

GEM Chip H Single Cell Kit (10x Genomics, 1000162) and the Chromium i7 Multiplex Kit for 

sample indexing (10x Genomics, 1000212) according to manufacturer specifications. DNA was 

amplified for 8 cycles.  

For snRNA libraries from BLA and CeA, frozen brain tissues were obtained from the 

ACI/EurMcw rat strain, one of the HS rat founder strains. For nuclei isolation, brain punches 

from 3 rats for each region were pooled and homogenized in homogenization buffer (0.26 M 

sucrose, 0.03 M KCl, 0.01 M MgCl2, 0.02 M Tricine-KOH pH 7.8, 0.001 M DTT, 0.5 mM 

spermidine, 0.15 mM Spermine, 0.3% NP40) using with 1ml glass Dounce homogenizers. The 

homogenate was filtered with a 70-um strainer filter (SP Bel-Art, cat no 136800070) and 

centrifuged for 5 minutes at 350 RCF. The nuclei were purified with an iodixanol gradient 

(Sigma-Aldrich # 92339-11-2) by layering a 25% Iodixanol-nuclei mixture on top of 30% and 

40% Iodixanol solutions. After centrifugation at 4oC 3,000 RCF for 20 minutes, nuclei were 

collected from the 30-40% interface. Nuclei were washed in ATAC-RSB-Tween buffer (0.01 M 

Tris-HCl pH 7.5, 0.01 M NaCl, 0.003 M MgCl2, 0.1% Tween-20) and then resuspended in 1X 

nuclei buffer (10x Genomics, PN 2000207). 12,000 nuclei were loaded on the 10x Genomics 

Chromium Controller for GEM generation. RNAse inhibitors (Roche Diagnostics, # 

03335402001) were added to all buffers (1U/ul). snRNA-seq library was performed using the 

Chromium Next GEM Single Cell Multiome Reagent Kit A (# 1000282) following Chromium 

Next GEM Single Cell Multiome ATAC + Gene Expression Reagent Kits User Guide (10X 
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Genomics). After the transposition reaction, nuclei were encapsulated and barcoded. Next-

generation sequencing libraries were constructed following the User Guide. 

For each library type, SPRISelect reagent (Beckman Coulter, B23319) was used for size 

selection and clean-up steps. Final library concentration was assessed by Qubit dsDNA HS 

Assay Kit (Thermo-Fisher Scientific) and post library QC was performed using Tapestation High 

Sensitivity D1000 (Agilent) to ensure that fragment sizes were distributed as expected. Final 

libraries were sequenced using the NovaSeq6000 (Illumina). 

1.5.5: Behavioral experiments 

Intravenous catheterization and behavioral testing of rats used for the generation of 

snRNA-seq and snATAC-seq were carried out using an established protocol of extended access 

to cocaine IVSA, progressive ratio (PR) testing, and foot shock, as reported previously39,48,49. 

Briefly, after surgical implantation of intravenous catheters and a week of recovery, HS rats were 

trained to self-administer cocaine (0.5 mg/kg/infusion) in 10 short access (ShA) sessions (2h/day, 

5 days per week). Next, the animals were allowed to self-administer cocaine in 14 long access 

(LgA) sessions (6h/day, 5 days/week) to measure the escalation of drug intake (Figure 1.1e). 

Following the escalation phase, rats were screened for motivation using the PR test and for 

persistent drug-seeking despite adverse consequences using contingent foot-shock. The 

breakpoint (Figure 1.1f) was defined as the maximal number of presses completed before a 60-

minute period during which a rat does not complete the next schedule. Rats were classified as 

vulnerable (high AI), defined by having high addiction-like behavior, versus resilient (low AI), 

defined as having low addiction-like behavior, via a median split51,52. AI was computed by 

averaging normalized measurements (z-scores) for the three behavioral tests: escalation of drug 

intake, motivation, and compulsive-like behavior, or drug taking despite adverse consequences142 
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(Figure 1.1c-d). The z-scores were calculated as Z = (x-μ)/σ, where x is the raw value, μ is the 

mean of the cohort, and σ is the standard deviation of the cohort. Brain tissues were collected 

after four weeks of abstinence. For the pBBG studies, we used rats with low and high AI distinct 

from those used for the snRNA-seq and snATAC-seq experiments. Four weeks after the last drug 

self-administration session, the rats were placed back in the self-administration chambers without 

the availability of cocaine. The number of responses to the previous drug-paired lever (cocaine 

seeking behavior) was measured 30 minutes after intraperitoneal injection of pBBG (15 

mg/kg/ml) or its vehicle, in a Latin square design. The 30 minutes time point was selected based 

on a previous study86. Data were analyzed using Prism 9.0 software (GraphPad, San Diego, CA, 

USA). Self-administration data were analyzed using repeated-measures analysis of variance 

(ANOVA) or mixed effect model followed by Bonferroni post-hoc tests when appropriate. For 

pairwise comparisons, data were analyzed using the unpaired t-test. The data are expressed as 

mean ± SEM unless otherwise specified. Values of p < 0.05 were considered statistically 

significant. 

1.5.6: Electrophysiology 

Slices of the CeA were prepared from rats after 4 weeks of protracted abstinence from 

cocaine IVSA following the same behavioral protocol described above or age-matched naive 

rats. High AI (n=5), low AI (n=5) and naive (n=5) rats were used for patch clamp baseline 

recordings. These rats were distinct from those used for snRNA-seq and snATAC-seq. Slices 

from each group were also used to record iPSCs after pBBG treatment. The naive rats received 

sham IV surgery. The rats were deeply anesthetized with isoflurane and brains were rapidly 

removed and placed in oxygenated (95% O2, 5% CO2) ice-cold cutting solution that contained 

206 mM sucrose, 2.5 mM KCl, 1.2 mM NaH2PO4, 7 mM MgCl2, 0.5 mM CaCl2, 26 mM 
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NaHCO3, 5 mM glucose, and 5 mM Hepes. Transverse slices (300 μm thick) were cut on a 

Vibratome (Leica VT1200S; Leica Microsystems) and transferred to oxygenated artificial 

cerebrospinal fluid (aCSF) that contained 130 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 2.0 

mM MgSO4·7H2O, 2.0 mM CaCl2, 26 mM NaHCO3, and 10 mM glucose. The slices were first 

incubated for 30 min at 35°C and then kept at room temperature for the remainder of the 

experiment. Individual slices containing CeA were transferred to a recording chamber that was 

mounted on the stage of an upright microscope (Olympus BX50WI). The slices were 

continuously perfused with oxygenated aCSF at a rate of 3 mL/min. Neurons were visualized 

with a 60X water-immersion objective (Olympus), infrared differential interference contrast 

optics, and a charge coupled device camera (EXi Blue; QImaging). Whole-cell recordings were 

performed using a Multiclamp 700B amplifier (10 kHz sampling rate, 10 kHz low-pass filter) 

and Digidata 1440A and pClamp 10 software (Molecular Devices). Patch pipettes (4–6 MΩ) 

were pulled from borosilicate glass (Warner Instruments) and filled with 70 mM KMeSO4, 55 

mM KCl, 10 mM NaCl, 2 mM MgCl2, 10 mM Hepes, 2 mM Na-ATP, and 0.2 mM Na-GTP. 

Pharmacologically isolated sIPSCs were recorded in the presence of the glutamate receptor 

blockers, CNQX (Tocris #0190) and APV (Tocris #189), and the GABA-B receptor antagonist 

CGP55845 (Tocris #1246). Experiments with a series resistance of >15 MΩ or >20% change in 

series resistance were excluded from the final dataset. pBBG (2.5uM) was acutely applied in the 

bath. The frequency, amplitude, and kinetics of sIPSCs were analyzed using semi-automated 

threshold-based mini detection software (Easy Electrophysiology) and visually confirmed. Data 

were analyzed using Prism 9.0 software (GraphPad, San Diego, CA, USA) with one-way 

ANOVA followed by post hoc Tukey HSD test or with paired t-tests. The data are expressed as 
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mean ± SEM unless otherwise specified. Values of p < 0.05 were considered statistically 

significant. 

1.5.7: Alignment of snRNA-seq and snATAC-seq reads 

Raw base call (BCL) files were used to generate FASTQ files using Cell Ranger 3.1.0 for 

snRNA-seq data, Cellranger ATAC v.2.0.0 for snATAC-seq data, and Cell Ranger ARC v.2.0.0 

for processing Chromium Single Cell Multiome ATAC + Gene Expression sequencing data. For 

demultiplexing raw base call (BCL) files generated by the sequencers into FASTQ files, we used 

the `cellranger mkfastq` command for RNA-seq reads, `cellranger-atac mkfastq` for ATAC-seq 

reads, and `cellranger-arc mkfastq` for the CeA and BLA samples which were generated using 

the multiome kit143,144. Next, we used `cellranger count` and `cellranger-atac count` to align the 

snRNA-seq and snATAC-seq reads, respectively, to a custom rat reference genome based on the 

rn6 reference genome downloaded from the UCSC genome browser145–147. The reference 

genome files for cell ranger were created from FASTA and genome annotation files for Rattus 

norvegicus Rnor_6.0 (Ensembl release 98)148 and JASPAR2022 motifs149. BLA and CeA 

samples were aligned to the same reference genome using `cellranger-arc count`. We then 

filtered cells based on quality control metrics and performed barcode and UMI counting for the 

RNA-seq and ATAC-seq reads.  

1.5.8: Quality control and preprocessing of snRNA-seq data 

All snRNA-seq preprocessing was performed with Seurat v3.2.356. For each sample, we 

loaded the filtered feature barcode matrices containing only detected cellular barcodes returned 

by `cellranger count` into Seurat. We computed the number of unique genes detected in each cell 

(nFeature_RNA); the total number of molecules detected within a cell (nCount_RNA); and the 

percentage of reads mapping to the mitochondrial genome (percent.mt) (Supplemental File 1.1). 
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nFeature_RNA is informative because low-quality cells or empty droplets will typically have 

very low numbers of detected genes while doublets or multiplets will exhibit very high gene 

counts. nCount_RNA is a metric that correlates with nFeature_RNA. We examined percent.mt 

because low-quality or dying cells typically exhibit a high degree of mitochondrial 

contamination. We removed all cells for which the value of any of these metrics was more than 

three standard deviations from the mean within the sample (𝑥 > 𝜇 ± 3𝜎). Next, we normalized 

the count data for each sample using sctransform150 with percent.mt as a covariate.  

1.5.9: Integrating snRNA-seq data across samples and clustering 

To integrate snRNA-seq data across all our samples, we used reciprocal principal 

component analysis (RPCA), as implemented in Seurat56,151. First, we identified 2000 highly 

variable features (genes) across all of the samples to use as integration features using the 

`SelectIntegrationFeatures()` function, which we passed as anchor features (`anchor.features`) to 

the `PrepSCTIntegration()` function. Next, we performed dimensionality reduction with PCA on 

each sample using `RunPCA()`. After this, we ran the `FindIntegrationAnchors()` function to 

find a set of anchors between the list of Seurat objects from all of our samples using the same 

anchor features passed to `PrepSCTIntegration()`, specifying RPCA as the dimensional reduction 

method to be performed for finding anchors (`reduction = rpca`) and the first 30 RPCA 

dimensions to be used for specifying the k-nearest neighbor search space. Two rats (1 high AI, 1 

low AI) were used as reference samples for the integration. We used the resulting anchor set to 

perform dataset integration across all of our samples using `IntegrateData()`. We clustered the 

integrated dataset by constructing a K-nearest neighbor (KNN) graph using the first 30 PCs 

followed by the Louvain algorithm, implemented in Seurat using the `FindNeighbors()` function 

followed by `FindClusters()`. Finally, we ran PCA once again on the integrated dataset and 



 

 

50 

visualized the data using uniform manifold approximation and projection (UMAP). Visualization 

of the integrated data in two-dimensional space indicated that batch correction was successful 

(Supplemental Figure 1.2a-c). To compare CeA and BLA subregion samples with the whole 

amygdala, we subsampled whole amygdala samples from the naïve rats in our study and 

performed the same integration technique. The integrated subregion data was visualized using 

UMAP. 

1.5.10: Cell type assignment for snRNA-seq data 

We identified marker genes of each cluster in our integrated snRNA-seq dataset using 

MAST152, implemented with the `FindMarkers()` function in Seurat. Cell type identities were 

assigned based on expression of known marker genes of cell types known to be found in the 

amygdala. 

1.5.11: Cell type-specific gene expression analysis for snRNA-seq data 

Within each cell type, we tested for DEGs between the high AI rats and the low AI rats. 

We used the negative binomial test88,89 implemented with the `FindMarkers()` function in Seurat 

to identify differential expression between groups, using percent.mt and the library prep date as 

covariates. We used the avg_log2FC value returned by the `FindMarkers()` function as an 

estimate of effect size. We did not pre-filter genes for testing based on log-fold change or 

minimum fraction of cells in which a gene was detected. This approach allowed us to detect 

weaker signals because we tested all observed genes in the dataset. Multiple testing correction 

was performed using the Benjamini-Hochberg method and we used a false discovery rate of 10% 

as a significance threshold (FDR<10%). Permutation tests were performed using the same 

methods, covariates, and filtering options but with shuffled addiction index labels. Results from 
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permuted and unpermuted data were compared by visualizing the distributions of uncorrected p-

values with QQ-plots (Supplemental Figure 1.5). 

We used ClusterProfiler153 to perform gene set enrichment analysis (GSEA) of KEGG 

pathways for DEGs from each cell type. A ranked list of the avg_logFC values for all genes 

evaluated with our negative binomial test was given as input to GSEA. Multiple testing 

correction for GSEA results was performed using Benjamini-Hochberg adjustment, with 

statistical significance assessed at a FDR<10%. 

All rat eQTLs described in the paper come from the RatGTEx portal 

(https://ratgtex.org/download/). Specifically, we downloaded their table of conditionally 

independent cis-eQTLs, which only includes eQTLs passing a significance threshold of 

FDR<0.05. We examined cis-eQTLs in the following brain tissues: BLA, Brain, IL, LHb, NAcc, 

NAcc2, OFC, PL, PL2. For each cis-eQTL in the database, only the top associated SNP is given, 

but some genes have more than one cis-eQTL in a tissue, meaning there are multiple loci with 

statistically independent associations with the gene’s expression. We measured enrichment of 

significant DEGs (FDR<10%) that also had eQTLS in the rat brain using the Chi-squared test, 

implemented using the `chisq.test()` function in R. 

To obtain bootstrap distributions of DEG effect sizes, we resampled nuclei with 

replacement 1000 times. Resampling was performed separately for nuclei from high and low AI 

rats so that the sample size of each set remained consistent. For each bootstrap iteration we 

recorded the p-value and the coefficients for the hi/low AI condition from the negative binomial 

regression performed by Seurat’s `FindMarkers()' function. We then rescaled the coefficient to 

be in units of log2 fold change. We note that the log2FC estimates obtained by this method 

correspond to the p-values but differ slightly from Seurat's avg_log2FC estimates because 
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Seurat's avg_log2FC calculations introduce a pseudocount and do not consider the effects of 

covariates. The distribution of resulting bootstrap fold-change estimates and q-values were 

visualized as violin plots using Plotly in Python (Figure 1.3c-e). 

1.5.12: Comparing observed gene expression differences to predicted gene expression 

differences based on cis-genetic variation 

To estimate the genetic component of gene expression variation in the brain, 

conditionally independent cis-eQTLs and their allelic fold change (aFC) estimates for whole 

brain hemisphere tissue were downloaded from the RatGTEx Portal 

(https://ratgtex.org/download/). Using aFC as effect size, gene expression was predicted from 

genotypes using eQTL linear models77 (https://github.com/PejLab/gene_expr_pred). Predicted 

relative expression was thus obtained for 26 rats whose genotypes were available, and only for 

genes with at least one significant cis-eQTL. Genes with zero-variance predictions were 

removed, resulting in predictions for 8,997 genes. To further prioritize genes by estimated 

prediction accuracy, gene expression was predicted for the same 339 rats that were used to map 

the whole brain hemisphere eQTLs. Pearson correlation 𝑟2 was calculated between those 

predictions and observed log-TPM expression from the same rats. We then measured the 

difference between mean predicted expression in high vs low AI rats and compared it against the 

avg_logFC estimates obtained by Seurat's FindMarkers() function. Spearman's correlation 

coefficient (𝜌) was calculated between the difference in mean predicted expression and the 

observed avg_logFC. We performed these tests multiple times using different 𝑟2 cutoffs for the 

gene expression prediction models to filter genes (Table. S3). Spearman's correlation coefficients 

(𝜌) and the associated p-values were calculated using `scipy.stats.spearmanr()`. Confidence 
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intervals were calculated using the formula 𝑡𝑎𝑛ℎ(𝑡𝑎𝑛ℎ−1(𝜌) ±
1.96

√𝑁−3
) . Spearman 𝜌 confidence 

intervals were visualized using Plotly in Python. 

1.5.13: Quality control and preprocessing of snATAC-seq data 

All snATAC-seq data preprocessing was performed with MACS287 (for peak calling) and 

Signac57. Although peak calling is performed during alignment by `cellranger-atac count`, we 

chose to call peaks separately using MACS2 because Cell Ranger’s peak calling function has 

been observed to merge multiple distinct peaks into a single region154. To minimize loss of 

informative features for clustering and downstream analysis, we first called peaks on the 

snATAC-seq BAM files for each rat with MACS2 (`macs2 callpeak -t {input} -f BAM -n 

{sample} --outdir {output} {params} --nomodel --shift -100 --ext 200 --qval 5e-2 -B --SPMR`). 

We confirmed that MACS2 calls more peaks and peaks with smaller widths compared to Cell 

Ranger (Supplemental Figure 1.12). Next, we merged overlapping peaks across all our samples 

to generate a combined peak set using BEDtools155 (`bedtools merge`). We generated a new peak 

by barcode matrix for each sample using this combined peak set and all detected cellular 

barcodes using the `FeatureMatrix()` function in Signac. We used these new matrices to create 

ChromatinAssay objects in Signac with the BSgenome.Rnorvegicus.UCSC.rn6146 reference 

genome using the `CreateChromatinAssay()` function. From these ChromatinAssay objects we 

created Seurat objects with `CreateSeuratObject()`, which are compatible with functions from the 

Seurat package. We computed several quality control metrics for each sample: nucleosome 

banding pattern (nucleosome_signal); transcriptional start site (TSS) enrichment score 

(TSS.enrichment); total number of fragments in peaks (peak_region_fragments); and fraction of 

fragments in peaks (pct_reads_in_peaks) (Supplemental File 1.2). We removed all cells for 

which the value of any of these metrics was more than two standard deviations from the mean 
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within the sample (𝑥 > 𝜇 ± 2𝜎). We removed one rat (FTL_463_M757_933000320046135) 

from our dataset, due to the very low number of detected fragments per cell in this sample 

(Supplemental Figure 1.13). 

1.5.14: Integrating snATAC-seq data across samples and clustering 

Each sample was normalized using term frequency-inverse document frequency (TF-

IDF) followed by singular value decomposition (SVD) on the TF-IDF matrix using all features 

(peaks)57,154. The combined steps of TF-IDF followed by SVD are known as latent semantic 

indexing (LSI)156,157. Non-linear dimensionality reduction and clustering were performed using 

UMAP and KNN following the same procedure used, respectively, just as we did for the 

snRNA-seq data. We merged the data across all samples within Signac and repeated the process 

of LSI in the same manner as it was applied to individual samples. We then integrated the 

merged dataset using Harmony158 implemented by Signac, integrating over the sample library 

variable to account for the effects of different sequencing libraries used for different samples. 

We observed successful reduction of batch effects following integration (Supplemental Figure 

1.2d-f). We once again performed non-linear dimensionality reduction and clustering with 

UMAP and KNN, respectively. Notably, LSI, UMAP and KNN are used for visualization 

purposes; raw counts were used for downstream differential accessibility analyses.  

1.5.15: Label transfer and cell type assignment for snATAC-seq data 

We created a gene activity matrix for the integrated snATAC-seq data using the 

`GeneActivity()` function in Signac. This counts the number of fragments per cell overlapping 

the promoter region of a given gene and uses that value as a gene activity score. Gene activity 

serves as a proxy for gene expression as gene expression is often correlated with promoter 

accessibility. The gene activity scores were log normalized using the `NormalizeData()` function 
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in Seurat with the normalization method set to `LogNormalize` and the scaling factor set to the 

median value of nCount_RNA across all cells, based on the gene activity scores. Cell type 

identities were assigned by integrating the snATAC-seq data with the integrated snRNA-seq data 

and performing label transfer56 as described in Signac. Briefly, this approach identifies shared 

correlation patterns in the gene activity matrix and the scRNA-seq dataset to identify matched 

biological states across the two modalities. The process returns a classification score for each cell 

for each cell type defined in the scRNA-seq data. Each cell was assigned the cell type identity 

with the highest prediction score. Additionally, by identifying matched cells in the snRNA-seq 

dataset, we were able to impute RNA expression values for each of the cells in our snATAC-seq 

dataset. This enabled us to perform correlative analyses of chromatin accessibility and gene 

expression in later downstream analyses, as it produced a pseudo-multimodal dataset.  

1.5.16: Differential chromatin accessibility analysis of snATAC-seq data 

Similar to our differential analyses of the snRNA-seq data, we tested for differentially 

accessible genomic regions between nuclei from the high versus low AI rats within each cell 

type. We used the negative binomial test150,159 implemented with the `FindMarkers()` function 

from Seurat to model the raw snATAC-seq count data using peak_region_fragments, library 

batch date, and rat sample ID as covariates. Multiple testing correction was performed using 

Benjamini-Hochberg adjustment and a false discovery rate below 10% (FDR<10%) was used to 

determine statistical significance. Permutation tests were performed in the same manner as for 

the differential gene expression analyses (using the same statistical test and covariates with 

shuffled addiction index labels).  
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1.5.17: Partitioned heritability analysis 

We downloaded summary statistics for the Liu et al. 2019 GWAS of tobacco and alcohol 

use106 and used the munge_sumstats.py script from LD Score (LDSC)105 to parse the summary 

statistics file into the proper format for downstream analyses. We used the sets of significant 

differential peaks (FDR<10%) for each cell type as foreground peaks and DNaseI 

hypersensitivity profiles for 53 epigenomes from ENCODE Honeybadger2. We used the UCSC 

liftOver tool to convert the foreground peaks from rn6 to hg19. There was no need to lift over the 

background peaks as Honeybadger2 is already in hg19. Next, we generated partitioned LD 

scores for the background and foreground regions. We used the make_annot.py script to make 

annotation files and the ldsc.py script to compute annotation-specific LD scores. We used the 

European 1000 Genomes Phase 3 PLINK160 files to compute the LD scores. Finally, using the 

baseline model and standard regression weights from the LDSC Partitioning Heritability tutorial, 

we ran a cell type-specific partitioned heritability analysis with the LD scores we computed.  

1.5.18: Annotation of accessible chromatin regions 

Before performing any differential analyses, we first used the annotatePeaks.pl script 

from the HOMER suite to annotate accessible chromatin regions and significant differential 

peaks (FDR<10%) for each cell type in our integrated dataset161. For each cell type, we 

performed a Fisher’s Exact Test to measure the enrichment of genomic regions annotated as a 

promoter region within the differential peaks compared to the set of all peaks in the dataset and 

observed significant results for all cell types tested. Specifically, we compared the ratio of peaks 

annotated as promoter regions to non-promoter regions in the significant differential peaks 

(FDR<10%) versus all other peaks. 
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1.5.19: Fisher’s Exact Tests 

We first performed a Fisher’s Exact Test to measure enrichment of DEGs (FDR<10%) 

with differentially accessible promoters. We defined the latter as the case where the promoter 

region of a gene overlaps a significant differentially accessible peak (FDR<10%). We obtained 

gene coordinates from the TxDb.Rnorvegicus.UCSC.rn6.refGene annotation package and 

defined promoter regions as being 1500 bases upstream and 500 bases downstream of the TSS 

(`promoters(genes(TxDb.Rnorvegicus.UCSC.rn6.refGene), upstream = 1500, downstream = 

500)`). We then generated a confusion matrix from the following four values: the number of 

DEGs with differentially accessible promoters; the number of DEGs with non-differentially 

accessible promoters; the number of non-DEGs with differentially accessible promoters; and the 

number of non-DEGs with non-differentially accessible promoters. We then performed a 

Fisher’s Exact Test to measure enrichment of differentially accessible peaks (FDR<10%) which 

were annotated as TSS/promoter regions by HOMER (annotatePeaks.pl). We generated a 

confusion matrix from the following four values: the number of differential peaks with a 

TSS/promoter annotation; the number of differential peaks without a TSS/promoter annotation; 

the number of non-differential peaks (FDR>10%) with a TSS/promoter annotation; and the 

number of non-differential peaks (FDR>10%) without a TSS/promoter annotation.  

1.5.20: Measuring differential activity of transcription factors with chromVAR 

We measured cell type specific motif activities using chromVAR to test for per motif 

deviations in accessibility between nuclei from high versus low AI rats. Motif data was pulled 

from the JASPAR2020 database, and integrated with snATAC-seq data using the `AddMotifs()` 

function in Signac. After adding motifs to our snATAC-seq dataset, we ran chromVAR with the 

`RunChromVAR()` wrapper in Signac. Differential analysis of chromVAR deviation scores was 
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performed using the Wilcoxon rank-sum test between high AI rats versus lowly addicted rats 

within each cell type. Differential testing was performed using Seurat’s `FindMarkers()` function 

with the mean function set as `rowMeans()` to calculate average difference in deviation scores 

between groups. Multiple testing correction was performed using Benjamini-Hochberg 

adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical 

significance. Motif clusters were defined using the provided cluster numbers from JASPAR's 

matrix clustering-results and the names of the clusters were annotated by hand based on which 

TFs were present in each cluster. When selecting clusters to visualize, we retrieved the top 50 

motifs (FDR<10%) per cell-type and highlighted their respective clusters. Volcano plots and 

heatmap data were generated using Plotly in Python. Hierarchical ordering of heatmap clusters 

was generated with Plotly’s `figure_factory.create_dendrogram()` function, which wraps the 

`cluster.hierarchy.dendrogram()` function in SciPy. 
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CHAPTER 2: Genome-wide analysis of CRISPR perturbations indicates that enhancers act 

multiplicatively and without epistatic-like interactions 

CHAPTER 2: Genome-wide analysis of CRISPR perturbations indicates that enhancers act 

multiplicatively and without epistatic-like interactions 

2.1: Abstract 

A single gene may be regulated by multiple enhancers, but how they work in concert to 

regulate transcription is poorly understood. Prior studies have mostly examined enhancers at 

single loci and have reached inconsistent conclusions about whether epistatic-like interactions 

exist between them. To analyze enhancer interactions throughout the genome, we developed a 

statistical framework for CRISPR regulatory screens that utilizes negative binomial generalized 

linear models that account for variable guide RNA (gRNA) efficiency. We reanalyzed a single-

cell CRISPR interference experiment that delivered random combinations of enhancer-targeting 

gRNAs to each cell and interrogated interactions between 3,808 enhancer pairs. We found that 

enhancers act multiplicatively with one another to control gene expression, but our analysis 

provides no evidence for interaction effects between pairs of enhancers regulating the same gene. 

Our findings illuminate the regulatory behavior of multiple enhancers, and our statistical 

framework provides utility for future analyses studying interactions between enhancers.  

2.2: Introduction 

Cis-regulatory elements (CREs), which include enhancers, direct transcription and shape 

cellular identity, growth, and biological function. Most genes are regulated by multiple 

enhancers1,2, yet we lack a detailed understanding of how enhancers act together to influence 

gene expression. When multiple enhancers for a gene are active in the same cell type, it is often 

assumed that they act additively—that is, their combined effect is equal to the sum of their 

https://www.zotero.org/google-docs/?VPvEPL
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individual effects3. However, enhancers may also act non-additively, and interactions between 

regulatory elements may modulate their effects on gene expression3–10. 

To date, most studies of regulatory elements have examined their effects independently, 

and studies of regulatory element interactions have focused on a small number of loci and have 

reached contradictory conclusions4–8. For example, a study of the ɑ-globin4 gene found that its 

expression is best explained by simple additivity between constituent elements of its super 

enhancer7. In addition, a study that deleted three constituent enhancers of a super enhancer for 

Wap3 found no evidence of synergy between the studied enhancers and differences in the 

magnitudes of effect that each constituent enhancer had on the target gene, with all three 

enhancers necessary to induce full induction of the gene during pregnancy8. Reexamination of 

both of these super enhancer datasets found that the effects of the constituent enhancers on the 

target genes were best described by a logistic generalized linear model (GLM), but that beyond 

this there was no significant evidence for interactions between enhancers5. Contrary to these 

findings, a recent study of the MYC locus described both synergistic and additive enhancer-

enhancer interactions, where enhancers separated from one another by larger genomic distances 

are more likely to have synergistic interactions and enhancers located closer to one another are 

more likely to have additive interactions9. Altogether, these studies have been limited to the 

examination of a small number of genes and enhancers and their results are difficult to interpret 

due to their conflicting findings and the lack of explicit definitions and consistent terminology 

for different models of enhancer activity.  

Recent technological advances have made it possible to couple CRISPR-induced genome 

perturbations with single-cell RNA sequencing10–16. Because single-cell CRISPR perturbation 

experiments can induce multiple genomic perturbations in each cell, they can be used to identify 

https://www.zotero.org/google-docs/?ayuGZX
https://www.zotero.org/google-docs/?eslUwJ
https://www.zotero.org/google-docs/?M9iu5b
https://www.zotero.org/google-docs/?ZaZriY
https://www.zotero.org/google-docs/?7a21gL
https://www.zotero.org/google-docs/?VVBdPd
https://www.zotero.org/google-docs/?Zvaxzd
https://www.zotero.org/google-docs/?ELEe4i
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interactions, or epistatic-like effects, between targeted sequences. Specifically, when such 

experiments are designed to target regulatory elements, they yield cells wherein multiple 

regulatory elements are simultaneously perturbed. This feature of these datasets can be harnessed 

to measure the combined effects of multiple regulatory elements, such as enhancers, on gene 

expression. 

Here, we present GLiMMIRS (Generalized Linear Models for Measuring Interactions 

between Regulatory Sequences), a statistical analysis framework that can be applied to single 

cell CRISPR perturbation experiments to quantify the effects of multiple regulatory elements on 

gene expression and identify interactions between them. GLiMMIRS has both data simulation 

and modeling components and importantly, accounts for variations in gRNA efficiency, a key 

variable in the interpretation of CRISPR experiments that has typically been ignored when 

analyzing data from them10,11,17–19. We applied GLiMMIRS to a multiplexed, single-cell CRISPR 

interference (CRISPRi) experiment that targeted putative enhancers in K562 cells11. We 

conducted a power analysis, which found that this dataset provides sufficient power to detect 

strong interactions between enhancers, but low power to detect weak interactions. Our analysis 

strongly supports a model in which most enhancers act multiplicatively to affect the expression 

of their target genes, but we find no evidence for the presence of additional interactions between 

them. 

2.3: Results 

2.3.1: Variation in guide efficiency should be considered when estimating enhancer effects from 

CRISPR perturbations 

To analyze the combined effect of multiple enhancers on gene expression, we leveraged 

data from a multiplexed, single-cell CRISPRi screen performed in K562 cells11. In this screen, 

https://www.zotero.org/google-docs/?8xqpCa
https://www.zotero.org/google-docs/?TwzizV
https://www.zotero.org/google-docs/?ABpwM0
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gRNAs were designed to target putative enhancers and enhancer-gene pairs were identified by 

associating perturbed enhancers with differences in the expression of nearby genes (Figure 2.1a). 

Due to the high multiplicity of infection (MOI) used in this experiment, many gRNAs targeting 

different enhancers are present within each cell (Figure 2.1a). While the high MOI was intended 

to increase power to detect enhancer-gene pairs, we leveraged this feature of the dataset to 

quantify how pairs of enhancers regulate the expression of common target genes and to detect 

potential interaction effects between them (Figure 2.1b). In particular, we focused on cells which 

received gRNAs targeting pairs of enhancers within 1Mb of the same gene, which we designate 

as the putative target gene20–22. 

Most enhancers in this dataset were targeted by two different gRNAs. The original study 

did not distinguish between gRNAs that targeted the same enhancer; however, it is important to 

consider differences in guide efficiency when examining the combined effects of multiple 

enhancers in a CRISPR screen. This is because the joint effect of both enhancer perturbations 

can appear smaller or larger than expected if one of the targeting guides has low efficiency. To 

illustrate this concept, we examined two enhancers of NMU, which were among the most 

significant enhancer-gene pairs discovered by the original study. We performed CRISPRi 

experiments to perturb the enhancers of NMU using guide designs from the paper (Figure 2.1c, 

Supplemental File 2.1). We quantified gene expression following each perturbation using reverse 

transcription-quantitative polymerase chain reaction (RT-qPCR) and found that one of the two 

gRNAs targeting the first enhancer (enhancer A, gRNAs A1 and A2) caused much larger 

reductions in NMU expression (Figure 2.1d). Differences in guide efficiency like the ones we 

observed for gRNAs A1 and A2 can give false signals of epistatic-like interactions if different 

guides targeting the same enhancers are treated as equivalent. For example, if by chance most of 

https://www.zotero.org/google-docs/?CHKt4c
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the cells which contained guides targeting both enhancer A and B contained gRNA A1 (rather 

than the inefficient A2), then the joint effect of targeting both enhancers could be greatly 

overestimated. 

To examine variation in guide efficiency, we estimated the efficiency of the gRNAs 

included in the experiment using GuideScan 2.023. Predicted guide efficiency varies substantially 

across the guide library (Figure 2.1e), indicating that it is important to consider this variable 

when analyzing enhancer interactions using this dataset.  

 

Figure 2.1: Variation in guide efficiency should be considered when estimating enhancer effects from 

CRISPR perturbations.a) Schematic of the Gasperini et al. experiment. A library of gRNAs targeting putative 

enhancers was transduced into cells with a high multiplicity of infection (MOI), resulting in multiple perturbations 

per cell. The identities of the gRNAs and their effects on gene expression were read out with single-cell RNA-seq 

(scRNA-seq). b) Schematic of two enhancers acting on the same gene. We seek to quantify the effect on multiple 

enhancers acting on a single gene. c) Schematic of CRISPR perturbation experiment targeting enhancers of NMU 

with two gRNAs per enhancer. d) Results of CRISPRi RT-qPCR experiment perturbing NMU enhancers for three 

technical replicates. For each NMU enhancer (enhancers A and B), two gRNAs were used (A1, A2 and B1, B2, 

respectively) and delivered on the same vector. Vectors containing gRNA A1 resulted in larger fold changes in 

NMU expression than their counterparts containing gRNA A2 instead (denoted p-values come from unpaired 

Welch's two-sided t-tests against the null hypothesis that there is no difference in mean fold change (FC) between 

vectors using gRNA A1 vs. gRNA A2. SH = safe harbor). TS = NMU transcription start site, WT = wild type K562 

cells expressing dCas9-KRAB without any gRNAs, horizontal bar = mean log2(FC). See also Supplemental File 2.1. 

e) Distribution of guide efficiency values predicted by GuideScan 2.0 for the gRNAs used in the Gasperini et al. 

experiment. 

2.3.2: GLiMMIRS provides a modeling and simulation framework for quantifying enhancer 

effects from CRISPR screens 

We developed GLiMMIRS, a dual modeling and simulation framework for analyzing 

data from CRISPR screens to evaluate the effects of regulatory elements on target genes. We 

first sought to evaluate the utility of a model that incorporates guide efficiency by testing a 

https://www.zotero.org/google-docs/?XODCuK
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simple model that considers just one enhancer acting on one gene, which we refer to as the 

GLiMMIRS baseline model (GLiMMIRS-base) (Figure 2.2a). For each enhancer and gene of 

interest, we fit a generalized linear model (GLM) with a negative binomial distribution to the 

observed scRNA-seq counts. The predictor of interest in this model is the probability that the 

enhancer is perturbed, 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 . We calculated the value of 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  using the efficiencies of the 

targeting sgRNAs which are present in each cell (see Methods). In addition to considering guide 

efficiency, we also included covariates to account for cell cycle24 and other relevant variables 

(see Methods) 24. 

To evaluate the performance of GLiMMIRS-base, we developed a simulation framework 

for single-cell CRISPRi screens (Figure 2.2b, see Methods) and used it to generate a dataset 

resembling the Gasperini et al.11 experimental dataset, with gRNAs targeting the enhancers of 

predetermined target genes. This is the simulation component of GLiMMIRS (GLiMMIRS-sim), 

designed for evaluation of our baseline scenario. This provided us with a set of ground truth 

coefficient values which we could use to benchmark our model. We generated scRNA-seq 

counts for each gene by sampling from a negative binomial distribution defined by gene-specific 

parameters (Figure 2.2b, Methods). We then fit our baseline model to the simulated count data 

and compared the estimated model coefficients to the “ground truth” values used in the 

simulation. The coefficient of determination (𝑅2, see Methods) between the estimated enhancer 

effect coefficients and the ground truth values was higher (𝑅2 = 0.657, 𝑀𝑆𝐸 = 0.52, Pearson’s 

𝑟 = 0.862) when we implemented our model with a perturbation probability, 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  (see 

Methods), compared to a model that used a simple indicator value representing the presence or 

absence of targeting gRNAs for the enhancer being modeled (𝑅2 = −0.449, 𝑀𝑆𝐸 = 2.195, 

Pearson’s 𝑟 = 0.811) (Figure 2.2c, Table 2.1). This is because the model that uses the indicator 

https://www.zotero.org/google-docs/?Kpx0Fh
https://www.zotero.org/google-docs/?OiYXBd
https://www.zotero.org/google-docs/?zc9UqA
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value systematically underestimates the enhancer effect, by assuming that the presence of a 

gRNA completely inhibits the target site even when the gRNA has low efficiency. We also 

generated “noisy” guide efficiency values with GLiMMIRS-sim (Supplemental Figure 2.1a-b) to 

account for uncertainty in predicted guide efficiencies25–28. These noisy guide efficiency values 

were calculated as a function of true guide efficiency and a noise-controlling constant 𝐷 (see 

Methods), where 𝐷 is inversely related to the amount of noise in the efficiency value. We found 

that fitting to the simulated data using the values of 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  computed from the noisy guide 

efficiencies still performed better than an indicator variable under low noise  (𝐷 = 100; 𝑅2 =

0.642, 𝑀𝑆𝐸 = 0.542, Pearson’s 𝑟 = 0.854) and medium noise (𝐷 = 10; 𝑅2 = 0.499, 𝑀𝑆𝐸 =

0.752, Pearson’s 𝑟 = 0.789). Under a simulation with very noisy guide efficiencies, the 

coefficient estimates correlated very poorly with the ground truth due to the presence of some 

extreme outliers (𝐷 = 1; 𝑅2 = −6107.575, 𝑀𝑆𝐸 = 8937.909, Pearson’s 𝑟 = 0.03) 

(Supplemental Figure 2.1c, Table 2.2). In summary, accounting for guide efficiency improves 

the accuracy in coefficient estimates and is robust to moderate noise in the guide efficiency 

estimates. 

We then applied GLiMMIRS-base to the Gasperini et al.11 dataset and compared the p-

values obtained from our GLM to those from the published analysis. We detected a similar 

number of significant enhancer-gene pairs (588 validated by GLiMMIRS-base out of the 664 

reported by Gasperini et al.11), but with lower p-values for most of the highly significant pairs. 

Our p-values are well-calibrated, and when applied to permuted data (where gRNA identities are 

assigned to different cells) the p-value distribution matches the null expectation (Figure 2.2d). 

These results establish that accounting for guide efficiency offers advantages over an indicator 

variable for gRNA presence and suggest that including cell cycle scores as additional covariates 

https://www.zotero.org/google-docs/?5TZhyW
https://www.zotero.org/google-docs/?K6c4NF
https://www.zotero.org/google-docs/?letCif


 

 

83 

in GLiMMIRS may further boost power to detect enhancer-gene pairs. Having established the 

validity of our approach for the simpler scenario of single enhancers acting on single genes, we 

proceeded to study the effects of pairs of enhancers on single genes.  

 

Figure 2.2: GLiMMIRS provides a modeling and simulation framework for quantifying enhancer effects 

from CRISPR screens.  

 

a) A schematic of GLiMMIRS-base, wherein we evaluate the effect of a single putative enhancer on a single target 

gene. We model count data with a negative binomial generalized linear model (GLM). b) Schematic of data 

simulation for a single-cell CRISPRi experiment perturbing enhancers. Coefficient values (β) were simulated for 

each gene and corresponding variable values (𝑋) were simulated for each cell. 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 was calculated as a function 

of simulated guide efficiency. Values were sampled from distributions that resembled the empirical data whenever 

possible. We also simulated a per cell scaling factor to account for sequencing depth. c) Scatterplot comparing true 

versus estimated coefficient values for 1000 genes modeled with GLiMMIRS-base. These genes were designated as 

“true” target genes in the simulation, meaning their enhancers were targeted in the simulated experiment. Shows 

results of fitting to simulated data using a value of 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 calculated from guide efficiency (continuous), 

representing perturbation probability, versus an indicator variable (indicator). A pseudocount of 0.01 was added to 

the counts (see also Supplemental Figure 2.4). Coefficients of determination (𝑅2) are shown. See also Table 2.1. d) 

Quantile-quantile plot of observed versus expected -log10p indicates similarity between GLiMMIRS-base and the 

results published by Gasperini et al. The baseline values (orange) indicate the results of GLiMMIRS-base. The 

Gasperini values (green) indicate the previously published results. Mismatch gene and scrambled perturbation are 

negative control models. Mismatch gene (purple) compares an enhancer with a randomly assigned gene expression 

vector, while scrambled perturbation (yellow) shuffles the vector of guide perturbation probabilities. 
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Table 2.1: Fitting GLiMMIRS-base to simulated data comparing perturbation probability to indicator 

variable for 𝑿𝒑𝒆𝒓𝒕𝒖𝒓𝒃.  

Pearson correlation (𝑟), mean squared error (MSE), and coefficient of determination (𝑅2) between true and 

estimated coefficient values for each coefficient in the baseline model when fitting with guide-efficiency derived 

value of 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 versus with an indicator (0/1) value for 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏. 

X.perturb term r p_val MSE R2 

continuous (Intercept) 0.99681599 0 0.03726403 0.98812193 

continuous guide.eff 0.86197003 1.07E-296 0.52009733 0.65668657 

continuous s.score 0.97391272 0 0.10758061 0.93555405 

continuous g2m.score 0.98275344 0 0.06522213 0.95666934 

continuous percent.mito 0.92464345 0 0.25841741 0.8216003 

indicator (Intercept) 0.99681564 0 0.03727181 0.98811945 

indicator guide.eff 0.81093353 1.65E-234 2.19548345 -0.4492268 

indicator s.score 0.97391118 0 0.10758667 0.93555042 

indicator g2m.score 0.98275542 0 0.06521277 0.95667556 

indicator percent.mito 0.92465712 0 0.25838458 0.82162297 
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Table 2.2: Fitting GLiMMIRS-base to simulated data comparing different levels of noise in guide efficiency 

estimates.  

Pearson correlation (𝑟), mean squared error (MSE) and coefficient of determination (𝑅2) between true and estimated 

coefficient values for each coefficient in the baseline model when fitting with perturbation probabilities (𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏) 

calculated from different sets of noisy guide efficiency estimates. 

D term r p_val MSE R2 

1 (Intercept) 0.99677719 0 0.03735124 0.98801518 

1 guide.eff 0.02978161 0.34874436 8937.90936 -6107.5746 

1 s.score 0.97358575 0 0.10833667 0.93470673 

1 g2m.score 0.98214717 0 0.06559903 0.95510971 

1 percent.mito 0.92459247 0 0.25991558 0.82114178 

10 (Intercept) 0.99680445 0 0.03727269 0.98807399 

10 guide.eff 0.78897122 4.10E-213 0.75236876 0.49898029 

10 s.score 0.97391847 0 0.10767907 0.93555831 

10 g2m.score 0.98275896 0 0.06528683 0.95666923 

10 percent.mito 0.92468192 0 0.25864625 0.82156289 

100 (Intercept) 0.99681607 0 0.03726286 0.98812231 

100 guide.eff 0.8542484 8.50E-286 0.54202322 0.6422134 

100 s.score 0.97391254 0 0.10758247 0.93555293 

100 g2m.score 0.98275351 0 0.06522047 0.95667044 

100 percent.mito 0.92464094 0 0.25841917 0.82159908 

 

2.3.3: GLiMMIRS-int detects interactions between pairs of enhancers 

To model the effects of pairs of enhancers on a target gene, we modified GLiMMIRS-

base by replacing the enhancer term 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  with three new terms to represent: 1) the 



 

 

86 

first enhancer in the pair (𝛽𝐴𝑋𝐴); 2) the second enhancer in the pair (𝛽𝐵𝑋𝐵); and 3) an epistatic-

like interaction between the enhancers (𝛽𝐴𝐵𝑋𝐴𝐵). As with the baseline model above, the values of 

the 𝑋𝐴 and 𝑋𝐵 predictors are the probability that the respective enhancers are perturbed. 

Likewise, the value of 𝑋𝐴𝐵 is the probability that both enhancers are simultaneously perturbed 

and is also estimated from the predicted guide efficiencies. This new model, which evaluates 

interaction effects between pairs of enhancers, is the GLiMMIRS interactions model 

(GLiMMIRS-int). 

To identify pairs of enhancers to test in the experimental data, we identified target sites 

from the Gasperini et al. experiment, or putative enhancers, which were both located within 1MB 

of a common target gene as testable enhancer pairs. We found a total of 795,616 testable 

enhancer pairs from the set of enhancers targeted in the Gasperini et al.11 study. Since cells must 

contain perturbations of multiple enhancers to determine whether there is an interaction effect 

between the enhancers, we evaluated the number of cells containing gRNAs targeting both 

enhancers within testable pairs. While the majority of testable enhancer pairs are simultaneously 

perturbed in fewer than 10 cells, several hundred enhancer pairs are simultaneously targeted in at 

least 10 cells (Figure 2.3a). 

We performed a power analysis to evaluate our power for detecting interactions at 

different MOI, represented by different values of 𝜆 (see Methods) (Supplemental Figure 2.2a), 

and different magnitudes of (fixed) interaction effect sizes (Figure 2.3b-c). To do this, we used 

GLiMMIRS-sim to generate ground truth data for evaluating interactions between enhancer pairs 

(see Methods). In our power analysis, we defined positive cases as enhancer pairs with a true 

interaction effect on their target gene and negative cases as pairs of enhancers with individual 

effects on the target gene but no interaction effect. As expected, we observed that power to detect 

https://www.zotero.org/google-docs/?7CL11A
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interaction effects scales with the magnitude of the interaction effect size as well as the MOI, 

which controls the number of testable cells (Supplemental Figure 2.2b-c). Our power analysis 

indicated that we have low power (<25%) to detect interactions of small effect sizes (<2), 

particularly at low MOIs (𝜆 = 15,25). This is likely because the number of testable cells, or cells 

containing gRNAs targeting both enhancers in a testable pair, are very low (Figure 2.3a). The 

scenario 𝜆 = 15 from our power analysis most closely resembles the empirical data 

(Supplemental Figure 2.2, Figure 2.3a), indicating that we have moderate power (>50%) to 

detect large interaction effects (≥ 5) and low power to detect smaller effects. Thus, with the 

experimental dataset analyzed in our study, we expect that we will have sufficient power to 

detect strong interaction effects between enhancers but be unable to draw conclusions about the 

presence or absence of weak interactions. 

 

Figure 2.3: GLiMMIRS-int detects interactions between pairs of enhancers.  

 

a) Distribution of the frequency of all testable target site pairs in the Gasperini et al. dataset. Criteria for testable 

pairs are defined as pairs of target sites, or putative enhancers, located within 1MB of a common target gene that are 

simultaneously perturbed in the same cells. b-c) Results of power analysis for ability to detect interaction effects in 

simulated datasets with varying multiplicities of infection 𝜆 (MOI) and effect sizes (x-axis). We calculated b) true 

positive rate (TPR), or power, from the “positive” ground truth enhancer pairs with interaction effects that we 

simulated, and c) false positive rate (FPR) from the “negative” control enhancer pairs without interaction effects that 

we simulated. 
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2.3.4: Enhancers act multiplicatively to control gene expression, but analysis of CRISPR 

perturbations provide no evidence for interactions 

We next applied GLiMMIRS to the Gasperini et al.11 CRISPRi dataset to study enhancer-

enhancer interactions. To survey for interactions between enhancers, we defined two sets of 

testable enhancer pairs throughout the genome: a smaller, high-confidence set and a larger, 

unbiased set of testable pairs (see Methods). The high-confidence set consisted of 330 testable 

pairs and corresponding target genes where each of the individual enhancers had a previously 

reported regulatory effect on the target gene. The unbiased set consisted of all testable pairs that 

were perturbed in a minimum of 20 cells, regardless of any previously established relationship 

between each individual enhancer and the target gene. The unbiased set contained 3,808 

enhancer pairs and target genes. 

We first examined whether the combined effects of multiple enhancers on gene 

expression were better described by a multiplicative or additive model. To this end, we fit two 

versions of GLiMMIRS-int to the 330 enhancer pairs and their target genes in the high-

confidence set: an additive model, in which we used an identity link function and a multiplicative 

model, in which we used a log link function. We then compared the model fits with Akaike 

Information Criterion (AIC). This approach is similar to that used by Dukler et al.5 to compare 

additive, exponential and logistic models for two genes. In all cases, the multiplicative model 

provided a better fit, indicating that the combined effect of enhancers is better described by a 

multiplicative model (Figure 2.4a). Thus, we used the multiplicative form of GLiMMIRS-int in 

all subsequent analyses. 

We applied GLiMMIRS-int to the 330 enhancer pairs in the unbiased set and observed no 

significant interaction terms (Likelihood Ratio Test, FDR<0.1) (Figure 2.4b). When applying 

https://www.zotero.org/google-docs/?Ld621x
https://www.zotero.org/google-docs/?qvIc9Z
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GLiMMIRS-int to the 3,808 enhancer pairs where each constituent enhancer did not necessarily 

have a significant effect on gene expression, we identified 4 significant interaction term effects 

with this model (Likelihood Ratio Test, FDR<0.1) (Figure 2.4b). These interactions were 

observed at the EXOC8, BABAM2, H2BC12, and the ZBED9 gene loci, and all significant 

interaction terms were positive (Figure 2.4c)  

We examined the distribution of single-cell RNA-seq read counts for the four genes with 

significant interaction terms, focusing on the cells that received guides targeting both 

corresponding enhancers. For all four genes, we noted that there was a single outlier cell with 

high read counts that received both guides (Figure 2.4d). Since GLM coefficients and p-values 

can be influenced by outliers, we performed a bootstrap analysis of the interaction coefficients 

(𝛽𝐴𝐵), which is less sensitive to outliers. For each of the enhancer pairs and their corresponding 

target genes, we resampled cells with replacement 100 times, fit GLiMMIRS-int to the 

resampled data, and recorded the 𝛽𝐴𝐵 estimates. The 99% bootstrap confidence intervals for 𝛽𝐴𝐵 

for all four genes spanned zero (Figure 2.4e). We additionally performed a permutation test of 

𝛽𝐴𝐵 to obtain p-values that are more robust to outliers. We shuffled the assignments of gRNAs in 

cells for the gRNAs targeting both enhancers in each pair jointly 10,000 times, and fit 

GLiMMIRS-int to the permuted data to obtain a null distribution of interaction coefficients. Two 

of the p-values obtained by this approach were nominally significant (p=0.0077 and p=0.0003 by 

two-sided permutation test) but would not withstand multiple testing correction given the total 

number of tests performed (Figure 2.4b). In combination, these results indicate that the four 

significant interaction terms are largely driven by cells with outlier expression of the target gene, 

and that there is insufficient evidence to reject the null hypothesis of no interactions between 

enhancers. 
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Figure 2.4:  Enhancers act multiplicatively to control gene expression, but analysis of CRISPR perturbations 

provide no evidence for interactions.  

a) Distribution of 𝛥AIC, the difference in Akaike Information Criterion between the best fitting model and the lesser 

model for 330 high confidence enhancer pairs and corresponding target genes from Gasperini et al. In every case 

evaluated, the multiplicative model fit better than the additive model. b) Quantile-quantile plot of interaction 

coefficient p-values for 330 high confidence enhancer pairs, where each individual enhancer had significant effects 

on the target gene expression, and 3,808 unbiased enhancer pairs, where each constituent enhancer did not 

necessarily have a significant effect on gene expression. No enhancer pairs among the 330 high confidence pairs had 

significant interaction coefficients after multiple testing correction (gray). Four significant interactions were 

observed for the 3,808 unbiased pairs at the EXOC8, BABAM2, H2BC12, and ZBED9 gene loci (red) (FDR<0.1). 

Permutation test p-values for these four loci are shown in blue. Non-significant cases from the 3,808 unbiased pairs 

are shown in black. c) Volcano plot of interaction coefficients for the 3,808 unbiased pairs; significant interaction 

coefficients (FDR<0.1) are indicated in red. d) Gene expression counts from cells containing guides targeting both 

enhancers in a testable pair for the four genes with significant interaction terms. For all four genes, among the cells 

containing gRNAs targeting both enhancers in a pair, there contained a single outlier cell with extreme gene 

expression counts (red). e) Bootstrapping analysis of the four significant enhancer interactions. Red dots indicate the 

median coefficient estimate; red lines indicate 99% confidence intervals. 
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2.4: Discussion 

CRISPR perturbations provide a new way to measure how combinations of enhancers 

regulate gene expression. We reanalyzed data from a single-cell CRISPRi experiment designed 

to map enhancers to the genes that they regulate. Since this dataset transduced guide RNAs with 

a high MOI, multiple enhancers near to (within 1MB of) the same gene were sometimes 

perturbed within the same cells, making it possible to analyze the joint effects of multiple 

enhancers on a common target gene. Our analysis supports a model in which enhancers act 

multiplicatively to control gene expression. Such a model was previously proposed by Dukler et 

al.5, whose analysis of two loci in the genome supported either a logistic or multiplicative model 

of regulatory activity over an additive model5. Our genome-wide analysis confirms that a 

multiplicative model of enhancer activity fits the data in our analysis very well. The 

multiplicative model consistently provides a better fit than an additive model (Figure 2.4a) and 

statistics obtained from applying our multiplicative model to 3,808 unbiased testable pairs in the 

experimental data closely resemble those expected under the null hypothesis of no enhancer 

interactions (Figure 2.4b). The logistic model would be considered a refinement of a 

multiplicative model in which the expression of a gene has a maximum threshold that can be 

achieved by the activity of its enhancers. However, we cannot formally distinguish between 

logistic and multiplicative models with our dataset because this would require examining 

interactions between more than two enhancers for a single gene.  

A limitation of the dataset that we analyzed is that even with a high MOI and a large 

number of sequenced cells, only a small subset of enhancer pairs could be interrogated. 

Specifically, we only tested 3,808 out of a possible 795,616 testable enhancer pairs because most 

enhancer pairs satisfying our testing criteria were not simultaneously perturbed in a sufficient 

https://www.zotero.org/google-docs/?BHcVcf
https://www.zotero.org/google-docs/?3T3zzt
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number of cells. Furthermore, we only had sufficient power to detect interactions that exerted at 

least a moderately strong effect on expression (e.g. 29.4% power to detect interactions with an 

absolute effect size of 3 or greater at a simulated MOI of 𝜆 = 15). Many of these power 

limitations could be overcome through CRISPRi experiments designed specifically to probe 

enhancer interactions. For example, a high MOI CRISPRi experiment could be performed in 

which a much smaller number of candidate enhancers are targeted so that testable pairs are 

frequently perturbed simultaneously in the same cells. Multiple guides could also be transduced 

on the same vectors so that nearby enhancers are guaranteed to be targeted in many cells. This 

latter approach was recently used to estimate enhancer interactions at the MYC locus9. 

Further limitations of our analysis are that we only analyzed data from a single cell line 

under a single condition, and it is possible that enhancer interactions are more prevalent under 

dynamic conditions or in different cell types. 

Despite the above limitations, our results argue against the presence of strong epistatic 

interactions between enhancers. If such interactions do exist, they must be infrequent, of small 

effect, or restricted to specific cell types or conditions. How can these observations be reconciled 

with prior reports of enhancer redundancy or synergy? A possible explanation is that an 

interaction term is required by additive models because the combined effects of multiple 

enhancers is greater (synergistic) or less than (redundant) than expected under an additive model. 

However, these deviations from additivity may be naturally accounted for by a multiplicative 

model without the need for an interaction term. For example, under a multiplicative model, 

perturbation of a weak enhancer may have a small or negligible effect on expression but would 

have a much more substantial effect when combined with a perturbation to a strong enhancer. An 

https://www.zotero.org/google-docs/?tEqMG5
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additive model would require an interaction term to describe these results and the enhancers 

would appear to be 'redundant'. 

A recent study by Lin et al. analyzed enhancer interactions at the MYC locus using pairs 

of CRISPR guides and reported additive interactions between nearby enhancers, and synergistic 

interactions between distant enhancers9. In our dataset, we did not observe any differences in 

interactions between enhancers that were close together or far apart (Supplemental Figure 2.3); 

however, it is difficult to compare our results with those from Lin et al. for two reasons. First, the 

high-throughput screen in Lin et al. was performed using cell proliferation as readout, rather than 

gene expression, thereby assuming that proliferation was proportional to MYC expression. 

Second, while Lin et al. examined how selected pairs of enhancers affect the expression of MYC 

and other genes, their analysis relied on log relative expression obtained by RT-qPCR, which is 

not directly comparable to scRNA-seq expression estimates. 

Future studies which examine enhancer interactions will benefit from GLiMMIRS, which 

uses a generalized linear model that accounts for guide efficiency, differences in per-cell 

sequencing depth and several covariates. We note that it is important to consider a multiplicative 

model as the baseline expectation when looking for enhancer interactions, and when interactions 

are identified it is important to consider the possibility that the results are driven by a small 

number of outlier cells. To increase power to detect weak interactions, CRISPR experiments that 

are specifically designed to examine enhancer interactions are desirable. Our study motivates the 

further study of enhancer interactions in more cell types and conditions, to which GLiMMIRS 

can be applied to yield novel insights into regulatory element interactions and their effects on 

transcription. 

 

 

https://www.zotero.org/google-docs/?KUxrxF
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2.5: Methods 

2.5.1: CRISPRi perturbation of NMU enhancers 

We identified two target sites of interest, A and B, for the gene NMU, each of which was 

targeted by two gRNAs in the Gasperini et al.11 experiment (A1 and A2 targeting enhancer A; 

B1 and B2 targeting enhancer B). Pairs of gRNAs were designed by FlashFry29 to target 

enhancers A and B at the same time, using 2 gRNAs per site. The gRNA pairs included the 

following: NMU_tss+NMU_tss (positive control), Safe_harbor (SH)+SH (negative control), 

A_sgRNA1+SH, A_sgRNA2+SH, SH+B_sgRNA1, SH+B_sgRNA2, A_sgRNA1+B_sgRNA1, 

A_sgRNA1+B_sgRNA2, A_sgRNA2+B_sgRNA1, A_sgRNA2+B_sgRNA2. Pairs of gRNAs 

were cloned into pLV-dCas9-KRAB-puro (Addgene #71236) following published methods30,31. 

Briefly, DNA oligos carrying pairs of guides were synthesized by IDT and cloned into pLV-

dCas9-KRAB-puro plasmids by Gibson assembly reactions. Lentivirus was generated by co-

transfecting the plasmid with PsPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) in 

293FT cells obtained from the Salk Institute Stem Cell Core. Lentivirus was harvested 48h post 

transfection. K562 cells (ATCC #CCL-243) were transduced by the lentiviruses using 

spinoculation. 72h after transduction, K562 cells with viral genome integration were selected by 

puromycin for 48 h. Total RNA from live K562 cells was extracted and reverse transcribed using 

SuperScript IV First-Strand Synthesis System (Thermo Fisher Scientific #18091050) with 

random hexamers. NMU expression was quantified by reverse transcription quantitative PCR 

(RT-qPCR). CRISPR gRNA designs and PCR primers used in experiment can be found in 

Supplemental File 2.1. 

https://www.zotero.org/google-docs/?AjmePC
https://www.zotero.org/google-docs/?GHAGQN
https://www.zotero.org/google-docs/?fIAqjV
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2.5.2: Data from Gasperini et al. 

Data from the at-scale screen in the Gasperini et al. study are available at GEO accession 

number GSE120861. Guide spacer sequences were obtained from Supplementary Table 2 in the 

Gasperini et al. study11. The single-cell RNA-seq expression matrix from the at-scale screen was 

downloaded from the GEO file ‘GSE120861_at_scale_screen.exprs.mtx’. The cell barcodes were 

determined from the GEO file ‘GSE120861_at_scale_screen.cells.txt’. Gene names were 

determined from the GEO file ‘GSE120861_at_scale_screen.genes.txt’. The expression matrix 

had 207,324 cell barcodes and 13,135 gene names. Covariate information as well as cell-guide 

mapping information was determined from the GEO file: 

‘GSE120861_at_scale_screen.phenoData.txt.gz’.  

2.5.3: Computing guide efficiencies 

We first collected the 13,189 guide RNA sequences used in the at-scale screen previously 

published by Gasperini et al.11, which were published in Supplementary Table 2 of their study. 

We then appended ‘NGG’ to each 20 bp spacer sequence for compatibility with GuideScan 2.023. 

We then used the GuideScan 2.0 gRNA sequence search tool (https://guidescan.com/grna) with 

the organism ‘hg38’ and the enzyme ‘cas9’ parameters to predict efficiencies for the 20bp guide 

RNA spacer sequences. We used the “Cutting.Efficiency” values outputted from GuideScan as 

our guide efficiency values. 

Out of the 13,189 guide RNA sequences, 762 guide RNAs were designed to target 

transcription start sites, 101 guide RNAs were designed as non-targeting controls, 14 guide 

RNAs were designed as positive controls targeting the globin locus, and the remaining 12,312 

guide RNAs were designed to target candidate enhancer sequences. 

https://www.zotero.org/google-docs/?rePNai
https://www.zotero.org/google-docs/?YA5GWa
https://www.zotero.org/google-docs/?1Odpyl
https://guidescan.com/grna
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From the 12,312 enhancer-targeting guide RNAs, 1,415 guide RNAs did not find a 

match, had multiple off-targets, or had multiple perfect matches in the GuideScan 2.0 database. 

We excluded these 1,415 guide RNA sequences from downstream analysis.  

2.5.4: Computing cell cycle scores 

Cell cycle scores were computed from the single-cell RNA-sequencing gene expression 

matrix from the at-scale screen previously published by Gasperini et al.11 using the Seurat R 

package. 

Since the Seurat R package uses gene names from the Hugo Gene Nomenclature 

Committee, gene names were converted from their Ensembl Gene ID to HGNC symbol 

(https://www.genenames.org/) using the BioMart32 tool from Ensembl33 with the 

“hsapiens_gene_ensembl” dataset. Of the 13,135 genes in the at-scale expression matrix, 349 

genes were not recognized by BioMart and 591 genes did not successfully map from Ensembl 

Gene ID to HGNC symbol. For the total 940 genes that could not be mapped from Ensembl 

Gene ID to HGNC symbol, the Ensembl Gene ID was imputed as the gene name for downstream 

analysis with Seurat. 

To determine cell cycle scores, we used pre-defined sets of genes associated with S and 

G2M phases from the Seurat library. We log-normalized the data, identified variable features, 

and scaled the expression matrix using functions defined in Seurat. We then used the cell cycle 

scoring function with the predefined S and G2M gene sets in Seurat to compute cell cycle scores 

for each cell in the at-scale screen. To visualize the separation of cells based on their cell cycle 

scores, we performed a principal component analysis in Seurat using the S and G2M gene sets as 

features. 

https://www.zotero.org/google-docs/?oEOOH7
https://www.genenames.org/
https://www.zotero.org/google-docs/?1CJBWz
https://www.zotero.org/google-docs/?yXN8B5
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2.5.5: Model fitting and implementation 

All models were fitted by maximum likelihood using the `glm.nb()` function from the 

MASS package in R34. Every model described in this work is a negative binomial generalized 

linear model with a log link function.  

2.5.6: Defining a baseline model for a single enhancer acting on a single target gene 

Our baseline model tests for the simple case where a single enhancer acts on a single 

gene. The model is a generalized linear model which assumes a log link function and that the 

single-cell RNA-seq tag counts of each gene are negative binomially-distributed. In other words, 

𝑦 = 𝑁𝐵(𝜇, 𝜙) where 𝑦 represents the scRNA-seq counts of the genes, 𝜙 represents the 

dispersion parameter of the negative binomial distribution, and 𝜇 is the mean parameter of the 

negative binomial distribution.  The mean parameter is specified by a linear predictor passed 

through an exponential (inverse log-link) function: 𝜇 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 + 𝛽𝑆𝑋𝑆 +

𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝛽𝑔𝑅𝑁𝐴𝑠𝑋𝑔𝑅𝑁𝐴𝑠 + 𝛽𝑏𝑎𝑡𝑐ℎ𝑋𝑏𝑎𝑡𝑐ℎ + 𝑙𝑛(𝑠)). In this expression, we have 

gene-specific coefficients and cell-specific predictor values. 𝛽0 is the intercept and represents the 

baseline gene expression before the influence of any other relevant factors on gene expression. 

𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟  represents the effect of a perturbed target site (putative enhancer) on its target gene. 𝛽𝑆 

and 𝛽𝐺2𝑀 are coefficients that represent the effect of the S and G2M cell cycle states, 

respectively. 𝛽𝑚𝑖𝑡𝑜 is a coefficient representing the effect of percentage of mitochondrial DNA. 

Finally, 𝛽𝑔𝑅𝑁𝐴𝑠  is a coefficient representing the effect of total counts of gRNAs observed within 

a given cell. 𝛽𝑏𝑎𝑡𝑐ℎ  is a coefficient representing the effect of the prep batch, from the Gasperini 

et al. 2019 experiment. We incorporate measures of guide efficiency in the variable 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 . 

This variable is calculated for each cell based on the efficiencies of every gRNA targeting the 

target site being modeled which are present in the cell. Specifically, 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  is calculated for 

https://www.zotero.org/google-docs/?0aVYlx
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any given cell and target site as 1 − ∏ (1 − 𝑔𝑘)𝐾
𝑘=1 , where 𝐾 is the total number of gRNAs 

targeting the target site found in the cell and 𝑔𝑘 is the efficiency of the 𝑘𝑡ℎ gRNA. Because we 

interpret guide efficiency as the probability that a gRNA successfully perturbs its designated 

target site, the expression for 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  can be interpreted as the joint probability of a perturbation 

in each cell based on all the gRNAs targeting the sites that are present in that cell. 𝑋𝑆 and 𝑋𝐺2𝑀 

are S and G2M cell cycle scores, respectively, for each cell. 𝑋𝑚𝑖𝑡𝑜 is the percentage of 

mitochondrial DNA in a cell. 𝑋𝑔𝑅𝑁𝐴𝑠 is the total number of gRNAs observed in a cell. 𝑋𝑏𝑎𝑡𝑐ℎ  is 

the prep batch (from Gasperini et al. 2019). Finally, 𝑠 is an offset term for the model that serves 

as a scaling factor controlling for variable sequencing depth across cells. It is calculated as 𝑠 =

𝑇

1𝑒6
, where 𝑇 is the total scRNA-seq counts in a cell summed across all genes in the expression 

count matrix. Prior to fitting the models, we added a pseudocount of 0.01 to the scRNA-seq 

counts of the gene being modeled for all cells to prevent inflation of coefficients (see 2.5.12: 

Defining a model for an enhancer pair acting on a single target gene). 

2.5.7: Simulating data for single enhancers acting on single genes 

To begin, we define some simulation parameters, including the total number of cells, 𝐶; 

the total number of genes, 𝐺; the total number of target sites, 𝑁; and the number of gRNAs 

targeting each site, 𝑑. Note that the total number of target sites, 𝑁, is also the total number of 

target genes, as this simulation assumes that each target site is a unique enhancer for a unique 

gene. To generate a simulated dataset, we need to simulate sets of coefficient values for each 

gene (𝛽0, 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 , 𝛽𝑆 , 𝛽𝐺2𝑀 , 𝛽𝑚𝑖𝑡𝑜) as well as corresponding variable values for each cell 

(𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 , 𝑋𝑆 , 𝑋𝐺2𝑀 , 𝑋𝑚𝑖𝑡𝑜 , and scaling factor 𝑠). We also need to simulate the gRNA library and 

assign gRNAs to cells, as well as assign guide efficiencies to gRNAs (which will be used to 

calculate 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏). These values are used to calculate a value of 𝜇 for defining a negative 
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binomial distribution from which simulated counts for a given gene will be drawn. Specifically, 

𝜇 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 + 𝛽𝑆𝑋𝑆 + 𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝑙𝑛(𝑠)). The terms for 

total gRNA counts per cell and batch are omitted from the simulation for simplicity, and are also 

omitted when fitting the baseline model to the simulated data. The dispersion parameter for the 

negative binomial distribution will be constant across all genes and estimated from the empirical 

data. For the simulated dataset described in our paper, we used values of 𝐺 = 13000, 𝑁 =

1000, 𝑑 = 2. 

We first simulated values of 𝛽0̂, or estimated baseline coefficients, for each gene. To do 

this, we randomly selected a subset of 1,000 genes and 10,000 cells from the Gasperini et al. 

2019 at scale experiment and fit the counts for these genes to negative binomial distributions 

using maximum likelihood estimation (MLE). Specifically, we define the mean parameter of the 

negative binomial here as 𝜇 = 𝑒𝑥𝑝(𝛽0̂ + 𝑙𝑛(𝑠)). Note that here 𝑠 is calculated from the total 

counts for the gene observed across the subset of 10,000 cells using the formula defined in the 

previous section. This simplified model has no covariates, but does account for the scaling 

factor, as the goal is to simply get a sense of what coefficient values reflect the empirical data. 

After modeling the counts from the random subset of data, we visualized the distribution of 

estimated 𝛽0̂(from which 𝜇 is calculated) and dispersion parameters for each gene tested. From 

what we observed, we picked a fixed dispersion value of 𝜙 = 1.5 for defining the negative 

binomial distribution for generating simulated count data. We also observed that the distribution 

of 𝛽0̂ estimated from the subset of the at scale experiment were roughly normally distributed. 

Therefore, we fit these estimated 𝛽0̂ values to a normal distribution with MLE to obtain 

parameters for defining a normal distribution from which to sample 𝛽0 values for the simulated 

dataset. We obtained parameters for the normal distribution of 𝜇 ≈ 2.24 and 𝜎 ≈ 1.8, so we 
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sampled 𝐺 times from 𝑁(𝜇 = 2.24, 𝜎 = 1.8) to yield baseline coefficients for all the genes in the 

simulated dataset.  

To assign guides to cells, we first determined the number of gRNAs in each cell in our 

simulated dataset by sampling from a Poisson distribution defined as 𝑃𝑜𝑖𝑠(𝜆 = 15). This value 

of 𝜆 comes from the fact that in the Gasperini et al. 2019 experiment, they observed a median of 

approximately 15 unique gRNAs per cell. Thus, we sampled 𝐶 times from the distribution 

defined by 𝑃𝑜𝑖𝑠(𝜆 = 15) to obtain the number of unique gRNAs in each cell. To assign gRNAs 

to each cell, we sampled 𝑔 times without replacement from the set of all gRNAs in our library, 

where 𝑔 is the total number of gRNAs in each cell (determined in the previous step) and the 

gRNA library is denoted as a sequence of integers 1,2, . . . , 𝑑𝑁. Information about which gRNAs 

are found in which cells are stored in a one hot encoded matrix. 

We defined guide efficiency for each gRNA by sampling from a left-skewed Beta 

distribution, to represent the fact that an experimental design would select for gRNAs with 

higher efficiencies). For our simulation we used a Beta distribution defined as 𝐵𝑒𝑡𝑎(𝑎 = 6, 𝑏 =

3).  

Next, we created a mapping of gRNAs to target genes. For each target site, or putative 

enhancer, we randomly select an integer from 1,2, . . . , 𝐺 to represent the target gene of the 

candidate enhancer (indexers are used as gene identifiers). This is done without replacement to 

simulate a case where we are attempting to study enhancers of distinct genes, and yields a vector 

of length 𝑁, which we will replicate 𝑑 times to yield a complete mapping of gRNAs to target 

genes. In this vector of length 𝑁𝑑, the index of a given value in the vector represents the gRNA 

identifier.  



 

 

101 

Enhancer effect sizes are represented by the coefficient 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟  and are assigned on a 

per-gene basis. These values represent the effect that an enhancer has on the expression of its 

target gene. To do this, we sampled from a gamma distribution and multiplied the values by -1 to 

yield a negative value, representative of the expectation that successful repression of an enhancer 

will most likely decrease target gene expression. We wanted the values to be on a comparable 

scale with the expected baseline expression, 𝛽0, while also not being so small that they would be 

difficult for the model to detect changes in expression. We chose to sample values of 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟  

from a gamma distribution defined by 𝛤(𝛼 = 6, 𝜎 = 0.5), and all values drawn from the 

distribution were multiplied by -1 to represent a negative effect on target gene expression, which 

is the expectation when an enhancer is repressed. 

𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  is calculated for each cell as a function of guide efficiencies for the gRNAs 

targeting the putative enhancer of interest found in that cell. Specifically, it is calculated for each 

cell as 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = 1 − ∏ (1 − 𝑔𝑘)𝐾
𝑘=1  where 𝐾 is the total number of gRNAs targeting the 

putative enhancer of the gene being simulated/modeled that are present in the cell and 𝑔𝑘 is the 

guide efficiency of the 𝑘th gRNA in this set of targeting gRNAs. 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = 0 when 𝐾 = 0 

(Figure 2.2b). We compared the performance of using this variable in our model against the 

performance of using a binary indicator variable that simply represents the presence of any 

gRNA targeting the gene being simulated/modeled in each cell.  

We generated cell cycle scores for each cell in our simulated dataset using a similar 

approach to the one we used for sampling 𝛽0 values. That is, we first fit models to the empirical 

data to identify a distribution to draw simulated values from such that they would reflect the 

distribution of the real data. We first calculated S and G2M cell cycle scores for the empirical 

data using Seurat’s CellCycleScoring() function35–38. We observed that while the S cycle scores 

https://www.zotero.org/google-docs/?uO5Ziy
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calculated from the empirical data appeared to be normally distributed, the G2M scores appeared 

to show a right skewed distribution. Thus, we fit the empirical S cycle scores to a normal 

distribution and the empirical G2M scores to a skew normal distribution with MLE. We used the 

estimated parameters to define distributions for sampling S and G2M scores for the simulated 

dataset. Specifically, we sampled 𝐶 times from a normal distribution defined by 𝑁(𝜇 =

−1.296𝑒 − 3, 𝜎 = 0.11) and a skew normal distribution defined by 𝑁(𝜁 = −0.256, 𝜔 =

0.312, 𝛼 = 6.29, 𝜏 = 0) to obtain simulated S and G2M scores, respectively.  

We generated corresponding values of 𝛽𝑆 and 𝛽𝐺2𝑀 by sampling from the same 

distribution used to generate the enhancer effect sizes, or the gamma distribution defined by 

𝛤(𝛼 = 6, 𝜎 = 0.5). 

Percentage of mitochondrial DNA per cell is simulated using the same approach used to 

simulate the cell cycle scores and baseline expression values (𝛽0). We fit to the empirical 

percentages of mitochondrial DNA per cell. We fit to a beta distribution using MLE, and used 

the resulting parameter estimates to define a new beta distribution from which we sampled 

simulated values of percentage of mitochondrial DNA. This beta distribution was defined as 

𝐵𝑒𝑡𝑎(𝑎 = 3.3, 𝑏 = 81.48). 

Coefficients for the effect size of percentage of mitochondrial DNA, 𝛽𝑚𝑖𝑡𝑜, were 

simulated per gene by sampling from the same gamma distribution used to sample the other 

coefficients (𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 , 𝛽𝑆 , 𝛽𝐺2𝑀). This is the gamma distribution defined as 𝛤(𝛼 = 6, 𝜎 = 0.5). 

Finally, we simulated scaling factor values, 𝑠, for each cell in our simulated experiment, 

which were used to calculate values of 𝜇 for simulating counts for each gene. To do this, we 

simulated values of 𝑇, or total counts per cell, for each cell by sampling from a Poisson 
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distribution defined by 𝑃𝑜𝑖𝑠(𝜆 = 50000), where 50000 is the expected number of reads 

observed in each cell in a scRNA-seq experiment.  

2.5.8: Simulating noisy guide efficiencies 

The noisy guide efficiency estimate, 𝑤, for a given gRNA in our simulated dataset was 

sampled from a new Beta distribution parameterized by 𝑎′ and 𝑏′, which are calculated from the 

“true” simulated guide efficiency for the gRNA, 𝑤, and a dispersion-controlling constant 𝐷. We 

wanted the noisy guide efficiency to be sampled from a Beta distribution whose mean is 

equivalent to the “true” guide efficiency value; thus, 𝑤 =
𝑎′

𝑎′+𝑏′
. We defined the dispersion-

controlling constant 𝐷 as 𝐷 = 𝑎′ + 𝑏′. From this, it follows that 𝑎′ = 𝐷𝑤 and 𝑏′ = 𝐷 − 𝑎′. Like 

so, we calculated values of 𝑎′ and 𝑏′ from which to draw the noisy guide efficiency estimate for 

a given gRNA in our simulated guide library. The magnitude of 𝐷 is inversely proportional to 

the amount of noise (Supplemental Figure 2.1a-b).  

2.5.9: Fitting baseline model to simulated data 

To fit the baseline model to simulated data, we used a negative binomial GLM with a 

mean defined by the same log-link function described for generating simulated counts: 𝜇 =

𝑒𝑥𝑝(𝛽0 + 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 + 𝛽𝑆𝑋𝑆 + 𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝑙𝑛(𝑠)). Models were fitted 

by MLE. Each model can be described as 𝑦 = 𝑁𝐵(𝜇, 𝜙), where 𝑦 is the simulated counts for the 

gene being modeled, and all variable values (𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏 , 𝑋𝑆 , 𝑋𝐺2𝑀 , 𝑋𝑚𝑖𝑡𝑜) come from the per-cell 

values from the simulated dataset. We omit 𝛽𝑔𝑅𝑁𝐴 when fitting to the simulated data for 

simplicity. 

2.5.10: Evaluating performance of baseline model on simulated data 

Our simulated dataset had 𝑁 target sites, or genes that were regulated by an enhancer 

perturbed in the experiment. For each of these genes, we computed the Pearson correlation 
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(Pearson’s r and p-value) between the estimated coefficients, derived from fitting the baseline 

model to the simulated data, and the “true” coefficients, which were the “ground truth” 

coefficient values that we generated for the simulation and used to parameterize the distribution 

from which the simulated counts were drawn. We also calculated MSE for these values. Finally, 

we calculated the correlation of determination (𝑅2) as a measure of the model performance, as   

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
, where 𝑆𝑆𝑟𝑒𝑠 is the sum of squared residuals and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares. 

Specifically, we calculated 𝑆𝑆𝑟𝑒𝑠 as the sum of squared differences between the true and 

estimated coefficient values, and 𝑆𝑆𝑡𝑜𝑡  as the sum of squared differences between each estimated 

coefficient value and the average of all estimate values for the coefficient. These metrics are 

summarized in Table 2.1 for the continuous vs. indicator forms of 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  and in Table 2.2 for 

the three different sets of noisy simulated guide efficiencies.  

2.5.11: Fitting baseline model to experimental data 

For running a single enhancer-gene pair analysis on the experimental data, we obtained 

the 664 previously published enhancer-gene pairs from the Gasperini et al.11 paper using 

information provided in Supplemental Table 1 from the paper. Using these 664 previously 

published enhancer-gene pairs, we retrieved all experimental gRNAs targeting these enhancers, 

and filtered gRNAs where there was no valid guide efficiency from GuideScan 2.0. We then 

obtained the preparation batch, cell gRNA count, and percent mitochondrial reads covariates 

from their experimental data published on GEO and excluded cells without covariate values for 

our downstream modeling. To account for sequencing depth, we used the at-scale gene 

expression matrix and counted the number of transcripts per cell. We then divided these values 

by 1e-6 to obtain values for each cell which we included in our linear model through the offset() 

function. Prior to running the models, a pseudocount of 0.01 was added to the scRNA-seq counts 

https://www.zotero.org/google-docs/?WfzoV8


 

 

105 

for each cell. Models were then fitted using the nb.glm() function in the MASS R package using 

a log-link function and optimizing via maximum likelihood estimation. In the at-scale model, 

there were 207,324 cells total. After filtering for cells without covariate values, there were 

205,797 cells that were included in the modeling process. The scrambled perturbation negative 

control was obtained by scrambling the vector of guide efficiencies prior to modeling. The 

mismatch gene negative control set was obtained by randomly sampling a gene for a given 

enhancer from the set of 664 previously published enhancer-gene pairs.  

2.5.12: Defining a model for an enhancer pair acting on a single target gene 

Our model for evaluating interactions between enhancers is quite similar to our baseline 

model, except we replace 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟  with three new coefficients: 𝛽𝐴, 𝛽𝐵, 𝛽𝐴𝐵. Referring to the two 

enhancers in the pair being modeled as enhancers A and B: 𝛽𝐴 represents the effect of enhancer 

A on the target gene; 𝛽𝐵 represents the effect of enhancer B on the target gene; 𝛽𝐴𝐵 represents 

the interaction effect between enhancers A and B on the target gene. 𝑋𝐴, 𝑋𝐵, 𝑋𝐴𝐵 represent the 

perturbation probabilities of enhancer A, enhancer B, and both enhancers, respectively. The new 

negative binomial GLM has a mean defined as: 𝜇 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝐴𝑋𝐴 + 𝛽𝐵𝑋𝐵 + 𝛽𝐴𝐵𝑋𝐴𝐵 +

𝛽𝑆𝑋𝑆 + 𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝛽𝑔𝑅𝑁𝐴𝑠𝑋𝑔𝑅𝑁𝐴𝑠 + 𝛽𝑏𝑎𝑡𝑐ℎ𝑋𝑏𝑎𝑡𝑐ℎ + 𝑙𝑛(𝑠)). They are calculated 

in the same manner as 𝑋𝑝𝑒𝑟𝑡𝑢𝑟𝑏  from the baseline model. 

When fitting linear models, we observed inflated 𝛽𝐴𝐵 coefficients associated with cases 

where all cells containing gRNAs for both enhancers A and B showed no expression of the target 

gene. To prevent this inflation of the coefficients, we added a pseudocount of 0.01 to all the gene 

expression counts. When including a pseudocount in our modeling process, we observed a 

reduction in outliers in our enhancer effect sizes (Supplemental Figure 2.4). 
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2.5.13: Defining testable pairs of enhancers for interactions 

We defined testable enhancer pairs as any pairs of target sites, or putative enhancers, 

from the Gasperini et al. 2019 experiment which were located within 1MB of a common target 

gene. We also defined two subsets of testable pairs based on certain filtering criteria: a smaller, 

high confidence set of 330 enhancer pairs and their corresponding target genes, and a larger 

unbiased set of 3,808 enhancer pairs and corresponding target genes. To define our high 

confidence set, we restricted the set of all testable pairs to those where both individual enhancers 

in the pair had previously established evidence of a regulatory effect on the target gene based on 

the analysis performed by Gasperini et al.11 in their original study. To define our unbiased set, 

we simply looked for testable pairs that were simultaneously perturbed in a minimum of 20 cells; 

that is, there must be 20 cells receiving at least one of the gRNAs targeting each of the enhancers 

in the pair. We did not require either enhancer to have prior evidence of a regulatory effect on 

the target gene, thereby allowing for the possibility of regulatory effects that only arise in the 

presence of an interaction with another enhancer. In all cases, we also discarded enhancer pairs if 

all the gRNAs for either enhancer in the pair had undefined guide efficiency estimates.  

2.5.14: Simulating data for enhancer pairs acting on a single target gene 

We adapt the simulation framework used for simulating data for a single enhancer acting 

on a single gene. However, we have additional parameters to determine the number of “ground 

truth” enhancer pairs with and without an interaction effect between them. We refer to these as 

“positive” (𝑁𝑝𝑜𝑠) and “negative” (𝑁𝑛𝑒𝑔) pairs, respectively. These are selected from the set of all 

possible pairwise combinations of 𝑁 target sites defined for our simulation. Note that for the case 

of an enhancer pair acting on a single gene, 𝑁 represents the total number of putative enhancers 

rather than the total number of target genes. After randomly selecting 𝑁𝑝𝑜𝑠 and 𝑁𝑛𝑒𝑔 pairs 

https://www.zotero.org/google-docs/?K8h9jA
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without replacement from the set of possible pairs, we then randomly select the same number of 

genes without selection from the set of possible genes (1, . . . , 𝐺) to be the target genes of those 

pairs. For the simulation described in this paper, we selected values of 𝑁𝑝𝑜𝑠 = 𝑁𝑛𝑒𝑔 = 500 and a 

total of 𝑁 = 1000 target sites.  

2.5.15: Simulating data for power analysis 

Most aspects of the data simulation are identical to the data simulation for a single 

enhancer acting on a single gene. The coefficients 𝛽𝐴 and 𝛽𝐵 are drawn from the same 

distribution as 𝛽𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 . However, for the power analysis, we assign several different fixed 

values of 𝛽𝐴𝐵 for genes that are acted upon by an interaction effect between enhancers (e.g., the 

target genes of “positive” enhancer pairs). For genes that are not acted upon by any interaction 

effect, 𝛽𝐴𝐵 = 0. The other parameter that we modulate in the simulations is the value of 𝜆 for the 

Poisson distribution used to sample the number of unique gRNAs found in each cell. This is 

representative of multiplicity of infection, or MOI, so for each value of 𝜆 that we want to test 

with our power analysis, we generate different numbers of gRNAs per cell (Supplemental Figure 

2.2) and use these sets of values to generate different mappings of gRNAs in cells. This yields a 

different one-hot encoded matrix for each value of lambda, which will also lead to different sets 

of values of 𝑋𝐴, 𝑋𝐵, and 𝑋𝐴𝐵, as greater MOI may result in more gRNAs for a target site found in 

each cell and greater perturbation probabilities. Simulated counts are generated from a negative 

binomial distribution parameterized by 𝑁𝐵(𝜇, 𝜙), where 𝜇 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝐴𝑋𝐴 + 𝛽𝐵𝑋𝐵 +

𝛽𝐴𝐵𝑋𝐴𝐵 + 𝛽𝑆𝑋𝑆 + 𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝑙𝑛(𝑠)) and 𝜙 = 1.5 (determined from modeling 

empirical data, see Methods for simulating data for single enhancers acting on a single gene). We 

generated a set of simulated counts for each value of 𝜆 and interaction effect size. For our power 

analysis, we used values of 𝜆 = 15,25, 50, 75,100 and 𝛽𝐴𝐵 = 0.5,1,3,5,7. 



 

 

108 

2.5.16: Power analysis 

For our power analysis, we fit our model to the simulated data for the “positive” and 

“negative” pairs to obtain true positive rates (TPR) and true negative rates (TNR), respectively. 

We calculated the proportion of models that correctly called significant interaction terms, 𝛽𝐴𝐵, 

for the “positive” cases to obtain TPR. We calculated the proportion of models that correctly 

called no significant interaction terms, 𝛽𝐴𝐵, for the “negative” cases to obtain TNR.  

2.5.17: Comparing multiplicative to additive model 

To compare the fits of multiplicative vs. additive models of enhancer pair activity, we 

defined each model under the null hypothesis (𝐻0), where there is no interaction term (for 

simplicity). For the multiplicative model under 𝐻0, we use the canonical log-link function and 

define the mean of the negative binomial, 𝜇, as: 

𝜇 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝐴𝑋𝐴 + 𝛽𝐵𝑋𝐵 + 𝛽𝑆𝑋𝑆 + 𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝛽𝑔𝑅𝑁𝐴𝑠𝑋𝑔𝑅𝑁𝐴𝑠 +

𝛽𝑏𝑎𝑡𝑐ℎ𝑋𝑏𝑎𝑡𝑐ℎ + 𝑙𝑛(𝑠)). For the additive model under 𝐻0, we use the identity link function where 

the mean is simply equivalent to the linear predictor without transformation, defined as: 

𝜇 = 𝑠(𝛽0 + 𝛽𝐴𝑋𝐴 + 𝛽𝐵𝑋𝐵 + 𝛽𝐴𝐵𝑋𝐴𝐵 + 𝛽𝑆𝑋𝑆 + 𝛽𝐺2𝑀𝑋𝐺2𝑀 + 𝛽𝑚𝑖𝑡𝑜𝑋𝑚𝑖𝑡𝑜 + 𝛽𝑔𝑅𝑁𝐴𝑠𝑋𝑔𝑅𝑁𝐴𝑠 +

𝛽𝑏𝑎𝑡𝑐ℎ𝑋𝑏𝑎𝑡𝑐ℎ). We applied each model to the 330 testable pairs from the experimental data 

where each enhancer in the pair had evidence of being an enhancer for the target gene based on 

the analysis by Gasperini et al. We compare model fits by examining the Akaike Information 

Criterion (AIC), with a lower AIC indicating a better fit. We calculated 𝛥𝐴𝐼𝐶 by subtracting the 

AIC of the lesser model from the AIC of the best fitting model. Since we found that the 

multiplicative model fit better in every case we tested, every 𝛥𝐴𝐼𝐶 reported in our study reflects 

the AIC of the additive model subtracted from the AIC of the multiplicative model. 
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2.5.18: Fitting interaction model to empirical data 

For analyzing both sets of enhancer pairs tested in our analysis, we followed an identical 

procedure to the baseline model scenario, with the exception of adding a second enhancer effect 

vector, and allowing for interactions between the two enhancer vectors using built-in 

functionality within the glm.nb() function in the MASS R package.  

2.5.19: Bootstrapping of significant interaction coefficients 

We first performed bootstrapping to generate empirical distributions for the four 

significant interaction terms identified in our genome-wide analysis of enhancer pairs. We 

resampled all the cells in our dataset with replacement and refit our enhancer pair linear models 

with their associated covariates to obtain the bootstrapped empirical interaction coefficients. We 

then used the bootstrapped interaction coefficient estimates to derive 99% confidence intervals 

for the interaction coefficient using quantiles.  

2.5.20: Permutation test for significant interaction coefficients 

To determine permutation-based p-values associated with the observed significant 

interaction coefficients, we generated a null distribution of interaction coefficients by shuffling 

the perturbation probability vectors for enhancer 1 and enhancer 2 jointly, such that the same 

numbers of cells would have both enhancers perturbed. After performing 1000 permutations, we 

computed two-tailed p-values by counting the number of interaction coefficients with a 

magnitude greater than our observed significant interaction coefficient and dividing by the total 

number of permutations performed.  

2.5.21: Schematic figures 

All schematic figures created with BioRender.com. 
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APPENDIX 

Supplemental Figures 

Chapter 1 

 
Supplemental Figure 1.1: UMAP visualization of the clusters identified in integrated single-cell data sets. 

(a)  Clustering of integrated snRNA-seq dataset revealed 49 clusters. We first performed a k-nearest neighbors 

analysis (KNN) using the first 30 dimensions calculated by reciprocal principal component analysis (PCA). This 

was implemented with the FindNeighbors() function in Seurat. Next we used a modularity optimization technique 

using the Louvain algorithm to cluster the data, implemented with the FindClusters() function in Seurat with a 

resolution parameter of 0.8. (b) Clustering of integrated snATAC-seq data revealed 41 clusters. Latent semantic 

indexing (LSI) was used for dimensionality reduction rather than PCA. The first 30 dimensions minus the first 

dimension were used for KNN and clustering and the algorithm used for clustering was the smart local moving 

(SLM) algorithm. These steps were implemented with the same Seurat functions. 
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Supplemental Figure 1.2: UMAPS of snRNA-seq and snATAC-seq profiles, respectively, following batch 

correction of integrated datasets, grouped on: addiction index (a, d), rat sample (b, e),  and batch information (c, 

f). These plots demonstrate that cells do not cluster by any of these covariates following batch correction. 

Integration and batch correction of the snRNA-seq dataset was performed using SCTransform while Harmony 

was used for the snATAC-seq dataset. 
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Supplemental Figure 1.3: Heatmap of top five marker gene expression within subclustered excitatory neurons. 
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a b 

  

Supplemental Figure 1.4: Co-clustering of snRNA-seq from a CEA sample, a BLA sample, and the whole 

amygdala samples from all the naive rats in our study. a) UMAP with cells colored by cell type cluster 

assignments. b) UMAP with cells colored by source tissue, where “Amygdala” refers to the set of all amygdala 

samples from the naive rats in our study. 



 

 

118 

 

Supplemental Figure 1.5: QQ plots showing distribution of p-values for our differential gene expression 

analysis performed on our observed versus permuted data (AI labels associated with each cell were shuffled). The 

negative binomial test was the statistical test used for the analysis of both the observed and permuted datasets. 
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Supplemental Figure 1.6: Barplot showing numbers (labeled) of significant (FDR<10%) up- and downregulated 

DEGs by cell type. Darker shades indicate DEGs with a large fold change (abs(avg_log2FC)0.1). 
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Supplemental Figure 1.7: Summary of electrophysiology experiments studying GABA transmission in the 

central amygdala. a) Representative traces of sIPSC frequencies for baseline (BSL) and following treatment with 

pBBG (pBBG) in naive, low AI and high AI rats. b) ANOVA test comparing mean amplitude in BSL vs. pBBG 

across naive, low AI and high AI rats (degrees of freedom = 2). c) Cumulative probability plots of the peak 

amplitude for naive, low AI and high AI rats. 
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Supplemental Figure 1.8: QQ plots showing distribution of p-values for our differential peak accessibility 

analysis performed on our observed versus permuted data (AI labels associated with each cell were shuffled). The 

negative binomial test was used for the analysis of both the observed and permuted datasets. 
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Supplemental Figure 1.9: Bar plot showing number of significant (FDR<10%) differentially accessible peaks 

between high vs. low rats in each cell type. 
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Supplemental Figure 1.10: Pie chart showing genomic annotations of all OCRs in our snATAC-seq dataset 

across all rats. 
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Supplemental Figure 1.11: Violin plots showing DEG analysis in InhNeurons over 1000 bootstrap iterations. 

Each violin shows the distribution of log2FC results per iteration. The fraction represents the number of 

significant iterations (FDR<10%). 
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Supplemental Figure 1.12: Histograms showing distribution of peak sizes for peaks called by MACS2 (on the 

BAM files for the snATAC-seq data) versus CellRanger’s internal peak calling algorithm. MACS2 calls smaller, 

more precise peaks. 
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Supplemental Figure 1.13: Ridge plot quantifying the number of unique fragments (log10(nFrags)) per sample 

in the ATAC. Sample FTL_463_M757_933000320046135 was removed at this step and not included in any of 

our downstream snATAC-seq analyses due to its low number of fragments. 
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Chapter 2 

 
Supplemental Figure 2.1: Simulated noisy gRNA efficiency values and their effects on coefficient estimates. 

a) Histogram of noisy and true guide efficiencies from simulations with different values of D. D is the dispersion-

controlling coefficient used to control “noise.”  b) Scatterplot comparing noisy guide efficiencies to true guide 

efficiencies with different values of D. c) Scatterplot comparing true versus estimated coefficient values for each 

gene evaluated with GLiMMIRS-base. These plots summarize the results of fitting the model to 1000 genes in the 

simulated dataset which were designated as “true” target genes (genes whose enhancers were perturbed by 

gRNAs in the simulated experiment). Plot shows results of fitting to simulated data using the three different sets 

of noisy guide efficiencies. A pseudocount of 0.01 was applied to the counts for all cells. Coefficients of 

determination (R2) are shown. 36 outliers fall outside the axis range and are not visible in the enhancer panel for 

the set where D=1. 
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Supplemental Figure 2.2: Simulated MOI corresponds to the number of testable pairs. a) Distribution of the 

number of unique gRNAs per cell at different simulated MOIs (represented by the 𝜆 parameter in the Poisson 

distribution). b-c) Distribution of target site pair frequencies, or the number of cells receiving gRNAs targeting 

both sites in a “ground truth” (positive) pair of interacting enhancers, at different simulated MOIs (𝜆). 
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Supplemental Figure 2.3: Interaction coefficient estimates do not vary with distance between enhancers. a) 

Distribution of distances between enhancer pairs for the 330 enhancer pair set. b) Distribution of distances 

between enhancer pairs for the 3,808 enhancer pair set. c) Distance between enhancer pairs and magnitude of 

interaction coefficients for 330 enhancer pair set tested. d) Distance between enhancer pairs and magnitude of 

interaction coefficients for 3,808 enhancer pair set tested. Blue lines in c) and d) are loess curves fitted to the 

data. 

 

  



 

 

130 

 
Supplemental Figure 2.4: Outlier interaction coefficient estimates are moderated by introduction of a 

pseudocount. Magnitude of interaction term coefficients for 330 enhancer-enhancer pairs when adding vs. not 

adding a pseudocount of 0.01 to adjust the gene expression. The inclusion of a pseudocount greatly reduces the 

magnitude of outlier interaction coefficient estimates (note difference in x and y axis scales). 
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