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ARE RICH PEOPLE SMARTER ?

Abstract

We investigate general models of wealth accumulation induced by financial invest-
ment. These models assume only that returns are stochastic and that a minimal
level of wealth is required in order to participate in financial investments. When
homogeneous investment talents are assumed the generated distribution of wealth
converges to the Pareto (power-law) distribution of wealth which is empirically
observed at the high-wealth range. However, when a small degree of diversity of
investment capabilities is introduced, the resulting distribution of wealth becomes
inconsistent with the empirical distribution. We conclude that the empirical Pareto
wealth distribution suggests that chance, rather than talent, is the dominant fac-
tor in the process of wealth accumulation by financial investment. Our findings
conform with market efficiency and may have implications regarding the origins,

the economic significance, and the desirability of social inequality.

Keywords: Pareto, Wealth Distribution, Inequality, Market Efficiency, Long Hori-

zon Investment,.



1. Introduction

In ancient Greece only the wealthy land owners had voting rights (Caldwell and
Merrill, 1950). The logic behind this law was that voting privileges should be
given only to the wise citizens, and wealthy people have proven their wisdom by
becoming (and managing to remain) rich. The idea that the rich are rich because
they are smarter has been with us ever since, and has become a central part of

modern western ideology and culture.

This idea is manifested in financial markets in many ways. For example, many
fund managers are compensated according to the performance of their funds, be-
cause it is believed that the fund’s performance is directly linked to the manager’s
talents. On the basis of stock price prediction market ”Gurus” are created, and
followed. Modern western mythology is filled with success stories, in which the
poor but ambitious and talented hero becomes a millionaire. Indeed, the notion
that in the financial survival-of-the-fittest the smartest investors surface to the

top, seems very natural and plausible.

On the other hand, the theory of market efficiency tells us that being smart
does not make one a financial winner. The most that a smart investor can (and
indeed must) do is diversify away diversifyable risk. There are numerous studies
showing that public information can not be exploited to obtain abnormal returns
(see for example, Fama 1970, Fama and French 1992). Samuelson heads his 1989
paper which deals with the possibility of reaping abnormal profits with the quo-

tation:

» Forsake search for needles that are so very small in haystacks that are so very

large”.
He latter writes :

”Those lucky money managers who happen in any period to beat the comprehen-

sive averages in total return seem primarily to have been merely lucky. Being on
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the honor roll in 1974 does not make you appreciably more likely to be on the
1975 honor roll.” (Samuelson 1989).

Thus, there are two competing explanations for the uneven distribution of
wealth in society: i)talent or ii)luck. Both explanations seem very reasonable, and
one would probably expect the true explanation to be some combination of the two.
Finding out which of these two factors is more dominant has deep philosophical and
social implications. If the uneven distribution of wealth is mainly due to diverse
talents, then it would seem that inequality is a natural and positive driving force
of economic evolution. If, however, it turns out that chance is the dominant factor
responsible for the distribution of wealth, this may raise some doubts regarding

the economic role and the desired level of inequality.

Three remarks should be made about the title of this paper. The first regards
the definition of ”"smartness”. Throughout this paper we define smartness as in-
vestment talent - the ability to obtain on average abnormal returns. Thus, we use
a narrow definition of ”smart” which is relevant to financial markets, and does not
necessarily relate to other manifestations of talent such as poetry, philosophy, etc.
The second remark is about the kind of answer that we expect for the question
asked in the title. There are probably examples of very rich people who are not
very bright, and beggars who used to be financial wizards. We will not be con-
cerned with specific examples but, rather, we will look for a connection between
wealth and talent in a statistical sense. The third remark is that our analysis
is restricted to the high-wealth range (the right tail of the wealth distribution).
Thus, the precise question that we ask is whether the distribution of wealth among

rich people reflects their relative talents.

A direct measurement of the relation between investment talent and wealth
could in principal be undertaken by interviewing investors, asking them about their
wealth and keeping track of their investments from that time onwards. One
could then rate the performance of the investments by some objective performance

measure (Sharpe index or Jensen index, for example), and check for correlation



between wealth and investment performance. To the best of our knowledge such
a measurement was not carried out, probably due to the difficulty of obtaining
information about the wealth of individuals. A somewhat similar direct approach
has been employed in order to establish whether there is a relation between income

and returns. The results, however, where not conclusive (Blume, Crockett and

Friend 1974, Yitzhaki 1987).

In this paper we use a different approach, one which is indirect. We look for
clues about the connection between talent and wealth by analyzing the empirical
distribution of wealth. We suggest a very general stochastic process as a model for
the process of wealth accumulation by investment. We investigate two cases: the
first is the homogeneous talent case, in which differences in wealth arise only from
chance; the second is the diverse talent case in which inequality is the outcome
of both chance and different investment capabilities. We test these two compet-
ing versions by studying the exact form of the wealth distributions which they

generate, and comparing them with the empirical distribution.

When examining the wealth distribution in society one typically finds two
distinct regions. At the lower-wealth range the distribution of wealth can be
approximated by the log-normal distribution. At the high-wealth range the dis-
tribution is described by the Pareto distribution (for example, see Stiendl 1965).
While the lower range accounts for the vast majority of the population (usually
about 95%), the top range is extremely important as it accounts for-most of the
wealth!. The main factors influencing the wealth of a person at the lower range
are usually salaries and consumption. In contrast, the wealth of individuals in the
high-wealth range typically changes mainly due to financial investments. In this
paper we are interested in the process of wealth accumulation via investments and

we therefore concentrate on the form of the distribution at the high-wealth range.

A century ago Pareto (1897) discovered that at the high range, wealth (and

also income) are distributed according to a power-law distribution, which became

1 1n the U.S. the top 1% of the population holds over than 40% of the total wealth (Wolff 1995).
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known as the Pareto distribution. The Pareto distribution is given by the following

probability density function:

P(W)=Ccw—(+e) for W 2>Ws (1)

where W stands for wealth, Wy is the lower end of the high wealth range, and C

and o are positive constants.

Pareto’s finding, also known as the Pareto Law, has been verified in numerous
studies for various countries (see, for example, Atkinson and Harrison 1978). Three
different examples of the Pareto wealth distribution are illustrated in Figures la-1lc.
Figure la shows a measurement of the wealth distribution, which was performed
in Great Britain. The wealth range (horizontal axis) is divided into wealth classes,
and the number of persons in each class is specified by the vertical axis. Notice that
this is a double-logarithmic plot. The solid line represents the empirical data. A
Pareto distribution should appear linear on a double-logarithmic scale, with slope
—(14«). The dashed line is a Pareto fit to the data. One can see that the empirical
distribution is fitted rather well by the Pareto distribution (correlation coeflicient
-0.975), however, since the number of wealth classes is small this measurement is
not very definitive. (Source: National Income and Expenditure, Great Britain,
1970). An alternative way to examine the empirical distribution of wealth, is to
measure the percentage of the population with wealth exceeding different wealth
levels. A Pareto distribution of wealth would yield a straight line on a double-
logarithmic scale, with slope —c. Figure 1b shows such a measurement, which was
done in Sweden. The empirical data are represented by dots, the solid line is the
Pareto fit. The empirical distribution is in excellent agreement with the Paretian
fit (correlation coefficient -0.999). The value of the slope is —1.66 (Source: Steindl
,1965).

Recent evidence supporting the Pareto distribution of wealth in the U.S. is

provided by the 1996 Forbes 400 list (Fig. 1c). A Pareto distribution of wealth
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implies a relation between the rank of a person in the wealth hierarchy and his
wealth. For a Pareto distribution with exponent ¢ the expected relation is: W =
An~1/® where W is the wealth, A is a constant n is the rank (i.e. for the person
ranked 200 in the wealthiest people list n = 200). (For derivation of this relation
see, for example, Takayasu 1990). Figure 1c shows the wealth of the richest people
in the U.S. as a function of their rank. The solid line is a Paretian fit with slope
~0.729, which corresponds to o = 1.35 (correlation coefficient -0.998). (Source:
Levy and Solomon, 1997).

The first to suggest an explanation for the Pareto distribution of wealth was
Pareto himself (Pareto 1906). Pareto suggested that the distribution of wealth
corresponds to an underlying distribution of human abilities. However, Pareto has
not offered a mathematical model that would explain the distribution of abilities
and it’s relation to the Pareto law. Pareto’s explanation was advanced by Davis
who introduced the ”law of the distribution of special abilities” which asserts that
that the probability of an additional unit of ability was independent of the level
of ability, (Davis 1941). This model, however, leads to a normal distribution of
ability and therefore presumably to a normal, rather than Pareto, distribution of
wealth. A different model for the distribution of ability was formulated by Boisse-
vain (1939) who considered the distribution of abilities that could be represented
as a product of several factors each of which follows a binomial distribution. Bois-
sevain’s model explainsl the positive skewness in the distributions of . wealth and
income, but leads to a log-normal distribution, not the empirically observed Pareto

distribution.

The main models that offer an explanation for the precise form of the Pareto
wealth distribution are the Markov chain model of Champernowne (1953), the
stream model of Simon (1955) and the birth-and-death model of Wold and Whittle
(1957)2 . Although these models are quite different from each other in their details

2 For a review of models generating Pareto distributions see Steindl (1965), Arnold (1983), and

Slottje (1989).



they do have some common features:
e Stochastic multiplicative dynamics
e Lower bound
e Homogeneous talent

Levy and Solomon (1996) have shown that the above three elements are indeed
the only essentials needed in order to insure that a process will generate a Pareto
distribution. In all of the processes which are based on these elements (including
those of Champernowne, Simon, and Wold and Whittle) the only reason for the
inequality in the generated distribution is the stochastic process - chance. Differ-
ences in talent are not assumed and therefore play no role in the process of wealth

differentiation.

In this study we investigate whether the homogeneous talent assumption is
essential in order to obtain the Pareto wealth distribution. More specifically, we
ask if the Pareto distribution can be generated by reasonable wealth accumulation

processes which combine both chance and talent.

We find that the introduction of even a small degree of diversity with respect
to investment talent leads to a wealth distribution which is significantly different
from the Pareto distribution. Thus, diverse talents are found to be inconsistent
with the empirical wealth distribution at the high wealth range. This leads us to
conclude that at the high wealth range chance, rather than talent, is the dominant

factor in the process of wealth accumulation.

The rest of this paper is organized as follows. Section 2 lays the general
framework of bounded stochastic multiplicative processes. Section 3 demonstrates
that the homogeneous talent assumption leads to the Pareto wealth distribution.
In section 4 we examine the effects of the introduction of a small degree of talent

heterogeneity. In section 5 we summarize our results and discuss their implications.



2. Stochastic Multiplicative Processes with a Lower Bound

A stochastic multiplicative process is a process in which the value of each
element is multiplied by a random variable with each time step. Many economic
processes, and specifically the accumulation of wealth via investment of capital, are
stochastic and multiplicative by nature. For example, if a person invests his money
in a portfolio which yields 10% with probability 1/2 and —5% with probability
1/2 each year, his wealth will follow a stochastic multiplicative process. The
main difference between multiplicative and additive processes is that in additive
processes (such as random walks) the changes in value are independent of the value,

whereas in multiplicative processes the changes are proportional to the value.

Formally, the stochastic multiplicative wealth accumulation process is given by:

W;(t +1) = Wilt)A (2)

where W;(t) is the wealth of investor i at time ¢ and X represents the return, which
is a random variable drawn from a distribution fz(:\) Generally, each investor may

have a different distribution of returns on his investment, hence the sub-index ¢ in
fi(A).

For people at the high-wealth range, changes in wealth are mainly due to fi-
nancial investment, and are therefore multiplicative. For people at the lower wealth
range, changes in wealth are mainly due to salaries and consumption, which are
basically additive rather than multiplicative. In reality there is no sharp boundary
between the lower and the upper wealth regions. As the stochastic multiplicative
process (equation(2)) describes the dynamics only at the higher wealth range, we
introduce a threshold wealth level, Wy, above which the dynamics is multiplica-
tive. We assume that only those people with wealth exceeding Wo participate in

the stochastic multiplicative investment process. Formally, we require that:

Wit) > Wo Vi Vi. (3)
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In the case that there is an overall drift towards lower wealth values (as
in Champernowne 1953) one can define the lower bound Wy in absolute terms.
In order for the lower bound to be meaningful in the general case, where there
is a general drift towards higher wealth values (as when there is inflation), the
value of the lower bound should be defined in terms of the average wealth, 1.e.
Wo = ws 3_; Wi(t), where N is the number of investors and w is given in absolute

terms.

When people’s wealth changes they may cross the boundary between the up-
per and lower wealth regions. As we do not model the dynamics at the lower wealth
range, and for the sake of simplicity, we assume that the market has reached an
equilibrium in which the flow of people across the boundary is equal in both direc-
tions. This means that the number of people participating at the the stochastic
multiplicative investment process remains constant. The above assumption sim-
plifies the analysis, but the results presented here are robust to the relaxation of

this assumption.

3. Homogeneous Talent

In the homogeneous talent model we assume that all investors face the same

return distribution 2 i.e. :

fi(X) =) Vi (4)

Note that although all investors face the same return distribution f (X), ) is drawn
separately for each investor. A ”lucky” investor is one for which many high values
of X are drawn. Such a lucky investor will become richer than others. As investors

face the same distribution of returns, the differentiation in wealth in this case is

3 Even if all investors have similar investment talent one would still generally expect them to have
different distributions of returns, due to different attitudes towards risk. This point is discussed in the

last section of the paper.



due entirely to ¢hance. The stochastic multiplicative process with a lower bound

and homogeneous talent is given by:

Wit +1) = Wi(t)A
£i0) = f) Vi (5)

W,(t) > Wy Vi Wi

It can be shown that this process leads to a steady state Pareto wealth distribution
for any non-degenerate initial wealth distribution (see Appendix A). This result is
very general and is robust to various generalizations of the dynamics. The steady
state Pareto distribution is independent of the choice of the return distribution
function f(}). f(A) can even be time dependent. The value of the lower bound,
(Wo), can effect the degree of inequality (value of o in the Pareto distribution), but
not the fact that the distribution of wealth is Paretian. The number of investors
does not change the resulting wealth distribution. In fact, the assumption of a
constant number of investors can be replaced by the assumption of a stochastic
inflow of investors into the market. The Pareto distribution of wealth also remains
intact if one introduces the assumption that investors consume a certain fixed (or

stochastic) proportion of their wealth in each time period.

Monte Carlo simulations of the stochastic multiplicative dynamics with a
lower bound and homogeneous talent confirm the above results, and allow an
estimate of the time it takes the wealth distribution to converge to the Paretian
distribution. We have conducted simulations in which the number of investors is
1000, and they all start out with $100 Million . Wo is set to 20% of the average
wealth. f(}) is given by:

A probability
1.10 1/2
0.95 1/2
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We have recorded the distribution of wealth at different times. The results
are shown in Figure 2, which is a two-way logarithmic plot of the probability
density as a function of wealth (in units of the average wealth). The dashed
vertical line at 0.2 represents the minimal wealth threshold Wy. The distribution
after 10 investment periods (Figure 2a) is still pretty symmetric, and centered
around the average wealth (1.0 on the horizontal axis). However, after 100 time
periods the wealth distribution is very close to the Paretian distribution (Figure
9b). The distribution remains Paretian from then on. Figure 2¢ shows the wealth
distribution after 10,000 time periods. Monte Carlo simulations of many variations
of the basic homogeneous talent model confirm the robustness of the Pareto-law

result.

We have shown that stochastic multiplicative processes with a lower bound
and homogeneous talent lead to the convergence of the wealth distribution to the
Pareto distribution. This result has proven robust in many variations of the basic
process. In all of these variations, however, we assume homogeneous talent and
therefore the differentiation of wealth is due entirely to chance. Does this mean
that talent is homogeneous in the investment world? Or, is it possible to formu-
late a model which will explain the Pareto wealth distribution as a consequence
of both chance and talent? In the next section we describe bounded stochastic
multiplicative processes with diverse talents, and we investigate the distributions

of wealth generated by these processes.

4. Diverse Talents

Investment talent is the ability to obtain superior return distributions on
investments. In a market composed of investors with diverse talents, investors
with different skills face different return distributions. Thus, we return to the

general case where the return distribution, fi(}), is investor specific.

As a first step toward the analysis of the general heterogeneous talent model,

we examine a simplified two-population example. Consider a market in which
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most of the population faces the following ”normal” return distribution:

A probability
fnormal(j\) : 1.10 1/2
0.95 1/2

while a minority of ”smart” investors receive the superior distribution:

A probability
fsmart(x) : 1.11 1/2
0.96 1/2

As more and more investment periods pass the ”smart” investors become on
average richer than the "normal” investors. As the "normal” investors become
relatively poorer, more and more of them will cross the lower wealth threshold,
Wo, and will exit the market. One might suspect that in the long run the ”normal”
population will be completely wiped out. However, recall that there is an inflow of
investors into the market. This is an inflow of investors from below the threshold
who have acquired enough wealth in order to participate in the investment process.
(We do not model the process of wealth accumulation below the threshold, but
assume that the market is in a steady state in which the inflow of new investors
balances the outflow of investors leaving the market. This assumption simplifies
the analysis but is not essential to our results.) Some of the new investors entering
the market are of the "normal” type!. As the number of "normal” investors
declines, so does their proportion in the outflow from the market. Eventually, a
balance is reached when the outflow of players of each type matches the inflow of

that type, and the size of each subgroup converges to a certain (mean) value.

4 One can think of different ways in which to compose the population of new investors: a) for each
investor exiting the market an investor of the same type enters. b) each new investor has a certain
probability p for being "smart” and probability (1-p) of being "normal”. The choice between the above
two options, and the value of the probability p, may change the specific form of the steady state wealth

distribution, but not it’s essential features.
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As the population of each subgroup is homogeneous, the wealth distribution
of each subgroup is subject to the dynamics described by equation (5).° From
the result of the preceding section it follows that the wealth of each subgroup
will be divided between the members of that subgroup according to the Pareto

distribution. Thus, the wealth distribution among ”normal” investors is:

Pnormal(W) = CnormalW—(1+a"°'mdl) (6)

and the wealth distribution among ”smart” investors is:

Psmart(W) = CsmartW_(l'{'a’mﬂﬂ). (7)

Both distributions are Paretian, but with different parameters C' and «. As the
average wealth of the smart population is greater than the average wealth of the
normal population we will have asmart < @normal (see Appendix B). The aggregate

distribution of wealth will be:

P(W) —_ CIW—(1+anormdl) + Czw_(1+asmart) (8)

which is not a Pareto distribution. (Cy and C; replace Crormar and Csmart because
the normalization constraints have changed, and depend on the relative propor-

tions of the two subgroups, i.e.: C1 = —NMﬁ’ﬂﬂC’normaz; Cy = N’—K‘,“L‘C’smart).

Monte Carlo simulations of the above two population model verify our anal-
ysis. The wealth distribution is shown in Figure 3. Notice that although the
distribution of wealth among the two subpopulations is Paretian, the aggregate

distribution is not (¢normat = 1.67, @smart = 0.63 ).

In the general heterogeneous talent case there are many different subgroups.

5 The interaction between the different subgroups is only through the lower bound Wo, which

depends on the average wealth of all investors.
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One can view this as a simple generalization of the above two-population example.
The distribution of wealth within each subgroup is the Pareto distribution with
a certain @, but the aggregate distribution is not Paretian. Instead, it is concave
when plotted on a double-logarithmic scale. See Figure 4 for a sketch of the general

heterogeneous talent case.

Simulations of heterogeneous talent models do in fact yield wealth distribu-
tions which are significantly different than the Pareto distribution and are con-
cave when plotted on a double-logarithmic scale. Figure 5 depicts the steady-state
wealth distribution in a market in which each investor faces a different return dis-
tribution. For all investors the return distribution fz-(:\) is taken as a normal dis-
tribution with a standard deviation of 20%. However, the mean of the distribution
Fi(X), wi is different for each investor. We assume that p is distributed normally
in the population with a mean value of 10% and a standard deviation of 2%. Even
though the distribution of talent is rather narrow (for 85% of the investors pi Is
in the range 8% — 12%), the resulting distribution of wealth is very different than
the Pareto distribution (Figure 5). The Kolmogorov-Smirnov goodness-of-fit test
confirms that one can safely reject the hypothesis that the generated distribution
is Paretian. Comparing the cumulative distributions of the sample distribution
with the best fit Pareto distribution we obtain a D value of 0.310, which is much
larger than the critical D value of 0.103 (= 1.63/+/250) needed in order to reject
the hypothesis that the distribution is Paretian at a 99% confidence, level. (For
comparison, the D value obtained for the distribution in Figure 2c is 0.010, which

allows one to safely accept the hypothesis that the distribution is Paretian).

Different forms of the return distributions (discrete, truncated-normal, log-
normal), different distributions of talent, and variations on many other details of
the model yield the same result. Even if one assumes that investors have finite
life spans, and that they inherit their wealth to siblings who may have different

talents, the concave wealth distribution on double-logarithmic scale persists, and
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the Pareto distribution is not obtained®. It seems that any stochastic multiplicative
wealth accumulation model which assumes even a mild degree of diverse talents
leads to a distribution of wealth which is inconsistent with the empirical Pareto

distribution.

5. Discussion

We have presented a generic stochastic multiplicative process with a lower
bound, as a model for the evolution of speculative wealth. When homogeneous re-
turn distributions are assumed, the distribution of wealth converges to the Pareto
distribution which is empirically observed at the high wealth range. When het-
erogeneous return distributions are assumed, the resulting distribution of wealth
is inconsistent with the empirical distribution. These results are very robust, and

remain intact when many different generalizations of the basic model are explored.

In principal, one should investigate all possible models incorporating hetero-
geneous return distributions in order to decisively conclude that heterogeneous
return distributions are inconsistent with the Pareto wealth distribution. It may
be possible to come up with a model where the effect of heterogeneous return dis-
tributions is precisely offset by some other heterogeneity effect. However, it seems
that such a model could not be based on reasonable economic foundations and

could not be general or robust.

Thus, the evidence in this paper suggests that investors in the stock market,
with wealth exceeding a certain level, hold portfolios yielding similar return distri-
butions (although the portfolios themselves may be different). One implication is
that investors can not differ to much in their investment talents. If some investors

would have been more talented than the others we would have expected them to

6 Reasonable mortality rates must be assumed. One can think of the death and inheritance process
as the same investor who continues to invest, but with different talent. In the case where investors live
for an extremely short time, there is strong time averaging of talent, we return to the homogeneous

(average) talent framework, and the Pareto distribution is obtained.
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achieve superior return distributions. However, this would lead to a non-Paretian

wealth distribution, in disagreement with the empirical data.

The following problem arises: homogeneous talent seems to be a necessary
condition for the Pareto wealth distribution, but it is not a sufficient condition.
The requirement that investors face similar return distributions, which is neces-
sary to insure the Pareto wealth distribution, is stronger than the assumption of
homogeneous talent. One could rightfully claim that even if investors have similar
investment talents, they may choose different return distributions because of dif-
ferent attitudes towards risk. One possible solution to this problem may be offered
if we assume that investors have long investment horizons, i.e. they do not plan to
spend a significant proportion of their wealth in the near future. As we are deal-
ing with investors at the high-wealth range, this assumption seems reasonable. In
this case it can be shown that under mild assumptions regarding the form of the
utility functions, long-horizon invéstment implies that all investors should choose
the one-period return distribution with the maximal geometric-mean, regardless

of their preferences.”

If all investors aim at maximizing the geometric mean, and if they are all

equally talented, it seems plausible that their portfolios will yield roughly the same

7 Latané (1959) shows that the probability that terminal payoff of an investment with a certain
geometric-mean will be greater than the payoff of any other investment with a lower geometric-mean
approaches 1 as the investment horizon becomes infinite. Samuelson (1971) argues that for power utility
functions, which imply myopic behavior, the optimal investment is not necessarily that with the highest
geometric mean, regardless of the investment horizon. Markowitz (1976) suggests a reconciliation
between the maximum geometric-mean criterion and the maximum expected utility framework. Kroll,
Levy and Rappoport (1988) find empirical evidence suggesting that investors attempt to maximize
geometric mean in a multi-period investment experiment. Leshno and Levy (1997) show that for
almost any utility function and long horizon investments the maximum expected utility criterion implies
choosing the portfolio with maximal geometric mean (this is true also for myopic utility functions as

long as investors are allowed to keep some safety-money uninvested).
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return distributions. This does not imply that investors hold the same portfolios.
Due to different expectations investors may very well hold different portfolios, and
thus realize different returns in each period (different A’s). However, the distribu-
tion of returns (f (5\)) is likely to be similar for equally talented investors. This is
precisely the condition necessary to ensure the convergence of the wealth distribu-
tion to the Pareto distribution. (See Appendix C for one possible framework that

may lead to the above scenario).

There are many people who became rich because of their talents, initiative,
and hard work. Some people became rich by creating value via investment in real
assets, some by closing one-shot ”] ack-pot” deals, and some by winning lotteries.
These different routes of getting rich are certainly not described by similar return
distributions. There are many ways of getting into the top wealth range, some of
which probably involve more talent than luck. However, once above a certain level
of wealth, the main forces responsible for the redistribution of wealth seem to be
financial investments. The evidence in this paper suggests that the vast majority
of investors are equally talented at choosing their investments and that the main
factor responsible for the uneven distribution of wealth at the high wealth range

is pure chance.

This result is very much in the spirit of the Efficient Market Hypothesis. In
an inefficient market in which there are investment ”bargains” we would expect
sophisticated investors to take advantage of these ”bargains”, and as a result to
obtain superior return distributions. The empirical wealth distribution suggests
that investors face similar return distributions, which leads to the conclusion that
either ”bargains” do not exist, or that the investors taking advantage of ”bargains”

alternate (such that every investor has an equal probability of getting a ”bargain”).

The result of this paper does not mean that only luck matters, and that
any investment strategy is as good as any other. On the contrary, it means that
one must apply his investment skills just in order to have a fair chance in the

competition with other investors. Our findings suggest that because investors in
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the high wealth range seem to have similar investment talents, at the margin it is

only luck that differentiates between them.

An implication for investors is that they should recognize that there is a limit
to what they can (and should) do in terms of portfolio optimization. Namely, there
seems to be a ”benchmark” return distribution (the F(X) which is common to all
investors). Since the evidence suggests that all reasonable investment strategies
lead to the same benchmark return distribution, it seems that sophisticated in-
vestment strategies (based on market timing, undervalue stock picking, etc.) have

no value added relative to ”standard wisdom” (optimal diversification) strategies.

Finally, our conclusion regarding the origins of inequality at the high wealth
range may have implications regarding the significance of the role that inequality
plays as a driving force of economic development. Many people believe that the
distribution of wealth among investors represents a system of rewarding investment
talent, or efficient resource allocation, and therefor it contributes to economic
development. However, the empirical distribution of wealth suggests that investors
in the high-wealth range are equally talented at allocating resources. Those who
are most successful owe it primarily to their luck, and not to abnormal investment
abilities. Thus, the differentiation of wealth in the top wealth range does not
reflect a system which rewards skill, and therefor it does not constitute a force

driving optimal resource allocation.
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Appendix A

The bounded stochastic multiplicative process with homogeneous talent is

given by:

Wit + 1) = Wi(t)A
£ = £ vi
Wz(t) > Wy Vi Vi

In order to show that this process leads to a convergence of the wealth distribution
to the Pareto distribution, let us denote the probability density of having wealth
W at time t by P(W(t)). From probability conservation we have:

(9)

PO+ 1) = POVE)+ [ POVOMIOND - [ POV

the second term on the right hand side is the inflow of probability to state W and
the third term represents the outflow from state W. Since f(}) is a probability
distribution, f:: f(A)d\ = 1, and the first and third term on the right side
cancel out. Starting from an arbitrary (non-degenerate) probabilityl‘density, the
probability density changes according to (9) until it eventually converges to the
steady state density distribution, which is time independent. As we are interested
in the steady state stable distribution, we are lookihg for a time independent
distribution P(W) which solves equation (9). Since we require that the distribution
does not vary with time we must have P(W(t + 1)) = P(W(t)). Substituting in

equation (9), we obtain:

| -
P(W(2) = / POW(6)/A) F(\)dA. (10)

— 00
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It can be easily verified by substitution that the Pareto probability distribution
P(W) = CW—(12) satisfies equation (10), where « is the solution to:

/ T ) F)dA =1 (11).

o]

The uniqueness of the Pareto solution is based on the fact that the only positive
g-harmonic functions on ® are exponentials (Choquet 1960, Furstenberg 1965).
We would like to emphasize that the analysis is quite general and does not rely
on any specific form of the return distribution f(}). Note that without the lower
bound there would be no steady state. Instead, the distribution P(W(t)) would
converge to the lognormal distribution with a variance growing to infinity. For

further details see Levy and Solomon (1996).
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Appendix B

The lower the value of the exponent « in the Pareto distribution, the higher
the average wealth. —a is the slope of the distribution function on the double-
logarithmic scale. It is therefore intuitively clear that the more moderate the slope

(smaller o) the more weight is given to higher wealth states. Formally:

oo e —-(1+a) C l1-a
E(W) = / P(W)WdW = C / W-CrOwaw = < _wi-e.
Wo Wo (¢ —1)

(We assume o > 1, otherwise E(W) is infinite. Empirical values of « are typically
1.2 — 1.6) . From the normalization condition f;{,;’o P(W)dW = 1 we obtain

C = aW¢. Substituting in the above equation we obtain :

E(W) = Woz;:—lj,

which is a monotonically decreasing function of e.
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Appendix C

One possible framework that may lead to the scenario in which investors realize

different returns that are drawn from the same distribution is the following:
Assume:

e One period returns on assets are normally distributed.

o There is a riskless asset yielding a return ry.

o Investors have long investment horizons and general risk aversion preferences
(u € U3 in the terminology of Leshno and Levy, 1997) and therefore maximize the

geometric mean of their portfolio.

e Investors have different expectations and they revise their expectations with

time.

The geometric mean of a normal distribution with mean y and standard deviation
o can be approximated by GM = exp(p — "—;) (this can be shown by a Taylor
expansion of log GM = Elog(), and holds only as long as p and o are not very
large). If the means, variances, and covariances of asset returns are known, there
is a unique portfolio which maximizes the geometric mean. This portfolio is the
point in the Mean-Variance plane in which one of the constant-geometric-mean

lines is tangent to the Capital Market Line (portfolio G* in Figure 6).

If investors where to know the means and the covariance matrix they would all
hold portfolio G*. However, if investors are not given the means and the covari-
ance matrix but form subjective expectations of them they would disagree on the
tangency portfolio T, and therefor also on the maximum-geometric-mean port-
folio G*. As a result each investor will hold a different portfolio Gi, and as a
consequence investors will realize different returns. As investors revise their ex-
pectations over time, their portfolios will also change with time, ie.: G; = Gi(t).
If investors are equally talented in the estimation of the means and the covariance

matrix, their portfolios will "hover” randomly around portfolio G. Formally, this
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means that

P(Gi(t) = G) = P(Gj(t) = G) Vi,j,t,G

where the P’s are probability density functions and G is any portfolio in the mean-
variance plane. The probability density f(:\) of obtaining a return ) is therefore

the same for all investors:

s = [ PG = OPAIIG= () Vi
all G

Hence, the result of the random averaging over portfolios is that investors face the

same distribution of returns, while at each time they realize different returns.
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