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SUMMARY
Relating genetic variants to behavior remains a fundamental challenge. To assess the utility of DNA methyl-
ation marks in discovering causative variants, we examined their relationship to genetic variation by gener-
ating single-nucleus methylomes from the hippocampus of eight inbred mouse strains. At CpG sequence
densities under 40 CpG/Kb, cells compensate for loss of methylated sites by methylating additional sites
to maintain methylation levels. At higher CpG sequence densities, the exact location of a methylated site
becomes more important, suggesting that variants affecting methylation will have a greater effect when
occurring in higher CpG densities than in lower. We found this to be true for a variant’s effect on transcript
abundance, indicating that candidate variants can be prioritized based on CpG sequence density. Our find-
ings imply that DNAmethylation influences the likelihood thatmutations occur at specific sites in the genome,
supporting the view that the distribution of mutations is not random.
INTRODUCTION

Heritable effects on behavior in inbred mice are pervasive,

frequently large, and thought to be associated with heritable dif-

ferences in neuronal composition and neuroanatomy.1–10 Yet,

despite hundreds of genetic mapping studies,11 access to nearly

complete sequences of multiple strains,12,13 and catalogs of cell

types and their respective genomic properties,14–17 scant prog-

ress has beenmade toward relating genetic variants to behavior.

One impediment to progress is that due to the relatively large

intervals into which quantitative trait loci are mapped, where

there are usually thousands, and often tens of thousands, of

candidate causal variants. How are these variants to be priori-

tized for functional study, and is there another level in addition

to genetic variation that determines their function? The majority

of causative variants lie in regulatory regions of the genome

and likely act by altering a molecular phenotype,18–20 such as

DNA methylation, which is associated with neuronal function

and behavior.21

DNAmethylation occurs at regulatory elements in the genome,

affecting transcription factor binding affinity and controlling gene

transcription,22,23 roles that suggest it may play a role in medi-

ating the effect of sequence variants that alter behavior. While

both CpG and CH methylation (mCG and mCH, where H = A,

C, or T) show cell-type specificity,22–24 only methylation at

CpG dinucleotides propagates through cell division, providing

stable marks that differentiate cell types.16 Methylation’s cell-
Cell
This is an open access article und
type specificity in the brain means that mutations, as much as

they act through methylation, will have different consequences

depending on the cell type that they affect. Hence single-cell

data frommultiple individuals are needed to understand the rela-

tionship between mutation, methylation state, and behavioral

outcome. However, to use CpG methylation marks to discover

causative variants requires an understanding of the relationship

between sequence and methylation variation.25

What happens when a mutation removes a methylated CpG

site? Broadly speaking, there are three possible consequences.

The simplest, at least for interpreting genetic association

studies, is that the mutation disrupts a sequence motif, with con-

sequences for whatever function that motif performs. For

example, methylated CpGs can directly inhibit or augment tran-

scription factor binding,26 and amutation could interfere with this

process.27–29 Knowing the location of the mutation at a methyl-

ated site within a known motif or regulatory region will suggest

candidate proteins. Second, the function of methylation may

depend on the density of methylated cytosines in a region. For

instance, CpG density is associated with active histone marks

and high expression,30–32 and CpGs contribute to transcriptional

activity regardless of whether they are part of a sequence

motif.33 In this case, the consequences of amutation will depend

on local context (e.g., howmany other cytosines aremethylated),

rather than on the specific sequence. Third, there is the possibil-

ity that methylation function and DNA sequence are indepen-

dent. If identical DNA sequences are differentially methylated,
Genomics 3, 100454, December 13, 2023 ª 2023 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. UMAP of cell-type clusters in ventral hippocampus derived from methylation

Cells are colored by (A) strain of origin and (B) cell-type identity. aj = A/J, b6 =C57BL/6J, balb =BALB/cJ, cast = CAST/EiJ, d2 =DBA/2J, fvb = FVB/J, pwk =PWK/

PhJ, and wsb = WSB/EiJ.
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methylation could be amechanism through which external expe-

riences alter gene function, and hence phenotypes, in a stable

manner.34–36

In this paper, we examine the relationship between methylation

and sequence variation using data from eight inbred mouse

strains. Existing methylomes are mostly derived from one strain

(C57BL/6J, B6)16,17,37–39 or are from array-based assays that do

not interrogate all methylation sites at a single-cell level in the

brain.40 We generated genome-wide, base-resolution maps of

multiple cell types from the hippocampus in each of the eight

strains. We chose CAST/EiJ, a fully sequenced representative of

M. m. castaneus, as an outgroup and compared methylation

and sequence variation to those of five classical laboratory strains

(A/J, C57BL/6J, BALB/cJ, FVB/J, and DBA/2J) (allM. m. domes-

ticus) and twowild-derived inbred strains:WSB/EiJ (M.m.domes-

ticus) andPWK/PhJ (M.m.musculus).Weshow that interpretation

of the functional consequences of sequence variation, as medi-

ated by methylation, depends on local CpG density.

RESULTS

Cell clusters identified frommethylation profiles in eight
mouse strains
We generated 13,683 single-nucleus methylation sequence

(snmC-seq) profiles from microdissected ventral hippocampus

tissue of eight mouse strains (Figure 1).We chose the ventral hip-

pocampus because the cytoarchitecture of the hippocampus is

less complex than other parts of the brain, and because many

behaviors that are involved in hippocampal function have been

mapped.11 11,694 of these profiles passed our quality control

(QC) metrics. Strains were sampled in duplicate, and fluores-

cence-activated nuclei sorting was used to isolate approxi-

mately 83% NeuN-positive and 17% NeuN-negative cells to

enrich for neurons.

We performed iterative clustering analysis on the mC dataset

based on similarity of global CG and CH methylation in 100-kb

bins of the mouse genome. Using this approach, we identified

a total of 20 distinct cell types within the ventral hippocampus.
2 Cell Genomics 3, 100454, December 13, 2023
We identified cells belonging to every major subregion of the

ventral hippocampus and to every major cell-type class (astro-

cytes, microglia, excitatory neurons, inhibitory neurons) based

on the hypo-methylation states of multiple canonical markers

of each cell type. Other neuronal types that were not confidently

ascribed to a hippocampal subregion were labeled first by

whether they express inhibitory or excitatory markers and then

by differences in CH hypomethylation of genes. These ambig-

uous subregion clustersmay relate to other known neuronal sub-

types within the hippocampus that were previously defined by

RNA sequencing.

Sequence coverage varied widely among the 20 cell types

we identified: from less than 10X coverage for Exc-CA2, Exc-

Fstl4-Grm3, EC, Exc-CA3-Kcnh5, VLMC, Exc-Gfra1, and Exc-

GM45686 to more than 50 for Exc-DG (Table S1). Genome

coverage for each cell type is given in the supplemental informa-

tion. We decided to use the Exc-DG hippocampal cell type for

subsequent analyses, because of the high coverage and because

we were unable to identify any subregion clusters, indicating

homogeneity.

Conservation of methylated sites between strains
depends on CpG sequence density
To investigate the relationship between DNA methylation and

sequence variation, we first looked at the association of methyl-

ation with the density of CpGs, following earlier reports of its as-

sociationwith gene expression and active histonemarks.30–33 To

do this, we estimated the density of CpG dinucleotides in win-

dows of 2 Kb (this size was chosen to capture regions of clus-

tered methylation; results for 1 kb and 500 bp were the same)

and explored its relationship with the number of methylated

sites.

Figure 2A shows results for the Exc-DG hippocampal cell type.

The distribution of methylated sites, with respect to CpG

sequence density, consists of three fractions. First, there is a

highly methylated fraction at densities of less than 25 CpG/Kb.

At densities between 25 and 40 CpG/Kb DNA, segments are

partly methylated, while DNA in which less than 20% of CpGs



Figure 2. Relationship between methylation state, mutations, and CpG density

(A) Percentage of CpG sites that are methylated is shown on the vertical axis. The horizontal axis is the sequence density of CpG sites (regardless of methylation)

per kilobase of genomic DNA. Each blue line represents a different inbred strain where aj = A/J, b6 = C57BL/6J, balb = BALB/cJ, d2 = DBA/2J, fvb = FVB/J, pwk =

PWK/PhJ, and wsb = WSB/EiJ.

(B) Percentage of CpG sites for the seven inbred strains that are mutated, relative to the outgroup strain CAST/EiJ. The percentages are shown for methylated

CpGs (in blue) and non-methylated (in gray). The horizontal axis again shows CpG sequence density per kilobase of genomic DNA.
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are methylated occurs in a fraction of high CpG density (greater

than 40 CpG/Kb). The same relationship is observed for other

cell types for which we have sequence coverage greater than

10-fold. At lower sequence coverages, the estimates of percent-

age methylation for most of the CpG density segments are too

variable to reveal the relationship (illustrated in Figure S2).

We next explored the relationship between CpG sequence

density and mutations in the Exc-DG cell type. Using CAST/EiJ

as an outgroup, we calculated the percentage of sequence vari-

ation (defined as either the loss or the gain of a cytosine in the

comparison between the outgroup and the strain; other nucleo-

tides were excluded) in each 2-kb segment for each strain, doing

this separately for methylated and non-methylated CpGs. We

summed sequence variants in each 2-kb segment and ex-

pressed them as a percentage of the total number of CpG sites

in the segment.

Figure 2B shows that the percentage of sequence variants in

methylated DNA (blue lines) is higher than in unmethylated

DNA (gray lines) and that this relationship depends on the density

of CpGs. At densities greater than 40 CpG/Kb, relatively more

sequence variants are found in unmethylated than methylated

DNA, consistent with the observation that mutation of cytosine

to thymine at unmethylated CpG dinucleotides has the highest

rate of all base substitutions.41–43 Our results show that CpG

sequence density is correlated with both the fraction of methyl-

ated CpGs and with the distribution of mutations at methylated

CpGs, and that this relationship is non-linear.

To what extent is the density of methylated CpG
determined by sequence?
We turn next to consider what maintains the correlation between

two strains in the number of methylated CpG sites in each
segment of DNA. There are two possibilities: the amount of

CpG methylation can be the same in two different mouse strains

because the same sites are methylated or because the total

number of sites is equal in the two strains, regardless of which

sites are methylated. To test between these alternatives, we

calculated two values for each 2-kb segment of the genome.

First, we counted the number of methylated CpGs in each strain.

We set the larger number as the denominator to derive a ratio

of the two numbers, bounded between 0 and 1. If the ratio is 1,

then the segment contains the same number of methylated sites.

If the ratio is less than one, it means one strain has fewer meth-

ylated sites than the other. Second, we derived a measure of the

correlation between sites. We estimated the probability that both

sites are in the same state (methylated or not) in each segment. If

the probability is 1, this means we can fully predict which sites

are methylated in one strain from knowing the state in the other.

Probabilities less than 1mean that knowing themethylation state

of sites in one strain is less predictive of their state in the second

strain.

Figure 3 shows that for low CpG sequence densities, the ra-

tio is close to 1 for each strain comparison, while the probabil-

ity of sites being in the same state is about 0.8. In other words,

the methylation density is maintained, even though not all ho-

mologous sites are methylated in both strains. The pattern

changes as densities increase above 40 CpG/Kb, until at

densities above 80 CpG/Kb it reverses, with the probability

becoming higher than the ratio, though the small sample sizes

of hypomethylated CpGs introduce a large variance. Thus,

constancy is maintained in two ways: at low density (less

than 40 CpG/Kb) different sites may be methylated, while at

higher density, it is more likely that identical sites in each strain

are methylated.
Cell Genomics 3, 100454, December 13, 2023 3



Figure 3. Comparison of the probability ofmethylation statewith the

ratio of the number of methylated sites

The horizontal axis represents the probability that both sites in two strains are

in the same state (methylated or not) in each 2-kb segment (black lines) and

also the ratio of the total number of methylated sites in two strains, again for

each 2-kb segment (blue lines). Each line is a separate strain comparison,

which is the same as that shown in Figure 1B. The horizontal axis shows the

density of CpG sites (regardless of methylation) per kilobase of genomic DNA.
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The impact of mutations at methylated CpG sites
depends on local CpG sequence density
Our findings suggest that a mutation removing a methylated

CpG site may have different phenotypic consequences when it

occurs in a region of low compared to high CpG sequence den-

sity. Methylation in general is a repressive mark,25 so we expect

that most CpG mutations that disrupt methylation will increase

gene expression (by relieving suppression). Consequently,

sequence variants disrupting CpG methylated sites in low CpG

sequence density regions would be less predictive of transcript

abundance than mutations in high CpG sequence density re-

gions. We tested the hypothesis by examining the association

between mutations and transcript abundance. Using single-

cell RNA data, we compared two strains, B6 and DBA/2J, for

the Exc-DG cell type.

We generated single-nuclei transcriptomes for a total of 30,880

nuclei (medianUMI counts per cell: 5,816) from two biological rep-

licates that passed our doublet and low-quality filtering steps

(STAR Methods). We carried out multi-modal clustering and visu-

alization using uniform manifold approximation and projection

(UMAP) toembed transcriptomicandmethylationdata (Figure4A),

noting that therewere nodifferences by strain (Figure 4B), and that

the same major cell-type groups from the methylation dataset

were represented, based on the same marker gene set used to

annotate themethylation data (Figure 4C). Major cell-type clusters

within snRNA and snMethylation were highly consistent between

modalities (Figure 4C), except for the small non-neuronal clusters

MGC/OPC/VLMC (STAR Methods), which were excluded from

further analysis.
4 Cell Genomics 3, 100454, December 13, 2023
We ran DESeq244 to identify transcripts that were differentially

expressed and, using a liberal threshold of p <0.05 (unadjusted),

identified 2,049 transcripts for downstream analysis (we also

examined the effect of including transcripts at more conservative

thresholds, and we give results in the supplemental information).

For mutations, we took all single-nucleotide sites in the mouse

genome that altered a methylated CpG present in the strain D2

to either ‘‘A’’ or ‘‘T’’ (to ensure the mutation results in a site that

cannot be methylated, regardless of the strand on which it oc-

curs). That yielded 23,959 mutations, of which 1,862 lie within re-

gions with more than 40 CpGs/Kb, categorized as ‘‘high’’ density.

We matched the position of each methylated CpG site to a gene

interval, defined as running from 2 kb upstream of the transcrip-

tional start site to 2 kb downstream of the 30 end of the gene.

When mutations occur in high CpG sequence density regions,

the mean ratio of D2 to B6 transcripts is significantly higher than

it is in low CpG sequence density regions (mean = 0.15 vs.

mean = 0.02; t = 4.3, degrees of freedom [df] = 1,924.6, p value =

1.9e�05), supporting the hypothesis that mutations in high CpG

sequence density regions are associated with a relatively larger

effect. It is possible that some of the effects we are seeing are

attributable to linked mutations that happen to be enriched in

high-density CpG regions of the genome, but most of the other

classes of mutations (such as insertions and deletions) will

decrease the amount of transcript (rather than increase it, as

most methylation mutations are expected to do). We can

exclude some of these mutations indirectly, because their

mean effect on gene expression is known to be relatively large.13

We divided the sample into those transcripts with a fold change

greater than two and those less than two. The dataset with

smaller effects contains 1,555 genes including 19,397 muta-

tions, of which 1,450 are situated in high CpG sequence density

regions.

Figure 5A shows that the D2:B6 ratio of transcript abundance

is about 20-fold larger when mutations occur in regions of high

CpG sequence density than in low density (mean ratio in high

density: 0.19, mean ratio in low density: 0.01, t = 5.55, df =

1,662.6, p value = 3.3e�08). To examine whether CpG sequence

density itself contributes to the increase in the D2:B6 ratio, Fig-

ure 5B plots D2:B6 ratios in high and low CpG sequence density

for CpG sites without mutations.

There are higher D2:B6 ratios in the CpG high sequence density

regions than in the low, and because there are somanymore sites

without mutations, the effect is highly significant (p = 4.11e�18),

but the increase is much smaller than that found in regions with

mutations (mean ratio in high: 0.034, mean ratio in low: �0.001).

D2:B6 ratios in high CpG sequence density sites containingmuta-

tions are significantly higher than ratios in high CpG sequence

density sites without mutations (t = 4.93, df = 1,493.1, p value =

9.18e�07), again consistent with the hypothesis that the effect

of mutations in high CpG sequence density will be larger than in

low CpG sequence density sites.

What is the effect of mutation on the transcript abundance ra-

tio in the high- and low-density regions? We addressed this

question using a linear model. In high-density regions, mutations

have a highly significant positive effect (beta = 0.16, t = 5.2, p =

2.39e�07), while density makes no significant contribution

(beta = �0.0002, t = �1.4, p = 0.16). The situation is reversed



Figure 4. Co-embedding of single-nucleus methylation with single-nucleus RNA and single-nucleus ATAC sequencing data for two strains,

C57BL/6J and DBA/2J

(A) UMAP embedding of single-nucleus methylation, single-nucleus RNA-seq, and single-nucleus ATAC cells after integration, colored by sequencing platform.

(B) is similar to (A) but colored by strain label.

(C) Concordance between independent single-nucleus methylation annotation and single-nucleus RNA transcriptomic-based annotation on major ventral

hippocampus cell types.
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in low CpG density regions: mutations make no detectable

contribution (beta = 0.007, t = 0.911, p = 0.362), while the effect

of CpG density, though small, is highly significant (beta = 0.006,

t = 61.3, p < 2.2e�16). These results indicate that the effect of

mutations altering methylation at CpG sites is undetectable

when they occur in regions of low CpG density.

Might CpG sequence density be a surrogate for other con-

founds that explain the predictive power of mutation in the high-

density regions? For example, it could be that high-density CpG

sequences are enriched with functional elements that promote

expression, and the mutations are linked to such elements. To

exclude the effect of such confounds, we used a set of ‘‘universal

chromatin state’’ annotations of the mouse genome based on

over 900 datasets from various cell and tissue types.45 We found

a significant increase in the fit of a model that included an interac-

tion between mutation and density (i.e., allowing the effect of mu-

tation to vary according to CpG density), compared to a model

that only included mutations, chromatin state, and density (high

vs. low) to predict D2:B6 ratios (F = 28.7, p = 8.41e�08, and

Table S4). Finally, we addressed the issue of whether p values

were well calibrated for this model (and others) by randomly sam-

pling the ratio and repeating the analyses 10,000 times (we did this

by permuting expression levels among genes, STAR Methods).

What of the large effect changes? To test our expectation that

the large fold changes in expression are likely not associated

with changes in repressive methylation, we examined genomic

regions associated with transcripts in which DEseq2 reports a

change of more than 2-fold difference.We identified 216,168 po-
sitions associated with genes, including 4,693 mutations. Their

effect is large but decisively negative: �0.23, p = 2.98e�23.

This result justifies our exclusion of the larger effect loci from

the analysis of the impact of mutations on methylated CpGs.

Our analyses make assumptions about the threshold for distin-

guishinghighand lowCpGsequencedensity regions and in thedi-

vision of effects by fold changes in transcript abundance. We car-

ried out analyses to test these assumptions and found that our

main conclusions hold, namely the impact of mutations at methyl-

ated CpG sites depends on local CpG sequence density (STAR

Methods, Figures S2, S3, S4, and S5 and Tables S3 and S4). We

were also able to see the same effect in six other cell types for

whichwehad sufficient data; for cell typeswith lowcoverage there

were too few mutations lying within regions whose methylation

state we could confidently call (Tables S5 and S6 and Figure S6).

CpG mutations are enriched in enhancers
How might the CpG mutations in high-density regions be acting

to alter RNA expression? Are there differences in the way muta-

tions in low- and high-density regions operate? To address this,

we examined the relationship between mutations and annotated

functional elements. Since functional elements differ between

cell types, we first generated a set of single-nucleus assay for

transposase-accessible chromatin (ATAC) sequence data from

the two strains (B6 and D2).

We generated a single-nucleus ATAC-seq dataset for a total of

27,206 nuclei (median read-pairs per cell: 29,806) from two bio-

logical replicates after doublet removal andQC (STARMethods).
Cell Genomics 3, 100454, December 13, 2023 5



Figure 5. Effect of mutations at methylated CpGs on D2:B6 ratios of transcript abundance in regions of low and high CpG sequence density

Each dot represents the change in D2:B6 ratios of transcript abundance for mutations lying in regions of high CpG sequence density (>40 CpG/Kb) and in regions

of low CpG sequence density (<40 CpG/Kb). The horizontal bars indicate the mean change in RNA transcript, with upper and lower 95% confidence intervals

shown as dotted lines.

(A) Sites that have mutations disrupting methylated CpGs.

(B) Sites without mutations.
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We then carried out integration and linking of our snATAC-seq

dataset with our snRNA-seq dataset to obtain cell-type annota-

tions Finally, we confirmed through joint embedding that major

cell-type clusters within snATAC and snMethylation were highly

consistent between modalities and strain (Figures 4A, 4B, and

4C and STAR Methods).

We annotated the open-chromatin sites based on their overlap

with chromatin states.45 We want to know if the location of CpG

mutations that contribute to changes in transcript abundance dif-

fers in any of 15 chromatin state groups (excluding one state

labeled ‘‘artifacts’’), comparing sites lying in high CpG sequence

density regions to those in low sequence density regions. For

each site, we used a linear model, predicting the change in

D2:B6 ratios from the presenceofmutations, doing this separately

in high and low CpG sequence density regions for each state. Ta-

ble 1 shows the result, giving the number of sites for each chro-

matin state and the p value of the linear model for the predicted

effect of CpGmutations in both high and low sequence CpG den-

sity regions of the genome. After correcting for multiple testing,

only the effect of mutations in active enhancers in high CpG den-

sity regions is significant (p = 8.30E�04, exceeding a Bonferroni

corrected threshold of 0.001 for testing 2 x 15 states).

DISCUSSION

Our study of methylation states in eight inbred strains, combined

with the nearly complete sets of sequence variants and func-
6 Cell Genomics 3, 100454, December 13, 2023
tional annotations, allows us to address the relationship between

sequence andmethylation variation.We find that the relationship

depends in a non-linear fashion on the density of CpG se-

quences per kilobase of DNA. At densities less than 40 CpG/

Kb, there are more mutations in the methylated than unmethy-

lated DNA. The relationship is consistent across brain cell types.

The significance of the inflection at 40 CpG/Kb is unclear, but

presumably it reflects how cells determine CpG sequence den-

sity. It is known that increasing CpG sequence density alters pro-

moter activity,33 possibly by recruitment of ZF-CxxC domain-

containing proteins that bind to unmethylated CpGs.46

At lower CpG sequence densities, cells compensate for the

loss of methylated sites by recruiting additional sites in the

same DNA segment, sites that arise due to mutational gain of cy-

tosines. At higher sequence densities, the exact location of a

methylated site becomes more important; specific sites are

maintained even at the cost of reducing the number of methyl-

ated sites. In other words, the impact of a mutation on methyl-

ation depends on the CpG sequence density, with different con-

sequences for embedded functional elements. These are

exposed to higher mutation rates in lower density regions but

with relaxed constraint on where the mutation will occur; in

higher density regions, they are exposed to lowermutation rates,

but mutations are likely to be constrained to preserve the same

sites of methylation.

We tested this prediction by examining the impact of CpG

density on mutations, using as output the relative change in



Table 1. The association of CpG mutations on RNA transcript abundance varies by local chromatin state

High CpG density Low CpG density

Feature No mut. Mut. Pct. p value No mut. Mut. Pct. p value

Active enhancers 17,109 200 1.155 8.30E�04 160,010 1,611 0.997 0.167

Bivalent promoters 11,970 39 0.325 0.238 19,974 64 0.319 0.842

DNAase open chromatin 11,241 164 1.438 0.201 102,697 1,223 1.177 0.608

Heterochromatin 921 16 1.708 0.278 20,419 330 1.59 0.379

Polycomb repressed 1,298 27 2.038 0.125 17,635 239 1.337 0.601

Polycomb repressed and open

chromatin

3,996 42 1.04 0.027 11,060 111 0.994 0.385

Promoter flank 13,335 78 0.582 0.124 32,161 190 0.587 0.496

Quiescent 451 13 2.802 0.78 18,156 329 1.78 0.027

Transcribed enhancers 8,243 100 1.199 0.024 62,201 558 0.889 0.065

Transcription 8,342 131 1.546 0.986 105,918 1,116 1.043 0.072

Transcription and exons 10,546 61 0.575 0.417 41,331 236 0.568 0.143

Transcription start sites 10,274 16 0.155 0.662 26,832 53 0.197 0.192

Weak enhancers 5,139 87 1.665 0.573 93,371 1,172 1.24 0.102

Weak transcription 785 14 1.752 0.031 16,570 241 1.434 0.536

Zinc finger genes 633 9 1.402 0.496 4,456 53 1.175 0.767

The table shows 15 chromatin state groups (from Vu and Ernst45), together with the number of sites lying within genes (including 2 kb upstream and

downstream) whose expression could be detected in the Exc-DG cell type in the hippocampus. The sites are divided into those lying in high and low

CpG sequence density regions of the genome and then by whether they contain a mutation that disrupts a CpG site (‘‘Mutation’’ and ‘‘No mutation’’

columns). The proportion (expressed as a percentage) of sites withmutations is shown for each chromatin state. The p value from a linear model testing

for the predicted effect of mutations on RNA fold change is shown.
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transcript abundance in a comparison of two inbred strains.

Since CpG methylation in general suppresses transcription, we

expected mutations that abrogate a methylated CpG site to in-

crease the relative amount of transcript and found this to be

so. Consistent with our predictions from how CpG density re-

lates to methylation, we found that the impact of mutations de-

pended on the CpG density. In regions of low CpG density, we

were unable to detect a significant effect of mutation on tran-

scription, despite the very large number of sites analyzed. By

contrast, in regions of high CpG density, the far fewer mutations

we found made a highly significant contribution to variation in

transcript abundance (though the overall effect is small, less

than 1%). We also found that in high-density regions, CpGmuta-

tions are enriched in chromatin states that mark enhancers.

It is commonly assumed that genetic effects on behavior (as

with other complex traits) are likely mediated by changes in tran-

scription, an idea supported by the success of transcription-

wide association to facilitate the discovery of genes for common

complex traits.47 Assuming that the CpG mutations’ effects on

transcription can be extrapolated to their effects on behavior,

our findings suggest ways to prioritize the detection of genetic

variants that alter behavior. One implication is that variants within

regions of low CpG sequence density are unlikely to have any

detectable effect on a phenotype, whichwould simplify searches

for causative mutations. Conversely, prioritizing the search for

causative variants to regions of high CpG sequence density

and to enhancers should accelerate the discovery of variants

that are causal for behavior. Importantly, there are far fewer var-

iants in high compared to low CpG sequence density regions of

the genome (approximately 1,500 compared to 15,000 in a com-
parison of two strains). While still large, this number is easily

within the range of massively parallel reporter assays.48 Further-

more, when interest is focused on a single locus, identified for

example from fine mapping of behavioral phenotypes, there

will be far fewer candidate variants to consider: approximately

three candidate variants will lie within a 5-Mb locus, mapped in

a comparison between B6 and D2 strains (this does not take

into account the non-random distribution of variants across the

mouse genome).

Our results support those of others that the highmutation rates

at methylated CpG sites depend in part on local sequence

context and the genomic region.43–54 We add to this literature

by indicating that sequence variants disrupting methylation act

primarily through a specific class of candidate functional ele-

ments (we identified enhancers) in the context of high CpG

sequence density. While we are unable to distinguish standing

genetic variation (subject to selective pressure) from de novo

variation, which makes us unable to determine whether the

pattern observed in mice is independent of selection, the pattern

suggests that the increased mutational load associated with

methylation may be targeted to a subset of functional elements,

consistent with findings in other species.55 In other words, it is

possible that methylation may be being used to target increased

rates of mutation to specific elements in the genome.

Limitations of the study
There are several limitations of our study. First, we used two

mouse replicates to generate the methylation RNA data, limiting

our ability to detect differences between strains. Second, for

most cell types, sequence coverage was too low to detect
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most methylated sites. We cannot be certain that results found

for the high-coverage cell types will apply to others, though as

explained in the supplemental information, we think this is un-

likely. Third, we cannot be certain we have identified all cell

types. Cell types that we inadvertently believe to be homoge-

neous may confound our analysis, as the effects of mutations

in cell-type-specific methylation sites will be obscured. We

may also be missing cell types in which mutations have different

effects from those documented here. Finally, our analysis is

limited to CpG sites and to one region of the brain, the hippo-

campus. It is possible that mutations affecting non-CpG methyl-

ated sites behave differently. It is also possible, though we think

unlikely, that different findings will emerge from analysis of

different brain regions.
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NeuN-405 Novus Biologicals NBP1-92693AF405

Critical commercial assays

Next GEM scATAC-Seq v1.1 10X Genomics PN-1000175

Chromium Next GEM Automated Single

Cell 30 Library and Gel Bead Kit v3.1

10X Genomics PN-100014

Deposited data

snmC-seq2 data of 8 mouse strains This study GSE245367

snATAC-seq data of 2 mouse strains This study GSE245367

snRNA-seq data of 2 mouse strains This study GSE245367

Processed methylation data This study https://figshare.com/account/home#/collections/6943056

Processed ATAC and RNA data This study https://figshare.com/account/home#/collections/6943059

Experimental models: Organisms/strains

C57BL/6J JAX Strain ID: 000664

DBA/2J JAX Strain ID: 000671

CAST/EiJ JAX Strain ID: 000928

FVB/NJ JAX Strain ID: 001800

A/J JAX Strain ID: 000646

WSB/EiJ JAX Strain ID: 001145

PWK/PhJ JAX Strain ID: 003715

BALB/cJ JAX Strain ID: 000651

Software and algorithms

Cell Ranger V6.0.2 10X Genomics https://www.10xgenomics.com/support/

software/cell-ranger/downloads

Cell Ranger ATAC V2.0.0 10X Genomics https://support.10xgenomics.com/single-cell-

atac/software/downloads/latest

Bismark V0.20.0 Krueger and Andrews56 https://github.com/FelixKrueger/Bismark

DESeq2 V1.34.0 Love et al.44 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

Seurat 4.0.5 Stuart et al.57 https://github.com/satijalab/seurat

Signac 1.5.0 Stuart et al.58 https://github.com/stuart-lab/signac

Model-based Analysis for ChIP-Seq

(MACS) V3.0.0a7

Zhang et al.59 https://github.com/macs3-project/MACS

DoubletFinder V2.0.3 McGinnis et al.60 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Scanpy V1.9.3 Wolf et al.61 https://pypi.org/project/scanpy/

Harmony V0.0.9 Korsunsky et al.62 https://github.com/immunogenomics/harmony

SCTransform V0.3.2 Hafemeister et al.63 https://github.com/satijalab/sctransform

All custom code used in this paper This study https://github.com/jonathanflint2/

CodeForMethylationPaper
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw and processed sequencing data generated for this study were deposited to NCBI GEO/SRA with accession number

GSE245367 and are publicly available at the time of publication. Processed data relating to the results and method sections

are shared in figshare
B https://doi.org/10.6084/m9.figshare.23631984.v1

B https://doi.org/10.6084/m9.figshare.23632044.v1

d All original code has been deposited at https://zenodo.org/records/10051912 https://github.com/jonathanflint2/CodeFor

MethylationPaper and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mouse strains
All experimental procedures using live animals were approved by UCLA’s Animal Care and Use Committee (protocol number ARC-

2018-026). Male mice from eight inbred strains A/J, C57BL/6J, BALB/cJ, FVB/J, DBA/2J, WSB/EiJ, PWK/PhJ, and CAST/EiJ were

purchased from Jackson Laboratories at 8 weeks of age and transferred to UCLA where they were kept for at least 7 days before

tissue extraction. Animals were housed with ad libitum food and water in a 12 h light-dark cycle.

METHOD DETAILS

Ventral hippocampus microdissections
Adult male animals (Jackson Laboratories) were euthanized at 10–16 weeks old in an isoflurane chamber and decapitated. The brain

was removed and the ventral region of the hippocampus was microdissected, snap frozen in dry ice, and stored at �80�C until pro-

cessing. Tissue from �2 animals were combined into a single tube and considered a replicate, with 2 replicates per strain for snmC-

seq2, snRNA-seq, and snATAC-seq experiments.

Generating snmC-seq2 libraries
We carried out snmC-seq2 on microdissected tissue as previously described.64 Briefly, frozen tissue was homogenized into single

nuclei suspensions with Dounce homogenization, then immediately sorted on into a 384-well plate with a FACSAria sorter (BD Bio-

sciences) at the UCLA Flow Cytometry Core. We selected for a 75-25 enrichment of neuronal vs. non-neuronal nuclei during FACS

sorting using NeuN-488/DAPI counterstains (Millipore Sigma MAB377X). Bisulfite conversion and single-cell methylome libraries

were generated following this step.

Generating snRNA-seq libraries
Single nuclei suspension and library generation were completed at the Cedars Sinai Applied Genomics, Computation and Transla-

tional Core and followed the 10X protocol for the Chromium Next GEM Automated Single Cell 30 Library and Gel Bead Kit v3.1 (cat#

PN-100014) as described except for the following modifications:

Suspensions from cell nuclei were generated using the recommended method from the 10X scMultiome protocol (CG000375 Rev

C) to lyse cells and obtain nuclei. Following single nuclei suspension generation, nuclei were counterstained for 7-AAD andNeuN-405

antibody (Novus Biologicals, 1:200) and sorted on a MACSQuant Tyto (Miltenyi Biotech) prior to GEM generation. We selected for a

75-25 split of NeuN+/7-AAD+ nuclei for neurons and NeuN-/7-AAD+ for non-neuronal nuclei respectively. We captured �10,000

nuclei per genotype per region per replicate on a single 10X GEM chip. All downstream library preparation was done according to

the 10X Genomics protocol (CG000286) and sequenced on a Novaseq 6000 with a target of �40-50k reads per nucleus.

Generating snATAC-seq libraries
Single nuclei suspension and library generation were completed at the Cedars Sinai AGCT core and followed the 10X protocol for

Next GEM scATAC-Seq v1.1 (PN-1000175) as described except for the following modifications:

Nuclei suspensions were generated using the recommended method from the 10X scMultiome protocol (CG000375 Rev C) to lyse

cells and obtain nuclei.

Following single nuclei suspension generation, nuclei were counterstained for 7-AAD and sorted on a MACSQuant Tyto prior to

GEM generation. NeuN was not used for neuronal enrichment due to dye incompatibility between our NeuN antibody and a nuclear

counterstain. After the sort, we carried out permeabilization of nuclei as per the protocol. We aimed to capture 10,000 nuclei per well x

8 wells, for a total of 80,000 nuclei over 8 total samples (�10,000 nuclei per genotype per region per replicate). All downstream library

preparation was done according to the 10XGenomics protocol (CG000209) and sequenced on a Novaseq 6000 with a target of >35k

reads per nucleus.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Mapping and primary quality control
All reads were mapped to the mouse mm10, Genome Reference Consortium Mouse Build 38 (GCA_000001635.2)). The gene and

transcript annotation used was a GENCODE GTF file.65 snmC-seq2 reads were mapped using Bismark (V0.22.3) to SNP-swapped

mm10 genomes. This was done to allow us to directly compare chromosomal coordinates between the 8 strains. SNPs for each

strain were downloaded from the Sanger Institute Mouse Genomes website.12 Custom code was used to generate 8 separate

SNP-swapped genomes for each strain by replacing each corresponding SNP nucleotide position in the B6J mm10.fa file with

the nucleotide of that strain.

snRNA and snATAC-seq reads were mapped using 10X Cell Ranger (V6.0.2) and 10X Cell Ranger ATAC (V2.0.0) respectively

against mm10 for B6 and an SNP-swapped mm10 for DBA. We retained introns for RNA analysis while default settings were

used for ATAC analysis.

Single-nucleus methylation data quality control and preprocessing
Cells were filtered on the basis of several metadata metrics: (1) mCCC level <0.03; (2) global mCG level >0.5; (3) global mCH level

<0.2; (4) total mapped reads >100,000; (5) Bismark mapping rate >0.5; and (6) percent genome covered >2.

Methylation features were calculated as fractions of methylcytosine over total cytosine across gene bodies ± 2kb flanking regions

and 100kb bins spanning the entire genome.Methylation featureswere further split into CGandCHmethylation types. Features over-

lapping our methylation mm10 blacklist were removed. 100kb bin features were then filtered on minimum mean coverage >500 and

maximummean coverage <3000. Gene body features were filtered onminimum coverage >5 and all remaining features were normal-

ized per cell using the beta binomial normalization technique in allcools.16

Single-nucleus RNA sequencing data quality control and preprocessing
All quality control and preprocessing were done under the Seurat package framework.57 Per biological sample, we filtered out cells

that (1) fall below the 5th percentile of the total UMI counts (nCount_RNA) or the 5th percentile total number of unique genes ex-

pressed (nFeature_RNA) or 700 unique genes expressed, whichever was more stringent; (2) are over the 95th percentile quantile

in either the total UMI counts or the total number of unique genes expressed; (3) have larger than 5% mitochondria fraction

(percent.mt).

Global coverage normalization: counts per million (CPM) was applied to each cell followed by log transformation (‘‘LogNormalize’’).

We then projected cells from each biological sample to low dimensional space using principal components analysis (PCA) on highly

variable features selected by Seurat. Potential doublets were identified and subsequently removed from the downstream analysis by

DoubletFinder,60 ran in the top 15 principal components space with the expected doublet rate set to the recommended amount from

10X genomics based on loading volume (10k nuclei per well).

Single-nucleus ATAC sequencing data quality control and preprocessing
All quality control and preprocessing were done under the Seurat and Signac package framework.58 Per sample, we first used

Model-based Analysis for ChIP-Seq (MACS) to call sample specifc de novo peaks from its fragments file.59 We then merged sam-

ple-specific sets of peaks to a unified peaks set while removing peaks with length larger than 10000bp or smaller than 20bp. A

unified peaks by cells count matrix was constructed from the fragments file while removing cells with lower than 200 peaks de-

tected and peaks only present in less than 10 cells. Cells were filtered based on the following criteria: (1) appropriate number of

non-duplicate, usable read-pairs (passed_filters from Cell Ranger’s output singlecell.csv). Specifically, we set it to larger than

3000, 4000, 2500, and 5000 for the 2 BL6 samples and 2 DBA samples respectively. (2) number of fragments overlapping peaks

(peak_region_fragments from Cell Ranger’s output singlecell.csv) falls within the 5th percentile and the 95th percentile. (3) ratio of

fragments overlapping peaks over the total number of non-duplicate, usable read-pairs falls within the 5th percentile and the 95th

percentile. (4) nucleosome_signal: the ratio of fragments between 147 bp and 294 bp (mononucleosome) to fragments <147 bp

(nucleosome-free) is smaller than 4. (5) TSS enrichment score is larger than 2. We did not include a filter for ratio of peaks in black

list regions over the total number of non-duplicate, usable read-pairs as this was removed during the construction of the DBA

SNP-swapped reference genome.

We normalized the count data with Text Frequency Inverse Document Frequency (RunTFIDF) and performed Singular Value

decomposition (RunSVD) on top 90% informative features selected by Signac (FindTopFeatures). The first low dimensional

embedding was excluded from downstream doublet detection and clustering analysis due to high correlation with sequencing

depth.

Potential doublets were identified and subsequently removed from downstream analysis by DoubletFinder,60 ran on the 2nd �11th

low dimensional embedding with the expected doublet rate set to recommended amount from 10X genomics based on loading vol-

ume (10k nuclei per well).

Finally, we built a gene-by-cell transcriptional activity matrix that counts per cell, at the gene body and 2000bp upstream to capture

the promoter region, the total number of ATAC-seq counts.
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Cell type cluster generation and modality integration
Single-cell methylation clustering

Principal component analysis was run using Scanpy61 default parameters followed by k-nearest neighbors (knn) using only the top 16

principal components by amount of variance explained and k = 15. Divergences between strains were evident in initial unsupervised

clustering so Harmony62 was used to correct the batch between strains and unbias clusters arising from strain differences. After Har-

monywas applied, iterative clustering was performedwith a combination of leiden unsupervised clustering andUMAPdimensionality

reduction, identifying clusters as cell types by marker gene hypomethylation.16

Single-nucleus RNA sequencing data integration, clustering and annotation

Gene counts were normalized using SCTransform,63 and regressed out percentage of reads from mitochondrial genes. We then in-

tegrated cell from all samples using reciprocal principal components analysis (rPCA) implemented in Seurat 4.0.557 on the top 5000

integration genes and top 30 reciprocal principal components. For clustering, we standardized the integrated data, performed PCA

on all integrated genes and ran de novo Louvain clustering algorithm in the top 15 principal components space with resolution set to

0.1. Cluster markers that are conserved between the strains were called using non-parametric Wilcoxon rank-sum test and subse-

quently used for annotation. We annotated clusters by manually checking conserved markers against the ALLEN BRAIN MAP’s

Mouse Whole Cortex and Hippocampus dataset.

Single-nucleus ATAC sequencing data integration, clustering and annotation

We first jointly projected all cells’ ATAC peak profile to uncorrected Latent Semantic Indexing (LSI) embeddings with TFIDF trans-

formation followed by calculating SVD on the top 90% most informative peaks. Peak profile embeddings were then integrated in

shared low dimensional space via integration anchors identified in the 2nd to 30th reciprocal LSI space as implemented in Signac

1.5.0. We then integrated cell transcriptional activity profiles by performing SCTransform after regressing out percentage of activity

from mitochondrial genes and carried out rPCA integration on integration genes identified from the single-nucleus RNA experiment

and the top 10 reciprocal principal components. We transferred the single-nucleus RNA annotation onto the single-nucleus ATAC

cells by linking the RNAs expression profiles with ATAC transcriptional activity profiles through canonical correlation analysis

(CCA) described in Seurat. Pairs of cells from each modality that are mutual nearest neighbors in the top 15 canonical component

space were identified as ‘‘transfer anchors’’. ‘‘Anchors’’ were further filtered and weighted by distances in the integrated peak em-

beddings prior to impute ATAC cells’ annotation.

Co-embedding single-nucleus methylation with single-nucleus RNA and single-nucleus ATAC sequencing data

While we obtained separate independent annotations for single-nucleus methylation cells and RNA and ATAC cells, a joint embed-

ding demonstrates that cluster annotation is highly concordant across modalities.

We used the negative of the average mCH fraction of the gene body ± 2kb as the proxy of methylation cell’s transcriptional activity

as described previously.16 Single-nucleus RNA expression profiles were linked to single-nucleus methylation gene body mCH pro-

files via CCA on RNA integration genes. We then identified ‘‘transfer anchors’’ in the top 15 canonical component space and used

them to impute methylation cells’ expression profiles. Single-nucleus ATAC cell expression profiles were imputed similarly with pre-

viously computed ‘‘anchors’’. All three modalities were merged on their integrated or imputed expression profiles and projected to

low dimensional space via PCA, and visualized by UMAP performed on the top 15 principal components.

In general, cell-type annotation demonstrated high concordance across the three modalities, except on single nucleus methyl-

ation of non-neuronal cells, where the VLMC, OPC and MGC cell clusters did not colocalize with the corresponding expression-

based annotation counterpart. This could be partially explained by the fact that mCH methylation is largely not present in the

non-neuronal population.66 In addition, both the "transfer anchor" and subsequently the imputed transcriptomic profile for single

nucleus methylation cells were identified using the ‘‘gene body only’’ mCH fraction, a significant reduction in information

compared to what was used for the de novo single nucleus methylation annotation, which included both the mCG and mCH frac-

tion at 100kb genome wide.

Analysis of cell type specific effects and relationships with sequence variation
Cell-type specific differential test for single-nucleus ATAC and single-nucleus RNA

We used DESeq244 for cell-type specific pseudobulk level differential expression analysis and differential accessibility analysis. Per

cell type, raw counts were aggregated to replicate level and DESeq2 was run under default parameters to detect statistical evidence

of strain differences.

Pipeline to identify relationship between methylation and sequence variation in multiple strains

Data from each strain for each cell type was combined into a single R data frame, where the following pieces of information were

included for each site.
chr Chromosome

pos bp position

aj.mc Methylated reads A/J

aj.cov Total reads A/J

(Continued on next page)
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chr Chromosome

b6.mc Methylated reads C57BL/6J

b6.cov Total reads C57BL/6J

balb.mc Methylated reads BALB/cJ

balb.cov Total reads BALB/cJ

cast.mc Methylated reads CAST/EiJ

cast.cov Total reads CAST/EiJ

d2.mc Methylated reads DBA/2J

d2.cov Total reads DBA/2J

fvb.mc Methylated reads FVB/J

fvb.cov Total reads FVB/J

pwk.mc Methylated reads PWK/PhJ

pwk.cov Total reads PWK/PhJ

wsb.mc Methylated reads WSB/EiJ

wsb.cov Total reads WSB/EiJ

strand Strand

type CG or CH

total.mc Total methylated reads for all strains

total.cov Total coverage over all strains

fraction.mc Fraction of methylated reads

n.strains Number of strains for which data were available

var.pos Postion of variants with respect to the position of the

methylated site

var.sdp Strain distribution pattern of sequence variation
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This information was incorporated using custom perl scripts run in the following order, for each chromosome

(1) FindMethylatedCoordinatesForAllStrainsInOneTissue.pl -f <file of filenames of pseudobulk files (divided by chromosome) >

(2) GetAllMethylatedSitesFromCoordinates.pl -C chromosome -c <coordinate file> -f < output of step 1> > chr.n.cell.type.file

(3) IdentifyVariableMethylation.pl -f chr.n.cell.type.file > chr.n.cell.type.annotated.txt

(4) MatchToGenes.pl -c chr.n.cell.type.annotated.txt -g refGene.txt -i > chr.n.cell.type.annotated.genes.txt

(5) AddVariantsToDiffFile8Strains.pl -v chr.n.seq.vars -f chr.n.cell.type.annotated.genes.txt -a -c -w 0 > chr.n.cell.type.annota-

ted.genes.variants.txt

Genome location was obtained frommm10, Genome Reference ConsortiumMouse Build 38 (GCA_000001635.2)) and gene infor-

mation from the associated databases.65 Sequence variants were downloaded from the Sanger Institute Mouse Genomes project.12

We confirmed that the sequence variants coincided with the expected position by searching for sites with rs numbers and checking

that the coordinates agreed between those in the file and those in the mouse mm10 assembly. We confirmed that a file has the correct

sequence variants bydownloading genomesequence from theUCSCbrowser and confirming that the sequence is ‘‘C’ at the ‘‘+’’ strand

indices from the comparison file. We added to this file the location of all CpGs, from the genome and from each strain, with the script:

FindCpGs.pl -c chromosome (assumes the presence of a sequence file to process of the form chr1.fa in a given directory) -f <anno-

tation file>

This script identifies a five base pair context around any cytosine in the genomic sequence, testing for the presence of any variant

that changes the reference B6 genome to a C by using the strain variant information.12 This generates a file with the 5 bp sequence

context in the reference genome, the sequence for each strain (marked asCG for CpG), the number ofmethylated sites, the sequence

coverage and a column for annotations (containing gene information and other potentially relevant features, downloaded fromUCSC

genome browser databases.65

We extracted regions of 2 kilobases in length (different segment sizes were also analyzed), examined for each the methylation

and mutational spectrum. To do so we consider variation in coverage in each segment and correct for this by down sampling the

strain with the most sequence reads at each region (we randomly reduced the amount of methylation proportionate to the ratio in

the total sample). We require aminimum coverage of 5 reads and to call a site methylated we require at least 10%of the reads to be

methylated. If the coverage is good enough to call a site, but lacks evidence for methylation, then the site is regarded as not

methylated.

We compared two definitions of similarity
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(1) - two regions are the same if they contain the same amount of methylation

(2) - two regions are the same if they have the same pattern of methylation (i.e., the same sequence cytosine residues are meth-

ylated)

In definition 1 there can be different sites that are methylated but the total is the same - so definition 2 is a subset of definition 1.

We ask whether the amount of methylation in a region is maintained to overcome the impact of mutation (if this is true, there will be

moremutations separating CAST fromB6 than fromBALB and B6 but themethylation will be the same (by definition 1 above)). To get

information about the pattern and the equivalence of methylation we derive two measures for each segment for each pair of strains:

the probability that any pair of sites is in the same state (methylated or not) and the ratio of the total number of methylated sites in the

two strains.

We run a pairwise strain comparison in which we count the following: the number of sites that are CpG, the number of sites that are

methylated, the number of sites that are unmethylated, the number of methylated CpG sites that are mutated and the number of un-

methylated CpG sites that are mutated.

We estimate the probability that two sites are equal (either 0, 0 or 1,1) using the following algorithm in perl:

sub prop_occurrence {

my ($array1_ref, $array2_ref) = @_; my $p = 1; my $q = 0;

# Convert binary data to numeric data

my @array1 = map { $_ ? 1 : 0 } @$array1_ref; my @array2 = map { $_ ? 1 : 0 } @$array2_ref;

# Count the occurrences of p and q in array1

my $count_p_array1 = grep { $_ = = $p } @array1; my $count_q_array1 = grep { $_ = = $q } @array1;

# Count the occurrences of p and q in array2

my $count_p_array2 = grep { $_ = = $p } @array2; my $count_q_array2 = grep { $_ = = $q } @array2;

# Count the occurrences of p and q at the same site in both arrays

my $count_pp = 0;

my $count_qq = 0; for my $i (0.$#array1) {

$count_pp++ if ($array1[$i] = = $p && $array2[$i] = = $p);

$count_qq++ if ($array1[$i] = = $q && $array2[$i] = = $q);

}

# Calculate the proportions

my $prop_p_array1 = $count_p_array1/scalar(@array1);

my $prop_p_array2 = $count_p_array2/scalar(@array2);

my $prop_q_array1 = $count_q_array1/scalar(@array1);

my $prop_q_array2 = $count_q_array2/scalar(@array2);

my $prop_pp = $count_pp/scalar(@array1);

my $prop_qq = $count_qq/scalar(@array1);

return ($prop_p_array1, $prop_p_array2,$prop_q_array1,$prop_q_array2, $prop_pp, $prop_qq);

}

These analyses are performed using the perl script

PairwiseComparison.pl -f <file>

The output contains the CpG density for the segment analyzed, probability and ratios, together with the numbers of each category

used to generate those results.

Finally, we sum results across segments with the same CpG density with the script.

SumByDensity.pl -f <file>

This script works out the probability and ratio for all sites in each segment, using the same approach as described above. The script

outputs the following information: ‘seg’, the CpG density, ‘s1’ and ‘s2’ the two strains compared, ‘CG.all’ the number of CpG sites,

‘CG.me.0’ the number not methylated,‘CG.me.1’ the number methylated, ‘mutant.me.0’ the number of mutant sites not methylated,

‘mutant.me.1’ the number of methylated mutant sites, ‘prob’ the probability that sites are in the samemethylation state, ‘ratio’ the ratio

of the number of methylated sites, and the number of methylated sites in each strain(‘s1.me’ and ‘s2.me’). These files are used to

generate the figures in the main text and supplemental material. The script for these plots is MethylationSequenceComparison.R.

Assessing whether mutations have an effect dependent on CpG density

We combined information from the different modalities into one text file with this script

CombineModalities.pl -d density file -r rna DESEQ2 file -R RNA count file -a atac DESEQ file2 -A atac count file

-f counted file -c chromosome

This includes heterochromatin states information45 which is included in a column in the output file. Subsequent analyses are per-

formed in R.

Predicted phenotypes (RNA fold change) are quantile normalized with this function

invnorm <- function (x) {

y = (rank(x,na.last = "keep")-0.5)/sum(!is.na(x))
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return (qnorm(y))

}

We compared differences between mean effects of fold change in the two groups (high and low CpG density using a t test

t.test (data$normalized.log2fold[data$high = = 1],data$normalized.log2fold[data$high = = 0])

We ran a series of linear models to test the effect of mutations on fold change in the transcript abundance. These models are of

the form:

summary (lm(invnorm(rna.log2fold) � mutation * density, data = data))$coefficients.

For assessing the impact of annotations we establish a null model in which annotations, density (high vs. low) andmutations predict

change in transcript abundance

fit0 = lm (normalized.log2fold � chromosome + position + annotations + density + mutations, data = data)

We compare this null model with one that allows an interaction between mutation and density

fit1 = lm (normalized.log2fold � chromosome + position + annotations + density + mutations + density:mutations, data = data)

and compare the fit of the two in an analysis of variance

anova (fit0, fit1)

Calibrating P-values
We explored the distribution of P-values using the ‘sample’ function in R. We re-sampled at the gene level for the expression data (so

each gene is re-assigned an expression level from a different gene) and examined the P-value distributions to determine if the

P-values were well calibrated.

Testing for an interaction between CpG density and mutation
Our hypothesis is that the effect of mutation on transcript abundance depends onCpG sequence density in a non-linear way (larger in

regions of high density and lower in regions of low density). In themain text we test this by looking at the impact of features separately

in high and low sequence density regions. To examine the involvement of covariates we use a slightly different approach: we test for

the presence of an interaction between mutations and ‘high’ versus ‘low’ density region. While the interpretation of the effect size of

the interaction is not intuitive, the test has the virtue of delivering a single result for answering our question while including the impact

of covariates that could confound the interpretation.

We tested for an interaction betweenmutation and density, including the effect of chromatin states, using a set ofmouse ‘universal’

chromatin states.45 We assigned chromatin states to specific cell types by searching for an overlap between ATAC sites and anno-

tations, requiring a total of at least 10 reads in the B6 and D2 strains. The model we tested, in R formulation, is:

lm (normalized.log2fold � annotations + density + mutations + density:mutations, data = data)

Results, shown in Table S2, reveal a highly significant interaction: p = 8.41E�08.

We used the same model to test the sensitivity of our results to assumptions about CpG sequence density and expression

changes. We explored the impact of the thresholds we used for defining high and low CpG sequence density and the impact of

excluding, or including, sites on the genome based on gene expression levels.

To examine the threshold for distinguishing high and low sequence density CpG regions of the genome, we divided CpG sequence

density into high and low regions based on the results of Figure 2 in themain text, choosing the inflection point of the curve at 40 CpG/

Kb.What happens if a different threshold is chosen?We include all transcripts, regardless of the size of the DESeq estimated log2fold

change. We choose CpG sequence density thresholds between 14 and 60, and for each one divided the sample into high and low

sequence density regions. We then calculated the interaction between the mutation and the RNA abundance, using the same linear

model described above. Figure S2 shows the results, demonstrating a peak in the effect size at a density of 38 CpG/Kb.

What happens if we restrict analysis to RNA transcripts where there is some evidence of a difference between the two strains and

where the effect is small (less than a 2-fold change)? Figure S3 gives the answer: the peak effect size is at 38, which coincides with the

most significant interaction. The main difference is that the effect estimates are much bigger, as noted in the main text.

What is the effect of altering our threshold for including transcripts in the analysis? In the main text we describe results where we

exclude transcripts with log2 fold values greater than 2. We have no prior evidence to support choosing this value, so what happens

ifwealter it?How robust are the results?Wechose aCpGsequencedensity threshold of 38 and ran the interaction analysis thresholding

transcripts on log2 fold values between 0.2 and 8. The effect size of the interaction is shown in FigureS4, and data in Table S3. The effect

becomes positive at values greater than 0.5, and has a maximum at a threshold of 2, drops to just over 0.1 by a threshold of 4, and

remains stable thereafter. Since the accuracy of effect size estimates will vary considerably depending on read counts and the true dif-

ference between the strains, we also stratified by the P-value of the DESeq analysis. Figure S5 shows the samepattern for the change in

interaction effect size (a logP of 10 is approximately the same as a two -old change in the ratio). We also tested the effect of altering

P-values thresholds for including transcripts in our analysis (in the main text we report results for including transcripts where the

P-value for the differential expression, obtained from DESeq2, was less than 0.05). For each threshold we ran an interaction analysis,

testing the dependence on the high density of CpG sites of the relationship between normalized change in transcript abundance and the

presence of mutations. The results, shown in Table S4, demonstrate that the interaction effect is robust to the threshold we use.
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