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Automatic and Instructed Attention in Learned Predictiveness 
 

Lauren T. Shone (lsho0771@uni.sydney.edu.au) 
Evan J. Livesey (evan.livesey@sydney.edu.au) 
School of Psychology, Brennan McCallum Building,  

University of Sydney, NSW 2006 AUS 
 

Abstract 
In novel situations, learning is biased towards information 
that has a degree of prior predictive utility. In human learning, 
this is termed the learned predictiveness effect and has proved 
critical in theorising about the role of attention in learning. 
Two experiments are reported in which the relative 
contribution of controlled and automatic processes to learned 
predictiveness are investigated. Experiment 1 showed that 
while learned predictiveness is susceptible to instructional 
manipulation, this effect is partial. Experiment 2 manipulated 
predictive utility and instruction orthogonally in order to test 
the potential involvement of automatic processes. It was 
found that even when cues were explicitly instructed as 
causal, learning was biased in favour of previously predictive 
over previously non-predictive cues. Interestingly, this was 
reversed for cues instructed as irrelevant. This suggests that 
learned predictiveness benefits attentional control, whereby 
information is both easier to attend and ignore. 

Keywords: human learning, attention, controlled processing, 
automatic processing 

Introduction 
An important question facing theories of associative 
learning is the nature of the relationship between learning 
and attention. Accordingly, many associative theories (e.g., 
Kruschke, 2001; Mackintosh, 1975; Pearce & Hall, 1980) 
accept that stimulus selection is influenced by attentional 
processes. Such theories share the basic assumption that the 
attention devoted to a stimulus is flexible, and governed by 
its past utility in predicting events. Importantly, this will 
subsequently influence the rate at which a stimulus enters 
into future associations. 
    Evidence in favour of learned attention originates from 
experiments in which past predictive utility biases learning 
in a novel situation. A robust example, first reported by Le 
Pelley and McLaren (2003; see also Lochmann & Wills, 
2003), is the learned predictiveness effect. The basic 
experimental design used to demonstrate the effect is shown 
in Table 1. Participants are initially exposed to a scenario in 
which they are required to learn a causal relationship 
between cues and outcomes. Each trial consists of the 
presentation of a compound of two cues, leading to one of 
two outcomes. Critically, each compound consists of one 
perfectly predictive cue (represented by A – D), and one 
non-predictive cue (W – Z). For example, A is consistently 
paired with the outcome O1, and therefore has perfect 
predictive utility. Alternatively, W has no predictive utility 
because it is paired equally often with both outcomes O1 
and O2. 
    Once these relationships have been learned, a novel 
scenario is introduced. The same cues, in novel 

combinations, are then employed in order to predict 
different outcomes. Importantly, although the cues are again 
presented in compound, this time neither component has 
superior predictive utility. That is, both A and W are perfect 
predictors as they share the same objective relationship with 
outcomes O3 and O4 respectively. What differs between the 
components of the new compounds is their status as a 
predictive or non-predictive cue in the initial stage of 
learning. Subsequent tests reveal that more is learned about 
the relationship between previously predictive cues and the 
new outcomes compared to previously non-predictive cues. 
 

Table 1. A typical learned predictiveness design. 
 

Phase 1 Phase 2 Test 
AW – O1 AY – O3 AD 
AX – O1 BZ – O4 XY 
BW – O2 CW – O4 BC 
BX – O2 DX – O3 WZ 
CY – O1   
CZ – O1   
DY – O2   
DY – O2   

Note. Letters indicate individual cues. O1 – O4             
refer to four outcomes. 

 
    Traditionally, this bias, consistently replicated across 
various scenarios (see Le Pelley, 2010, for a recent review), 
has been interpreted to suggest that attention is modulated 
by the difference in predictive validity during initial stages 
of learning. According to this logic, attention to A – D will 
be high following phase 1 and will therefore have an 
advantage when entering into new associations during the 
second phase. This effect has proved critical in theorising 
about the reciprocal nature of the relationship between 
human learning and attention.  
    The learned predictiveness effect is consistent with 
models of associative learning that assume attention changes 
according to mechanisms of associative competition (e.g., 
Mackintosh, 1975; Le Pelley, 2004; Pearce & Mackintosh, 
2010). For example, Mackintosh (1975) proposed that 
changes in the association between a cue and an outcome 
are governed by both attention paid to the cue and the 
discrepancy between the occurrence of the outcome and the 
extent to which it is already predicted on the basis of that 
cue, that is, the prediction error for an individual cue. 
Critically, attention to the cue changes according to a 
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comparison between its prediction error and the prediction 
error for other cues available at the same time. The cues 
with smaller individual prediction errors (i.e. those with 
higher predictive utility) will command more attention as 
learning proceeds. Higher attention, in turn, drives faster 
learning. 
    Despite its replicability, the exact nature of the learned 
predictiveness effect has only recently been questioned. 
Indeed, the concept of attention is associated with a variety 
of cognitive mechanisms (see Pashler, 1998; Wright & 
Ward, 2008, for a review), raising the question of which 
processes critically characterise the effect. For example, in 
demonstrations of learned predictiveness there is often a 
high degree of conceptual similarity between scenarios. One 
possibility, therefore, is that the effect is governed by a 
simple heuristic arising from inferential reasoning. That is, 
it is possible that participants make the explicit assumption 
that the predictive utility of cues A – D will transfer across 
similar contexts (Mitchell, Griffiths, Seetoo, and Lovibond, 
2012).  
    According to this explanation, learned predictiveness 
should be susceptible to manipulations of inferred beliefs. 
Indeed, Mitchell, et al., (2012) have provided evidence in 
support of this view. In their Experiment 2, inferences were 
directly manipulated across phases by way of instruction. At 
the onset of the second phase, participants in the continuity 
condition were explicitly instructed that the same cues 
would be relevant. Alternatively, those in the change 
condition were instructed the opposite, that previously 
predictive cues were now irrelevant. Critically, this 
condition revealed a complete reversal of the effect. That is, 
more was learned about the relationship between previously 
irrelevant cues and the novel outcomes. That learned 
predictiveness is sensitive to variations in explicit reasoning 
suggests a role for controlled, volitional attentional 
processes in explaining the effect.  
    However, there is evidence to suggest that the presence of 
the inference alone is not sufficient to produce the learned 
predictiveness effect. For example, Le Pelley et al. (2010a) 
investigated the expression of learned predictiveness 
adopting a procedure in which the critical relationships were 
embedded in text form. Interestingly, they failed to observe 
the effect; the attentional bias was only observed when the 
relevant information was presented in trial and error form 
across multiple trials. This is contrary to what would be 
expected if explicit causal attribution was the sole 
mechanism responsible for this bias. Similarly, related 
paradigms have found opposing influences of training and 
instruction on learned attentional responses (Le Pelley, 
Mitchell, & Johnson, 2013). Taken together these findings 
raise the possibility that learned predictiveness reflects the 
operation of a combination of inferential and non-inferential 
processes. 
    As noted previously, learned predictiveness has taken an 
important role in theorising about learned attention. A 
common feature of such theories is the assumption that 
attentional changes are automatic in response to the 

formation of associations between events (e.g., Kruschke, 
2001; Le Pelley, 2004; Mackintosh, 1975; Pearce & 
Mackintosh, 2010). According to this view, because 
associations between predictive cues and outcomes increase 
rapidly during phase 1 of a learned predictiveness 
experiment, these cues are automatically attended. Thus, 
previously predictive cues will capture attention at the start 
of phase 2, such that associations between these cues and 
novel outcomes are facilitated. Importantly, this process 
does not rely on a deliberate attempt by the individual to 
control attention in a biased fashion according to the nature 
of the phase 1 relationships. 
    While the results of Mitchell et al. (2012) appear to 
oppose this explanation, there is reason to suggest that their 
experimental design did not provide the conditions under 
which the presence of automatic processes could be 
adequately detected. For example, their demonstration relies 
on a definitive manipulation: Non-predictive cues were 
explicitly emphasised as important. If it is assumed that 
controlled attention is capable of modulating the expression 
of automatic processes, given the appropriate conditions, 
then it is possible that the manipulation was too strong, 
overriding the influence of automatic attention. Thus, 
although this manipulation demonstrates that learned 
predictiveness is susceptible to voluntary control via 
instruction, it does not test whether automatic processes also 
contribute to the effect under uninstructed conditions. 
    Further, the scenario employed, in which fictitious seeds 
grow different trees, potentially favours a more categorical 
inferential process whereby the outcome is most likely 
attributable to only one of the cues and not the other. This 
aspect of the design may have facilitated a complete reversal 
based on conceptual aspects of the scenario in addition to 
the manipulation of interest. 
    Therefore, the relative contribution of controlled and 
automatic processes to the learned predictiveness effect 
remains to be fully specified. The aim of the present 
experiments was to investigate this relationship. 
 

Experiment 1 
Experiment 1 made use of the same instructional 
manipulation employed by Mitchell et al. (2012), albeit with 
a different cover scenario, in order to replicate their original 
result. The allergist scenario, employed in numerous 
demonstrations of learned predictiveness (e.g., Le Pelley & 
McLaren, 2003) was used in which participants were asked 
to play the role of a doctor who must discover the allergies 
of a fictitious patient. The cues consisted of different foods, 
which predict the occurrence of various allergic reactions, 
serving as outcomes. At the start of phase 2, a new patient 
was introduced who consumed the same foods, but suffered 
novel reactions. As before, participants were required to 
discover which foods were leading to which reactions. The 
structure of the training phases is shown in Table 1 and 
reflects the standard learned predictiveness design. At the 
start of phase 2, one group of participants (the “same” 
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condition) were told that it was likely that both patients 
were allergic to the same foods, whereas those in the 
“change” condition were instructed that their two patients 
likely suffered from allergies to different foods.  
    In line with the findings of Mitchell et al. (2012), we 
anticipated that the bias in learning observed in learned 
predictiveness would proceed according to the instructions 
issued at the start of phase 2 training.  

Method 
Participants Forty-eight University of Sydney students (27 
female, 21 male; age 18 – 24) participated in the 
experiment. 
 
Apparatus and Stimuli All experiments were conducted on 
Apple Mac Mini computers attached to a 17-in. monitor, 
and programmed in PsychToolbox for Matlab (Brainard, 
1997; Pelli, 1997). Foods were randomly allocated for each 
participant to serve as cues A – Z in the experimental 
design, and consisted of: Coffee, Fish, Lemon, Cheese, 
Eggs, Garlic, Bread, and Peanuts. Similarly, four allergic 
reactions were randomly allocated to serve as the four 
outcomes, and were: Headache, Nausea, Rash, and Fever. 
 
Procedure After being randomly allocated to either the 
same or change conditions, participants were instructed that 
their task was to learn which foods were causing which 
allergic reactions in a fictitious patient. They were told that 
on every trial, two foods that the patient had eaten would be 
presented. On being shown the foods, participants were 
required to predict which of two allergic reactions would 
occur.  
    Phase 1 consisted of the eight trial types shown in Table 
1. Each of these was presented once in each of 16 blocks of 
trials. The order of trials was randomised across blocks. 
Each trial was followed by feedback stating whether their 
prediction was correct, as well as providing the actual 
allergic reaction experienced. 
    At the start of phase 2, participants were told that they 
now had a new patient and, as before, would be required to 
learn which foods were causing which allergic reactions. 
Those in the same condition were told that their new patient 
was allergic to the same foods as their previous patient, 
whereas those in the change condition were instructed that 
their new patient was allergic to different foods. 
    Phase 2 consisted of 16 blocks, each of which contained 
one of the four trial types shown in Table 1. As before, trial 
order was randomised within blocks and feedback was 
provided after each trial. 
    A test phase was administered immediately following 
phase 2. All cues were presented individually and in a 
randomised order throughout this phase. On each test trial, a 
cue would appear and participants were asked to indicate 
whether the cue had been paired with outcome 3 or outcome 
4. This was done by making a rating on a linear analogue 
scale, labelled “Definitely goes with [outcome 3]” on the 

left anchor, and “Definitely goes with [outcome 4]” on the 
right anchor. 
    Finally, a manipulation check was included to ensure that 
participants had remembered the instructions at the start of 
phase 2. Participants were presented with both sets of 
instructions and required to report which of those applied to 
their patient. There were no exclusions on the basis of this 
check. 

Results 
Phase 1 For each block, accuracy was averaged across the 
eight compound trials to gauge acquisition. Accuracy 
increased consistently across training. A mixed-measures 
analysis of variance (ANOVA) with block (1-16) and 
condition (same vs. change) as factors revealed a significant 
main effect of block, F(15, 690) = 40.1, p < .001, but no 
significant effect of condition, F < 1, and no block ×	 group 
interaction, F < 1, suggesting that the two groups learned at 
an equivalent rate in phase 1. 
 
Phase 2 A mixed-measures ANOVA examining phase 2 
acquisition showed a significant effect of block, F(15, 690) 
= 44.13, p = < .001, as well as a significant block ×	 group 
interaction, F(15, 690) = 2.1, p < .05. The effect of 
condition did not reach significance, F(1, 46) = 3.95, p = 
.053. 
 

 
Figure 1. Learning scores for the same and change 
conditions for previously predictive and previously non-
predictive cues        
 
 
Test data A learning score for each cue was calculated by 
combining accuracy for memory of the cue-outcome 
pairings in the test phase with the magnitude of the rating. 
This yielded a score out of 100 for each cue, with higher 
scores indicating better retention. Scores could range 
between 100 and -100. Scores were averaged according to 
whether they were predictive (A – D) or non-predictive (W 
– Z) in phase 1. These are shown for the same and change 
conditions in Figure 1.  
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    Scores were subjected to a mixed-measures ANOVA with 
group (same vs. change) and cues (predictive vs. non-
predictive) as factors. Averaged over cue, there was no 
significant difference between the same and change 
conditions, F < 1. Similarly, there was no effect of cue, F < 
1. However, as suggested by Figure 1, this resulted from a 
significant cue ×	 group interaction, F(1, 46) = 8.79, p < .05.   
    This was further investigated with a simple effects 
analysis, which revealed that learning scores for predictive 
cues was higher than non-predictive cues in the same 
condition, F(1, 23) = 11.51, p < .05. The difference between 
predictive and non-predictive cues did not differ 
significantly in the change condition, F < 1. 
 

Discussion 
Our data provide a partial replication of Mitchell et al. 
(2012). While the same condition showed a standard learned 
predictiveness effect, this was abolished rather than reversed 
in the change condition. That is, there was no difference 
between previously predictive and previously non-predictive 
cues when participants were told that non-predictive cues 
were informative for the second phase. 
    Overall, a clear effect of instruction was observed making 
use of a scenario in which it is less likely that causal 
attribution is biased towards categorical reasoning. This 
suggests that the result of Mitchell et al. (2012) is not 
entirely a consequence of the conceptual structure of their 
scenario, further validating the influence of voluntary 
control on learned predictiveness. 
    However, it is important to note that our reversal was 
incomplete in the critical condition. On the basis of the 
current design, it is unclear why this should be the case. It is 
possible that the results from the change condition reflect 
competition between opposing inferential and automatic 
processes. While automatic processes would bias learning in 
favour of previously relevant cues, explicit inference 
favours irrelevant cues.  
    Alternatively, there may be added difficulty in the change 
condition. If more is learnt about the predictive cues in 
phase 1, this means that they may be required in order to 
confirm the new object of attention, that is, the previously 
irrelevant cue. That is, if the explicit identity of the 
previously irrelevant cues is uncertain due to the fact that 
little learning has proceeded to these cues, then previously 
relevant cues may be actively used to guide responding. 
This is an additional process that is not necessary in the 
same condition.   
    Given that the reversal design does not allow the 
contribution of automatic processes to be assessed, 
Experiment 2 used an orthogonal manipulation of 
predictiveness in phase 1 and instruction to further test the 
relative contribution of voluntary and automatic processes. 

 

Experiment 2 
Experiment 1 confirmed that learned predictiveness is 
susceptible to the manipulation of inferred beliefs. In 
Experiment 2, we aimed to further test the involvement of 
automatic processes. This was done by orthogonally 
manipulating the predictive status of cues in the first phase 
and the instructional manipulation. The design of 
Experiment 2 is shown in Table 2. The first phase of 
training was identical to that seen in Experiment 1. At the 
end of the initial training phase, all participants were told 
explicitly which foods the new patient was allergic to. 
However, two of those cues were previously predictive, 
while two were previously non-predictive. That is, they 
were told that the new patient was allergic to cues A and C, 
and X and Z.  
    This means that there were two cues (A and C) that were 
predictive in phase 1, and known to cause allergies in the 
new patient, and two previously predictive cues (B and D) 
known not to be allergens. Similarly, of the previously non-
predictive cues, two (Z and X) were now known to cause 
allergies, and the remaining two (Y and W) known to be 
safe. The design therefore creates the condition in which an 
unambiguous instructional manipulation is present without 
removing the opportunity to observe an automatic influence 
of phase 1 training, if indeed it is present. 
 

Table 2. Design of Experiment 2. 
 

Phase 1 Phase 2 Test 
AW – O1 AY – O3 A 
AX – O1  BZ – O4 B 
BW – O2 CW – O5 C 
BX – O2 DX – O6 D 
CY – O1  W 
CZ – O1  X 
DY – O2  Y 
DY – O2  Z 

      
       Note. Letters indicate individual cues. 
      Underlined letters indicate cues 
      instructed as informative for phase 2. 
      O1 – O6 refer to six outcomes. 
 

    If, as suggested by the findings in Experiment 1, 
controlled processes are in operation, then a clear influence 
of instruction should be observed whereby more will be 
learned about cues A, C, X, and Z in the second phase. 
However, if automatic attention favouring predictive cues is 
also present, then a difference should also be observed 
between instructed cues according to whether they were 
relevant (A and C) or irrelevant (X and Z) in the first phase. 
Given the advantage conferred by predictive utility, this 
predicts that more should be learned about A and C 
compared to X and Z.     
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Method 
 

Participants Participants comprised twenty-four University 
of Sydney students (20 female, 4 male; age 18 – 23). 
 
Apparatus and Stimuli Experimental stimuli remained the 
same as that employed in Experiment 1, with the exception 
that two additional allergic reactions were introduced to 
account for added outcomes in the design. These were 
Coughing and Sweating. 
 
Procedure Phase 1 training and instructions remained 
identical to that used in Experiment 1. Following phase 1, 
participants were told that they were now observing the 
allergies of a new patient, but that they would be provided 
with a set of foods that the patient was allergic to. They 
were shown the names of four foods, corresponding to cues 
A, C, X, and Z and were informed that they would need to 
learn which of these corresponded to the various reactions 
that the patient was experiencing.  
    Given that foods were named explicitly, a shorter phase 2 
with fewer trials per cue was employed. Participants 
completed four blocks, each block consisting of one of the 
four trial types shown in Table 2. On each trial, participants 
were now required to predict which of four allergic 
reactions would occur.  
    During test, each cue was displayed individually in 
random order. The four outcomes were displayed on screen 
and participants were asked to indicate which of these the 
cue had been paired with. This was followed by the 
appearance of a rating scale, asking how confident they 
were in their response. The left anchor was labelled “Not at 
all confident”, and the right anchor labelled “Very 
confident”. 
    Finally, the manipulation check required participants to 
report the instructed allergens of the second patient. Five 
participants were excluded, having failed to report this 
content, leaving 19 participants in the analysis. 
 
Results 
 

Phase 1 Acquisition across blocks increased steadily for 
phase 1. A repeated-measures ANOVA showed a significant 
main effect of block on accuracy, F(15, 270) = 13.01, p < 
.01. 
 
Phase 2 Overall, accuracy increased during phase 2, 
resulting in a significant main effect of block on accuracy, 
F(3, 54) = 12.95, p < .01. However, acquisition varied 
according to whether a compound contained an instructed 
component that was previously predictive or an instructed 
component that was previously non-predictive, such that 
accuracy was significantly higher for the former (AY/CW 
higher than BZ/DX), F(1, 18) = 7.25, p < .05. The 
interaction was not significant, F < 1. 
 
Test data Accuracy scores, shown in Figure 2, were 
subjected to a repeated-measures ANOVA with 

predictiveness (predictive vs. non-predictive) and 
instruction (instructed vs. ignored) as factors. This revealed 
a significant main effect of instruction, F(1, 18) = 18.28, p < 
.01, as well as a significant instruction × predictiveness 
interaction, F(1, 18) = 10.6, p < .01. The effect of 
predictiveness failed to reach significance, F < 1. 
    A simple effects analysis investigating the interaction 
showed that for instructed cues, accuracy was significantly 
higher for previously predictive cues, F(1, 18) = 5.7, p < 
.05. Interestingly, this was reversed for the remaining cues, 
such that accuracy was significantly higher for previously 
non-predictive cues, F(1, 18) = 6.4, p < .05. 

 
Figure 2. Accuracy scores for previously predictive and 
previously non-predictive cues at test in Experiment 2 for 
the instructed and ignored conditions. 
 

Discussion 
 

Consistent with the findings in Experiment 1, there was 
clearly an effect of instructional manipulation. However, the 
learned predictiveness effect was still evident amongst cues 
known to be allergenic. That is, more was learned about the 
previously predictive cues compared to previously non-
predictive cues, despite the explicit knowledge that both sets 
of cues were allergens. This is consistent with the 
involvement of automatic processes transferred from initial 
learning.  
    However, it is interesting to note that the opposite pattern 
emerged for cues that were not instructed as allergens, and 
would presumably be ignored by participants. Thus it 
appears that previously predictive cues were easier to ignore 
when known to be irrelevant. This may reflect a general 
benefit of prior predictive utility whereby attention is more 
easily directed either towards or away from stimuli in novel 
situations. 
    Alternatively, the difference in acquisition during phase 2 
between compounds that contained instructed components 
that were previously predictive (AY and CW) and non-
predictive (BZ and DX) raises the possibility that some sort 
of automatic interference from phase 1 means that less is 
learned in general about phase 2 compounds in which 
participants have to attend to the previously non-predictive 
cue and ignore the previously predictive cue. If these 
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compounds were indeed more difficult to learn, despite 
explicit instruction, this would result in the observed lower 
accuracy for instructed, yet previously irrelevant cues at 
test.  
 

General Discussion 
 

The experiments reported above suggest that a purely 
inferential account of learned predictiveness is insufficient 
to fully characterise the effect. However, it is clear that 
proposing an additive influence of inferential reasoning and 
automaticity is similarly inadequate as the results reported 
here suggest an interaction between the two.          

For example, in phase 2 of Experiment 2, participants 
were given information that directly informed them which 
cues the patient was and was not allergic to. Even though 
participants could have ignored the non-causal cues 
completely, some learning of the cue-outcome relationships 
was evident. The result of interest regarding these non-
causal cues was that previously predictive stimuli were 
learned about more poorly than previously nonpredictive 
stimuli. If the effects of the prior predictive history of the 
cues simply added or subtracted from selective attention in 
an automatic fashion then one would expect the opposite 
result for this incidental learning. That is, the predictive cues 
should be learned about more readily than the nonpredictive. 
This result suggests an interaction between control of 
attention and the effects of prior predictive history, which is 
not explained by either an inferential account nor the 
conventional associative account of learned predictiveness. 

Accordingly, there are a growing number of studies that 
show that the learned predictiveness effect does not operate 
via the competitive associative algorithms of attentional 
change described by Mackintosh (1975; Le Pelley, 2004; 
Pearce & Mackintosh, 2010). For instance, Le Pelley et al., 
(2010b) found that competition between cues in compound 
was not necessary for learned predictiveness to occur, and 
Livesey et al. (2011) found no evidence that direct 
comparison between predictive and nonpredictive cues 
affected the magnitude of learned predictiveness at all. The 
current study demonstrates another way in which the 
automatic allocation of attention appears to behave 
differently from model predictions. Although there appears 
to be a relatively automatic influence of the previous history 
of the cues, that influence only matches the predictions of 
associative learning theories for cues that are deliberately 
attended and not those that are deliberately ignored. 

Clearly an important step in implementing attentional 
processes within models of human learning will require 
further investigations into the mechanisms responsible for 
biases in learning related to past predictive utility. Such 
biases remain to be fully specified with regards to how 
information is attended and ignored. 
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