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Dissecting Variant Effects with Multiplexed Multi-omics in Health and Disease. 

M. Grace Gordon 

Abstract 

Background: Recent advancements in Next Generation Sequencing (NGS) and high throughput 

multiplexed single-cell multi-omics present an unprecedented opportunity to investigate cell 

composition, gene expression, map associations between single nucleotide polymorphisms and 

quantitative molecular traits in heterogenous cell populations across hundreds of donors and 

perform context relevant functional validation studies. Here we present work (i) using multiplexed 

single-cell RNA sequencing (scRNA-seq) to study cellular and genetic correlates of systemic 

lupus erythematosus (SLE), (ii) generating an atlas of healthy immune cells from a diverse cohort, 

using multiplexed multi-omic profiling of RNA and open chromatin. (iii)  We streamlined lentiviral 

Massively Parallel Reporter Assay (lentiMPRA) protocols and established a computational 

pipeline to support these assays and (iiii) worked to extend this method to single cells (scMPRA). 

Methods: (i) We profiled 1.2 million cells using multiplexed scRNA-seq (mux-seq) from 261 

donors. We evaluated changes in cell composition and gene expression between cases and 

controls. We mapped cell type specific expression quantitative trail loci. (ii) We profiled over 1 

million cells using multiplexed multi-omics from ~400 donors. We evaluated cell composition 

across a diverse cohort, mapped immune regulatory networks, and investigated genetic 

architecture of chromatin accessibility and gene expression. (iii) We established a robust protocol 

for lentiMPRA and developed pipeline using Nextflow for seamless data analysis to functionally 

validate putative non-coding regulatory sequences. (iv) We have designed an approach for 

scMPRA and have generated promising preliminary results. Results and Conclusions: (i) Our 

mux-seq platform is robust and scalable (ii) and can be applied to multi-omic datasets. (iii) Genetic 

associations can be validated using lentiMPRA with our streamlined methods. (iv) scMPRA holds 

promise as an option for validating genetic associations in distinct cellular environments.  

  



 ix 

Table of Contents 

CHAPTER 1: INTRODUCTION ............................................................................................................................. 1 

1.1 REFERENCES ............................................................................................................................................................ 5 

CHAPTER 2: SINGLE-CELL RNA-SEQ REVEALS CELL TYPE–SPECIFIC MOLECULAR AND GENETIC ASSOCIATIONS TO 

LUPUS. ............................................................................................................................................................ 7 

2.1 ABSTRACT ............................................................................................................................................................... 7 

2.2 INTRODUCTION ........................................................................................................................................................ 7 

2.3 RESULTS.................................................................................................................................................................. 8 

2.3.1 A census of circulating immune cells in SLE. ................................................................................................ 8 

2.3.2 Compositional analysis reveals CD4+ T cell lymphopenia in SLE.................................................................. 9 

2.3.3 Decrease of circulating naïve CD4+ T cells in SLE. ...................................................................................... 11 

2.3.4 Clonal expansion of cytotoxic GZMH+ T cells in SLE. .................................................................................. 12 

2.3.5 Expression changes across 11 peripheral immune cell types in SLE. ......................................................... 14 

2.3.6 Pronounced type-1 interferon response in classical monocytes. .............................................................. 15 

2.3.7 Expression modules predict CD4naive lymphopenia, disease status, and stratifies SLE patients. ............... 16 

2.3.8 Identification of cell-type-specific cis-eQTLS across eight immune cell types. .......................................... 17 

2.3.9 Identification and annotation of cell-type-specific SLE-associated loci. ................................................... 18 

2.3.10 Modification of genetic effects on gene expression by interferon activation. ........................................ 20 

2.4 DISCUSSION ........................................................................................................................................................... 21 

2.5 METHODS SUMMARY .............................................................................................................................................. 25 

2.6 SUPPLEMENTARY MATERIALS .................................................................................................................................... 27 

2.7 REFERENCES AND NOTES .......................................................................................................................................... 28 

2.8 ACKNOWLEDGMENTS: ............................................................................................................................................. 36 

CHAPTER 3: THE IMMUNE CELL CENSUS: MULTIPLEXED MULTI-OMICS ENABLES DISCOVERY OF IMMUNE 

REGULATORY PROGRAMS AND GENETIC ARCHITECTURE OF MOLECULAR TRAITS. ............................................ 49 



 x 

3.1 ABSTRACT ............................................................................................................................................................. 49 

3.2 INTRODUCTION ...................................................................................................................................................... 49 

3.3 RESULTS................................................................................................................................................................ 51 

3.3.1 Cell phenotyping of more than one million single cells. ............................................................................ 51 

3.3.2 Cell composition......................................................................................................................................... 51 

3.3.3 Networks .................................................................................................................................................... 52 

3.3.4 Genetics ..................................................................................................................................................... 53 

3.4 DISCUSSION ........................................................................................................................................................... 53 

3.5 METHODS ............................................................................................................................................................. 54 

3.5.1 Sample collection ....................................................................................................................................... 54 

3.5.2 Genotyping ................................................................................................................................................ 54 

3.5.3 Single Cell Sequencing ............................................................................................................................... 55 

3.5.4 Single Cell Analysis ..................................................................................................................................... 55 

3.5.5 QTL calling ................................................................................................................................................. 56 

3.6 REFERENCES .......................................................................................................................................................... 57 

CHAPTER 4: LENTIMPRA & MPRAFLOW FOR HIGH-THROUGHPUT FUNCTIONAL CHARACTERIZATION OF GENE 

REGULATORY ELEMENTS. ............................................................................................................................... 63 

4.1 ABSTRACT ............................................................................................................................................................. 63 

4.2 INTRODUCTION ...................................................................................................................................................... 63 

4.3 DEVELOPMENT OF THE PROTOCOL ............................................................................................................................. 65 

4.4 APPLICATIONS OF THE METHOD ................................................................................................................................. 66 

4.5 COMPARISONS WITH OTHER METHODS ....................................................................................................................... 67 

4.6 EXPERIMENTAL DESIGN............................................................................................................................................ 68 

4.6.1 Library design ............................................................................................................................................ 68 

4.6.2 Library generation ..................................................................................................................................... 69 

4.6.3 Association sequencing.............................................................................................................................. 70 



 xi 

4.6.4 Lentiviral prep ............................................................................................................................................ 70 

4.6.5 Infection and sequencing ........................................................................................................................... 70 

4.6.6 Data processing ......................................................................................................................................... 71 

4.6.7 Necessary Expertise ................................................................................................................................... 72 

4.6.8 Limitations ................................................................................................................................................. 72 

4.7 ANTICIPATED RESULTS ............................................................................................................................................. 72 

4.8 AUTHOR CONTRIBUTIONS STATEMENTS ....................................................................................................................... 78 

4.9 ACKNOWLEDGMENTS .............................................................................................................................................. 78 

4.10 REFERENCES..................................................................................................................................................... 79 

CHAPTER 5: DEVELOPING SCMPRA TO DISSECT GENE BY ENVIRONMENT INTERACTIONS. ................................. 86 

5.1 ABSTRACT ............................................................................................................................................................. 86 

5.2 INTRODUCTION ...................................................................................................................................................... 86 

5.3 METHODS ............................................................................................................................................................. 86 

5.3.1 Molecular Biology Approach ..................................................................................................................... 89 

5.3.2 Mathematical calibration of scMPRA. ....................................................................................................... 89 

5.4 RESULTS................................................................................................................................................................ 90 

5.5 CONCLUSIONS ........................................................................................................................................................ 91 

5.6 REFERENCES .......................................................................................................................................................... 96 

 

 

 

  



 xii 

List of Figures 

Figure 2.1: Changes in the composition of circulating immune cells in SLE. .............................. 39 

Figure 2.2: Reduction of naïve CD4+ and expansion of cytotoxic CD8+ T cells in SLE ............. 41 

Figure 2.3: Type-1 interferon response of myeloid cells in SLE .................................................. 43 

Figure 2.4: Prediction of disease status and molecular stratification of SLE............................... 45 

Figure 2.5: Cell-type-specific genetic determinants of gene expression ..................................... 47 

Figure 2.6: Interferon modifies cell-type-specific genetic effects on gene expression ................ 48 

Figure 3.1: Experimental design, cell phenotyping, and composition. ........................................ 60 

Figure 3.2: Evaluating Networks of Genes. .................................................................................. 61 

Figure 3.3: Molecular trait genetics. Mann-Whitney U test for enrichment of eQTLs ................. 62 

Figure. 4.1: Schematics of lentiMPRA .......................................................................................... 74 

Figure. 4.2: Overview of MPRAflow association utility ................................................................. 75 

Figure. 4.3: Overview of count utility ............................................................................................ 76 

Figure 4.4: Overview of Saturation Mutagenesis Utility ............................................................... 77 

Figure 5.1: scMPRA design .......................................................................................................... 93 

Figure 5.2: LCL and HepG2 Feature Barcode pilot results .......................................................... 94 

Figure 5.3: K562 and HepG2 5’ amplicon pilot results................................................................. 95 

 

  



 xiii 

List of Tables 

Table 4.1: Association Utility options. Blue rows are mandatory and orange are optional. ........ 82 

Table 4.2: Count utility options. Blue rows are mandatory and orange are optional. .................. 83 

Table 4.3: Saturation Mutagenesis utility options. Blue rows are mandatory and orange are 

optional. ......................................................................................................................................... 83 

Table 4.4: Troubleshooting table. ................................................................................................. 84 



 1 

Chapter 1: Introduction 

Deoxyribonucleic acid (DNA) encodes the blueprint for life, where composition of a DNA 

sequence dictates many aspects of the resulting organism. Understanding the relationship 

between genotypes and phenotypes and how environmental factors modulate these associations 

has broad implications for human health1.  Past research has resulted in the discovery of genetic 

origins of diseases, enabling increased understanding of mechanisms of disease resulting in more 

effective therapies2. These relationships can be explored through observational studies, where 

natural genetic variation is observed in large cohorts of individuals, or through experimental 

studies, where the effect of genetic perturbations can be observed in vitro or in vivo.  

 

The most common observational studies for complex traits are Genome Wide Association Studies 

(GWAS), where linear models are used to test for relationships between a single nucleotide 

polymorphism (SNP) a complex trait (ex. Disease status, Height, etc.)3,4. Historically these studies 

have been conducted for traits measured at the organism level, but recent advancements in next 

generation sequencing technologies have provided the opportunity to investigate genetic 

relationships with molecular traits, such as gene expression or chromatin state5–7. Investigating 

genetic associations to functional traits not only furthers understanding of the genetic architecture 

of these traits but can also be leveraged to functionally annotate GWAS to gain a better 

understanding of molecular underpinnings of these associations8. 

 

In the past, these methods have been conducted in bulk tissue, where a biological sample of 

interest obtained for each donor, processed using RNA-seq or ATAC-seq and in parallel a second 

sample from the donor is genotyped. While these studies have resulted in significant findings, 

these approaches are labor intensive, as each donor must be prepared as a separate sample. 

These methods are particularly ill-suited for heterogenous tissues such as peripheral 

mononuclear blood cells (PBMCs), where many unique cell types would need to be sorted and 
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processed separately to avoid loss of cell type specific signals, making these studies only possible 

as large consortium efforts9,10.  

 

Over the last decade significant strides in single cell sequencing technologies have been 

achieved, enabling orders of magnitude increases in cell throughput as well as increasing the 

numbers of modalities that can be assayed simultaneously in the same single cells. Two 

developments are of note: droplet based single cell sequencing and genetic multiplexing11–13. 

Droplet based single cell sequencing uses microfluidics to encapsulate a single cell in a droplet 

where its transcriptome is captured and uniquely barcoded. However, to ensure only one cell is 

captured in each droplet, cells are Poisson loaded leaving many reagents unused. To combat this 

waste and reduce the cost of single cell sequencing, mux-seq was developed. In short, this 

technique pools cells from genetically distinct donors, allowing for approximately 5 times the 

number of cells to be recovered because droplets containing cells from two distinct donors can 

be removed while the remaining cells can be assigned back to their donor of origin based on the 

combination of SNPs observed in the transcriptome.  These advances have provided the unique 

opportunity to apply single cell methods to hundreds of donors to better understand cell 

composition, gene expression, and chromatin accessibility at single cell resolution and to find 

genetic associations with these traits in heterogenous mixtures of primary cells.  

 

We first applied these technologies to study Systemic lupus erythematosus (SLE), a highly 

heterogenous autoimmune disease with multiorgan manifestations ranging from mild to life-

threatening in severity. Previous studies have identified hallmarks of SLE. Flow cytometry 

experiments have identified a decrease in lymphocytes, lymphopenia, in SLE cases compared to 

controls14. Bulk transcriptomic analyses of PBMCs have identified expression signatures such as 

increased expression of interferon stimulated genes (ISGs)15. However, these previous methods 

are limited to evaluating cell composition with a limited set of surface markers or profiling bulk 
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tissues, which mask cell type specific signals and are confounded by unequal distributions of 

immune cell types in blood. These limitations make it difficult to annotate the more than 100 loci 

associated with SLE16. We used multiplexed single-cell RNA-seq (mux-seq) to profile over 1.2 

million PBMCs form 165 SLE cases and 99 healthy controls. In this work, described in chapter 2, 

we evaluated composition and cell type specific expression differences between cases and 

controls. We mapped cell-type-specific cis-eQTLs and used these associations to functionally 

annotate previous SLE associated loci.  

 

Having demonstrated the scalability of mux-seq, we sought to generate a large-scale healthy 

reference dataset including samples from a diverse set of donors in a study we call the Immune 

Cell Census. We profiled over 1 million PBMCs from approximately 400 donors, simultaneously 

sampling gene expression and chromatin accessibility. We first investigated changes in cell 

composition. We then dissected gene regulation. Lastly, we investigate genetic architecture of 

chromatin accessibility and gene expression. This work is described in chapter 3.  

 

While observational studies are powerful tools for nominating associations between SNPs and 

phenotypes, functional studies must be performed to validate these statistical associations. 

Popular functional studies involve directly perturbing the DNA of cells and reading out their effects 

on a molecular measurement17. However, while there are CRISPR based technologies to knock 

out, activate, or inhibit targeted regions of the genome, base editing technologies have not 

reached maturity yet to be able to assay specific SNP changes and how they influence candidate 

regulatory elements (CRS). Massively Parallel Reporter Assays (MPRAs) have dramatically 

increased the throughput of these validation efforts by performing these experiments in a pooled 

manner, where activity of individual CRS and variants in those CRS can be quantified using a 

DNA barcode18. Despite these advancements, limited computational support exists for these 

analyses. To address these concerns, we developed lentiMPRA and MPRAflow, a portable 
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scalable pipeline to process raw MPRA data to quantify measurements of expression for CRS 

and variants in CRS, which is discussed in chapter 4. Lastly, we have worked to develop a single 

cell MPRA (scMPRA) to address dissecting variant effects in heterogenous cell types and cell 

states. Progress towards this goal is discussed in chapter 5.  
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Chapter 2: Single-cell RNA-seq reveals cell type–specific molecular and genetic 

associations to lupus. 

2.1 Abstract 

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of 

circulating immune cell types and states associated with SLE remains incomplete. We profiled 

over 1.2 million PBMCs (162 cases, 99 controls) with multiplexed single-cell RNA-sequencing 

(mux-seq). Cases exhibited elevated expression of type-1 interferon-stimulated genes (ISG) in 

monocytes, reduction of naïve CD4+ T cells that correlated with monocyte ISG expression, and 

expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. Cell-type-specific expression 

features predicted case-control status and stratified patients into two molecular subtypes. We 

integrated dense genotyping data to map cell-type-specific cis-eQTLs and link SLE-associated 

variants to cell-type-specific expression. These results demonstrate mux-seq as a systematic 

approach to characterize cellular composition, identify transcriptional signatures, and annotate 

genetic variants associated with SLE. 

2.2 Introduction 

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease affecting multiple 

organ systems, with elevated prevalence in women (1) and individuals of Asian, African, and 

Hispanic ancestries (2). Bulk transcriptomic profiling has implicated increased type-1 interferon 

signaling, dysregulated lymphocyte activation, and failure of apoptotic clearance as hallmarks of 

disease (3). Many genes participating in these immunological processes are proximal to the ~100 

known genetic variants associated with SLE (4). Despite this progress, a comprehensive census 

of circulating immune cells in SLE remains incomplete and annotating the cell types and cell 

contexts mediating genetic associations remains challenging. 

 

Historically, different approaches have been used to characterize the role of circulating immune 

cells in SLE. Flow cytometry analyses, quantifying composition based on known cell surface 
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markers, reported B and T cell lymphopenia (5). Bulk transcriptomic analyses of peripheral blood 

mononuclear cells (PBMCs) universally found elevated expression of interferon-stimulated genes 

(ISGs) and molecularly stratified patients based on expression features (3, 6). However, flow 

cytometry is biased by its use of a limited set of markers, while bulk transcriptomic profiling is 

underpowered to detect cell-type-specific expression differences. Bulk transcriptomic analysis of 

sorted cell populations can identify cell-type-specific expression signatures in SLE (7). However, 

it does not capture cell type frequencies, obscures heterogeneity within sorted populations, and 

is challenging to scale to well-powered cohorts for detecting subtle disease-associated 

differences in gene expression. 

 

Single-cell RNA-sequencing (scRNA-seq) of PBMCs holds potential as a comprehensive and 

unbiased approach to simultaneously profile the composition and cell-type-specific transcriptional 

states of circulating immune cells. When integrated with dense genotyping data, there are further 

opportunities to fine map disease-associated variants and identify the cell types and states where 

they exert their effects. Despite its potential, application of scRNA-seq to population cohorts has 

been limited by low sample throughput, high cost, and susceptibility to technical variability. To 

overcome these limitations, we previously developed multiplexed scRNA-seq (mux-seq) to enable 

systematic and cost-effective scRNA-seq of population cohorts (8). 

 

2.3 Results 

2.3.1 A census of circulating immune cells in SLE. 

We used mux-seq (8) to profile over 1.2 million PBMCs from 264 unique samples obtained from 

the California Lupus Epidemiology Study (CLUES) (9) and the ImmVar Consortium (10–12). The 

264 samples corresponded to 162 SLE cases including 19 disease flare cases and 10 matched 

samples post flare treatment, and 99 healthy controls (Fig. S1A). Most samples were from women 

of European or Asian ancestry. The 264 samples and 91 replicates were profiled in 23 pools 
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across four batches (Fig. S1B). Surface protein expression for cells from processing batches 

three (155,034 cells) and four (375,261 cells) were also profiled using 16 and 99 DNA-conjugated 

antibodies respectively. 1,444,450 cells remained after quality control and doublet removal using 

freemuxlet (8) (mean doublet rate 22.12%, Fig. S1C). Following additional removal of doublets 

using Scrublet (13) (67,969 droplets), contaminating platelets, and red blood cells (112,805 cells), 

1,263,676 cells remained in the final dataset (Fig. S1C). Genotype based sample demultiplexing 

resulted in an average of 3,560 singlets (standard deviation: 1,103) assigned to each sample (Fig. 

S1D). 

 

2.3.2 Compositional analysis reveals CD4+ T cell lymphopenia in SLE. 

Louvain clustering (14) of normalized and batch corrected single-cell transcriptomic profiles 

identified 23 clusters which were assigned to 11 cell types: CD14+ classical and CD16+ non-

classical monocytes (cM and ncM); conventional and plasmacytoid dendritic cells (cDC and pDC); 

CD4+ and CD8+ T cells (CD4 and CD8); natural killer cells (NK); B cells (B); plasmablasts (PB); 

proliferating T and NK cells (Prolif); and progenitor cells (Progen) (Fig. S2A). Regions of the 

Uniform Manifold Approximation and Projection (UMAP) (15) were occupied by cells of different 

cell types (Fig. 1A), and to a lesser extent, different case-control status and ethnicity (Figs. 1B 

and S2B). Pool and processing batch had no observable effects on the distribution of cells (Fig. 

S2C, D). 

 

We first assessed changes in cellular composition in SLE by comparing the frequencies of 11 cell 

types between cases and controls of Asian and European ancestry separately. Cell type 

percentage estimates from mux-seq were reproducible between biological replicates (Median 

Pearson Rcases=0.79 and Rcontrols=0.85) (Fig. S2E) and correlated with estimates obtained from 

surface protein profiling for batch four (Median Spearman R=0.88). Compared with controls, 

cases were most notably marked by a decrease in CD4 percentage (Weighted Least Squares 
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(WLS); Asian: -20.4%; European: -10.0%; Fisher’s method Pmeta:Fisher <5.58x10-16), an increase in 

cM (Asian: +11.9%; European: +8.8%; Pmeta:Fisher<9.75x10-7) and Prolif percentages (Asian: 

+0.55%; European: +0.38%; Pmeta:Fisher<1.93x10-3; Fig. 1C; Table S1). While most changes were 

correlated between ethnicities (Pearson R=0.97), Asian cases were marked by a greater 

reduction in CD4 percentage (Log2FC=-0.36, PWLS<5.60x10-5; Fig. 1D). Cases not receiving 

therapy (N=21) exhibited similar changes in composition compared with cases receiving therapy 

(Pearson RAsian=0.89 and REuropean=0.92; Fig. S2H). Compared with cases not receiving oral 

steroids (OS; N=78), cases treated with OS (N=82) exhibited an increase in CD8 percentage 

(Asian: +5.2%, European: +3.9%; Pmeta:Fisher<4.23x10-3) and a decrease in ncM percentage (Asian: 

-1.3%, European: -1.0%; Pmeta:Fisher<3.54x10-3; Fig. S2F). Cases treated with azathioprine (AZ, 

N=15) had a decrease in NK percentage (Asian: -4.3%, European -7.7%; Pmeta:Fisher<6.68x10-5) 

and an increase in PB percentage (Asian: +0.2%, European: +0.3%; Pmeta:Fisher<1.36x10-3; Fig. 

S2F) compared with cases not receiving AZ. Cases treated with mycophenolate mofetil (N=54), 

hydroxychloroquine (N=113), methotrexate (N=13), or a calcineurin inhibitor (N=10) did not exhibit 

significant differences in composition compared with cases not receiving each of these therapies. 

These results suggest that the decrease in CD4+ T cell and increase in classical monocyte 

percentages in patients with SLE are not due to therapy. 

 

We next assessed if changes in CD4 and cM percentages were due to changes in the absolute 

abundance of either population. We analyzed lymphocyte and monocyte abundances reported in 

the UCSF Electronic Health Record (EHR) Complete Blood Count. Reported abundances in the 

EHR were highly correlated with the estimated abundances from mux-seq (Pearson Rlympho=0.97 

and Rmono=0.87; Fig. S2G). Comparing an additional 100 cases with 154 controls matched for 

ethnicity, age, and sex, cases exhibited a significant reduction in lymphocyte abundance (ordinary 

least squares (OLS); Asians: -7.4x108 cells/L, POLS<3.46x10-9, Europeans: -5x108 cells/L, 

POLS<1.07x10-6; Fig. 1E) but no difference in monocyte abundance (Asians: POLS=0.61, 
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Europeans: POLS=0.98). To assess if a causal relationship exists between lymphocyte decrease 

and SLE, we performed Generalised Summary-data-based Mendelian Randomizations using 

summary statistics for genetic associations to immune cell composition (16, 17). The mediation 

effect of variants associated with lymphocyte abundance (βlymphoàSLE=-0.39, PlymphoàSLE<0.008), but 

not monocyte abundance (βmonoàSLE=0.009, PmonoàSLE<0.92), was negative on SLE risk. A reverse 

causation analysis did not show mediation of SLE risk on lymphopenia (PSLEàlympho<0.24 and 

PSLEàmono<0.20; Fig. 1F) though an alternative explanation of horizontal pleiotropy cannot be 

excluded. 

 

2.3.3 Decrease of circulating naïve CD4+ T cells in SLE. 

Previous studies identified impaired activation of T and B memory cells and elevated expression 

of ISGs in lymphocytes from patients with SLE (18). To characterize changes in frequencies and 

transcriptomic profiles of lymphoid populations in SLE, we re-clustered lymphoid cells and 

assigned the resulting 26 clusters to 14 subpopulations (Fig. 2A). Within non-T cells, we identified 

two NK and four B cell subpopulations. The NK compartment consists of NKBright cells expressing 

high levels of GNLY and moderate levels of NKG7 and NKDim cells expressing high levels of NKG7 

and CD16 (FCGR3A) (Fig. 2B). The B cell compartment consists of naïve cells expressing TCL1A 

(BNaive), memory cells expressing BANK1 (BMem), plasma cells expressing MZB1 (BPlasma), and an 

atypical memory subpopulation expressing FCRL5, CD11c, TBX21, and lacking expression of 

CD21 (BAtypical; Fig. 2B). Atypical B cells may also contain age-associated B cells which share 

some (CD11c+, TBX21+, CD21-) but not all of the expression markers (FCRL5; 19). As a 

percentage of lymphocytes, neither NK nor B cell subpopulations significantly differed by case-

control status. 

 

In the CD4+ T cell compartment, we identified canonical subpopulations of naïve cells expressing 

CCR7 (CD4Naive), effector memory cells lacking CCR7 expression while expressing OX40 receptor 
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(TNFRSF4) and IL7R (CD4EM), and regulatory cells expressing the canonical transcription factor 

FOXP3 and its direct target RTKN2 (20) (CD4Reg; Fig. 2A, B). Compared with controls, the most 

pronounced difference in cases was a reduction of CD4Naive percentage (WLS; Asian: -21.7%; 

European: -11.8%; Fisher’s method Pmeta:Fisher<8.63x10-21; Fig. 2C, Table S2), with Asian cases 

exhibiting almost a two-fold lower percentage than European cases (PWLS<5.20x10-5). No 

significant association between CD4Naive percentage and age (Spearman P=0.76; Fig. S3A) or 

treatment (Fig. S3B) was detected. Importantly, cases not on therapy (N=21) exhibited a similar 

decrease in CD4Naive percentage compared with controls (Asian: -25.6%, European: -9.7%; 

Pmeta:Fisher<2.66x10-7, Fig. S3E). 

 

2.3.4 Clonal expansion of cytotoxic GZMH+ T cells in SLE. 

Within the CD8+ T cell compartment, we identified naïve cells expressing CCR7 (CD8Naive) and 

three effector memory subpopulations, including mucosal-associated invariant T cells expressing 

KLRB1 and GZMK (CD8MAIT) and two clusters lacking the expression of KLRB1 and expressing 

the chemokine CCL5, effector molecule PRF1, and exhaustion marker LAG3 (Fig. 2A, B). The 

two non-MAIT clusters could be distinguished by the expression of granzymes (CD8GZMH: GZMH 

and GZMB, CD8GZMK: GZMK) and mirrored the NK subpopulations (NKDim: GZMH and GZMB; 

NKBright: GZMK) (Figs. 2B and S3C). Within the CD8GZMH population, 6% were CD4+CD8- cells 

based on CD4 surface expression in the subset of samples also profiled using DNA-conjugated 

antibodies. Compared with controls, the CD8GZMH percentage was significantly increased in cases 

(Asian: +8.6%; European: +6.0%; Pmeta:Fisher<3.43x10-4; Fig. 2C, Table S2) and was observed at 

similar percentages in flaring and untreated cases (Fig. S3C-E). Additionally, we observed a 

reduction in CD8MAIT percentage in cases (Asian: -1.1%; European: -0.7%; Pmeta:Fisher<6.93x10-6; 

Fig. 2C, Table S2). 

 



 13 

In addition to increased frequency within lymphocytes, CD8GZMH cells were a transcriptionally 

heterogeneous population with elevated expression of cytotoxic, exhaustion, and ISG signatures 

in SLE cases compared with controls (Fig. 2D). The expression of these signatures was not 

associated with treatment (Fig. S3F). Additionally, only the ISG signature was inversely correlated 

with age (Pearson R=-0.39, P<6.57x10-7). Across cells, the correlation between cytotoxic and ISG 

signature genes (mean RPearson=0.16) and between cytotoxic and exhaustion signature genes 

(mean RPearson=0.10) were generally low (Figs. 2E). Thus, in cases these pathways are unlikely 

to be jointly activated in the same cells. This was in stark contrast to the high correlation between 

signature genes calculated across CD8GZMH pseudobulk expression profiles from different 

individuals, highlighting the limitation of bulk analysis in uncovering additional heterogeneity within 

a seemingly homogeneous population (Fig. 2E). 

 

To further investigate the clonality of the CD8GZMH and CD8GZMK populations, we amplified and 

sequenced the CDR3 region of the T cell receptor (TCR), recovering paired TCRA and TCRB 

sequences from 10.2% of CD4 and 8.7% of CD8 cells with no differences in the number of unique 

TCRs detected between cases (N=83) and controls (N=20) (Pwilcoxon=0.72). Of the expanded CD8 

clones, 59% were from CD8GZMH cells and 21% from CD8GZMK cells (Fig. 2F). Compared with 

controls, cases exhibited a restricted repertoire in CD8 cells (Pwilcoxon<0.01; Fig. 2G) but not CD4 

cells (Pwilcoxon=0.91; Fig. S3G, H). Within the CD8GZMH subpopulation, cells expressing the 

cytotoxic signature were expanded at a ~4:1 ratio to cells expressing the ISG signature (44.8% 

vs 9.7%, Fig. 2H). As a positive control, clones expressing the invariant TRAV1-2 and TRAJ33 

chains were enriched within the CD8MAIT cluster compared to other cell types (Tukey’s HSD 

P<0.001; Fig. S3I). 
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2.3.5 Expression changes across 11 peripheral immune cell types in SLE.  

Bulk transcriptomic analyses of PBMCs have consistently reported the association between SLE 

and elevated expression of ISGs, which is normally observed during acute viral infections (21). 

Longitudinal bulk analysis of 158 pediatric cases confirmed the elevated expression of ISGs in 

patients with more severe acute presentations and increased renal and neurological involvement 

(3). However, bulk analysis has limited power to pinpoint the cell types producing the ISG 

signature or identify additional cell-type-specific signatures. Recent analysis of 33 pediatric cases 

demonstrated the potential of scRNA-seq to assign cell-type specificity to previously identified 

ISGs from bulk analysis (6). 

 

Here, we characterize the transcriptional differences for each of 11 circulating immune cell types 

between SLE cases and controls. 302 genes were differentially expressed (DE) in at least one 

cell type between cases and controls of either Asian or European ancestry, not confounded by 

medication (|logFC|>0.5; Padjusted<0.05; Table S3; Figs. S4A and S4G). Hierarchical clustering of 

pseudobulk expression profiles of these DE genes across cell types resulted in six modules (Figs. 

3A). Compared with controls, cases upregulated a module of ISGs across all cell types (Panup) 

and a myeloid-specific module (Myeup) containing IFITM1/3, IFITM3, APOBEC3A, RNASE2, and 

IFIT2. Both modules were enriched for type-I interferon signaling and innate immune pathways 

(Fig. 3B). Additionally, we identified a downregulated module across all cell types enriched for 

the interaction between lymphoid and non-lymphoid cells (Pandown), a myeloid-specific 

downregulated module (Myedown) enriched for hedgehog signaling, a T cell-specific upregulated 

module (Tup) enriched for leukocyte activation, and a B cell-specific upregulated module (Bup) 

enriched for AP-1 transcriptional response and TLR signaling (Fig. 3B).  

 

Our results were validated by single-cell transcriptomic analyses of PBMCs activated in vitro by 

recombinant interferon beta (rIFNB1) (8) and from pediatric patients with SLE (6).  For each cell 
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type, particularly myeloid populations, expression fold changes between cases and controls were 

highly correlated with fold changes between rIFNB1-stimulated and unstimulated cells (Fig. S4B). 

Of the 100 ISGs previously identified from bulk analysis and analyzed in pediatric SLE (6), 64 

were DE in at least one cell type and mainly resided in the Panup (46/79) and Myeup (8/64) modules. 

Interestingly, 11 genes were DE only across PBMC pseudobulks, illustrating a likely confounding 

effect of bulk analysis due to differences in cellular composition between cases and controls 

(Table S4). Importantly, the large sample size of our cohort resulted in the identification of 238 

previously undescribed DE genes in adult SLE, 56 of which were myeloid specific. 

 

2.3.6 Pronounced type-1 interferon response in classical monocytes. 

Myeloid cells exhibited the most DE genes between cases and controls, consisting of known and 

novel genes associated with SLE. To further investigate their heterogeneity, we re-clustered 

myeloid cells into six clusters differentiating the monocyte lineage (cM: CD14+ classical, ncM: 

FCGR3A+ non-classical, ncMcomp: C1QA+/FCGR3A+ complement-expressing non-classical) and 

the dendritic cell lineage (cDC1: CLEC10A+ conventional type-1, cDC2: CLEC9A+ conventional 

type-2, pDC: IRF7+ plasmacytoid; Figs. 3C, D and S4C, D). Although pDCs can derive from either 

myeloid or lymphoid progenitors, their expression profiles were more similar to, and thus jointly 

analyzed with, other myeloid populations (22). We also detected AXL+ dendritic cells within both 

cDC1s and pDCs consistent with their suggested distribution as a transitioning population 

between cDCs and pDCs (23) (Fig. S4E). As a percentage of myeloid cells compared with 

controls, cases exhibited reduced percentages of pDCs (WLS; Asian: -0.6%; European: -1.8%; 

Fisher’s method Pmeta:Fisher <2.33x10-24),  cDC1s (Asian: -2.0%; European: -1.9%; 

Pmeta:Fisher<2.65x10-14), and cDC2s (Asian: -0.2%; European: -0.1%; Pmeta:FIsher<2.51x10-7) and 

increased percentages of cMs (Asian: +3.6%; European: +3.7%; Pmeta:Fisher<1.78x10-5) and 

ncMcomps (Asian: +0.5%; European: +0.2%; Pmeta:Fisher<1.67x10-3; Fig. 3E, Table S5). 
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Next, we used RNA velocity to assess the transcriptional heterogeneity of each myeloid cell type 

along a trajectory of inferred activation (24, 25). In cMs, ncMs, and ncMcomps, velocity analysis of 

DE genes revealed that inferred activation largely reflected the degree of average ISG expression 

(Myeup; Fig. 3F) with regions of high activation enriched for cells from SLE cases (Fig. 3G). These 

results were similar in cDC populations (Fig. S4F). Ordering cMs along inferred activation showed 

higher activation from cases with higher SLE Disease Activity Index (SLEDAI) (26) defined using 

clinical features (T-test; Asian: P<5x10-4; European: P<3.2x10-7; Fig. 3H). The average inferred 

activation was better correlated with SLEDAI in Europeans (RPearson=0.66) than Asians 

(RPearson=0.52; Fig. 3I). In both ethnicities, a wide range of average inferred activations were 

observed in patients with lower disease activity (SLEDAI between 0 and 4) suggesting that clinical 

measures underlying SLEDAI do not fully capture the molecular heterogeneity of SLE. 

 

2.3.7 Expression modules predict CD4naive lymphopenia, disease status, and stratifies 

SLE patients. 

Previous work in mouse models has demonstrated that type-1 interferons upregulate CD69 

thereby inhibiting lymphocyte egress from lymphoid tissue (27). We hypothesized that the 

pleiotropic effects of type-1 interferons in patients with SLE may underlie the monocyte-dominant 

expression of ISGs and inhibit CD4+ T cells from exiting lymphoid tissue, resulting in the observed 

decrease of circulating naïve CD4+ T cells. Consistent with this hypothesis, both the Panup and 

Myeup gene module scores were highly correlated with CD4Naive abundance (Asian: Pearson 

RPanup=-0.52, European: RPanup=-0.57, Pmeta:Fisher<1.04x10-3; Asian: RMyeup=-0.35, European: 

RMyeup=-0.48, Pmeta:Fisher<0.02; Figs. 4A and S5A). 

 

One of the diagnostic difficulties of SLE is the extensive heterogeneity in disease manifestations. 

Consistent with this heterogeneity, individual clinical features weakly correlated with module 

scores (Fig. 4B). We therefore utilized the expression of module genes over pseudobulks of the 
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relevant cell types as features for clinical prediction and molecular stratification of SLE. While the 

302 expression features had good out-of-sample predictive power for case-control status (Area 

Under the Curve (AUC) = 0.84; Fig. 4C), they had only modest predictive power for individual 

clinical features, reflective of the modest correlation between clinical features and module scores 

(Figs. 4D and S5B). To molecularly stratify cases, we performed principal component analysis 

(PCA) over expression features followed by K-means clustering to identify two clusters that 

broadly tracked with case-control status (Fig. 4E), SLEDAI score (Fig. 4F), and along principal 

component 1 (PC1). Cases in the High cluster had significantly higher inferred activation of 

monocytes compared with cases in the Low cluster (PWilcoxon<6.20x10-9; Fig. S5C). PC1 correlated 

most with genes in the PanUp, Myeup, and BUp modules including the myeloid-specific-expression 

of IFITM3, a gene previously described to stratify pediatric SLE cases (3) (Fig. 4E). To assess 

the correspondence between molecular clusters and clinical features, we projected 94 held-out 

cases each to a molecular cluster based on expression features (Fig. 4G). Cases assigned to the 

High cluster were enriched for disease flare (15/19 flare cases, Fig. S5D) and portended over five 

times the odds of having anti-Smith antibodies (Padjusted:Fisher<0.05; Fig. 4H). These results 

demonstrate that cell-type-specific expression profiles obtained using mux-seq can be used to 

link cell-intrinsic states with changes in composition, predict case-control status, and molecularly 

stratify patients with SLE. 

 

2.3.8 Identification of cell-type-specific cis-eQTLS across eight immune cell types. 

We next integrated mux-seq data with genotyping data to map cell-type- and cell-context-specific 

cis expression quantitative trait loci (eQTLs) that may mediate SLE disease associations. Across 

the eight most abundant cell types, linear regression followed by meta-analysis (28, 29) of three 

cohorts (92 CLUES Europeans, 98 CLUES Asians, 46 ImmVar Europeans) identified 3,331 genes 

with at least one cis-eQTL in a cell type (FDR<0.05), which we termed cell-type-by-cell-type cis-

eQTLs (CBC-eQTL) (Table S6). Analysis of the genetic architecture of gene expression (30) 
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resulted in estimates of average cis heritability ranging from 0.03 to 0.09 per cell type and average 

cis genetic correlations (rG) ranging from 0.25 to 0.75 for pairs of cell types. Since cells were 

simultaneously processed, we also estimated shared residual effects (rE) between cell types 

(e.g., shared environmental and trans genetic effects) ranging from 0.03 to 0.12. Clustering of rG 

and rE reflected known lineages between circulating immune cell types (Fig. 5A).  

 

The rG and rE estimates suggest that pleiotropic genetic and shared residual effects are common 

across immune cell types, which may confound the ability to detect cell-type-specific signals 

among CBC-eQTLs. To account for pleiotropy, we decomposed per cell-type expression profiles 

into a shared component across all cell types and eight cell-type-specific components, then 

mapped cis-eQTLs associated with each component (31). We identified 535 genes with at least 

one cell-type-specific cis-eQTL (cs-eQTL) (FDR<0.05) and 1,207 shared cis-eQTLs (sh-eQTLs) 

(Fig. 5B; Table S7). The effect sizes of CBC-, sh-, and cs-eQTLs were correlated between 

individuals of European and Asian ancestries (Fig. S6A, B), which separated by genotype 

principal components (Fig. S6C). Compared to CBC-eQTLs, cs-eQTLs for each cell type were 

significantly and specifically enriched for regions of chromatin accessibility in the same or closely 

related cell types (32), suggesting that decomposition analysis is more likely to identify cis-eQTLs 

overlapping cell-type-specific cis-regulatory elements (Fig. 5C). 

 

2.3.9 Identification and annotation of cell-type-specific SLE-associated loci. 

We next integrated GWAS summary statistics from 9 immune-mediated and 7 non-immune-

mediated traits/diseases to identify cell types where cs-eQTLs harbored the most GWAS 

associations. Linkage disequilibrium (LD) score regression (33) revealed enrichment of disease 

heritability for relevant cell types across autoimmune diseases (Fig. 5D).  The highest enrichment 

for SLE variants was in cMs and B cells, consistent with our finding that cMs are the highest 
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expressers of type-1 ISGs and previous work demonstrating that activated B cells produce 

autoantibodies and secrete cytokines related to disease pathogenesis (34, 35) (Fig. 5D). 

 

We next performed Bayesian genetic colocalization analyses utilizing sh- and cs-eQTLs to fine-

map 43 loci associated with SLE (4, 36). Among the five loci colocalized with sh-eQTLs (Posterior 

probability (PP) > 0.6) was the UBE2L3 locus. Previously identified UBE2L3 cis-eQTLs in 

lymphoblastoid cells lines, B cells, and monocytes were replicated by colocalization analysis 

utilizing CBC-eQTLs (B, cM, ncM PP>50%). However, analysis utilizing sh- and cs-eQTLs 

predicted colocalization of the SLE-association and an UBEL2L3 sh-eQTL (PP=88.5%) 

suggesting that this association is shared across cell types (Fig. S6D).  

 

Among the seven SLE-associated loci colocalizing with cs-eQTLs was 17q21, a locus associated 

with asthma (37), Crohn’s disease (38), and type-1 diabetes (39). This locus has been difficult to 

dissect as it encompasses three genes, IKZF3, GSDMB, and ORMDL3 implicated in lymphocyte 

development (40), pyroptosis (41), and inflammation (42). ORMDL3 is a regulator of sphingolipid 

biosynthesis, linked to the autophagy pathway associated with multiple autoimmune diseases 

(43), and implicated in the development and differentiation of lymphocytes in SLE pathogenesis 

(44). ORMDL3 was ubiquitously expressed across cell types with the highest expression in 

lymphoid populations (Fig. 5E, F). Colocalization was predicted between SLE-associations and 

both ORMDL3 sh-eQTLs (PP>88%) and cs-eQTLs in Bs, CD8s, and pDCs (PP>96.1%, 92.0%, 

and 92.1% respectively) (Fig. 5G). While GSDMB and IKZF3 were also expressed in most cell 

types (Fig. 5F), neither gene had a cs-eQTL and the highest posterior probability of colocalization 

was observed between SLE-associations and GSDMB sh-eQTLs at 63.8%. Further, conditional 

analysis (45) confirmed that the SLE associations observed near IKZF3 (Fig. 5G) were 

independent of the GSDMB and ORMDL3 associations, and that the conditioned SLE-

associations still colocalized with the ORMDL3 cs- and sh-eQTLs. The minor allele (T) of 
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rs7216389, a tagging variant in the locus associated with asthma and SLE (P<6.09×10-7)(4), 

conferred an increase of GSDMB and ORMDL3 expression across all cell types, but an additional 

increase of ORMDL3 expression in CD8s and Bs suggesting cell-type-specific genetic effects in 

these cell types that was not observed for GSDMB (Fig. 5G). These results are consistent with 

previous observations in CD8s and Bs where SNPs in high LD with rs7216389 impacted 

regulatory elements affecting ORMDL3 expression (46).  

 

We further used expression decomposition to perform a modified transcriptome-wide association 

study (TWAS) using CONTENT (47). Across SLE, Crohn’s disease, and rheumatoid arthritis, joint 

modeling of shared and cell-type-specific gene expression identified 93 genes associated with 

SLE (73 novel), more than twice the number identified by CBC approaches (Fig. 5H). Results 

were significantly enriched for known SLE associations where 51% of candidate genes, defined 

as the most proximal gene to each SLE association (6), were replicated in the TWAS with p-

values < 0.05 (PEnrichment<1.2x10-24). Importantly, both the joint and CBC analyses enabled by mux-

seq significantly outperformed a standard TWAS using pseudobulk PBMC transcriptomic profiles. 

These analyses highlight the advantage of leveraging cell-type-specific cis-eQTLs to annotate 

GWAS associations, detangle GWAS signals in gene dense loci, and power TWAS analysis to 

identify novel associations. 

 

2.3.10 Modification of genetic effects on gene expression by interferon activation. 

We next assessed if variable type-1 interferon activation observed in patients with SLE could 

modify genetic effects on gene expression in vivo, consistent with our previous in vitro work (11, 

48). In SLE cases, we identified 35 genes with a cis-eQTL interacting with the Panup ISG 

signature, a proxy for type-1 interferon activation, which we call IFN-eQTL (FDR<0.1). IFN-eQTL 

effect size estimates correlated between samples of Asian and European ancestries (Fig. S7). 
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Previous interferon response cis-eQTLs (reQTLs) identified in monocyte-derived dendritic cells in 

vitro (48) were significant in cMs, but not other cell types (Fig. 6A). 

 

Among the IFN-eQTLs, we replicated rs11080327 (A>G) as an IFN-eQTL for SLFN5 in myeloid 

(cM: P<2.5x10-10, ncM: P<0.001) and B cells (P<5.8x10-6) but not in NK or T cells (Fig. 6B). These 

results are consistent with the identification of rs11080327 as a cis-eQTL in lymphoblastoid cell 

lines (49) and as a cis-reQTL in monocyte-derived dendritic cells stimulated with rIFNB1 (11). We 

then performed multiplexed single-cell ATAC-seq of PBMCs from 5 healthy donors either 

unstimulated or stimulated with rIFNB1. In most cell types, we observed less accessibility in 

genomic regions near rs11080327 at baseline and a genotype dependent increase of accessibility 

after stimulation (Fig. 6C). This was most pronounced in cMs, where the strongest IFN-eQTL was 

observed. These results are consistent with luciferase reporter assays demonstrating the region 

overlapping rs11080327 harboring a cis-regulatory element that is activated in response to type-

1 interferon (11). Overall, our findings illustrate that variability in cell activation in vivo could modify 

genetic effects on gene expression suggesting that genetic differences may not only predispose 

individuals to SLE but also affect individual’s response to a disease state. 

 

2.4 Discussion 

SLE remains a challenging autoimmune disease to diagnose and treat. The paucity of targeted 

therapies, in conjunction with the heterogeneity of disease manifestations and treatment 

response, highlight the need for improved molecular characterization. In a large multiethnic 

cohort, we demonstrate the use of mux-seq as a systematic approach to characterize changes in 

cell-type composition and cell-type-specific gene expression in adult SLE. We further show how 

integration of population genetics with single-cell RNA-sequencing could be utilized to annotate 

genetic variants with cell-type-specific effects on gene expression associated with SLE and other 

autoimmune diseases. 
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Using mux-seq, we linked compositional changes to variation in immune cell transcriptional states 

in SLE. Compositionally, the decrease of naïve CD4+ T cells in cases, particularly those of Asian 

ancestry, appears to explain the known lymphopenia observed in patients with SLE and 

importantly was not associated with immunosuppressant treatment, consistent with reports 

suggesting mycophenolate mofetil, hydroxychloroquine, and steroids have either no or transient 

effects on the composition of white blood cells (50). Transcriptionally, cMs and ncMs produced 

the most prominent type-1 ISG signature, including genes specific to myeloid cells, consistent 

with observations in pediatric SLE (6). This finding justifies further investigation into the 

heterogeneity of type-1 interferon response across leukocyte subsets, particularly in SLE patients 

being treated with antagonists against the type-1 interferon receptors that have shown mixed 

results in clinical trials (51). While both cDCs and pDCs also express ISGs, their scarcity in 

circulation limited their contribution to the overall ISG signature. We did not detect IFNB1 or IFNA 

transcripts in pDCs or other myeloid cell types and thus the source of type-1 interferons in SLE 

remains elusive and is likely not among circulating immune cells (52). The inverse correlation 

between naïve CD4+ T cell abundance and monocyte ISG expression suggests the following 

model of the pleiotropic effects of type-1 interferons in vivo: ISG production through the interferon 

signaling cascade and sequestration of T cells in sites of inflammation through the regulation of 

CD69 and S1PR1 (27). While age was inversely correlated with the ISG signature consistent with 

previous reports, naïve CD4 T cell abundance was not correlated with age and remains inversely 

correlated the ISG signature after adjusting for age (53). Thus, age is likely not a primary factor 

for causing SLE, consistent with healthy female first-degree relatives showing similar inverse 

correlation between age and serum IFNα (7). Matched profiling of cells from disease-damaged 

tissue and blood in cases could further shed light on both the source of type-1 interferons and 

confirm the role of lymphocyte trafficking in SLE.  
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A striking observation from our data is the expansion of GZMH+ but not GZMK+ cytotoxic CD8+ T 

cells in SLE, in some cases consisting of ~50% of all lymphocytes. While two cytotoxic CD8+ T 

cell populations were also observed in pediatric SLE (6), the frequency of GZMH+ CD8+ T cells 

was not reported to be significantly increased despite elevated expression of GZMB and PRF1, 

which may originate from both GZMH+ CD8+ T and NKdim cells. While GZMB and PRF1 have been 

described as markers for CD8+ T cell subsets enriched in SLE (54), GZMH was higher expressed, 

more ubiquitous, and more differentially expressed between cases and controls. The function of 

granzyme-H is not well characterized, but previous work demonstrated its divergent roles in 

initiating caspase-dependent apoptosis in T cells while initiating caspase-independent apoptosis 

in NK cells (55, 56). The significant clonal expansion of GZMH+ CD8+ T cells, specifically the 

cytotoxic subpopulation, suggests a pathogenic role for these cells in SLE and are consistent with 

independent work (54). One model for the initiation and exacerbation of SLE suggested by these 

results is an adaptive immune response initiated by foreign and autoantigens followed by chronic 

exposure to antigens in damaged tissue resulting in "epitope spreading", where new autoantigens 

are introduced to the immune system and become future targets of the autoimmune response 

(57). Analysis of immune repertoires of both B and T cells and matching analysis of their antigenic 

specificity of SLE patients longitudinally would be instructive for deciphering the role of cell-

mediated immunity in pathogenesis. 

 

Integrating measurements of cellular composition and cell-type-specific expression with 

genotyping provided an opportunity to assess the genetic determinants of cell-type- and cell-

context-specific gene expression and ascribe functionality to SLE-associated variants. In the 

presence of pleiotropic effects, mux-seq enabled the decomposition of gene expression into 

shared and cell-type-specific components and mapping of cis-eQTLs associated with these 

components. Enrichment analyses of orthogonal functional genomic datasets supported the 

annotation of cell-type-specific cis-eQTLs. Integrated analysis of GWAS data and cell-type-
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specific cis-eQTLs provided insight into immune cell types that mediate disease associations and 

for individual loci, enabled the fine-mapping and annotation of disease-associated variants. Using 

decomposed expression components also significantly improved our ability to identify novel 

disease-associated genes using TWAS compared to using pseudobulk expression profiles over 

PBMCs or individual cell types. Finally, using quantitative measures of interferon activation from 

mux-seq, we identified cis-eQTLs whose effects on gene expression could be modified by 

elevated interferon levels, a critical disease environment in SLE. These results highlight the 

importance of cellular context for the interpretation of genetic variants associated with disease 

risk and perhaps disease heterogeneity. 

 

Mux-seq is a cost-effective and systematic approach for enabling cellular phenotyping of large 

population cohorts. Genetic analysis of cohorts across populations are important for 

understanding the differences in SLE risk between ancestries and the involvement of 

environmental triggers. Longitudinal profiling of SLE cases, particularly patients in remission or 

active flare, could reveal new insights into the initiation of disease, variation in disease activity, 

new homeostatic states in patients, and response to treatment. While we examined and controlled 

for treatment associated differences in cellular composition and cell-type-specific expression 

between SLE and healthy controls, we did observe notable effects of treatment including the 

depletion of NK cells in patients treated with azathioprine. Since mux-seq leverages natural 

genetic variation as sample barcodes, it is compatible with multimodal single-cell profiling of 

chromatin state and cell-surface protein abundance. The integration of richer epigenetic and 

cellular phenotypes along with improvements to current transcriptomic workflows will undoubtedly 

improve molecular sub-phenotyping of SLE, the power to detect cell-type-specific and cell-

context-specific molecular QTLs, and the resolution for annotating SLE associations.   
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2.5 Methods Summary 

Detailed materials and methods can be found in the Supplementary Materials. Briefly, we 

collected PBMCs from SLE cases in the California Lupus Epidemiological Study (CLUES) cohort, 

matching healthy controls from the UCSF Rheumatology Clinic, and additional controls from the 

Immune Variation Project (ImmVar). Presence of clinical features important to SLE were 

collected.   

 

Antibody stained or unstained PBMCs were pooled and profiled using 10x Genomics’ Chromium 

Single Cell 3’ V2 chemistry and processed using the 10x Cell Ranger pipeline. Freemuxlet was 

used to assign cells to their donor of origin and, along with Scrublet (13), remove doublets. 

Platelets, Megakaryocytes, Red blood cells (RBC) were removed using gene markers. Technical 

variation was removed using COMBAT and regressing out nUMIs, and mitochondrial percent. 

Standard approaches in Scanpy version 1.6 were used to filter cells, perform dimensionality 

reduction, cluster using Louvain, and project cells using UMAP (58). Cell types were annotated 

using canonical marker genes and confirmed in cells with antibody staining.  

 

For each cell type, percentage is calculated as the number of cells divided by the total number of 

cells assigned to the sample. Differences in percentages were compared using weighted least 

squares. UCSF electronic health record queries compared individuals with multiple heathy 

encounters and cases with a M32.* ICD-10 code. Mendelian randomization was performed using 

the GSMR package version 1.91.5beta on UK Biobank cell count QTLs and a separate SLE study 

(4). To examine changes in expression, pseudobulk expression profiles were computed for each 

cell type and individual using EdgeR. EdgeR was used to perform differential expression analysis 

(59).  CD8GZMH signature scores were calculated using Scanpy score_genes on canonical 

markers (see Supplement). Module scores per individual were calculated by the mean 

pseudobulk expression for genes in each module. Co-expression analysis was performed on the 
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top 300 DE genes, and clustered by Spearman correlation. Expression modules were recovered 

by hierarchical clustering of DE genes, revealing 6 modules. ToppGene was used to find 

enrichment of modules in pathways (60). Molecular clusters were defined using PCA. RNA 

velocity was performed on cM using the scVelo package. Sklearn’s Logistic Regression function 

was used for all prediction models.  

 

TCR sequencing was performed by amplifying TRA and TRB CDR3 sequences from cDNA and 

processed with the Cell Ranger pipeline. Only cells with paired TRA and TRB were used. TCRs 

were analyzed with the singleTCR package. Expanded clonotypes defined as a TCR sequence 

detected in at least two cells, were identified using Normalized Shannon’s entropy.  

 

Samples collected at UCSF were genotyped using the Affymetrix World LAT array. ImmVar 

samples were genotyped on the OmniExpressExome54 chip. Data was processed using Axiom 

Best Practices or by previously published methods for the ImmVar cohort. Samples were 

evaluated for call rate, missingness, and heterozygosity then imputed using the Michigan 

Imputation Server with the Haplotype Reference Consortium version 1.1 reference set. Only 

SNPs with Rsq >0.3 and minor allele frequency >10% were retained. Heritability was calculated 

with the GCTA package’s Bivariate GREML function.  Cis-eQTLs were mapped +/-100kb of each 

gene using the MatrixEQTL package accounting for Genotype PCs, Expression PCs, age, sex, 

SLE status, batch as covariates in the linear model. Cell type specific eQTLs were mapped using 

the fastGxC method (31). CLUES Asian, CLUES European, and ImmVar samples were analyzed 

separately then meta-analyzed using the METASOFT package. Empirical p-values and FDRs 

were calculated with the qvalue package. LocusZoom was used to visualize loci. SLE cases were 

analyzed for reQTLs with MatrixEQTL using the ISG score as an interaction term and accounting 

for genotype PCs, age, sex, and batch.  
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ATAC-seq enrichment was calculated using a Mann-Whitney test and previously published 

ATACseq peaks from sorted cell types. GWAS enrichment was calculated using LDscore 

regression (33). TWAS analyses were performed using CONTENT (47). Colocalization analyses 

were performed with COLOC (36).  

 

10X Chromium scATAC-seq kit was used to process PBMCs from 5 healthy individuals incubated 

for 8 hours with IFNB or culture media alone. Sequencing data was processed with CellRanger 

and demultiplexed with Freemuxlet. The ArchR package and Scanpy were used for downstream 

processing (61). 

 

2.6 Supplementary Materials 

Materials and Methods 

Figs. S1 to S8 

Tables S1 to S12 
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Figure 2.1: Changes in the composition of circulating immune cells in SLE. A) UMAP and 
assignment of 1.2M cells to 11 cell types: classical and non-classical monocytes (cM and ncM); 
conventional and plasmacytoid dendritic cells (cDC and pDC); CD4+ and CD8+ T cells (CD4 and 
CD8); natural killer cells (NK); B cells (B); plasmablasts (PB); proliferating lymphocytes (Prolif); 
CD34+ progenitors (Progen). Sub-clustering of lymphoid (orange box) and myeloid (blue box) 
populations. B) Cell density plots of cases and controls separated by ethnicity. C) Percentage (y-
axis) vs cases-control status (x-axis) for each cell type separated by ethnicity. Cell types with 
significant percentage changes between cases and controls are highlighted (black bar and star *: 
WLS Padjusted < 0.05; blue bar and star indicate significant meta-analysis by Fisher’s method). 
D) Correlation in percentage change versus controls between European (x-axis) and Asian (y-
axis) cases. E) Monocyte (top) and lymphocyte (bottom) abundances (y-axes) vs case-control 
status (x-axis) from the UCSF EHR. Significant differences between cases and controls are 
highlighted (*: OLS Padjusted < 0.05). F) Scatter plot of effect sizes on SLE status (y-axis) vs 
effect sizes on monocyte (top) or lymphocyte (bottom) abundance (x-axes) for genetic variants 
associated with both traits reported (4, 17). ECTL: European control; ESLE: European case; 
ACTL: Asian control; ASLE: Asian case. 
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Figure 2.2: Reduction of naïve CD4+ and expansion of cytotoxic CD8+ T cells in SLE. A) 
UMAP of lymphoid cells re-clustered into 14 subpopulations: naïve, effector memory and 
regulatory CD4+ T cells (CD4Naive, CD4EM, CD4Reg); naïve, GZMH+ cytotoxic, GZMK+ cytotoxic, 
and mucosal-associated invariant CD8+ T cells (CD8Naive, CD8GZMH, CD8GZMK, CD8MAIT); CD56bright 
and CD56dim natural killer cells (NKbright, NKdim); naïve, memory, plasma and atypical B cells (BNaive, 
BMem, BPlasma, BAtypical); Progen: CD34+ progenitors. B) Expression of marker genes (columns) used 
to annotate each subpopulation (rows) colored by normalized expression levels. C) Percentage 
(y-axis) vs case-control status (x-axis) for each lymphoid subpopulation separated by ethnicity. 
Subpopulations with significant percentage changes between cases and controls are highlighted 
(black bar and star *: WLS Padjusted < 0.05; blue bar and star indicate significant meta-analysis by 
Fisher’s method). D) Density plot showing average expression of cytotoxic, exhaustion, and type-
1 interferon stimulated gene (ISG) signatures in CD8GZMH cells (top) and across individuals 
(bottom) separated by case-control status and ethnicity (black bar and star *: WLS P < 0.05). E) 
Co-expression of top 300 differentially expressed genes between cases and controls in CD8GZMH 
cells computed across single cells (lower triangular matrix) or across donor-specific pseudobulk 
expression profiles (upper triangular matrix). F) All (light pink) and expanded (red) TCR 
sequences detected shown on UMAP of all cells (left) and GZMH+ cells (right). G) Normalized 
Shannon’s Entropies of CD8+ TCR repertoire diversity (y-axis) in cases and controls (x-axis) 
(black bar and star *: WLS P < 0.05). H) Percentage of expanded CD8+ TCRs identified as GZMH+ 
cells expressing cytotoxic, ISG, and exhaustion signatures, GZMK+ cells (GZMK), and all other 
cells (Rest). ECTL: European control; ESLE: European case; ACTL: Asian control; ASLE: Asian 
case. 
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Figure 2.3: Type-1 interferon response of myeloid cells in SLE. A) Heatmap of pseudobulk 
gene expression profiles of 302 differentially expressed genes detected in at least one of 11 cell 
types. For each gene, colored row bars indicate cell types it was differentially expressed in. 
Colored columns indicate cell type, case-control status, and ethnicity. Labeled modules were 
identified using hierarchical clustering. B) Top GSEA pathway enrichment results for each 
module. Each dot color represents the -log q value and the size represents the number of genes 
overlapping with the gene ontology. C) Identification of six myeloid cell types including classical, 
non-classical, and complement-expressing non-classical monocytes (cM, ncM, ncMcomp), 
conventional type 1, conventional type 2, and plasmacytoid dendritic cells (cDC1, cDC2, pDC). 
D) Marker genes used for annotating each cell type. E) Percentages of myeloid cells (y-axis) vs 
case-control status and ethnicity (x-axis) for each myeloid subpopulation. Myeloid subpopulations 
with significant percentage changes between cases and controls are highlighted (black bar and 
star *: WLS P < 0.01*, 001**, 0.0001***; blue bar and star indicate significant meta-analysis by 
Fisher’s method). RNA velocity stream plots for cM (right UMAP), ncM and ncMcomp (left UMAP) 
subpopulations colored by F) the average expression of Myeup genes enriched for type-1 ISGs 
and G) the relative density of cells from SLE cases vs healthy controls. H) Distribution of the 
degree of inferred activation for individuals across disease activities (HC: healthy controls, 
Inactive: SLEDAI between 0 and 4, Active: SLEDAI greater than or equal to 5). I) The average 
inferred activation across cells per sample (y-axis) vs disease activity (x-axis) for Asians (left) and 
Europeans (right) separately. ECTL: European control; ESLE: European case; ACTL: Asian 
control; ASLE: Asian case. 
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Figure 2.4: Prediction of disease status and molecular stratification of SLE. A) Correlation 
between log10 expression of Panup (x-axis) and log10 abundance of CD4naive cells in processing 
batch 4 cases only. B) Correlation matrix between average expression of each of six gene module 
and clinical feature. Receiver operating curve for out-of-sample prediction of C) case-control 
status and D) individual clinical variables using a logistic regression model trained on 302 
expression features. Inset depicts the most important molecular features inferred by the model 
colored by the module each feature belongs to. E) Principal component analysis of training set 
based on 302 expression features. Green: Control, Red: Case. Heatmap shows the top 25 most 
correlated expression features to molecular PC1. Expression was binned and averaged across 
24 equal steps across molecular PC1. K-means clustering of samples based on principal 
components into two molecular sub-phenotypes (Low, High). F) Distribution of SLEDAI scores (y-
axis) for each molecular sub-phenotype (x-axis) in the training data (Wilcoxon rank-sums P<0.05). 
G) Projection of out-of-sample test set onto molecular PC1 and molecular PC2 and colored by 
case-control status (left) and molecular cluster membership (right). Heatmap shows the top 25 
most correlated expression features to molecular PC1 in the test set. H) Odds ratio of having a 
clinical feature given membership to the High molecular cluster versus the Low molecular cluster. 
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Figure 2.5: Cell-type-specific genetic determinants of gene expression. A) Cis genetic 
correlation (rG: lower triangular plot), shared residual correlation (rE: upper triangular plot), and 
heritability (h2: diagonal) of eight cell types and PBMCs. Cis is defined 100 kb within the TSS. B) 
Manhattan plots of shared- (sh-eQTL; black) and cell-type-specific-cis-eQTLs (cs-eQTL; colored) 
determined by mapping cis-eQTLs associated with shared and cell-type-specific expression 
components from decomposition analysis. Associations are reported as -log10(P-value) (y-axis) 
ordered by chromosomes (x-axis). C) Enrichment of cs-eQTLs (left) and CBC-eQTLs (right) for 
disjoint sets of cell-type-specific regions of open chromatin. Mann-Whitney test P < 0.01*, 001**, 
0.0001***. D) Enrichment of shared or cs-eQTLs among GWAS associations for seven non-
immune (CAD: coronary artery disease, BMI: body mass index; T2D: type-2 diabetes; SCZ: 
schizophrenia; BP: bipolar disease; AD: Alzheimer’s disease) and nine immune-mediated 
diseases/traits (UC: ulcerative colitis; RA: rheumatoid arthritis; PBC: primary biliary cirrhosis; MS: 
multiple sclerosis; IBD: inflammatory bowel disease; SLE: systemic lupus erythematosus). 
Bonferroni corrected significance threshold shown as black line. Boxplots of decomposed shared- 
and cell-type-specific expression of E) ORMDL3 and F) GSDMB in all individuals grouped by 
genotype for rs7216389 (* COLOC Posterior Probability > 0.7). G) LocusZoom plots of SLE 
GWAS, sh-eQTLs, and cs-eQTLs associated with ORMDL3 (red) and GSDMB (blue) expression. 
H) Number of associations identified by a modified transcriptome wide association analysis 
(TWAS) using decomposed shared and cell-type-specific expression matrices (blue), cell-type by 
cell-type expression matrices (green) or pseudobulk PBMCs (red). 
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Figure 2.6: Interferon modifies cell-type-specific genetic effects on gene expression. A) 
Quantile-quantile plot of expected -log10(P-value) (x-axis) vs observed -log10(P-value) (y-axis) of 
cis-IFN-QTLs (filled). Previously identified response-QTLs (reQTLs) from monocyte derived 
dendritic cells highlighted (unfilled). B) Normalized expression of SLFN5 expression (y-axis) 
versus ISG score (x-axis) separated by rs11080327 genotype (color). Line indicates best linear 
regression fit for each genotype. C) Gene locus plot of SLFN5 scATAC-seq peaks for six 
peripheral immune cell types in unstimulated and rIFNB1 stimulated conditions, separated by 
genotype. Location of rs11080327 is indicated.  
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Chapter 3: The Immune Cell Census: Multiplexed Multi-omics enables discovery of 

immune regulatory programs and genetic architecture of molecular traits. 

3.1 Abstract 

Over the last decade significant strides in single cell sequencing technologies have been 

achieved, enabling orders of magnitude increases in cell throughput as well as increasing the 

numbers of modalities that can be assayed simultaneously. We applied single cell multi-omics 

(ATAC+RNA) sequencing to profile over one million PBMCs across 400 diverse individuals. We 

investigated cell composition as well as cell type specific chromatin accessibility and gene 

expression. Further, we mapped cell type specific QTLs for chromatin accessibility and gene 

expression to assess the genetic architecture of these two molecular traits. The resulting data 

gives insight into immune regulatory programs and provides a reference dataset for the scientific 

community.  

3.2 Introduction 

Recent advancements in throughput of single cell technologies have presented the opportunity to 

profile millions cells across many tissues, diseases, environmental contexts, and hundreds to 

thousands of donors1–4. Immunologists have made significant strides towards this goal, 

generating comprehensive cell atlases of blood by profiling peripheral mononuclear blood cells 

(PBMCs) with single cell RNA sequencing (scRNA-seq)5–7. These large cohorts have enabled 

population genetics to be applied to single cell genomics, resulting in mapping expression 

quantitative trait loci (eQTLs) in a variety of cell type and cell states.8 These context specific 

eQTLs hold promise for better functional annotation of genetic loci associated with disease, which 

will help elucidate the cell types, cell states, and genes underlying disease signals9,10.  

 

However, the number of modalities that can be simultaneously measured in a single cell continues 

to increase providing new opportunities to further our understanding of cell regulation circuitry. 

These include methods to simultaneously capture RNA and surface proteins, RNA and Assay for 
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Transposase-Accessible Chromatin (ATAC), ATAC and surface proteins, as well as all three 

modalities11–14. Methods for simultaneous capture of ATAC-seq and RNA-seq have recently been 

commercialized to perform robustly at scale, making them ideal for atlas efforts. This combination 

of modalities holds great potential to better dissect regulatory programs and link putative 

regulatory elements with their target genes. It also presents a unique opportunity to investigate 

the genetic architecture of chromatin accessibility, gene expression, and relationships between 

these two modalities. 

 

One major shortcoming of many of these atlas efforts to date, is a lack of diversity reflective of 

the human population. Like many genetic studies, previous efforts have focused on individuals of 

European descent. These practices have potential to widen gaps in health disparities between 

populations as these references will be used for biomedical research, drug target discovery, and 

therapeutic development15. Additionally, many naturally occurring genetic variants will not be 

sampled by limiting these studies to small homogenous fractions of populations, leading to holes 

in our understanding of variant effects and genetic diseases16,17.   

 

Here we present the Human Immune Cell Census. A cross-sectional cohort of ~400 donors of 

African (AFR), East Asian (EAS), European (EUR), and Latinx (AMR) descent. We profiled over 

1 million single cells, simultaneously capturing measures of gene expression and chromatin 

accessibility with paired dense genotyping data. We used this data to evaluate cell composition, 

dissect regulatory programs, and investigate genetic architecture underlying gene expression and 

chromatin accessibility.  
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3.3 Results 

3.3.1 Cell phenotyping of more than one million single cells.   

Multiplexed single cell multi-ome data was generated from approximately 400 donors and 

genotyped in parallel. Genotyping data was used to identify and remove droplets containing 

multiple cells, then to assign the remaining single cells to their donors of origin (Fig1A).  Standard 

workflows were applied to remove low quality cells based on both the ATAC and RNA fractions 

of the data. Dimensionality reduction was performed on each modality separately, as well as 

jointly. Cell types were identified based on Leiden clustering, marker genes, and motifs. While all 

three projections had sufficient resolution to capture the major cell groups, the joint projection 

maximized distances between lineages while retaining resolution in closely related cell types (Fig 

B-D).  

3.3.2 Cell composition 

Cell counts and proportions are often used as a diagnostic tool in the clinic. However, these tools 

are often limited to major cell classifications such as B, T, and Myeloid cells. Flow sorting and 

CyTOF can be used to quantify more fine-grained cell types, however the number of surface 

proteins that can be profiled are limited to tens or one hundred respectively18,19. The throughput 

of these methods is limited, as each sample must be run as a separate experiment, where single 

cell sequencing methods are parallelizable. Here we quantified composition differences in 8 cell 

types (B, CD4T, CD8T, NK, cM, ncM, cDC, and pDC). Across the donors, significant variation in 

composition was observed (Fig1E). To evaluate factors that may influence compositional changes 

we first visualized changes in composition across the sampled populations.  Subtle decreases in 

CD4T cells in EAS and B cells in EUR are observed (Fig1F) when compared to the other 3 groups 

together, however they are confounded by technical effects. To quantify the factors underlying 

variance in composition, principal components (PCs) of cell composition per donor were 

calculated and a multivariate linear model was fit to evaluate the effect of meta information of 

donors as well as technical factors from the single cell experiments. Across the first 4 PCs, very 
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little variance was explained by any one of these factors, with less that 20% of the variance 

explained by the sum of all factors evaluated (Fig1G). This indicates that while there may be 

trends in differences of proportions between groups, it does not explain much if the variance 

indicating intraindividual differences contribute to the vast majority variance in cell composition.  

3.3.3 Networks 

Gene expression is controlled by gene regulatory networks, where chromatin remodelers open 

regions of chromatin around regulatory regions and their target genes, transcription factors bind 

to these regions and promote the transcription of the target gene.  To investigate these networks, 

measures of open chromatin and gene expression in single cells can be leveraged to discover 

novel, cell type specific cis regulatory elements and to better predict the genes they act on. First, 

over 100K peaks were called. Most peaks fall into the intronic regions of the genome, but 

appreciable numbers are also located in promoters and distal regions (Fig2A). This is to be 

expected as regulatory elements are in non-coding regions of the genome. As regulatory 

elements often are cell type specific, all called peaks were evaluated for cell type specificity using 

differential accessibility analysis of each cell type against the rest. Many of the peaks were found 

to be differentially accessible (log2FC >0.5, FDR<0.05) in the cell types examined, while many 

shared peaks were only shared with closely related cell types, for example classical and non-

classical monocytes (Fig2B). To evaluate which genes putative regulatory elements act on, 

correlation between peaks and gene expression were calculated. These correlated peaks were 

mostly located in intronic regions of the gene (blue), or upstream reflecting promoters or putative 

enhancers which was observed in most cell types, here shown in NK cells (Fig2C). Peak 

correlations to the NK marker gene SMAD7 in NK cells were very high (>0.8) for four regions 

around the gene. These regions highlighted in the user track, overlapped H3K27ac and clusters 

of ENCODE annotated cis-regulatory elements suggesting that these region house important 

regulatory elements for SMAD7 in NK cells (Fig2D).  
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3.3.4 Genetics 

While GWAS have associated thousands of loci with hundreds of complex traits, most of these 

loci are in non-coding regions. This has posed a challenge in the field, as functional mechanisms 

are difficult untangle when they do not directly change protein sequences. Additionally, GWAS do 

not provide any insight into cell contexts which these loci are important20.  Understanding the 

genetic architecture of molecular traits has potential to elucidate the context and genes which 

these loci may act through which can help determine mechanisms underlying complex diseases. 

Here we mapped eQTLs and atacQTLs in 8 cell types (B, CD4+T, CD8+T, NK, cM, ncM, cDC, 

and pDC). While all peaks identified were tested, most of the significant atacQTLs (p<5e-8) were 

between non-coding SNPs and non-coding peaks, though an appreciable number of peaks did 

intersect with exons (~26-35%). First enrichment of atacQTLs and eQTLs were calculated in cell 

type specific peaks (Fig3A-B). atacQTLs were not enriched in their cell type specific peaks, where 

eQTLs were. While the atacQTL result was unexpected, it could suggest that SNPs which control 

chromatin accessibility may not always reside in peaks that are unique to the specific cell type 

and may rather fall into shared peaks. The eQTL results suggest that SNPs have the largest 

effects on expression when they reside in open chromatin. Further follow up analyses are required 

to better understand this result. Additionally, to evaluate which cell types are most important in 

immunological diseases, LD score regression was used to find enrichment of GWAS traits for 

immunological diseases (Ulcerative Colitis, Rheumatoid Arthritis, Primary Biliary Cirrhosis, IBD, 

Crohn’s, Celiac, and Lupus) in cell type specific ATAC peaks (Fig3C). Particularly interesting 

signals from these results include Primary Biliary Cirrhosis, B cell peaks had the highest and most 

significant enrichment (p-value<0.001). Multiple studies in mice have shown that B cells play an 

important role in managing inflammation in the disease21.  

 3.4 Discussion 

Single cell sequencing of population scale cohorts holds great promise to further our 

understanding of molecular mechanisms and how they vary between donors and fine-grained cell 
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types in health and disease. Profiling healthy PBMCs across large diverse populations is critical 

to further our understanding of baseline activity of immune cells. Here, we profiled over 1 million 

cells across four diverse human populations. We found that cell composition did not differ 

significantly across populations, but significant variation was observed across donors. We 

identified thousands of cell type specific peaks that were in regions of the genome that house 

regulatory elements. We leveraged multi-omic measurements to pair putative regulatory elements 

with their target genes and observed that in SMAD7, a NK cell marker, associated peaks 

overlapped relevant enhancer and promoter markers. Lastly, we mapped atacQTLs and eQTLs, 

finding relevant eQTLs were enriched in marker peaks and found GWAS enrichment in disease 

relevant cell type specific peaks. This rich dataset has potential for deeper analysis and will serve 

as a reference for many future studies.  

 

3.5 Methods 

3.5.1 Sample collection 

Primary blood samples were collected from healthy donors at two collection sites: UCSF and 

CUMC. Inclusion criteria for participants included no history of immunological disease or cancer. 

No sample was collected until 3 weeks after any vaccination or acute illness. Participants were 

between 18 and 55 years of age and were part of four self-reported ethnicities: AFR, EAS, EUR, 

AMR. 50mL of blood was collected and PBMCs were isolated with SepMate-50 tubes following 

manufacturer's user guide then cryopreserved.  

3.5.2 Genotyping 

Genotyping was performed on Illumina's MEGA (multi-ethnic global array) chip in three batches 

and processed at the Berkeley Genomics Core. Plink 1.9 was applied to merge and filter genotype 

data. For each sample 1,748,250 sites were genotyped and mapped to grch38. Individuals with 

more than 5% missing SNP calls were removed. Resulting genotypes were filtered by 

Missingness (< 0.02), minor allele frequency (MAF > 0.01), and Hardy-Weinberg equilibrium (p > 
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1e-4). KING was applied to estimate cryptic relatedness between resulting individuals where one 

of each pairs of individuals with third-degree relatedness or higher was removed (KING coefficient 

> 0.0442). The resulting 894294 variants from 347 individuals were used for imputation with the 

TOPMed Imputation Server using the TOPMed r2 reference panel. Eagle 2.4 was applied to 

phase imputed genomes. Sites with an imputation R2>0.3 were retained for downstream 

analyses. 

3.5.3 Single Cell Sequencing 

For each processing pool, 10^6 cells from 20 donors each were first used for nuclei isolation (if 

you don't have a nuclei isolation step, we need to write more). 10^5 nuclei from 20 donors each 

were pooled and loaded into 4 wells of 10X Genomics Single Cell Multiome ATAC + Gene 

Expression kit. Briefly, cells from each donor were thawed at 37C water bath, then cell counts 

and viability were determined with Cellaca MX High-Throughput Automated Cell Counter. Donors 

with cell viabilities less than 65% were excluded. Nuclei for each donor were isolated and counted 

again on the Cellaca. Nuclei were equally pooled between donors, filtered using Corning 40um 

cell filter, then single nuclei were loaded into 4 wells at 5x10^4 nuclei per well and run on the 

Chromium controller for single nuclei capture. Resulting libraries were sequenced at UCSF’s 

Center for Advanced Technology (CAT) core at a depth of 4x10^4 reads for ATAC and 2x10^4 

reads for RNA using S4 flowcells on Illumina’s Novaseq Platform. 50x10x24x90 cycles used for 

Read 1:i7:i5:Read 2 in the RNA fraction, while the ATAC fraction used 50x10x24x90 for Read 

1:i7:i5:Read 2.  

3.5.4 Single Cell Analysis 

Single cell data was processed using cellranger-arc 2.0, then demultiplexed using demuxlet on 

the ATAC fraction of the data. Downstream processing of the RNA fraction was completed with 

Scanpy and processing of the ATAC fraction was completed with ArchR. Cobolt was used for joint 

projections. Leiden clustering was applied to the data then marker genes were utilized to 

determine cell types in the clusters.  
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3.5.5 QTL calling 

For each cell type profiled, pseudobulk matrices were generated from the single cell ATAC and 

RNA data turning a cell by feature matrix into a donor by feature pseudo-count matrix for each 

cell type. Log counts per million were calculated then standardized for each Pseudo-count matrix 

with EdgeR. For each feature a linear model was for expression of each feature using SNPs within 

100kb of the genomic feature tested using matrixeQTL. For each model pool, age, sex, 10 

genotype PCs and 10 phenotype PCs were included. Each population was processed separately, 

then meta-analyzed using Metasoft to control for population structure.  
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Figure 3.1: Experimental design, cell phenotyping, and composition. A) Schematic of 
experimental design. UMAP projections calculated from snRNA data (B), snATAC data (C) and 
jointly (D) across both simultaneously assayed modalities. Marker genes from snRNA seq were 
used to call cell types annotated in these UMAPs. (E) Proportion of each cell type per donor. (F) 
Box plots of composition distribution per self-reported ethnicity. (G) Percent variance explained 
for each cell composition PC of composition for measured meta data information.   
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Figure 3.2: Evaluating Networks of Genes. (A) Proportion of peaks in different regions of the 
genome. (B) Cell type specific peaks. (C) Distribution of distance between gene and peak links 
colored by genome annotation; in gene (blue), upstream (red), same chromosome (grey), other 
chromosomes (yellow). (D) SMAD7 locus. User track shows peaks significantly correlated to 
expression of SMAD7. Encode Tracks and Histone enhancer marks displayed. 
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Figure 3.3: Molecular trait genetics. Mann-Whitney U test for enrichment of eQTLs (A) and 
atacQTLs (B) in simplified cell type specific peaks. (C) LDSC enrichment of GWAS signal in cell 
type specific peaks. (D) LDSC enrichment p-values in cell type specific peaks. Black line shows  
p=0.05. 
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Chapter 4: lentiMPRA & MPRAflow for high-throughput functional characterization of gene 

regulatory elements. 

 

4.1 Abstract 

Massively Parallel Reporter Assays (MPRAs) can simultaneously measure the function of 

thousands of candidate regulatory sequences (CRSs) in a quantitative manner. In this method, 

CRSs are cloned upstream of a minimal promoter and reporter gene alongside a unique barcode 

and introduced into cells. If the CRS is a functional regulatory element, it will lead to the 

transcription of the barcode sequence, which is measured via RNA sequencing and normalized 

for cellular integration via DNA sequencing of the barcode. This technology has been used to test 

thousands of sequences and their variants for regulatory activity, decipher the regulatory code 

and its evolution, and for the development of genetic switches. Lentivirus-based MPRA 

(lentiMPRA) produces ‘in genome’ readouts and allows the use of this technique in hard to 

transfect cells. Here, we provide a detailed protocol for lentiMPRA along with a user-friendly 

Nextflow-based computational pipeline, MPRAflow, for quantifying CRS activity from different 

MPRA designs. The lentiMPRA protocol takes approximately two months, which includes 

sequencing turnaround time and data processing with MPRAflow. 

 

4.2 Introduction 

Gene regulatory elements control a gene’s transcription. These include sequences that activate 

transcription such as promoters and enhancers, silencers that repress a gene, or insulators that 

restrict genes from interacting with certain regulatory elements. Nucleotide variation in these 

elements can have a major effect on phenotype. Mutations within them have been shown to be a 

major cause of human disease1. For example, over 90% of all human disease genome-wide 

association studies (GWAS) have shown associations with noncoding variants2 and colocalize 
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with potential gene regulatory elements3. In addition, gene regulatory elements can be major 

drivers of evolutionary speciation, driving differences between species such as morphology, diet, 

and behavior4. These sequences can also be used as genetic switches to tune transgenes to 

specific levels in certain cell types or tissues. 

 

In this protocol, we focus on gene activation associated regulatory elements, promoters and 

enhancers. These sequences can be identified in a genome-wide manner by biochemical 

methods such as chromatin immunoprecipitation followed by sequencing (ChIP-seq5), DNase I 

hypersensitive sites sequencing (DNase- seq6,7), assay for transposase-accessible chromatin 

using sequencing (ATAC-seq8), cleavage under targets and release using nuclease 

(CUT&RUN9), Hi-C10 and others. However, these methods only help annotate candidate 

regulatory sequences (CRSs), and additional experimental assays must be performed in order 

to validate their predicted activity. Reporter assays are commonly used to characterize CRS. In 

this assay, the CRS is placed either upstream of a reporter gene (i.e., in the case of testing 

promoters) or upstream of a minimal promoter followed by a reporter gene (i.e., in the case of 

testing enhancers). If the sequence is an activating regulatory element, it will turn on the reporter 

gene, providing a measurable output. However, these assays are primarily done on an individual 

basis and as such cannot assess the thousands of CRSs and their variants that have been 

identified via the aforementioned biochemical assays. Massively parallel reporter assays 

(MPRAs) overcome this hurdle, providing the ability to test hundreds of thousands of sequences 

and their variants in parallel for their regulatory function11. This is done either by measuring RNA 

expression driven by the CRS by pairing it to a transcribed barcode, or by using the CRS itself 

as a barcode, as done in the self-transcribing active regulatory region sequencing (STARR-

seq12) assay. 
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Here, we describe both a lentivirus-based MPRA (lentiMPRA) and MPRAflow, a computational 

tool for MPRA analysis based on the Nextflow framework13 (Fig. 1a). lentiMPRA can be used in 

any cell type that can be efficiently infected via lentivirus, providing the ability to carry out MPRA 

in a broad range of cell types and tissues. In addition, due to the viruses’ inherent genomic 

integration, it provides an ‘in genome’ readout, which we have shown to provide more robust 

results that can be better predicted by both biochemical and sequence-based features compared 

to episomal-based MPRA14. MPRAflow is a user-friendly computational pipeline that is 

compatible with a broad range of MPRA experiments. 

 

4.3 Development of the protocol 

We developed lentiMPRA to overcome the following limitations: 1) Descriptive assays that detect 

potential regulatory elements (such as ChIP-seq, DNase-seq, ATAC-seq, CUT&RUN and Hi-C) 

identify candidate sequences within chromatin, yet most MPRAs analyze sequences in an 

episomal context; 2) episomal-based MPRA is limited to cells that can easily be transfected. 

Lentivirus-based assays overcome both these limitations. Lentiviruses integrate into the genome, 

providing an ‘in genome’ readout. In addition, they can infect a large number of cells and tissue 

types, providing a more diverse range of cellular environments for MPRA. In this protocol, we 

further develop lentiMPRA by placing a barcode in the 5′ UTR of the reporter gene. This 5′ UTR 

barcoding method minimizes the distance between the CRS and barcode (102 bp) than previous 

3′ UTR barcoding method (801 bp), reducing the risk of CRS-barcode swapping15. In addition, 

unlike previous lentiMPRA where each CRS is synthesized together with multiple barcodes in a 

custom array, the 5′ UTR barcoding strategy adds barcodes via the PCR primer. This allows the 

ability to clone and test hundreds of thousands of CRSs using lentiMPRA. 
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To subsequently analyze MPRA results, there are several home-brewed MPRA computational 

analysis pipelines tailored to each lab and MPRA technique. However, these tools are not 

transferable between labs because of the large variability in MPRA designs, lack of 

documentation, complicated input files and lack of parameterization of these tools. We thus 

developed MPRAflow, which provides a user-friendly, flexible, parallelized tool for quantifying 

CRS activity from a variety of MPRA experimental designs, including lentiMPRA, episomal-based 

MPRA and saturation mutagenesis designs, with easily interpretable visualizations that can be 

readily adopted by users regardless of their computational level. In addition to providing 

normalized fold change per CRS, MPRAflow can generate input files for MPRAnalyze16, a tool 

that calculates a transcription rate for each tested CRS by fitting a generalized linear model with 

DNA and RNA counts. This pipeline allows for the entire analysis to be completed in two 

commands on a terminal, greatly simplifying the computational tasks associated with MPRAs and 

therefore increasing usability of this protocol. 

 

4.4 Applications of the method 

lentiMPRA can be used for numerous research purposes, such as analyzing hundreds of 

thousands of different candidate enhancers and their variants (e.g. rare and common GWAS-

associated SNPs, evolutionary variants) in the genome, decoding the regulatory code, how it 

evolved in other species and generating specific genetic switches. It provides the ability to carry 

out these experiments in hard-to-transfect cells (e.g. primary cells, neurons, and many others) 

and integrates into the nucleus providing an ‘in genome’ readout which we have shown is more 

reproducible and is more predictive of functionality than both biochemical annotations and 

sequence-based models14. 
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MPRAflow utilizes the pipelining tool Nextflow13, which automatically runs MPRA processing 

code (written in Python, Bash, and R), manages all necessary packages and environments with 

Anaconda17, and is compatible with a multitude of computational architectures including a variety 

High Performance Compute (HPC) clusters and cloud computing systems. Additionally, technical 

replicates and experimental conditions are parallelized through these HPC systems. As 

MPRAflow is a package that allows non-bioinformatic researchers to easily analyze MPRA data, 

it can greatly increase the usability of this method in labs that do not have in-house 

bioinformaticians. Additionally, MPRAflow provides easily interpretable graphics and produces 

files correctly formatted for readily available tools for further in-depth bioinformatic analysis such 

as MPRAnalyze16. 

4.5 Comparisons with other methods 

There are several different varieties of MPRA, such as episomal barcode-based MPRAs, 

STARR-seq, and others11. lentiMPRA differs from these methods as it provides an ‘in-genome’ 

readout in a wider range of cell types. In STARR-seq, the CRS itself acts as the barcode. This 

attribute can potentially impact results due to the binding of RNA-associated factors and RNA 

stability of the assayed sequence15. Using on average over fifty 15 bp barcodes per CRS in 

lentiMPRA reduces this impediment. CRSs are usually generated via oligo synthesis, but can 

also be produced by other processes, such as PCR or DNA-capture based methods. Barcodes 

can be either added as part of the synthesis or via PCR, providing flexibility in cloning design. As 

lentiviruses integrate throughout the genome, we introduced anti-repressors on either side of the 

virus that together with having over 50 barcodes per assayed sequence assist in overcoming 

differences due to varying genomic integration sites. 
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Previous MPRA processing tools have mainly focused on CRS library design or determination of 

CRS activity from count matrices, overlooking the computationally expensive task of processing 

sequencing data. MPRAflow is based on computational methods used in our previous MPRA 

work14,15,18-20 and contains three utilities: association, count, and saturation mutagenesis. The 

association utility processes demultiplexed FASTQ files and assigns barcodes to the CRS that 

they are cloned with in the random pairing design. Sensitive alignment of merged paired-end 

reads provides robustness against sequencing and synthesis errors without strict read filters, 

even when CRS libraries contain sequences that differ by only one nucleotide. The count utility 

processes demultiplexed FASTQ files to perform QC across replicates, normalizes barcode count 

tables per CRS, and quantifies log2(RNA/DNA) ratios per CRS. MPRAnalyze inputs can also be 

produced using the count utility. Saturation mutagenesis dissolves multiple variants per CRS into 

single variant ratios by applying a multivariate linear model and it can be combined with the count 

utility. Each utility is executed with a single command on a terminal and all utilities provide easily 

interpretable visualizations of all analyses performed. 

4.6 Experimental Design 

4.6.1 Library design 

CRSs can be identified using many of the aforementioned biochemical assays (ChIP-seq, 

DNase-seq, ATAC- seq, CUT&RUN, GWAS, Hi-C and others). Variants of interest within these 

CRSs can be identified via GWAS, GTEx, various genomic websites such as Genome 

Aggregation Database (gnomAD21), comparative genomics and many other databases. The 

CRSs and variants tested ultimately depends on the goal of the study. Negative and positive 

controls should be included in the lentiMPRA library. For negative controls, sequences that could 

be used are those that are known not to be active in the assayed cell, having silencing marks 

such as H3K27me3 within this tissue, or scrambled CRSs that are randomly selected from the 

library. For positive controls, sequences that are known to function as promoters/enhancers in 
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this cell/type or tissue could be used. If such data does not exist, one can characterize CRSs 

from the cell where the lentiMPRA will be done via the aforementioned biochemical assays. 

These controls should be present within every technical and biological condition that will be 

tested. Tools such as MPRAnator22 or MPRA Design Tools23 can assist in choosing regions to 

test via MPRA and assembling the FASTA files required to order the libraries. Libraries can 

contain up to hundreds of thousands of sequences, depending on the infection efficiency of the 

cells (see Supplementary Table 1). The length of these sequences can also vary (as long as 

the combined length is not over 10 kb, the optimal packaging capacity of lentivirus), depending 

on how the CRSs are generated (i.e., oligo synthesis, PCR, or capture). 

 

4.6.2 Library generation 

For this protocol, we will focus on oligo synthesis as it is currently the most cost-effective way to 

generate fixed-length CRSs. Here, the synthesized oligo pool of the CRSs is amplified via two 

rounds of PCR, first to add the minimal promoter, and then to add the barcode. The amplified 

fragments are cloned via Gibson assembly into the SbfI/AgeI site of pLS-SceI vector (Addgene 

137725) to construct the library. The resulting library is digested with I-SceI to remove any vector 

that did not receive an insert. The recombination products are then electroporated into competent 

cells and plated onto Ampicillin plates. Sanger sequencing of 16 colonies is then used to confirm 

the proper assembly of the library. The number of plates will dictate the number of barcodes each 

CRS will have on average. The number of colonies required for plasmid extraction will depend 

on the number of CRSs tested and the desired number of barcodes per CRS. Generally, it is 

ideal to have at least 50 barcodes per CRS and the total number of colonies should roughly equal 

the desired library complexity. We recommend limiting the complexity of the library due to the 

finite nature of the multiplicity of infection (MOI) and the associated increase in sequencing costs. 
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The complexity recommended in this protocol is 0.5-12 million. The library should then be midi-

prepped to extract the final plasmid library. 

4.6.3 Association sequencing 

To associate the barcode to the CRS, PCR is performed on the plasmid library to add flowcell 

sequences and sample index to the CRS-barcode pairs. The PCR product is then gel extracted 

at the appropriate insert size (~471 bp for a 200 bp CRS) and sent for paired end sequencing 

with an index read for barcode sequence, using custom primers provided in this protocol. 

4.6.4 Lentiviral prep 

The next step is to generate a lentivirus library. This is done by transfecting 293T cells with the 

plasmid library. Following 2 days in culture with titer boost reagent, the virus is collected and 

concentrated. To titrate the lentivirus, the cell type of interest is plated into 8 wells of a 24 well 

plate and infected with varying volumes of the virus (0, 1, 2, 4, 8, 16, 32, 64 µL) in each well. Cells 

are monitored for viability throughout this time in order to determine whether certain 

concentrations are toxic to them. Following a three-day incubation (to reduce non- integrating 

lentivirus), genomic DNA is extracted from each well. qPCR is then carried out for each condition 

using primers against genomic DNA, integrated viral DNA, and plasmid backbone DNA. The MOI 

is calculated for each viral concentration (Supplementary Table 2). These values are then 

plotted against the viral volume to calculate the viral titer. Conditions need to be adjusted if cells 

are not viable. 

4.6.5 Infection and sequencing 

The lentiMPRA library is then infected into the cells of interest and incubated for three days. The 

number of cells required is determined based on the library complexity and the highest MOI that 

the cells can be infected with that is not toxic to the cells. It is highly recommended to carry out 

three technical replicates for each biological condition tested in order to assess reproducibility. 

The cells are then washed to reduce for non- integrating lentivirus and DNA and RNA are 
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simultaneously extracted. RNA is treated with DNase and reverse transcription is done using 

construct-specific primers that contains P7 flowcell sequences and unique molecular identifiers 

(UMIs), to preserve the true counts of molecules through the amplification process. PCR is 

carried out on the DNA and RNA samples to amplify barcodes, adding P5 flowcell sequence and 

sample index upstream, and P7 flowcell sequence and UMI to the barcode. The sequencing 

libraries are then pooled and sent for paired-end sequencing with a UMI and sample index read. 

4.6.6 Data processing 

We built a computational tool, MPRAflow, to easily process demultiplexed FASTA data resulting 

from lentiMPRA and other MPRA experiments. If the barcodes are randomly paired with the CRS, 

the association utility can be run to assign barcodes to the appropriate CRS. We provide a 

workflow tailored to testing distinct CRSs, using Burrows-Wheeler Aligner (BWA24) to align 

sequences to the ordered oligo pool and a workflow for libraries containing single nucleotide 

variants of the same CRS, using Bowtie225 and a list of the expected positions of the variants. 

The resulting pairing is then used in the count utility, which processes the barcode sequencing 

of the DNA and RNA, to create normalized log2(RNA/DNA) ratios for transcriptional activity of 

each CRS tested along with easy to interpret visualizations. If more robust statistical analyses 

are desired, we provide the option to generate input files for MPRAnalyze16, a generalized linear 

model approach. Additionally, we provide an alternative workflow for quantifying expression of 

CRS libraries produced with saturation mutagenesis. It processes data into a matrix of RNA 

count, DNA count, and N binary columns indicating whether a specific sequence variant was 

associated with the barcode (T), which are used to fit a multiple linear regression model of 

log2(RNAj) ~ log2(DNAj) + N + offset (j ∈ T) and report the coefficients of N as effects for each 

variant. The utility processes multiple replicates and conditions in parallel if a high-performance 

computing (HPC) cluster is available, but can also be run locally. This code is freely available on 

GitHub (https://github.com/shendurelab/MPRAflow). 
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4.6.7 Necessary Expertise 

Basic molecular biology and cell culture skills are required to perform lentiMPRA. For MPRAflow, 

a basic familiarity with command line tools is needed. 

4.6.8 Limitations 

There are several limitations for lentiMPRA. This includes a limitation in the number of CRSs that 

can be tested in cells that are not amenable to high lentivirus concentrations, though that can be 

amended by using an increased number of cells. The use of oligosynthesis to generate the CRS 

library can also limit the number of sequences that can be tested including their length. 

Improvements in DNA synthesis can ultimately overcome this limitation as well as PCR or DNA 

capture-based methods. Techniques that allow for multiplex pairwise assembly of oligos26 could 

also be a way to increase CRS size by patching together specific oligonucleotides. 

As for MPRAflow, while this tool is applicable to many types of MPRA, it does not support STARR-

seq workflows as it does not include functionality for peak calling. 

 

4.7 Anticipated results 

The output of a lentiMPRA experiment will consist of two sets of data: association sequencing, 

and DNA/RNA barcode sequencing. Success of association sequencing preparation can be 

assessed by the size of the band (419 bp) observed during library preparation. The association 

sequencing should contain paired-end reads that cover the CRS (200 bp) and an index read to 

cover the barcode (15 bp). The recommended sequencing depth will vary significantly with the 

complexity of the library being tested, but we generally suggest 10 reads per unique barcode 

expected. MPRAflow’s association utility should be run on the example dataset (GSE142696) 

to determine the number of barcodes per CRS (Fig. 2b). Generally, we aim for 50-200 

barcodes per CRS, libraries with more than 600 barcodes per CRS should be cloned again 
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since integration and sequencing will limit the coverage of the library and the sensitivity of the 

experiment. 

 

The quality of the preparation of the DNA and RNA barcode sequencing library can be 

assessed by the size of the band (162 bp). The sequencing results should contain paired-end 

reads that cover the barcode (15 bp) and an index read for a UMI (16 bp). These files should be 

demultiplexed and run through MPRAflow’s count utility. This will return normalized count tables 

for all experimental conditions and replicates tested as well as a final table of activity of each 

CRS normalized across replicates. A broad overview of activity can be seen by user-defined 

categories (Fig. 3b-c), allowing for assessment of control sequences. Averaged observed 

barcodes per CRS can be checked through histograms to verify coverage of the barcodes (Fig. 

3d). Additionally, the correlation between technical replicates are shown for DNA count, RNA 

count, and log2(RNA/DNA) (Fig. 3e). A successful experiment will allow the user to determine 

which CRSs increase transcriptional activity and which do not. To determine the active 

sequences, we can compare our test sequences with scrambled controls. These scrambled 

sequences provide a null distribution which can be used for robust statistical testing. 
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Figure. 4.1: Schematics of lentiMPRA. a, Summary of lentiMPRA and MPRAflow. The 
lentiMPRA library is sequenced to associate between CRS and barcodes and infected into cells 
using three replicates. DNA and RNA from the cells is sequenced to obtain barcode transcription 
and CRS activity. LTR, long terminal repeat; ARE, anti-repressor element; WPRE, Woodchuck 
hepatitis virus posttranscriptional regulatory element. b, CRS oligo. 200-base CRS (grey) is 
flanked by PCR adaptor sequences (light green). c, First round PCR. PCR primers add 
sequences that are complementary to the vector (black) to the upstream and minimal promoter 
(mP, blue) and spacer sequences (yellow) downstream of the CRS oligo. d, Second round PCR. 
Reverse primer adds the barcodes (red stripe) and GFP complementary sequences (green). e, 
Plasmid construct. f, Amplification for CRS-barcode association. Primers adding P5 (purple) and 
sample index (grey stripe) upstream and P7 (pink) downstream. g, Sequencing library structure. 
h, Sequencing reaction. Paired-end reads specify the CRS sequence, with index read 1 providing 
the barcode and index read 2 reading the sample index for multiplexing. i, Integrated DNA and 
expressed RNA in infected cells. j, Amplification for barcode counting. Primers add P5 and 
sample index upstream and P7 and unique molecular identifier (UMI, brown stripe) downstream. 
k, Sequencing library structure. l, Sequencing reaction. Paired-end reads give barcode, index 
read 1 gives UMI and index read 2 provides sample index for multiplexing. 
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Figure. 4.2: Overview of MPRAflow association utility. a, Mandatory inputs (blue), optional 
flags (orange), output files (green) and utility (red). The program requires FASTQ files for the 
insert, either single-end (SE) or paired-end (PE) reads and a design file, which is a FASTA file 
containing the synthesized oligos. The user can also specify a tab delimited file with a mapping 
of CRS names given in the design file and a grouping, such as control category (e.g. positive or 
negative control), a tab-separated values file (TSV) of variants in the ordered oligo pool to be 
used for a tailored alignment strategy, and can accept various parameters for filtering the pairing 
based on mapping qualities and number of observed barcodes mapping to the CRS. The program 
outputs a Python dictionary in pickle format, mapping barcodes to their CRS. b, A violin plot of 
barcode coverage for each enhancer, grouped by labels provided in the label TSV. The violin plot 
features a kernel density, showing the underlying distribution of the data and a boxplot. In the 
boxplot the white dot is the median, the box represents the interquartile range (IQR), and the 
whiskers are 1.5*IQR. Outliers are represented as points.  
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Figure. 4.3: Overview of count utility. a, Mandatory inputs (blue), optional flags and outputs 
(orange), output files (green) and utility (red). The user must specify the directory containing all 
FASTQ files for the RNA and DNA sequencing, the CRS-barcode dictionary from the Association 
Utility, a design file (FASTA file containing the synthesized oligos), and an experimental comma-
separated file (CSV) outlining the number of replicates and conditions used. The user can also 
specify a tab delimited file with a mapping of CRS names given in the design file and a grouping, 
such as control category (e.g. positive or negative control) and tune parameters such as 
specifying if a unique molecular identifier (UMI) was used, or if the user would like to generate 
the input files for MPRAnalyze. The program will produce normalized activity of each CRS from 
each replicate as well as across replicates along with several visualizations (b-e). b, CRS activity 
normalized by insert and grouped by label determined in the label file. The violin plot features a 
kernel density, showing the underlying distribution of the data and a boxplot. In the boxplot the 
white dot is the median, the box represents the interquartile range (IQR), and the whiskers are 
1.5*IQR. Outliers are represented as points. c, Normalized activity of each CRS across replicates 
colored by label represented as a boxplot across replicates, where the box represents the 
interquartile range (IQR), and the whiskers are 1.5*IQR. Outliers are represented as points.  d, 
Distribution of observed barcode coverage per replicate. e, Correlation of normalized 
log2(RNA/DNA), DNA counts and RNA counts colored by label. 
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Figure 4.4: Overview of Saturation Mutagenesis Utility. a, Mandatory inputs (blue) optional 
flags and outputs (orange) output files (green) utility (red). The user must specify the directory 
containing all barcode count files, including DNA and RNA counts, the variant to barcode 
assignment file, and an experimental comma separated file outlining the number of replicates 
and conditions used. The user can also set UMI and p-value thresholds that will be used for 
filtering variants and distinguishing between significant and not-significant variant effects. The 
program will produce log2 variant effects together, p-values and a visual output of correlation and 
a saturation mutagenesis variant effect plot of the region. b, Correlation between replicates. Here 
the correlation between three replicates of the TERT promoter in a glioblastoma cell-line from 
Kircher et.al. 2019 (Ref. 20) is shown. rho_p defines the pearson correlation between two 
samples (model with 1 bp indels). Only variants with a minimum number of 10 barcodes are 
shown. c, Saturation mutagenesis effect plot of the combined model from three replicates of the 
TERT promoter in a glioblastoma cell-line from Kircher et.al. 2019 (including 1bp indels). Position 
refers to the variant position of the original target insert. Only variants with a minimum number of 
10 barcodes are shown. Significance level is p-value < 1-e5. 
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Reporting Summary 

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article. 

 

Data availability 

A 5′ lentiMPRA dataset conducted in HepG2 cells15 has been deposited into the NCBI 

Sequence Read Archive (SRA) under accession no. GSE142696 

Code availability 

The source code is freely available at https://github.com/shendurelab/MPRAflow. 
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Tables 
 

Table 4.1: Association Utility options. Blue rows are mandatory and orange are optional. 
Options Description  
--fastq-insert Full path to library association fastq for insert (must be surrounded 

with quotes) 
 

--variants tsv with reference_name variant_positions ref_bases alt_bases, only 
input for variant analyses workflow 

 

--fastq-bc Full path to library association fastq for bc (must be surrounded with 
quotes) 

 

--design Full path to fasta of ordered oligo sequences (must be surrounded 
with quotes) 

 

--fastq-insertPE Full path to library association fastq for read2 if the library is paired 
end (must be surrounded with quotes) 

 

--min-cov minimum coverage of bc to count it (default 3)  
--min-frac minimum fraction of bc map to single insert (default 0.5)  
--mapq map quality (default 30)  
--baseq base quality (default 30)  
--cigar require exact match ex: 200M (default none)  
--outdir The output directory where the results will be saved and what will be 

used as a prefix (default outs) 
 

-w specific name for work directory (default: work)  
-with-timeline Create html file showing processing times  
--split number read entries per fastq chunk for faster processing (default: 

2000000) 
 

--labels tsv with the oligo pool fasta and a group label (ex: positive_control) if 
no labels desired a file will be automatically generated 

 

--h, --help help message  
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Table 4.2: Count utility options. Blue rows are mandatory and orange are optional. 

 
 

Table 4.3: Saturation Mutagenesis utility options. Blue rows are mandatory and orange 
are optional. 

 

 
  

Options Description  
--dir fasta directory (must be surrounded with quotes)  
--association pickle dictionary from library association process  
--design fasta of ordered insert sequences  
--e, --
experiment- file 

experiment csv file  

--labels tsv with the oligo pool fasta and a group label (ex: positive_control), a 
single label will be applied if a file is not specified 

 

--outdir The output directory where the results will be saved (default outs)  
--bc-length Length of barcode (default 15)  
--umi-length Length of umi when given (default 10)  
--no-umi Flag if no umi was used in the experiment  
--merge-
intersect 

Only retain barcodes in RNA and DNA fraction (TRUE/FALSE, default: 
FALSE) 

 

--mpranalyze Flag to only generate MPRAnalyze outputs  
--thresh minimum number of observed barcodes to retain insert (default 10)  
-w specific name for work directory (default: work)  
-with-timeline Create html file showing processing times  
--h, --help help message  

Options Description  
--dir Directory of count files (must be surrounded with quotes)  
--assignment Variant assignment file  
--e,--
experiment 

experiment csv file  

--outdir The output directory where the results will be saved (default outs)  
--thresh minimum number of observed barcodes to retain insert (default 10)  
--pvalue minimum p-value for significant variant effects (default 1e-5)  
-w specific name for work directory (default: work)  
-with-timeline Create html file showing processing times  
--h, --help help message  
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Table 4.4: Troubleshooting table. 

Step Problem Possible reason Solution 

Step 5 of 
Box 1 

Low infection 
efficiency 

Polybrene 
concentration may not 
be appropriate 

Optimization of polybrene 
concentration may be required. 
Seed cells in a 24-well plate and 
infect control virus along with 
different amount of polybrene 
(e.g. 0, 2, 4, 8, 16, 32 μg/mL at 
a final concentration), and 
observe cell death and GFP 
expression. In our experience, 8 
μg/mL works well for most cell 
types including HepG2, K562, 
H1 hESCs, and WTC11 iPSCs. 
Polybrene kills neural cell types, 
including neural progenitors and 
should be avoided when using 
those cells. 

Step 29 Low DNA yield. 
At least 250 ng 
insert DNA is 
required for the 
recombination 
reaction. 

DNA amplification was 
not enough. DNA loss 
during gel extraction. 

Multiply the PCR reaction or 
increase the number of cycles of 
the second round PCR up to 15 
cycles. More cycles (>15 cycles) 
can decrease the library 
complexity. 

Step 37 Uncut vector 
DNA appear on 
the gel. 

Insufficient restriction 
enzyme reaction. 

Perform restriction digestion 
twice or three times (step 30-
36). 

Step 61 Contamination 
with empty 
vectors. 

Vector linearization 
and/or I-SceI digestion 
were not sufficient. 

Lower rate of empty vector 
contamination (less than 10%, 
one or two out of 16 colonies) is 
acceptable. 
Proceed with the protocol. If 
higher rate, redo vector 
linearization with longer 
incubation time and make sure 
you have complete linearization 
using an agarose gel. Perform I-
SceI digestion with longer 
incubation time. 
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Step Problem Possible reason Solution 

Step 61 Mutation and 
indels observed 
in the plasmids. 

These can be derived 
from 
synthesis/PCR/sequen
cing errors. 

As these errors are unavoidable,  
we usually observe >50% of 
sequences contain mutations 
and/or deletions. Proceed with 
the protocol, and these 
erroneous sequences should be 
ruled out during the analysis 
step. Synthesis error rates might 
be improved by ordering oligos 
that are high-fidelity synthesized 
from the manufacturer. 
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Chapter 5: Developing scMPRA to dissect gene by environment interactions. 

5.1 Abstract 

Gene by environment interactions (GxE) are defined as the alteration of a genetic effect in 

response to environmental variation and may account for missing heritability of complex traits. 

Current studies have had limited success, as it is difficult to prioritize environmental factors to 

quantify. Here we describe our efforts towards developing a novel assay, single-cell Massively 

Parallel Reporter Assay (scMPRA), to characterize how cellular environments (e.g. cell type, cell 

state, donor) modulate the relationship between gene regulatory elements and gene expression. 

Future applications of this technology may elucidate how variation in gene expression between 

cells and individuals result from GxE interactions and increase our understanding of how GxE 

interactions influence complex traits such as human disease.  

 

5.2 Introduction 

Gene regulatory programs are precisely orchestrated as cells differentiate to their terminal states 

or respond to stimuli in their environment. Regulatory elements, such as enhancers, promoters, 

and repressors, tune these responses and ensure genes are expressed in the correct cell type 

and state. Large efforts such as ENCODE, have worked to map these elements in many cell lines 

and primary cells; however, these experiments require each cell type or cell state to be sorted 

and profiled separately1. These efforts can be arduous, expensive, or impossible in heterogenous 

tissues, especially where reliable surface markers are unavailable for sorting or when studying 

developmental trajectories where intermediate cell states fall on a continuum rather than a specific 

category.  

  

In addition to mapping regulatory regions specific to cell type and state, it is important to 

understand how genetic variants can disrupt or enhance these regulatory programs. Gene by 

environment interactions (GxE) occur when genetic effects on trait variation can be modified by 
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environmental exposures. These interactions are hypothesized to be one source of missing 

heritability, or the observation that common genetic variants additively explain little of the total 

trait heritability2. This hypothesis is supported by simulation studies showing that increased trait 

variability due to GxE reduces the power to map associated variants and that including GxE 

interaction terms in genetic models is essential3. While genetic models that include interaction 

terms have been proposed, they have had little power to map GxE effects due difficulties in 

accurately quantifying environmental exposures, which can be temporal in nature and may act in 

combination to produce synergistic effects on phenotype4. There is an enormous opportunity to 

map interactions between genotypes and cellular environments (e.g. cell type or activation state) 

affecting molecular traits such as gene expression. This is because cellular environments can be 

experimentally controlled and more accurately measured in vitro, interaction effects acting on 

molecular traits will likely have larger effect sizes, and candidate GxE effects produce directly 

testable hypotheses of biological mechanisms that control gene regulation. Dissecting these 

cellular GxE interactions is critical for our understanding of variation in gene expression between 

cells and individuals and to shed light on GxE interactions on complex traits such as disease. 

 

Studies profiling transcriptomes in bulk across many cellular environments have already provided 

compelling evidence of GxE effects. These include the identification of genetic variants whose 

effects are modified by specific tissues5 or in response to extracellular stimulation6. However, bulk 

transcriptomic sequencing fails to capture the additional heterogeneity within a tissue. For 

example, across immune cell types in the peripheral blood, genetic effects on gene expression 

are less correlated (rG) between cell types distantly related by lineage, suggesting that cellular 

environments across cell types differentially modify genetic effects7. Based on these 

observations, we hypothesize that the cellular environment differentially modifies genetic effects 

on gene expression by modulating the activity of regulatory elements harboring the causal 

variants. Single cell genomics and synthetic biology can be leveraged to simultaneously measure 
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the cellular environment and test its effects on the expression of synthetic gene constructs 

harboring various regulatory elements. Currently there are no high-throughput methods available 

to functionally validate variants across different cellular environments. 

 

Massively Parallel Reporter Assays (MPRAs) are routinely used to functionally annotate 

regulatory elements in different cell types by linking a synthetic sequence to a transcribed 

barcode8. This technology is highly scalable as many regulatory elements in the genome can be 

tested simultaneously and has been used to validate thousands of disease and expression 

associated variants9. While MPRAs can nominate candidate regulatory sequences, gene 

expression is controlled by a complex network of trans activators that may be differentially 

regulated in across distinct cellular environments10 specified by cell cycle, cell type, extracellular 

activation, and donor variability11. While it is likely these factors also influence bulk MPRA results, 

current approaches average the signal of each regulatory element over many cells, losing 

important information about heterogeneity in cellular environments. Recent advances in single 

cell RNA-sequencing have shown that gene expression is volatile and heterogeneity across cells 

can influence the expression of individual transcripts12,13 . Here we develop a novel method called 

single-cell Massively Parallel Reporter Assay (scMPRA) that integrates MPRAs and single-cell 

RNA-seq (scRNA-seq) to map interaction effects between the cellular environment and causal 

variants that affect gene expression. This technique will enable the simultaneous estimate of 

cellular environment, testing of the effects of hundreds of sequences harboring expression-

associated nucleotide variants, and how those effects can be modified by cellular environments 

due to individual donor variability, cell type identity or response to stimulation. This method holds 

potential to be instrumental in understanding how genetic variation interacts with the cellular 

environment to affect gene expression and to better understand how this relationship contributes 

to downstream phenotypes such as disease. 
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5.3 Methods 

5.3.1 Molecular Biology Approach 

We have assembled two designs for scMPRA, both utilizing lentiviral based MPRAs (lentiMPRA) 

to test putative regulatory sequences and read out changes as lentiMPRA offers a distinct 

advantage over episomal based approaches as the regulatory activity is tested via genomic 

integration, producing more consistent results over ‘non-integrating’ approaches8. The first design 

uses the 10x Genomics feature barcoding 3’ single cell sequencing kit, while the alternative 

design uses the 5’ 10x Genomics kit and amplicon sequencing.  

The 10x Genomics feature barcoding 3’ kit is designed to read out specific RNAs from single-cell 

RNA-seq experiments, reserving ~20% of the capture sequences on a gel bead for a feature 

barcode, while the rest of the capture sequences contain a poly(dT) sequence. The plasmid 

packaged into the lentiviral vector contains a variable enhancer sequence followed by a minimal 

promoter, an enhancer barcode, complementary sequence to the feature capture sequence, and 

a reporter gene (Fig. 1a). Therefore, the cell’s transcriptome will be captured with the poly(dT) 

sequence and the expression of the MPRA construct will be captured with the feature capture 

sequence. Since each capture sequence contains a cell barcode and a unique molecular identifier 

(UMI), it is possible to quantify the number of RNA molecules associated with each MPRA 

construct (Fig 1a).  

Alternatively, the 5’ approach captures both the MPRA barcodes and transcriptome using a TSO 

using the same construct utilized in our standard workflow14. MPRA barcodes can subsequently 

be amplified out of the total transcriptome pool to increase the capture of these sequences. 

Barcodes for each candidate regulatory sequence (CRS), will be assigned based on either 

association sequencing if barcodes are randomly paired, or will be directly paired through 

synthesis. Current MPRA methods perform DNA and RNA sequencing, enabling quantification of 

the change in expression (log2(RNA counts/ DNA counts)). Due to the inability of scRNA-seq to 
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capture DNA and RNA in single cells, we will titrate the experiment to ensure the DNA count is 

equal to one to quantify expression.  

5.3.2 Mathematical calibration of scMPRA.  

A major obstacle to this approach is that current single-cell sequencing technologies do not permit 

high throughput sequencing of both DNA and RNA in single cells. To circumvent this, carefully 

titration of the experiment is necessary to ensure that each sequence present in a single cell is 

unique, allowing us to calculate enhancer activity assuming the DNA count is equal to one. This 

problem maps to the birthday paradox from probability theory, which defines that if the population 

size (L, MPRA library) is large enough, we can sample K number of sequences, while being sure 

all sequences are unique15. This is defined as ∏ 𝐿−𝑛
𝐿

𝑘−1
𝑛=1 , assuming all samples in a library have 

equal representation. The bigger the library the less often collisions occur (Fig. 1b). However, this 

technology requires a balance between the collision rate and the cost of sequencing enough cells 

to cover the full library of tested sequences. The average number of cells needed to be sequenced 

can be modeled by the batched coupon collector problem. This problem defines the average 

number of cells one must sequence to cover the entire MRPA library (L), given each cell has a 

MOI of K MPRA constructs (where the probability of each construct is equal). This is defined as 

𝐿
𝐾
∑ (1

𝑛
)𝐿

𝑛=1 . The larger the library, the more cells you must sequence (Fig. 1c). To overcome these 

tradeoffs, it is possible to tag each putative regulatory sequence with many barcodes, decreasing 

the likelihood of collisions while maximizing the coverage of each enhancer. Assuming there are 

1000 total sequences one wishes to test, and each sequence is tagged with 40 barcodes, the 

total library size will be 40,000. By sequencing just 10,000 cells, each enhancer in the library 

should be covered an average of 200 times, assuming a MOI of 10. Overall, this design allows 

for efficient sequencing of multiple donors in multiple environmental perturbations profiling 

thousands of variants of interest in candidate regulatory regions.  
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5.4 Results 

To test our designs, we first designed a pilot mixing experiment of LCLs and HepG2 cells, where 

each of these cell lines will be transduced using the MPRA library described above at a MOI of 

10. The premise of this experiment is that enhancers specific to each cell type should only be 

expressed in their respective cell line. For this experiment we assembled a MPRA library 

comprised of previously characterized enhancers in LCLs and HepG2 along with negative 

controls and measure activity using the 10x Genomics Chromium platform. Specifically this library 

contained 200 sequences were designed including 50 enhancers that are active only in LCLs, 50 

enhancers that are active only in HepG2, 30 active in both cell lines, 30 inactive in both cell lines, 

10 of the lowest expression in LCLs, 20 synthetic enhancers active in HepG2s, and 10 synthetic 

enhancers inactive in HepG2, which have all been tested in previous MPRAs9,16. We transduced 

and cultured these cells separately following their respective culturing protocols aiming for a MOI 

of 10. Seventy-two hours post transduction, we mixed the two populations of cells in a 1:1 ratio 

and performed scRNA-seq using the 10x Genomics 3’ feature barcoding kit followed by paired 

end sequencing on the Illumina’s Nova seq. In parallel we performed bulk DNA and RNA 

sequencing on a subset of this mixed population using our standard lentiMPRA approach to 

demonstrate how fine-grained environmental information can improve profiling of regulatory 

elements14. 

We successfully produced high quality scRNAseq data during this first experiment and were 

confidently able to classify LCLs and HepG2 cells (Fig 2a). While globally our positive controls 

were more highly expressed than negative controls, capture of these constructs were very 

sparsely captured despite deep sequencing depth of our FBC library (Fig 2b). We postulated that 

the polyDT capture was out competing capture with the feature barcode, since our constructs also 

have a polyA tail. To evaluate this hypothesis, we performed a quantitative polymerase chain 

reaction (qPCR) experiment to quantify abundance of our reporter gene, GFP, in the 



 92 

transcriptome library (Fig 2c). High levels of GFP were detected in the transcriptome library, 

indicating that the feature barcoding approach may not be optimal if the feature includes a polyA. 

 

To address this concern, we tested our alternate design using the 5’ 10x genomics kit. We 

synthesized a new pilot library including 220 sequences expected to be active HepG2 and K562 

controls that have all been previously tested in the lab16,17. Specifically, this library contained 200 

sequences were designed including 52 enhancers that are active only in HepG2, 52 enhancers 

that are active only in K562, 30 active in both cell lines, 30 inactive in both cell lines, 10 of the 

lowest expression in LCLs, 20 synthetic enhancers active in HepG2s, and 10 synthetic enhancers 

inactive in HepG2 and 20 sequences scrambled to act as additional negative controls. The 

parameters for infection and cell culture from the first pilot were used again in this experiment. 

Once again, high quality scRNA-seq data was produced, where HepG2 and K562 cells were 

robustly classified (Fig 3a-c). While detection of MPRA constructs improved, the data was sparse. 

Despite this sparsity, we were able to see higher expression of positive controls compared to the 

negative controls and the scrambled controls (Fig 3d-f).  

5.5 Conclusions   

ScMPRA holds great potential for dissecting GxE in single cells. Here we presented work showing 

a novel design for scMPRA and two pilot experiments. While pilot experiments show constructs 

can be detected and signal between positive and negative controls reflect the expected outcomes 

when aggregated, the capture of these constructs is still very sparse. These initial experiments 

show promise that this method can work, significant optimization is still necessary for robust 

implementation. To this end we are continuing experiments to maximize capture of constructs 

including synthesizing barcodes with CRS to reduce loss due to losses in random barcoding due 

to the association process.  
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Figure 5.1: scMPRA design. A) Design to integrate MPRA and scRNA-seq using the 10x 
feature barcode technology. B) Experimental design to ensure minimal collisions and maximize 
coverage of a 200-sequence enhancer library. 
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Figure 5.2: LCL and HepG2 Feature Barcode pilot results. A) Seurat clustering with 15 
principal components produces 11 clusters colored by cell type determined by marker genes. 
LCLs marked by CD74, a component of HLA-II. HepG2 marked by APOB, a lipoprotein made in 
the liver. B) Unmapped enhancers found in the experiment. C) qPCR cycle thresholds for GFP 
and control genes: ACTB and GAPDH in scMPRA constructs using a minimal promoter (mP) or 
SV40 promoter. 
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Figure 5.3: K562 and HepG2 5’ amplicon pilot results. (A) Expression of APOB and (B) 
CD45 (C) specifically mark HepG2 and K562 cell populations. (D) Expression of positive 
controls is higher than expression of scrambled (E) or previously verified negative controls (F). 
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