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Abstract 

There is much debate over the degree to which language 
learning is governed by innate language-specific biases, or 
acquired through cognition-general principles. Here we 
examine the probabilistic language acquisition hypothesis on 
three levels: We outline a theoretical result showing that 
probabilistic learning in the limit is possible for a very general 
class of languages. We then describe a practical 
computational framework, which can be used to quantify 
natural language learnability of a wide variety of linguistic 
constructions. Finally, we present an experiment which tests 
the learnability predictions for a variety of linguistic 
constructions, for which learnability has been much debated. 
We find that our results support the possibility that these 
linguistic constructions are acquired probabilistically from 
cognition-general principles. 

Keywords: child language acquisition: Gold’s theorem; 
poverty of the stimulus; probabilistic learning; simplicity 
principle; adult grammar judgments; natural language 

Introduction 

A central debate in cognitive science revolves around 

how children acquire their first language. A significant 

portion of this debate centers on how children learn complex 

linguistic structures, such as restrictions to general rules.  

An example restriction-rule can be seen in the contraction of 

‘going to’: ‘I’m gonna leave’ is grammatical whereas ‘I’m 

gonna the store’ is ungrammatical. Language 

communication requires the speaker to generalize from 

previously heard input. However, research shows children 

rarely receive feedback when they produce an over-general, 

ungrammatical sentence. Children also aren’t explicitly told 

which generalizations are allowed and which are not 

(Bowerman, 1988). These observations evoke the question: 

how do children learn that certain overgeneralizations are 

ungrammatical without explicitly being told?  

Traditionally, linguists have claimed that such learning is 

impossible without the aid of innate language-specific 

knowledge (Chomsky, 1975; Crain, 1991; Pinker, 1989; 

Theakston, 2004). However, recently, researchers have 

shown that statistical models are capable of learning 

restrictions to general rules from positive evidence only 

(Dowman, 2007; Foraker, Regier, Khetarpal, Perfors, & 

Tenenbaum, 2009; Grünwald, 1994; Perfors, Regier, & 

Tenenbaum, 2006; Regier & Gahl, 2004).  

Here we examine language acquisition from a 

probabilistic perspective on a theoretical, computational and 

experimental level.  We first revisit Gold’s theorem and 

show that language identification is possible from a 

probabilistic perspective. Next we mention a recently 

proposed, general framework which can quantify 

learnability of constructions in natural language. This 

flexible framework allows for predictions to be made 

concerning the natural language learnability of a wide 

variety of linguistic rules. Finally, we experimentally test 

the learnability predictions obtained from this framework by 

comparing these predictions with adult grammaticality 

judgments for a wide range of linguistic constructions. 

Gold revisited: probabilistic language 

acquisition with a simplicity prior 

Inherent in a simplicity-based approach to language 

acquisition is the trade-off between simpler vs. more 

complex grammars:  Simpler, over-general grammars are 

easier to learn.  However, because they are less accurate 

descriptions of actual language statistics, they result in 

inefficient encoding of language input, i.e. the language is 

represented using longer code lengths.  More complex 

grammars (which enumerate linguistic restrictions) are more 

difficult to learn, but they better describe the language and 

result in a more efficient encoding of the language, i.e., 

language can be represented using shorter code lengths.  

Under simplicity models, language learning can be viewed 

in analogy to investments in energy-efficient, money-saving 

appliances.  By investing in a more complicated grammar, 

e.g. one which contains a restriction on a construction, the 

language speaker obtains encoding savings every time the 

construction occurs. This is analogous to investing in an 

expensive but efficient appliance that saves money with 

each use. A linguistic restriction is learned when the 

relevant linguistic context occurs often enough that the 

accumulated savings makes the more complicated grammar 

worthwhile.  Because complex grammars become worth 

while as linguistic constructions appear more often, 

1720



simplicity models are able to learn restrictions based on 

positive evidence alone (See Figure 1).  

 

 
 

Figure 1: MDL simple grammar vs. efficient language 

encoding trade off.  A) A simpler grammar is often over-

general, i.e., allows for ungrammatical sentences as well as 

grammatical ones.  Such an over-general grammar may be 

easy to describe (i.e., short grammar encoding length), but 

results in less efficient (longer) encoding of the language 

data. B) A more complex grammar may capture the 

language more accurately, i.e., allows only for grammatical 

sentences and doesn’t allow for ungrammatical sentences.  

This more complex grammar may be more difficult to 

describe (i.e., longer grammar encoding length), but will 

provide a shorter encoding of language data.  C) Initially, 

with limited language data, the shorter grammar yields a 

shorter coding length over-all, and is preferred under MDL.  

However, with more language input data, the savings 

accumulated from having a more efficient encoding of 

language data correctly favour the more complex grammar. 

 

A central theoretical question is: given sufficient exposure 

to the language, can the learner recover a perfectly accurate 

description of that language? Gold (1967) famously showed 

that, under certain assumptions, this is not possible. 

However, a range of more positive results have since been 

derived, e.g., (J. A. Feldman et al 1969; Chater & Vitányi 

2007). Here we show that under a simplicity-based 

probabilistic formulation, a new and strong positive result 

can be derived.  

Suppose that the learner encounters sentences, s, which 

are independently sampled generated from a computable 

probability distribution, CP(s), which has Kolmogorov 

complexity K(CP). Here we will define learning a language 

as the process of identifying this distribution. CP(s) 

generates a corpus Sn = s1, s2,...sn,... which continues 

indefinitely. We assume that CP(s) allows all and only 

grammatical sentences in language L. That is, the 

probability of generating all sentences s, that are 

grammatical in L, is greater than zero, CP(s) > 0; and 

conversely, if the probability of a sentence being generated 

is greater than zero, then it is grammatical according to L.  

There is one additional mild constraint that we need to 

impose: that CP(s) has a finite entropy, i.e., 
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This is a modest constraint, because it follows from the 

assumption that the mean sentence length under distribution 

CP(s) is finite, which is clearly true for natural language.  

The learning problem proceeds as follows: A learner is 

given an initial sample of the corpus Sn. The question then 

is: how should the learner assign probabilities to the various 

possible computable distributions CQ that might have 

generated the corpus? This is equivalent to learning: 

Pr(CQ|Sn) ∝ Pr(Sn|CQ)Pr(CQ) 

Also, we ask how these probabilities change as the corpus 

grows arbitrarily long, i.e., as n tends to infinity? In 

particular, can the learner identify the true probability 

distribution, CP, in the limit? 

Intriguingly, it turns out that this is possible – and indeed 

that an ideal learner (Chater & Vitányi 2007)) will 

‘converge’ on the true probability distribution, CP, with 

probability of measure 1, given a sufficiently large corpus. 

Suppose, for concreteness, that the learner “announces” its 

current most probable generating distribution each time a 

new sentence i arrives, based on the i sentences that he has 

received so far Si = {s1, s2,..., si}. More formally, the 

following theorem holds: Consider any computable 

probability distribution CP, from which samples, si, are 

drawn independently to generate a semi-infinite corpus S. 

Let m’ be the number of initial items of S so that Sm’ is a 

“prefix” of S (i.e., a corpus consisting of the first m’ items of 

s). With probability greater than 1-ε, for any ε > 0, there is 

an m such that, under the simplicity principle, for all m’≥m, 

the most probable CQ, given Sm’ is the generating 

distribution CP, i.e., argmax(Pr(CQ|Sm’))=Cp. 

Why is this true? A full proof is beyond the scope of this 

paper (see Chater & Hsu, in preparation); but the essence of 

the argument is the following. We know that almost all 

random samples from P will be incompressible (i.e., n 

sentences generated by the true generative model P will 

have no shorter description than the entropy nH(P)). This 

implies that, for typical data generated by P (which have 

summed probability arbitrarily close to 1), K(P)+nH(P) ≥ 

K(Sn)≥nH(P). Now for each Sn, consider the set of 

probability distributions Q which satisfy this criterion: 

K(Q)+nH(Q)≥K(Sn)≥nH(Q). For each n, there will be 

finitely many such Q; and, by our argument above, these 

will include the true distribution P. Now, for each n, the 

learner “announces” the simplest Q’, i.e., the Q’ such that 

for all Q, K(Q)≥K(Q’). We know that P will always be in 

this set, by the argument above. However, there are only 

finitely many Q that are simpler than P. Once these simpler 

Q have been eliminated, then P will be the shortest element 

in the set, and will be announced indefinitely thereafter. We 

know that each of this finite set will be eliminated for 
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sufficiently large n, because the expected excess cost of 

encoding data generated by P with distribution Q is 

nD(Q||P), where D(Q||P) > 0 unless Q=P; this excess cost 

tends to infinity as n tends to infinity. Hence, for some n’> 

n, after all probability distributions Q with shorter codes 

than P have been eliminated, P will be announced 

indefinitely.  

Practical framework for quantifying 

learnability 

The positive learnability results indicate that the 

probabilistic approach can be practically applied to the 

problem of language acquisition. Recently, researchers have 

used probabilistic models to show that many complex 

linguistic rules can be acquired by directly learning the 

probability distribution of grammatical sentence structures 

in language. These models learn this probability distribution 

under a cognition general prior for simplicity (Dowman, 

2007; Foraker et al., 2009; Grünwald, 1994; Perfors et al., 

2006; Regier & Gahl, 2004).  Many of these studies used 

restricted language sets. In the context of natural language, a 

few studies have addressed specific linguistic cases such as 

anaphoric one (Foraker et al., 2009) and hierarchical phrase 

structure (Perfors et al., 2006).  

Recently, a general quantitative framework has been 

proposed which can be used to assess the learnability of any 

given specific linguistic restriction in the context of real 

language, using positive evidence and language statistics 

alone (Hsu & Chater, 2010). This framework built upon 

previous probabilistic modeling approaches to develop a 

method that is generally applicable to any given 

construction in natural language. This new tool can be used 

to explicitly explore the learnability in a corpus relative to 

well-known information theoretic principles given a 

grammatical description. When using this framework to 

analyze learnability of a linguistic construction, there are 

two main assumptions: 1) The description of the 

grammatical rule for the construction to be learned. 2) The 

choice of corpus which approximates the learner’s input. 

Given these two assumptions, the framework provides a 

method for evaluating whether a construction is present with 

adequate frequency to make it learnable from language 

statistics. The framework allows for comparison of different 

learnability results which arise from varying these two main 

assumptions. By making these assumptions explicit, a 

common forum is provided for quantifying and discussing 

language learnability.  

Minimum Description Length hypothesis 

Because this framework is detailed elsewhere (Hsu & 

Chater 2010), we will only provide a brief overview here. 

Learnability evaluations under a simplicity prior can be 

instantiated through the principle of minimum description 

length (MDL).  MDL is a computational tool that can be 

used to quantify the information available in the input to an 

idealized statistical learner of language as well as of general 

cognitive domains (Jacob Feldman, 2000). When MDL is 

applied to language, grammars can be represented as a set of 

rules, such as that of a probabilistic context free grammar 

(PCFG) (Grünwald, 1994). An information-theoretic cost 

can then be assigned to encoding the grammar rules as well 

as to encoding the language under those rules. 

Hsu & Chater (2010) used an instantiation known as 2-

part MDL, which we will refer to as just MDL for brevity. 

In the context of language acquisition, the first part of MDL 

uses probabilistic grammatical rules to define a probability 

distribution over linguistic constructions, which combine to 

form sentences. Note that these probabilities are not 

necessarily the real probabilities of sentences in language, 

but the probabilities as specified under the current 

hypothesized grammar. The second part of MDL consists of 

the encoded representation of all the sentences that a child 

has heard so far. MDL selects the grammar that minimizes 

the total encoding length (measured in bits) of both the 

grammatical description and the encoded language length
1
.   

According to information theory, the most efficient 

encoding occurs when each data element is assigned a code 

of length equal to the smallest integer greater than or equal 

to -log2(pn) bits, where pn is the probability of the nth 

element in the data. For our purposes, these elements are 

different grammar rules. The probabilities of these grammar 

rules are defined by the grammatical description in the first 

part of MDL.  Because efficient encoding results from 

knowing the correct probabilities of occurrence, the more 

accurately the probabilities defined in the grammar match 

the actual probabilities in language, the more efficient this 

grammar will be.  

Under MDL, the grammatical description is updated to be 

the most efficient one each time more data input is obtained.  

Savings occur because certain grammatical descriptions 

result in a more efficient (shorter) encoding of the language 

data.  In general, more complex (i.e., more expensive) 

grammatical descriptions allow for more efficient encoding 

of the language data.  Because savings accumulate as 

constructions appear more often, more complex grammars 

are learned (i.e., become worth investing in) when 

constructions occur often enough to accumulate a sufficient 

amount of savings. If there is little language data (i.e., a 

person has not been exposed to much language) a more 

efficient encoding of the language does not produce a big 

increase in savings. Thus, when there is less language data, 

it is better to make a cheaper investment in a simpler 

grammar as there is not as much savings to be made. When 

there is more language data, investment in a more costly, 

complicated grammar becomes worthwhile. This 

characteristic of MDL learning can explain the early 

overgeneralizations  followed   by    retreat   to    the correct  

                                                 
1 The MDL framework can also be expressed as a corresponding 

Bayesian model with a particular prior (Chater, 1996; MacKay, 

2003; Vitányi & Li, 2000).  Here, code length of the model (i.e., 

grammar) and code length of data under the model (i.e., the 

encoded language) in MDL correspond to prior probabilities and 

likelihood terms respectively in the Bayesian framework. 
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Table 1: Grammatical and ungrammatical sentences used in experiment. 

 

Construction    Grammatical usage Ungrammatical usage 

is She's as tall as he is. She is as tall as he's. 

arrive The train arrived. He arrived the train. 

come The train came. I came the train. 

donate He donated some money to the charity. He donated the charity some money. 

fall The ornament fell. He fell the ornament. 

disappear The rabbit disappeared. He disappeared the rabbit. 

what is What's it for? What's it? 

shout I shouted the news to her. I shouted her the news. 

pour I poured the pebbles into the tank. I poured the tank with pebbles. 

vanish The rabbit vanished. He vanished the rabbit. 

whisper I whispered the secret to her. I whispered her the secret. 

create I created a sculpture for her. I created her a sculpture. 

who is Who's it for? Who's it? 

going to I'm gonna faint. I'm gonna the store. 

suggest I suggested the idea to her. I suggested her the idea. 

that Who do you think that she called? Who do you think that called her? 

want to Which team do you wanna beat? Which team do you wanna win? 

 

grammar that has been observed in children’s speech 

(Bowerman, 1988). The output of the framework described 

in Hsu & Chater (2010) results in an estimated number of 

occurrences needed for a specific linguistic rule to be 

learned and corpus analysis is then used to assess how many 

years on average are needed for the sufficient number of 

occurrences. The general applicability of this framework 

and its ability to produce clear learnability predictions allow 

us to take the crucial next step in addressing the language 

acquisition problem: experimentally assessing whether 

language might actually be probabilistically acquired. 

Testing learnability predictions 

Hsu & Chater (2010) used the above framework to assess 

language learnability of constructions, whose learnability 

have been commonly debated. These all involve restrictions 

on a general linguistic rule, which was described using 

PCFG’s.  Predictions for learnability in terms of years 

needed was made for constructions whose learnability have 

been commonly debated in the language acquisition field.  

These included restrictions on the following 17 

constructions
2
: contractions of want to, going to, is, what is 

and who is;  the optionality of that reduction; dative 

alternation for the verbs donate, whisper, shout, suggest, 

create, pour; transitivity for the verbs, disappear, vanish, 

arrive, come, fall. See Hsu & Chater (2010) for the explicit 

grammar descriptions of linguistic rules to be learned. The 

                                                 
2 Hsu & Chater (2010) also included analysis of two more 

linguistic rules concerning the necessary transitivity of the verbs 

hit and strike.  Though these verbs are traditionally known to be 

transitive, in colloquial speech they have evolved to have a 

ambitransitive usage: e.g. The storm hit. Lightening struck. In 

COCA there are 3678 and 1961 intransitive occurrences of hit and 

strike respectively. Thus we did not assess rules regarding the 

intransitivity of these verbs in our experiment. 

results showed a large spread in learnability. Some 

constructions appeared readily learnable within just a few 

years whereas other constructions required years that far 

outnumbered human life spans. Hsu & Chater (2010) 

compared predicted MDL learnablity with child grammar 

judgments of constructions for which there was data 

collected from previous experimental work (Ambridge, 

Pine, Rowland, & Young, 2008; Theakston, 2004). It was 

found that child grammar judgments for the constructions 

were more correlated with learnability than frequency 

counts (the entrenchment hypothesis (Theakston, 2004)). 

 

 

Figure 2: Estimated years required to learn construction. 

The constructions are sorted according to learnability: 1) is  

2) arrive 3) come 4) donate 5) fall 6) disappear 7) what is 

8) shout 9) pour 10) vanish 11) whisper 12) create 13) who 

is 14) going to 15) suggest 16) that 17) *want to. *Predicted 

years for learning want to is 3,800years.  

 

Here we propose that construction learnability should also 

correlate with adult grammaticality judgments: The more 

difficult a construction is to learn, the greater the difference 
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should be between judgments of the ungrammatical vs. 

grammatical uses of the construction.   

Model Predictions 

We conducted our learnability analysis using the full Corpus 

of Contemporary American English (COCA), which 

contains 385 million words (90% written, 10% spoken). We 

believe this is a reasonable representation of the 

distributional language information that native English 

language speakers receive. Learnability results using the 

British National Corpus were similar to that from COCA 

(Hsu & Chater, 2010).  Figure 2 shows the estimated 

number years required to learn the 17 constructions. We 

quantified learnability as log(1/Nyears), where Nyears  was the 

number of estimated years needed to learn a construction 

(Hsu & Chater, 2010). 

 

Learnability vs. entrenchment To verify that our 

experimental results are not also trivially explained by a 

simpler hypothesis, we will also compare experimental 

results with the predictions of entrenchment theory. 

Entrenchment is the hypothesis that the likelihood of a child 

over-generalizing a construction is related to the 

construction’s input occurrence frequency. There is some 

relation between learnability and entrenchment predictions 

because high construction occurrence frequencies do aid 

learnability.  However, learnability differs from mere 

frequency counts because MDL also takes into account the 

complexity of the grammatical rule that governs the 

construction to be learned. Additionally, learnability is 

influenced by whether the restricted form would be 

commonly or uncommonly expected, if it were 

grammatically allowed.  Here, we propose that under 

entrenchment hypothesis, the relative grammar judgment 

difference should be related to the construction’s input 

occurrence frequency. (Frequencies estimated from COCA). 

Experimental method 

 

Participants 105 participants were recruited for an online 

grammar judgment study (age range: 16-75 years, mean=34 

years). Results were included in the analysis only for 

participants who answered that they were native English 

speakers (97 out of 105 participants). The majority (74%) of 

our participants learned English in the United States. Other 

countries included the UK (14%), Canada (5%), Australia 

(4%). The rest learned English in either Ireland or New 

Zealand. 

 

Procedure Participants were asked to rate the 

grammaticality of grammatical and ungrammatical 

sentences using the 17 constructions whose learnability 

were quantified above.  These sentences (34 total) are 

shown in Table 1. Grammar judgments ranged from 1-5: 1) 

Sounds completely fine (Definitely grammatical) 2) 

Probably grammatical (Sounds mostly fine) 3) Sounds 

barely passable (Neutral) 4) Sounds kind of odd (probably 

ungrammatical) 5) Sounds extremely odd (Definitely 

ungrammatical). 

Results 

Results show a strong correlation between averaged relative 

grammaticality vs. log learnability as predicted by MDL, 

r=.35; p=.0045 (see Figure 3). Relative grammaticality for a 

given linguistic construction is the grammatical rating for 

the ungrammatical sentence subtracted by the rating for the 

grammatical sentence. Note that 4 is the maximum possible 

relative grammaticality because the lowest ungrammatical 

rating is 5 and the highest grammatical rating is 1. In 

contrast, there is no correlation between relative 

grammaticality and construction occurrence frequency, as 

would be predicted by entrenchment (see Figure 4). 

 

 
 
Figure 3: Human grammar judgments vs. learnability 

analysis. Learnability is log of the inverse of the number of 

estimated years needed to learn the construction. Correlation 

values: r=.35; p=.0045 

 

 
 

Figure 4: Human grammar judgments vs. log of occurrence 

frequency. Frequencies were estimated using Corpus of 

Contemporary American English. 

1724



Summary and Conclusions 

This presented work helps evaluate how much of first 

language is probabilistically acquired from exposure. We 

show that, despite  Gold’s theorem, language is identifiable 

with a cognition general prior of simplicity under fairly 

general assumptions. We then describe a recently 

formulated framework which allows probabilistic 

learnability to be quantified in the context of natural 

language. This framework makes concrete predictions in 

terms of years needed to learn particular linguistic rules, 

given an assumed formulation of the rules to be learned and 

the corpus which represents a learner’s language input. 

There has now been a substantial body of work showing 

that probabilistic language learning is theoretically and 

computationally possible. The important next step in 

research on language acquisition is to assess whether 

probabilistic learning actually occurs in practice. Here we 

make the supposition that if language is probabilistically 

acquired, then there should be evidence of this in adult 

grammar judgments. There is a subtle leap of logic in this 

supposition. MDL learnability assumes that a grammar is 

learned in an absolute sense: once a grammar is chosen 

under MDL, that is the one used and there is no gradation of 

knowledge.  However, here we are conjecturing that 

learnability should not only correlate with how long it takes 

for linguistic rule to be acquired, but also with how certain 

is one’s knowledge of that rule.  The more certain one is of 

a grammatical rule, the greater the difference should be 

one’s acceptability rating of the ungrammatical form 

relative to the grammatical form. Experimental results show 

that predicted learnability correlates well with relative 

grammar judgments for the 17 constructions analyzed, 

chosen as controversial cases from the literature. Our 

experimental results support the possibility that many 

linguistic constructions that have been argued to be innately 

acquired may instead be acquired by probabilistic learning. 

Our learnability predictions were calculated using a large 

corpus (COCA) to represent the distributional language 

input that native English speakers receive.  This assumes 

that the distributional information estimated from this 

corpus is representative of that which influenced the 

language acquisition process in our adult participants. It also 

allows for the possibility that a speaker’s certainty about 

different linguistic rules is updated through adulthood using 

probabilistic learning. If so, older adults might more certain 

in their grammar judgments, is a direction for future work.  
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