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ASYMPTOTIC EXPANSIONS IN TIME FOR ROTATING
INCOMPRESSIBLE VISCOUS FLUIDS

LUAN T. HOANG1 AND EDRISS S. TITI2

Abstract. We study the three-dimensional Navier–Stokes equations of rotating incom-
pressible viscous fluids with periodic boundary conditions. The asymptotic expansions, as
time goes to infinity, are derived in all Gevrey spaces for any Leray-Hopf weak solutions
in terms of oscillating, exponentially decaying functions. The results are established for all
non-zero rotation speeds, and for both cases with and without the zero spatial average of
the solutions. Our method makes use of the Poincaré waves to rewrite the equations, and
then implements the Gevrey norm techniques to deal with the resulting time-dependent
bi-linear form. Special solutions are also found which form infinite dimensional invariant
linear manifolds.

Contents

1. Introduction 1
2. Abstract asymptotic expansions and their properties 9
2.1. Properties of S-polynomials and SS-polynomials 11
2.2. Approximating solutions of certain linear ODEs with S-polynomials 13
3. The case of zero spatial average solutions 14
4. The case of non-zero spatial average solutions 22
5. Some special solutions 25
Appendix A. 28
Acknowledgments 30
References 30

1. Introduction

We study the long-time behavior of the three-dimensional incompressible viscous fluids
rotated about the vertical axis with a constant angular speed. The Navier–Stokes equations
(NSE) written in the rotating frame are used to describe the fluid dynamics in this case, see,
e.g., [28]. We denote by x ∈ R3 the spatial variables, t ∈ R+ = [0,∞) the time variable, and
{e1, e2, e3} the standard canonical basis of R3. The NSE for the rotating fluids are

∂u

∂t
− ν∆u + (u · ∇)u+∇p+ Ωe3 × u = 0, (1.1)

divu = 0, (1.2)
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where u(x, t) is the velocity field, p is the pressure adjusted by the fluid’s constant density,
gravity and centrifugal force, ν > 0 is the kinematic viscosity, and 1

2
Ωe3 is the angular

velocity of the rotation.
Above, Ωe3 × u represents the Coriolis force exerted on the fluid. We will write

e3 × u = Ju, where J =



0 −1 0
1 0 0
0 0 0


 .

Equations (1.1) and (1.2) comprise a system of nonlinear partial differential equations
with the unknowns u and p, while the constants ν > 0 and Ω are given. We will study this
system within the context of spatially periodic functions.

Let L1, L2, L3 > 0 be the spatial periods and denote L = (L1, L2, L3). A function f :
R

3 → R
m, for some m ∈ N, is L-periodic if

f(x+ Ljej) = f(x) for all x ∈ R
3, j = 1, 2, 3.

Consider the L-periodic solutions (u, p), that is, u(·, t) and p(·, t) are L-periodic for all
t > 0.

Let L∗ = max{L1, L2, L3} and λ1 = (2π/L∗)
2. Under the transformation

u(x, t) = λ
1/2
1 ν v(λ

1/2
1 x, λ1νt), p(x, t) = λ1ν

2q(λ
1/2
1 x, λ1νt), Ω = λ1νω,

where v(y, τ) and q(y, τ) are λ
1/2
1 L-periodic adimensional functions, system (1.1) and (1.2)

becomes

λ
3/2
1 ν2

(∂v
∂τ

−∆yv + (v · ∇y)v +∇yq + ωJv
)
= 0 and λ1ν divyv = 0,

thus,
∂v

∂τ
−∆yv + (v · ∇y)v +∇yq + ωJv = 0 and divyv = 0. (1.3)

Thanks to (1.3), we can assume hereafter, without loss of generality, that the Navier–
Stokes system (1.1) and (1.2) has

ν = 1, L∗ = 2π, λ1 = 1. (1.4)

In dealing with L-periodic functions, it is convenient to formulate the equations and func-
tional spaces using the domain (the three-dimensional flat torus)

TL
def
= (R/L1Z)× (R/L2Z)× (R/L3Z).

Regarding the notation in this paper, a vector in C3 is viewed as a column vector, and we
denote the dot product between x,y ∈ C3 by

x · y = yTx = xTy.

Hence, the standard inner product in C3 is x · ȳ.
For k = (k1, k2, k3) ∈ Z3, denote

ǩ = (ǩ1, ǩ2, ǩ3)
def
= 2π(k1/L1, k2/L2, k3/L3), (1.5)

and, in case k 6= 0,

k̃ = (k̃1, k̃2, k̃3)
def
= ǩ/|ǩ|, (1.6)

Xk
def
= {z ∈ C

3 : z · ǩ = 0} = {z ∈ C
3 : z · k̃ = 0}. (1.7)
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In the following, we present the functional setting and functional formulations for the
NSE. We refer the reader to the books [5, 13, 22, 26, 27] for more details.

Denote the inner product and norm in L2(TL)
3 by 〈·, ·〉 and | · |, respectively. The latter

notation is also used for the modulus of a complex number and the length of a vector in Cn,
but its meaning will be clear from the context.

Each u ∈ L2(TL)
3 has the Fourier series

u(x) =
∑

k∈Z3

ûke
iǩ·x, (1.8)

where i =
√
−1, ûk ∈ C3 are the Fourier coefficients with the reality condition û−k = ûk. If

u has zero spatial average over TL then û0 = 0.
We now focus on the case of solutions u(x, t) with zero spatial average over TL, for any

t ≥ 0. The general case will be studied in section 4. For brevity, denote
∑′

=
∑

k∈Z3\{0}

.

Let V be the space of zero-average, divergence-free L-periodic trigonometric polynomial
vector fields, that is, it consists of functions

u =
∑′

ûke
iǩ·x

where ûk ∈ Xk, û−k = ûk for all k ∈ Z
3 \ {0}, and ûk 6= 0 for only finitely many k’s.

Let H , respectively (resp.) V , be the closure of V in L2(TL)
3, resp. H1(TL)

3.
We use the following embeddings and identification

V ⊂ H = H ′ ⊂ V ′,

where each space is dense in the next one, and the embeddings are compact.
Let P denote the orthogonal (Leray) projection from L2(TL)

3 onto H . More precisely,

P
( ∑

k∈Z3

ûke
iǩ·x

)
=

∑′
[ûk − (ûk · k̃)k̃]eiǩ·x =

∑

k∈Z3

P̂kûke
iǩ·x =

∑′
P̂kûke

iǩ·x,

where P̂k’s are symmetric 3× 3 matrices given by

P̂0 = 0, P̂k = I3 − k̃k̃T for k ∈ Z
3 \ {0}. (1.9)

The Stokes operator A is a bounded linear mapping from V to its dual space V ′ defined
by

〈Au,v〉V ′,V = 〈〈u,v〉〉 def
=

3∑

j=1

〈 ∂u
∂xj

,
∂v

∂xj
〉, for all u,v ∈ V.

As an unbounded operator on H , the operator A has the domain D(A) = V ∩H2(TL)
3,

and, under the current consideration of periodicity conditions,

Au = −P∆u = −∆u ∈ H, for all u ∈ D(A).

With the Fourier series, this reads as

Au =
∑′

|ǩ|2ûke
iǩ·x, for u =

∑′
ûke

iǩ·x ∈ D(A).

The spectrum of A is known to be

σ(A) =
{
|ǩ|2 : k ∈ Z

3,k 6= 0
}
,
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and each λ ∈ σ(A) is an eigenvalue with finite multiplicity. We order

σ(A) = {Λn : n ∈ N}, where the sequence (Λn)
∞
n=1 is strictly increasing.

The additive semigroup generated by σ(A) is

〈σ(A)〉 def
=

{ n∑

j=1

αj : n ∈ N, αj ∈ σ(A) for 1 ≤ j ≤ n
}
. (1.10)

The set 〈σ(A)〉 is ordered as a strictly increasing sequence (µn)
∞
n=1. Note that Λn, µn → ∞

as n → ∞, and, by (1.4), µ1 = Λ1 = λ1 = 1.
For Λ ∈ σ(A), we denote by RΛ the orthogonal projection from H onto the eigenspace of

A corresponding to Λ, and set

PΛ =
∑

λ∈σ(A),λ≤Λ

Rλ.

Note that each vector space PΛH is finite dimensional.

For α, σ ∈ R and u =
∑′

ûke
iǩ·x ∈ H , define

Aαu =
∑′

|ǩ|2αûke
iǩ·x, eσA

1/2

u =
∑′

eσ|ǩ|ûke
iǩ·x,

and

AαeσA
1/2

u =
∑′

|ǩ|2αeσ|ǩ|ûke
iǩ·x.

For α, σ ≥ 0, the Gevrey spaces are defined by

Gα,σ = D(AαeσA
1/2

)
def
= {u ∈ H : |u|α,σ def

= |AαeσA
1/2

u| < ∞}.
In particular, when σ = 0 the domain of the fractional operator Aα is

D(Aα) = Gα,0 = {u ∈ H : |Aαu| = |u|α,0 < ∞}.
Observe that for σ > 0, Gα,σ consists of real analytic divergence-free vector fields.
Thanks to the zero-average condition, the norm |Am/2u| is equivalent to ‖u‖Hm(Ω)3 on the

space D(Am/2), for m = 0, 1, 2, . . .

Note that D(A0) = H , D(A1/2) = V , and ‖u‖ def
= |∇u| is equal to |A1/2u|, for all u ∈ V .

Also, the norms | · |α,σ are increasing in α, σ, hence, the spaces Gα,σ are decreasing in α, σ.

Regarding the nonlinear terms in the NSE, a bounded linear map B : V × V → V ′ is
defined by

〈B(u,v),w〉V ′,V = b(u,v,w)
def
=

∫

TL

((u · ∇)v) ·w dx, for all u,v,w ∈ V.

In particular,

B(u,v) = P((u · ∇)v), for all u,v ∈ D(A). (1.11)

In fact, if u =
∑′

ûke
iǩ·x ∈ D(A) and v =

∑′
v̂ke

iǩ·x ∈ D(A), then (u · ∇)v has zero

spatial average and

(u · ∇)v =
∑′

b̂ke
iǩ·x, where b̂k =

∑

m̌+ǰ=ǩ

i(ûm · ǩ)v̂j, (1.12)
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and, consequently,

B(u, v) =
∑′

P̂kb̂ke
iǩ·x. (1.13)

Applying the projection P of the equation (1.1), we obtain

du

dt
+ Au+B(u, u) + ΩPJu = 0, (1.14)

with solution u ∈ H . In the case of non-rotation, i.e. Ω = 0, equation (1.14) is the standard
NSE

du

dt
+ Au+B(u, u) = 0. (1.15)

Since Pu = u, for u ∈ H , equation (1.14) is equivalent to

du

dt
+ Au+B(u, u) + ΩSu = 0 (1.16)

with u ∈ H , where S = PJP. Equation (1.16) will be the focus of our study.
Note that if u is as in (1.8), then

Su =
∑′

P̂kJP̂kûke
iǩ·x. (1.17)

We have the following elementary properties:

〈Su,AαeσA
1/2

u〉 = 0, for all α, σ ≥ 0 and u ∈ D(AαeσA
1/2

), (1.18)

b(u, v, w) = −b(u, w, v) and b(u, v, v) = 0, for all u, v, w ∈ V. (1.19)

Because of relation (1.18) with α = σ = 0, the energy balance/inequality for (1.16) is the
same as for (1.15). Hence, the following definitions of weak and regular solutions for (1.16)
are quite similar to those for (1.15), see, e.g., [5, 13, 27].

Definition 1.1. (a) A Leray-Hopf weak solution u(t) of (1.16) is a mapping from [0,∞) to
H such that

u ∈ C([0,∞), Hw) ∩ L2
loc([0,∞), V ), u′ ∈ L

4/3
loc ([0,∞), V ′),

and satisfies
d

dt
〈u(t), w〉+ 〈〈u(t), w〉〉+ b(u(t), u(t), w) + Ω〈Su, w〉 = 0

in the distribution sense in (0,∞) (in fact in L
4/3
loc ([0,∞))), for all w ∈ V , and the energy

inequality
1

2
|u(t)|2 +

∫ t

t0

‖u(τ)‖2dτ ≤ 1

2
|u(t0)|2

holds for t0 = 0 and almost all t0 ∈ (0,∞), and for all t ≥ t0. Here, Hw denotes the
topological vector space H with the weak topology.

(b) We say a function u(t) is a Leray-Hopf weak solution on [T,∞) if u(T + ·) is a
Leray-Hopf weak solution.

A Leray-Hopf weak solution u(t) on [T0,∞), for some T0 ∈ R+, is a regular solution on
[T0, T0 + T ), for some 0 < T ≤ ∞, if

u ∈ C([T0, T0 + T ), V ) ∩ L2
loc([T0, T0 + T ),D(A)), and u′ ∈ L2

loc([T0, T0 + T ), H).

A global regular solution is a regular solution on [0,∞).
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Same as for equation (1.15), the basic questions, for equation (1.16), about the uniqueness
of weak solutions, and the global existence of regular solutions are still open, see Theorem 1.3
below. Regarding the second question, it is proved in Babin-Mahalov-Nicolaenko [1] that for
any initial data u0 ∈ V , there is Ω0 > 0 depending on u0 such that global regular solutions
exist for all |Ω| > Ω0. Moreover, it is also showed in [1] that the long-time dynamics of (1.16),
with an additional non-potential body force, is close to that of a so-called “21

2
-dimensional

NSE” when |Ω| is sufficiently large. However, these basic questions will be bypassed and the
mentioned results of [1] will not be needed in this study. It is due to the eventual regularity
and decay (to zero) of the solutions, see Proposition 3.4 below. We, instead, will focus on
the refined analysis of that decay.

When Ω = 0, the long-time dynamics of equation (1.15), which covers the case of potential
forces, is studied in details early in [14–18], and later in [7–11,20]. (The case of non-potential
forces is treated in [2, 3, 21]. See also the survey paper [12] for more information.) Briefly
speaking, it is proved in [17] that any solution u(t) of (1.15) admits an asymptotic expansion,
as t → ∞,

u(t) ∼
∞∑

n=1

qn(t)e
−µnt, (1.20)

where qn(t) is an V-valued polynomial in t. See Definition 2.2 below for more information.
When Ω 6= 0, one can initially view equation (1.16) the same as (1.15) with the linear

operator Ã = A + ΩS replacing A, and follow [17] to obtain the asymptotic expansions.

However, the spectrum of Ã, and its eigenspaces will be more complicated. The expansions
will be of the form

u(t) ∼
∑

µ∈〈σ(Ã)〉

qµ(t)e
−µt, (1.21)

where 〈σ(Ã)〉 is defined similarly to (1.10).

One can see that the additive semigroup 〈σ(Ã)〉 is a set of complex numbers, much more
complicated than 〈σ(A)〉, and consequently expansion (1.21) is considerably more compli-
cated than (1.20). The construction of qµ(t) must consider various scenarios including reso-
nance and non-resonance cases, which are harder to track for complex values µ’s. To avoid
all these technicalities, we propose another approach that converts (1.16) to (1.15) with a
time-dependent bilinear form. By maintaining the operator A, the expansions will be sim-
ilar to (1.20), and the proof will be direct and clean in the spirit of [17], taking advantage
of recent improvements in [20, 21]. This approach was, in fact, successfully used in [1] in
studying the global well-posedness for regular solutions of (1.16).

Rewriting the variational NSE using the Poincaré waves. In dealing with term ΩSu
in (1.16), we will make a change of variables using the exponential operator etS . Clearly, S
is a bounded linear operator on L2(TL)

3 with norm ‖S‖L(L2(TL)3) = 1. For our problem, we
restrict etS to H only, and have the isometry group etS : H → H , t ∈ R, is analytic in t.

It is well-known, see e.g. [1, 4], that one has, for u =
∑′

ûke
iǩ·x ∈ H ,

etSu =
∑′

Ek(k̃3t)ûke
iǩ·x, where Ek(t) = cos(t)I3 + sin(t)Jk, (1.22)
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with Jk being the 3× 3 matrix for which Jkz = k̃× z, for all z ∈ C3. Explicitly, the matrix
Jk, for k ∈ Z3 \ {0}, is

Jk =




0 −k̃3 k̃2
k̃3 0 −k̃1
−k̃2 k̃1 0


 . (1.23)

For the reader’s convenience, we include a simple proof of (1.22) in Appendix A.
One sees that

(Ek(t))
∗ = Ek(−t),

|Ek(t)z| = |z|, for all z ∈ Xk.

From these properties, we deduce

(etS)∗ = e−tS (on H), (1.24)

|etSu|α,σ = |u|α,σ, for all α, σ ≥ 0 and u ∈ D(AαeσA
1/2

). (1.25)

Also, some relations between S and A are

ASu = SAu, etSAu = AetSu, for all u ∈ D(A) and t ∈ R. (1.26)

The bi-linear form in (1.16) will be transformed to a similar, but time-dependent one that
we describe below.

Let t,Ω ∈ R. Define b(t, ·, ·, ·) : V 3 → R and bΩ(t, ·, ·, ·) : V 3 → R by

b(t, u, v, w) = b(e−tSu, e−tSv, e−tSw), bΩ(t, u, v, w) = b(Ωt, u, v, w),

for all u, v, w ∈ V . We then define B(t, ·, ·) : V × V → V ′ by

〈B(t, u, v), w〉V ′,V = b(t, u, v, w), for all u, v, w ∈ V. (1.27)

In particular, thanks to (1.11) and (1.24),

B(t, u, v) = etSB(e−tSu, e−tSv), for all u, v ∈ D(A). (1.28)

Define BΩ(t, u, v) = B(Ωt, u, v).

We now rewrite equation (1.16) using the Poincaré waves e−ΩtSw, for w ∈ H and t ∈ R.
Let u(t) be a solution of (1.16). Set v(t) = eΩtSu(t), or equivalently, u(t) = e−ΩtSv(t).
If u ∈ C1((0,∞), H) ∩ C((0,∞),D(A)) then, with (1.26) taken into account, v solves

dv

dt
+ Av +BΩ(t, v, v) = 0, t > 0. (1.29)

With this formulation, equation (1.29) resembles more with (1.15) than (1.16). The dif-
ference between (1.29) and (1.15) is the time-dependent bi-linear form BΩ(t, ·, ·). However,
this bi-linear form turns out to possess many features similar to B(·, ·) itself.

For example, from (1.27) and (1.19), we have, for all Ω, t ∈ R and u, v, w ∈ V , that

〈BΩ(t, u, v), w〉V ′,V = −〈BΩ(t, u, w), v〉V ′,V , (1.30)

and, consequently,

〈BΩ(t, u, v), v〉V ′,V = 0. (1.31)

This prompts the following definition of weak solutions of (1.29).
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Definition 1.2. A Leray-Hopf weak solution v(t) of (1.29) is a mapping from [0,∞) to H
such that

v ∈ C([0,∞), Hw) ∩ L2
loc([0,∞), V ), v′ ∈ L

4/3
loc ([0,∞), V ′),

and satisfies
d

dt
〈v(t), w〉+ 〈〈v(t), w〉〉+ bΩ(t, v(t), v(t), w) = 0

in the distribution sense in (0,∞) (in fact in L
4/3
loc ([0,∞))), for all w ∈ V , and the energy

inequality
1

2
|v(t)|2 +

∫ t

t0

‖v(τ)‖2dτ ≤ 1

2
|v(t0)|2

holds for t0 = 0 and almost all t0 ∈ (0,∞), and all t ≥ t0.
Other definitions in (b) of Definition 1.1 are extended to the solution v(t).

Similar to the case Ω = 0, we have the following existence, uniqueness and regularity
results for equations (1.16) and (1.29).

Theorem 1.3. Let Ω 6= 0 be a given number.

(i) For any u0 ∈ H, there exists a Leray-Hopf weak solution u(t) of (1.16), resp. v(t) of
(1.29), with initial data u0. Moreover, there is T0 = T0(u0) ≥ 0 such that u, resp. v,
is a regular solution on [T0,∞).

(ii) For any u0 ∈ V , there exists a unique regular solution u(t) of (1.16), resp. v(t)
of (1.29), with initial data u0, on an interval [0, T ) for some T > 0. If ‖u0‖ is
sufficiently small, then T = ∞.

(iii) For any Leray-Hopf weak solution u(t) of (1.16), resp. v(t) of (1.29), and any number
σ > 0, there exists T∗ > 0 such that u(t), resp. v(t), belongs to G1/2,σ, for all t ≥ T∗,
and the equation (1.16), resp. (1.29), holds in D(A) on (T∗,∞) with classical time
derivative.

Parts (i) and (ii) of Theorem 1.3 are standard. Part (iii) can be proved by using the same
technique of Foias-Temam [19], noticing that we have the orthogonality (1.18). See details
of similar calculations in [20], and also more specific statements in Proposition 3.4 below.

The current paper is focused on a different question, namely, the precise long-time dy-
namics of the solutions of (1.16) for all Ω 6= 0. Even though they eventually, as t → ∞, go
to zero, our goal is to provide a detailed description of such a decay. In the case with the
zero spatial average of the solutions, we will show that each solution possesses an asymptotic
expansion which is similar to (1.20), but contains some oscillating terms that are from the
rotation. The oscillating parts, in this case, are written in terms of sinusoidal functions of
time. (See a similar result by Shi [25] for dissipative wave equations.) In the general case
of non-zero spatial average, similar asymptotic expansions are obtained with the oscillating
terms being expressed by the “double sinusoidal” functions.

This paper is organized as follows. In section 2, we introduce our abstract asymptotic
expansions, for large time, in terms of oscillating-decaying functions. Our basic classes of
functions are the S-polynomials and SS-polynomials, see Definition 2.1, below. Fundamental
properties of these two classes are studied. In particular, when the forcing term of a linear
ordinary differential equation (ODE) is a perturbation of an S-polynomial, then the ODE’s
solution can be approximated by S-polynomials, see Lemma 2.9, below. This lemma turns
out to be a building block in our constructions of polynomials in the asymptotic expansions.
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In section 3, we establish the asymptotic expansions for solutions of (1.29) and (1.16),
below, in Theorems 3.1 and 3.2, respectively. The expansions are in terms of S-polynomials
and exponential functions. It is worth mentioning that these results are established for all
Ω 6= 0 and for all Leray-Hopf weak solutions. In particular, it does not rely on Babin-
Mahalov-Nicolaenko’s global well-posedness result [1], which, as mentioned after Definition
1.1, requires Ω to be sufficiently large depending on the initial data. In section 4, we derive
the asymptotic expansions for solutions without the zero spatial averages. This is done by
using the specific Galilean-type transformation (4.5). Unlike the previous section, this yields
the expansions in terms of SS-polynomials. In section 5, we present some special solutions
that form infinite dimensional linear manifolds that are invariant under the flows generated
by the solutions of (1.16). Especially, Remark 5.2 contains a subclass of solutions for which
the helicity, a meaningful physical quantity in fluid dynamics [23, 24], vanishes. The case of
non-zero spatial average of the solutions is treated in Theorem 5.4, below.

2. Abstract asymptotic expansions and their properties

We introduce here the classes of functions which will appear in our asymptotic expansions.

Definition 2.1. Let X be a vector space over the scalar field K = R or K = C.

(a) A function g : R → X is an X-valued S-polynomial if it is a finite sum of the
functions of the set

{
tm cos(ωt)Z, tm sin(ωt)Z : m ∈ N ∪ {0}, ω ∈ R, Z ∈ X

}
. (2.1)

(b) A function g : R → X is an X-valued SS-polynomial if it is a finite sum of the
functions of the set

{
tm cos

(
a cos(ωt) + b sin(ωt) + ct+ d

)
Z,

tm sin
(
a cos(ωt) + b sin(ωt) + ct + d

)
Z :

m ∈ N ∪ {0}, a, b, c, d, ω ∈ R, Z ∈ X
}
.

(2.2)

(c) Denote by F0(X), resp., F1(X) and F2(X) the set of all X-valued polynomials, resp.,
S-polynomials and SS-polynomials.

Clearly, F0(X), F1(X) and F2(X) are vector spaces overK, and F0(X) ⊂ F1(X) ⊂ F2(X).
If f ∈ F1(X), then we can write f as

f(t) =

N∑

n=0

tnfn(t), (2.3)

where

fn(t) =
Nn∑

j=1

[an,j cos(ωn,jt) + bn,j sin(ωn,jt)], (2.4)

with Nn ∈ N, an,j, bn,j ∈ X , and ωn,j ≥ 0 with the mapping j 7→ ωn,j being strictly increasing
for each fixed n.
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Definition 2.2. Let (X, ‖ · ‖X) be a normed space and (αn)
∞
n=1 be a sequence of strictly

increasing non-negative real numbers. Let F = F0, F1, or F2. A function f : [T,∞) → X,
for some T ∈ R+, is said to have an asymptotic expansion

f(t) ∼
∞∑

n=1

fn(t)e
−αnt in X, (2.5)

where each fn belongs to F(X), if one has, for any N ≥ 1, that

∥∥∥f(t)−
N∑

n=1

fn(t)e
−αnt

∥∥∥
X
= O(e−(αN+εN )t), as t → ∞, (2.6)

for some εN > 0.

With this definition, the precise statement of (1.20) is that it holds, with F(X) = F0(X),
in the space X = Gα,σ, for all α, σ ≥ 0.

The expansion (2.5) with F = F1 is equivalent to the one used in [25], for the dissipative
wave equations, while with the largest class F = F2 is new. For other related asymptotic
expansions for solutions of NSE, see [2, 3].

One can observe, same as in [21, Remark 2.3], that if (2.6) holds for all N then

∥∥∥f(t)−
N∑

n=1

fn(t)e
−αnt

∥∥∥
X
= O(e−αt), as t → ∞, (2.7)

for all N and all α ∈ (αN , αN+1).

Lemma 2.3. Given N ∈ N, if f1, f2, . . . , fN ∈ F1(X) satisfy (2.6), then such S-polynomials
fn’s are unique.

Proof. Let g1, g2, . . . , gN be functions in F1(X) that satisfy

∥∥∥f(t)−
N∑

n=1

gn(t)e
−αnt

∥∥∥
X
= O(e−(αN+ε′N )t), as t → ∞ for some ε′N > 0.

Let hn = fn − gn. By the triangle inequality, we have

∥∥∥
N∑

n=1

hn(t)e
−αnt

∥∥∥
X
≤

∥∥∥f(t)−
N∑

n=1

fn(t)e
−αnt

∥∥∥
X
+
∥∥∥f(t)−

N∑

n=1

gn(t)e
−αnt

∥∥∥
X
,

hence
∥∥∥

N∑

n=1

hn(t)e
−αnt

∥∥∥
X
= O(e−(αN+ε)t), as t → ∞, for ε = min{εN , ε′N} > 0. (2.8)

Suppose that not all hn’s are zero functions. Let n0 be the smallest number such that
hn0

6= 0. By multiplying (2.8) with eαn0
t, we deduce

‖hn0
(t)‖X = O(e−ε′t), for some ε′ > 0. (2.9)

We write hn0
(t) in the form of (2.3). Suppose the highest order term (with respect to the

power of t) of hn0
(t) is tdz(t), where d is a non-negative integer, and z is a non-zero function

of the form as in the RHS of (2.4). Then dividing (2.9) by td yields

lim
t→∞

‖z(t)‖X = 0. (2.10)
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Suppose

z(t) =

Nd∑

n=1

[an cos(ωnt) + bn sin(ωnt)], (2.11)

where Nd ∈ N, an, bn ∈ X and ωn ∈ R, for 1 ≤ n ≤ Nd.
Let Y be the vector space spanned by {an, bn ∈ X : 1 ≤ n ≤ Nd}. Let Y = {Yj : 1 ≤ j ≤

m} be a basis of Y . By representing the vectors an’s and bn’s in basis Y , we can rewrite z(t)
as

z(t) =

m∑

j=1

zj(t)Yj,

where m ∈ N, each zj : R → K, for 1 ≤ j ≤ m, is a linear combination of the functions
cos(ωnt) and sin(ωnt), for 1 ≤ n ≤ Nd, in (2.11).

For y =
∑m

j=1 yjYj ∈ Y , with yj ∈ K for 1 ≤ j ≤ m, define the norm

‖y‖Y =
( m∑

j=1

|yj|2
)1/2

.

On the finite dimensional space Y , the norms ‖ · ‖X and ‖ · ‖Y are equivalent. Therefore,
(2.10) gives

lim
t→∞

‖z(t)‖Y = 0, which implies lim
t→∞

zj(t) = 0, for 1 ≤ j ≤ m.

By Lemma A.1, we obtain zj = 0 for all j. Hence z = 0, which leads to a contradiction.
Thus, hn = 0, for all n = 1, 2, . . . , N . We conclude fn = gn, for 1 ≤ n ≤ N . The proof is
complete. �

Remark 2.4. We discuss a consequence of Lemma 2.3. Suppose (2.6) is satisfied with

X = Gβi,σi
and fn = g

(i)
n ∈ F1(X), for i = 1, 2 and 1 ≤ n ≤ N . Let β̄ = min{β1, β2} and

σ̄ = min{σ1, σ2}. Then (2.6) is satisfied with both fn = g
(1)
n and fn = g

(2)
n on the same space

X = Gβ̄,σ̄. By the virtue of Lemma 2.3, we have g
(1)
n = g

(2)
n , for 1 ≤ n ≤ N .

2.1. Properties of S-polynomials and SS-polynomials. We start this subsection with
some elementary properties of the functions introduced in Definition 2.1 above.

Lemma 2.5. Let X and K be as in Definition 2.1, and F(X) = F1(X) or F(X) = F2(X).
Let f be any function in F(X).

(i) The functions t 7→ f(T + t) and t 7→ f(kt) belong to F(X) for any numbers T, k ∈ R.
(ii) If g ∈ F1(K), then gf ∈ F(X).
(iii) In case X is a subspace of Cn, with K = C, then eiωtf ∈ F(X).
(iv) Suppose Y is another vector space over K and L is a linear mapping from X to Y .

Then Lf ∈ F(Y ).

Proof. Parts (i) and (ii) can be easily verified by using elementary trigonometric identities
such as the sine and cosine of a sum, and the product to sum formulas. Part (iii) is obtained
by applying part (ii) to the function g(t) = eiωt which, in fact, belongs to F1(C). Part (iv)
is obvious. �

Lemma 2.6. Let F = F1 or F = F2. Then, a function f belongs to F(V) if and only if

f(t) =
∑′

finitely many k

fk(t)e
iǩ·x, with each fk ∈ F(Xk), and f−k = fk, (2.12)
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where Xk is as in (1.7).

Proof. We prove for the case F = F1. The arguments for the other case F = F2 are similar
and omitted.

Suppose f ∈ F1(V). We write

f(t) =

N∑

j=1

tmj [aj cos(ωjt) + bj sin(ωjt)]uj , each aj , bj ∈ R, uj ∈ V.

By writing the finite Fourier series of each uj and combining the coefficients for eiǩ·x, we
find that the Fourier series of f is of the form as in (2.12) with each fk(t) being a finite sum
of tmj [aj cos(ωjt) + bj sin(ωjt)]z for some z ∈ Xk. Thus, fk ∈ F1(Xk). The last relation in
(2.12) is the standard condition for f to be real-valued.

Now, suppose f is as in (2.12). For each k, consider the function

Fk(t) = fk(t)e
iǩ·x + f−k(t)e

−iǩ·x = fk(t)e
iǩ·x + fk(t)e

−iǩ·x.

If fk(t) contains t
m cos(ωt)z for some z ∈ Xk, then Fk(t) contains

tm cos(ωt)(zeiǩ·x + z̄e−iǩ·x). (2.13)

Since zeiǩ·x + z̄e−iǩ·x ∈ V, the function in (2.13) belongs to F1(V). Similar property holds
for sin(ωt) replacing cos(ωt), and we obtain Fk ∈ F1(V). Then f being a finite sum of such
Fk’s yields f ∈ F1(V). �

The following are important properties relating the S- and SS- polynomials with the ro-
tation and nonlinear terms in the rotational NSE.

Lemma 2.7. Let Λ ∈ σ(A), two functions f, g ∈ F1(PΛH), and Ω ∈ R. Then

eΩtSf(t) ∈ F1(PΛH), (2.14)

B(f(t), g(t)) ∈ F1(P4ΛH), (2.15)

BΩ(t, f(t), g(t)) ∈ F1(P4ΛH). (2.16)

Proof. (a) By Lemma 2.6, we can write f(t) as

f(t) =
∑′

|ǩ|2≤Λ

fk(t)e
iǩ·x, with each fk ∈ F1(Xk), and f−k = fk. (2.17)

Applying (1.22) yields

eΩtSf(t) =
∑′

|ǩ|2≤Λ

Ek(Ωk̃3t)fk(t)e
iǩ·x. (2.18)

Applying Lemma 2.5 to F = F1, g(t) := cos(Ωk̃3t) and then g(t) := sin(Ωk̃3t), one has each

Ek(Ωk̃3t)fk(t) belongs to F1(Xk). Then by the virtue of the sufficient condition in Lemma
2.6, we have eΩtSf(t) ∈ F1(V). This and the restriction |ǩ|2 ≤ Λ in (2.18) give (2.14).

(b) We prove (2.15). By Lemma 2.6 again, we can assume, in addition to (2.17), that

g(t) =
∑′

|ǩ|2≤Λ

gk(t)e
iǩ·x, with each gk ∈ F1(Xk), and g−k = gk.



Asymptotic Expansions for Rotating Incompressible Viscous Fluids 13

By (1.13), we have

B(f(t), g(t)) =
∑′

Bk(t)e
iǩ·x, (2.19)

where
Bk(t) =

∑

0<|m̌|2,|̌j|2≤Λ,

m̌+ǰ=ǩ

(fm(t) · i ǩ)P̂kgj(t). (2.20)

Thanks to formula (2.20) for Bk, we only need to sum over k in (2.19) with

|ǩ|2 = |m̌+ ǰ|2 ≤ 2(|m̌|2 + |̌j|2) ≤ 4Λ.

Thus, B(f(t), g(t)) ∈ P4ΛH for all t ∈ R.

Note that P̂k = P̂−k. In the sum (2.20), we will pair m̌+ǰ = ǩ forBk(t) with (−m̌)+(−ǰ) =

(−ǩ) for B−k(t). Because
(
fm · i ǩ

)
P̂kgj, for Bk(t), and

(
f−m · (−i ǩ)

)
P̂−kg−j, for B−k(t),

are conjugates of each other, so are Bk(t) and B−k(t).

Using Lemma 2.5 (ii) and (iv), one can verify that
(
fm · i ǩ

)
P̂kgj belongs to F1(Xk), hence

Bk(t) ∈ F1(Xk).
By combining the above facts with Lemma 2.6, we conclude (2.15).
(c) Next, we prove (2.16). Because f(t), g(t) ∈ F1(PΛH), we apply (2.14) to have e−ΩtSf(t)

and e−ΩtSg(t) belong to F1(PΛH), which, by (2.15), imply

B(e−ΩtSf(t), e−ΩtSg(t)) ∈ F1(P4ΛH),

which, in turn, thanks to (2.14) again, further implies

eΩtSB(e−ΩtSf(t), e−ΩtSg(t)) ∈ F1(P4ΛH).

Therefore, thanks also to (1.28), we conclude (2.16). �

2.2. Approximating solutions of certain linear ODEs with S-polynomials. In our
proofs, we often need the following integrals.

Lemma 2.8. Let α, ω ∈ R with α2 + ω2 > 0, and m be a non-negative integer. Then each
integral ∫

tmeαt cos(ωt)dt,

∫
tmeαt sin(ωt)dt (2.21)

is of the form
p(t)eαt cos(ωt) + q(t)eαt sin(ωt) + const.,

where p(t) and q(t) are polynomials of degrees at most m.

Although this lemma is elementary, we give a proof in Appendix A that yields simple and
explicit formulas for the integrals in (2.21), see (A.4) below.

The next lemma essentially originates from Foias-Saut [17], but is stated and proved in
the same convenient form as [21, Lemma 4.2].

Lemma 2.9. Let (X, ‖ · ‖X) be a Banach space. Suppose y is a function in C([0,∞), X),
with distribution derivative y′ ∈ L1

loc([0,∞), X), that solves the following ODE

y′(t) + βy(t) = p(t) + g(t)

in the X-valued distribution sense on (0,∞), where β ∈ R is a constant, p(t) is an X-valued
S-polynomial, and g ∈ L1([0,∞), X) satisfies

‖g(t)‖X ≤ Me−δt, for all t ≥ 0, and some M, δ > 0. (2.22)
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Define q(t), for t ∈ R, by

q(t) =





e−βt
∫ t

−∞
eβτp(τ)dτ if β > 0,

y(0) +
∫∞

0
g(τ)dτ +

∫ t

0
p(τ)dτ if β = 0,

−e−βt
∫∞

t
eβτp(τ)dτ if β < 0.

(2.23)

Then q(t) is an X-valued S-polynomial that satisfies

q′(t) + βq(t) = p(t), for all t ∈ R, (2.24)

and the following estimates hold:

(i) If β > 0 then

‖y(t)− q(t)‖2X ≤ 2e−2βt‖y(0)− q(0)‖2X + 2t

∫ t

0

e−2β(t−τ)‖g(τ)‖2Xdτ, for all t ≥ 0. (2.25)

(ii) If either
(a) β = 0, or
(b) β < 0 and

lim
t→∞

(eβt‖y(t)‖X) = 0, (2.26)

then

‖y(t)− q(t)‖2X ≤
( M

δ − β

)2

e−2δt, for all t ≥ 0. (2.27)

Proof. Thanks to Lemma 2.8, q(t) is an X-valued S-polynomial. The rest of this lemma is
the same as [21, Lemma 4.2], except for the relaxed estimate (2.25) which we verify now.
Consider β > 0. Let z(t) = y(t)− q(t). Recall the inequality after (4.13) in [21, Lemma 4.2],
for all t ≥ 0,

‖z(t)‖X ≤ e−βt‖z(0)‖+
∫ t

t0

e−β(t−τ)‖g(τ)‖Xdτ. (2.28)

Using Cauchy-Schwarz’s and Hölder’s inequalities, we estimate

‖z(t)‖2X ≤ 2e−2βt‖z(0)‖2X + 2
(∫ t

0

e−β(t−τ)‖g(τ)‖Xdτ
)2

≤ 2e−2βt‖z(0)‖2X + 2t

∫ t

0

e−2β(t−τ)‖g(τ)‖2Xdτ.

Therefore, we obtain (2.25). �

3. The case of zero spatial average solutions

We obtain two main asymptotic expansion results, one for equation (1.29), and the other
for equation (1.16).

Theorem 3.1. For any Leray-Hopf weak solution v(t) of (1.29), there exist unique V-valued
S-polynomials qn’s, for all n ∈ N, such that it holds, for any α, σ > 0 and N ≥ 1, that

∣∣∣v(t)−
N∑

n=1

qn(t)e
−µnt

∣∣∣
α,σ

= O
(
e−µt

)
, as t → ∞, for all µ ∈ (µN , µN+1). (3.1)
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That is,

v(t) ∼
∞∑

n=1

qn(t)e
−µnt in Gα,σ, for all α, σ > 0.

Theorem 3.1 is our key technical result. With this, we immediately obtain the asymptotic
expansions for solutions of (1.16).

Theorem 3.2. Let u(t) be any Leray-Hopf weak solution of (1.16). Then there exist unique
V-valued S-polynomials Qn’s, for all n ∈ N, such that it holds, for any α, σ > 0 and N ≥ 1,
that ∣∣∣u(t)−

N∑

n=1

Qn(t)e
−µnt

∣∣∣
α,σ

= O
(
e−µt

)
, as t → ∞, for all µ ∈ (µN , µN+1). (3.2)

That is,

u(t) ∼
∞∑

n=1

Qn(t)e
−µnt in Gα,σ, for all α, σ > 0.

Moreover, each Qn is related to qn in Theorem 3.1 via relation (3.5), below.

Proof. Let T∗ > 0 be as in Theorem 1.3(iii). Set v(t) = eΩtSu(t). Then v(t) is a regular
solution of (1.29) on [T∗,∞). Applying Theorem 3.1 to solution v(T∗ + t), we have, for all
α, σ > 0 and N ≥ 1, that

∣∣∣v(T∗ + t)−
N∑

n=1

qn(t)e
−µnt

∣∣∣
α,σ

= O
(
e−µt

)
, as t → ∞, for all µ ∈ (µN , µN+1), (3.3)

where all qn’s belong to F1(V). By shifting the time variable, we obtain from (3.3) that

∣∣∣v(t)−
N∑

n=1

qn(t− T∗)e
−µn(t−T∗)

∣∣∣
α,σ

= O
(
e−µt

)
, as t → ∞. (3.4)

Let
Qn(t) = eµnT∗e−ΩtSqn(t− T∗). (3.5)

Rewrite the left-hand side of (3.4) as

∣∣∣eΩtS
(
u(t)−

N∑

n=1

Qn(t)e
−µnt

)∣∣∣
α,σ

, which equals
∣∣∣u(t)−

N∑

n=1

Qn(t)e
−µnt

∣∣∣
α,σ

thanks to the isometry (1.25). Thus, we obtain (3.2). Thanks to Lemma 2.5(i), each qn(t−T∗)
is a V-valued S-polynomial, and hence, by (2.14) of Lemma 2.7, so is each Qn(t). The
uniqueness of the S-polynomials Qn’s follows from Lemma 2.3. �

Our proof of Theorem 3.1 uses the Gevrey norm technique. We recall a convenient esti-
mate in [20, Lemma 2.1] for the Gevrey norms of the the bi-linear form B(·, ·), which is a
generalization of the original inequality in [19, Lemma 2.1], and also the Sobolev estimates
in [9].

There exists a constant K ≥ 1 such that for any numbers α ≥ 1/2, σ ≥ 0, and any
functions v, w ∈ Gα+1/2,σ, one has

|B(v, w)|α,σ ≤ Kα|v|α+1/2,σ|w|α+1/2,σ. (3.6)

The same estimate as (3.6) can be obtained for B(t, v, w).
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Lemma 3.3. For any numbers α ≥ 1/2, σ ≥ 0, any functions v, w ∈ Gα+1/2,σ and any
t ∈ R, one has

|B(t, v, w)|α,σ ≤ Kα|v|α+1/2,σ|w|α+1/2,σ, (3.7)

where K is the constant in (3.6).

Proof. By the isometry (1.25) and inequality (3.6), we have

|B(t, v, w)|α,σ = |B(e−tSv, e−tSw)|α,σ
≤ Kα|e−tSv|α+1/2,σ|e−tSw|α+1/2,σ = Kα|v|α+1/2,σ|w|α+1/2,σ,

which proves (3.7). �

As another preparation for the proof of Theorem 3.1, we establish the relevant estimates
for the Gevrey norms of v(t), when t is large.

Proposition 3.4. Let v0 ∈ H and v(t) be a Leray-Hopf weak solution of (1.29). For any
σ > 0, there exist T,Dσ > 0 such that

|v(t)|1/2,σ+1 ≤ Dσe
−t, for all t ≥ T.

Moreover, for any α ≥ 0 there exists Dα,σ > 0 such that

|v(t)|α+1/2,σ ≤ Dα,σe
−t, for all t ≥ T. (3.8)

Proof. Thanks to the isometry (1.25), properties (1.30), (1.31), and inequality (3.7), the
proof, with µ1 = 1 under the current setting, is exactly the same as in [20, Theorem 2.4] and
is omitted. �

We now are ready to prove Theorem 3.1.

Proof of Theorem 3.1. This proof follows [17] and [20, 21] with necessary modifications.
Firstly, we note, by part (iii) of Theorem 1.3, that there exists T∗ > 0 such that equation

(1.29) holds in the classical sense in D(A) on (T∗,∞).
Let σ > 0 be fixed. For each N ∈ N, our main statement is
(HN) There exist V-valued S-polynomials qn’s for n = 1, 2, . . . , N , such that

∣∣∣v(t)−
N∑

n=1

qn(t)e
−µnt

∣∣∣
α,σ

= O(e−(µN+ε)t) as t → ∞, (3.9)

for all α > 0, and some ε = εN,α > 0. Moreover, each vn(t)
def
= qn(t)e

−µnt, for n = 1, 2, . . . , N ,
solves the equation

v′n(t) + Avn(t) +
∑

1≤m,j≤n−1

µm+µj=µn

BΩ(t, vm(t), vj(t)) = 0, for all t ∈ R. (3.10)

Claim: (HN) holds true for any N ∈ N.
We prove this Claim by induction in N .

First step N = 1. Given α ≥ 1/2. By estimate (3.8), there exist T0 > T∗ and d0 > 0 such
that

|v(t)|α+1/2,σ ≤ d0e
−µ1t, for all t ≥ T0. (3.11)

Set w0 = eµ1tv(t). We have, for t ∈ (T0,∞), that

w′
0 = eµ1t(v′ + µ1v) = eµ1t(−Av − BΩ(t, v, v)) + µ1v),
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hence

w′
0 + (A− µ1)w0 = H0(t)

def
= −eµ1tBΩ(t, v(t), v(t)). (3.12)

Estimate (3.11) and inequality (3.7) imply

|H0(T0 + t)|α,σ ≤ eµ1(T0+t)Kα|v(T0 + t)|2α+1/2,σ ≤ M0e
−µ1t, for all t ≥ 0, (3.13)

where M0 = Kαd20e
−µ1T0 .

For k ∈ N, applying the projection RΛk
to equation (3.12) gives

(RΛk
w0)

′ + (Λk − µ1)RΛk
w0 = RΛk

H0(t). (3.14)

We apply Lemma 2.9 to equation (3.14) in the space X = RΛk
H with norm ‖ ·‖X = | · |α,σ,

solution y(t) = RΛk
w0(T0 + t), S-polynomial p(t) ≡ 0, constant β = Λk − µ1 ≥ 0, function

g(t) = RΛk
H0(T0 + t) and numbers M = M0, δ = µ1 in (2.22).

When k = 1, we have β = 0, then by Lemma 2.9(ii), it follows that

|RΛ1
w0(T0 + t)− ξ1|α,σ = O(e−µ1t), (3.15)

where

ξ1 = RΛ1
w0(T0) +

∫ ∞

0

eµ1τRΛ1
H0(T0 + τ)dτ,

which exists and belongs to RΛ1
H .

When k ≥ 2, we have β ≥ µ2 − µ1 > 0, and it follows Lemma 2.9(i) that q(t) defined by
(2.23) is 0, and, by (2.25), one has

|RΛk
w0(T0 + t)|2α,σ ≤ 2e−2(Λk−µ1)t|RΛk

w0(T0)|2α,σ + 2t

∫ t

0

e−2(Λk−µ1)(t−τ)|RΛk
H0(T0 + τ)|2α,σdτ

≤ 2e−2(µ2−µ1)t|RΛk
w0(T0)|2α,σ + 2t

∫ t

0

e−2(µ2−µ1)(t−τ)|RΛk
H0(T0 + τ)|2α,σdτ.

Summing up this inequality in k gives

|(Id− RΛ1
)w0(T0 + t)|2α,σ =

∞∑

k=2

|RΛk
w0(T0 + t)|2α,σ

≤ 2e−2(µ2−µ1)t

∞∑

k=2

|RΛk
w0(T0)|2α,σ + 2t

∫ t

0

e−2(µ2−µ1)(t−τ)

∞∑

k=2

|RΛk
H0(T0 + τ)|2α,σdτ

≤ 2e−2(µ2−µ1)t|w0(T0)|2α,σ + 2te−2(µ2−µ1)t

∫ t

0

e2(µ2−µ1)τ |H0(T0 + τ)|2α,σdτ.

Using (3.13), we obtain

|(Id− RΛ1
)w0(T0 + t)|2α,σ ≤ 2e−2(µ2−µ1)t

(
|w0(T0)|2α,σ + 2M0t

∫ t

0

e2(µ2−2µ1)τdτ
)
.

We simply use the fact µ2 ≤ 2µ1 in the last integral, and obtain

|(Id− RΛ1
)w0(T0 + t)|2α,σ ≤ 2e−2(µ2−µ1)t

(
|w0(T0)|2α,σ + 2M0t

2
)
. (3.16)

Combining (3.15), (3.16) and the fact µ2 − µ1 ≤ µ1, gives

|w0(t)− ξ1|α,σ ≤ |RΛ1
w0(t)− ξ1|α,σ + |(Id−RΛ1

)w0(t)|α,σ = O(e−εt), (3.17)

for any number ε such that 0 < ε < µ2 − µ1.
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Define

q1(t) ≡ ξ1. (3.18)

Multiplying (3.17) by e−µ1t yields (3.9) for N = 1. Also, since ξ1 ∈ RΛ1
H , it is clear

that v1(t) = ξ1e
−Λ1t satisfies v′1(t) + Av1(t) = 0 on R. Hence, v1 satisfies (3.10) with n = 1,

because the sum of the bi-linear terms in (3.10) is void. Note that q1 does not depend on α.
Therefore, the statement (HN) holds true for N = 1.

Induction step. Let N ≥ 1 and assume the statement (HN) holds true. Let qn, for
n = 1, 2, . . . , N, be the V-valued S-polynomials in (HN). There exists Λ ∈ σ(A) such that

qn ∈ F1(PΛH), for all 1 ≤ n ≤ N. (3.19)

Let vn(t) = qn(t)e
−µnt, denote sN(t) =

∑N
n=1 vn(t) and rN(t) = v(t)− sN(t). Let α ≥ 1/2.

(a) By the definition of vn, we have, for n ≥ 2,

|vn(t)|α+1/2,σ = O(e−(µn−δ)t) ∀δ > 0, (3.20)

and, thanks to (3.18),

|v1(t)|α+1/2,σ = O(e−µ1t).

The last two properties imply

|sN(T + t)|α+1/2,σ = O(e−µ1t). (3.21)

By the induction hypothesis (HN) applied to α + 1/2, there exists ε > 0 such that

|rN(t)|α+1/2,σ = O(e−(µN+ε)t). (3.22)

We derive a differential equation for rN(t), for t > T∗. We calculate from (1.29) and (3.10)
for n = 1, 2, . . . , N that

r′N = v′ −
N∑

n=1

v′n = −Av − BΩ(t, v, v)−
N∑

n=1

{
−Avn −

∑

1≤m,j≤n−1

µm+µj=µn

BΩ(t, vm, vj)
}

= −ArN − BΩ(t, rN(t), v(t))−BΩ(t, sN(t), rN(t))−BΩ(t, sN(t), sN(t))

+
∑

µm+µj≤µN

BΩ(t, vm, vj).

We manipulate the last two terms as

− BΩ(t, sN(t), sN(t)) +
∑

µm+µj≤µN

BΩ(t, vm, vj) = −
∑

1≤m,j≤N
µm+µj≥µN+1

BΩ(t, vm(t), vj(t))

= −
∑

1≤m,j≤N
µm+µj=µN+1

BΩ(t, vm, vj)−
∑

1≤m,j≤N
µm+µj≥µN+2

BΩ(t, vm(t), vj(t)).

Thus, we obtain

r′N(t) + ArN(t) +
∑

1≤m,j≤N
µm+µj=µN+1

BΩ(t, vm(t), vj(t)) = hN , for t > T∗, (3.23)
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where

hN(t) = −BΩ(t, rN(t), v(t))− BΩ(t, sN(t), rN(t))−
∑

1≤m,j≤N
µm+µj≥µN+2

BΩ(t, vm(t), vj(t)). (3.24)

(b) We estimate each term on the right-hand side of (3.24). Note from (3.11), (3.22),
(3.20), (3.21) and (3.7) that

|BΩ(t, rN(t), v(t))|α,σ = O(e−(µN+µ1+ε)t), (3.25)

|BΩ(t, sN(t), rN(t))|α,σ = O(e−(µN+µ1+ε)t), (3.26)

and for 1 ≤ m, j ≤ N with µm + µj ≥ µN+2,

|BΩ(t, vm(t), vj(t))|α,σ = O(e−(µm+µj−2δ)t) = O(e−(µN+2−2δ)t), ∀δ > 0. (3.27)

Since µN + µ1 ≥ µN+1, 2µN ≥ µN+1 and µN+2 > µN+1, by taking δ sufficiently small in
(3.27), we have from (3.24), (3.25), (3.26) and (3.27) that

|hN(t)|α,σ = O(e−(µN+1+δN )t), for some δN ∈ (0, µN+2 − µN+1). (3.28)

(c) Define wN(t) = eµN+1trN(t), and wN,k(t) = RΛk
wN(t), for k ∈ N. We have from (3.23)

that
d

dt
wN,k + (Λk − µN+1)wN,k = −

∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(t, qm, qj) +RΛk

HN(t), (3.29)

where HN(t) = eµN+1thN (t). By (3.19) and (2.16),

BΩ(t, qm(t), qj(t)) ∈ F1(P4ΛH), (3.30)

which implies that the finite sum
∑

1≤m,j≤N
µm+µj=µN+1

BΩ(t, qm(t), qj(t)) ∈ F1(P4ΛH).

Consequently, ∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(t, qm(t), qj(t)) ∈ F1(RΛk

H). (3.31)

By the first property in Lemma 2.5(i),
∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(T + t, qm(T + t), qj(T + t)) ∈ F1(RΛk

H), for all T ∈ R.

By (3.28), |HN(t)|α,σ = O(e−δN t). Then there exist TN > T∗ and MN > 0 such that

|HN(TN + t)|α,σ ≤ MNe
−δN t, for all t ≥ 0. (3.32)

We will apply Lemma 2.9 again to equation (3.29) in the space X = RΛk
H with norm

‖ · ‖X = | · |α,σ, solution y(t) = wN,k(TN + t), constant β = Λk − µN+1, S-polynomial

p(t) = −
∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(TN + t, qm(TN + t), qj(TN + t)),

function g(t) = RΛk
HN(TN + t), numbers M = MN and δ = δN in (3.32).

We consider three cases.
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Case Λk = µN+1. Then β = 0 in (3.29). Let

ξN+1
def
= RµN+1

rN(TN ) +

∫ ∞

0

eµN+1τRµN+1
HN(TN + τ) dτ,

which exists and belongs to RµN+1
H . Define

pN+1,k(t) = ξN+1 −
∫ t

0

∑

1≤m,j≤N
µm+µj=µN+1

RµN+1
BΩ(TN + τ, qm(TN + τ), qj(TN + τ))dτ. (3.33)

Case Λk ≤ µN . Then β < 0 in (3.29). Note, by (3.22), that

eβt|y(t)|α,σ = eΛkt|RΛk
rN(TN + t)|α,σ ≤ eµN t|RΛk

rN(TN + t)|α,σ = O(e−εt).

Hence condition (2.26) is met. Define

pN+1,k(t) = e−(Λk−µN+1)t

∫ ∞

t

e(Λk−µN+1)τ

·
( ∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(TN + τ, qm(TN + τ), qj(TN + τ))

)
dτ.

(3.34)

In the above two cases of Λk, by applying Lemma 2.9(ii), we obtain pN+1,k ∈ F1(RΛk
H)

that satisfies

|wN,k(TN + t)− pN+1,k(t)|2α,σ = O(e−2δN t). (3.35)

Case Λk ≥ µN+2. Then β > 0 in (3.29). Define

pN+1,k(t) = −e−(Λk−µN+1)t

∫ t

−∞

e(Λk−µN+1)τ

·
( ∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(TN + τ, qm(TN + τ), qj(TN + τ))

)
dτ.

(3.36)

Applying Lemma 2.9(i), we obtain pN+1,k ∈ F1(RΛk
H), and, by (2.25),

|wN,k(TN + t)− pN+1,k(t)|2α,σ ≤ 2e−2(Λk−µN+1)t|wN,k(TN)− pN+1,k(0)|2α,σ

+ 2t

∫ t

0

e−2(µN+2−µN+1)(t−τ)|RΛk
HN(TN + τ)|2α,σdτ.

(3.37)

Denote zN,k(t) = wN,k(TN + t)− pN+1,k(t), which is the remainder on the left-hand side of
(3.35) and (3.37).

On the one hand, because there are only finitely many k’s with Λk ≤ µN+1, it follows from
(3.35) that

∑

Λk≤µN+1

|zN,k(t)|2α,σ = O(e−2δN t). (3.38)
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On the other hand, summing inequality (3.37) in k for which Λk ≥ µN+2, we obtain
∑

Λk≥µN+2

|zN,k(t)|2α,σ ≤ 4e−2(µN+2−µN+1)t
∑

Λk≥µN+2

|wN,k(TN )− pN+1,k(0)|2α,σ

+ 2t

∫ t

0

e−2(µN+2−µN+1)(t−τ)
∑

Λk≥µN+2

|RΛk
HN(TN + τ)|2α,σdτ. (3.39)

For the terms on the right-hand side of (3.39), we have
∑

Λk≥µN+2

|wN,k(TN )− pN+1,k(0)|2α,σ ≤ 2
∑

Λk≥µN+2

|RΛk
wN(TN)|2α,σ + 2

∑

Λk≥µN+2

|pN+1,k(0)|2α,σ

≤ 2|wN(TN )|2α,σ + 2
∑

Λk≥µN+2

|pN+1,k(0)|2α,σ.

It follows from (3.31) and (3.36) that pN+1,k ≡ 0, for Λk > max{4Λ, µN+1}. Thus,
∑

Λk≥µN+2

|pN+1,k(0)|2α,σ is a finite sum, and hence is finite.

Also, the last integral in (3.39) has
∑

Λk≥µN+2

|RΛk
HN(TN + τ)|2α,σ ≤ |HN(TN + τ)|2α,σ ≤ M2

Ne
−2δN τ .

Therefore, there exists C0 > 0 such that

∑

Λk≥µN+2

|zN,k(t)|2α,σ ≤ 4C0e
−2(µN+2−µN+1)t + 2M2

N te
−2(µN+2−µN+1)t

∫ t

0

e2(µN+2−µN+1−δN )τdτ.

Recall that δN < µN+2 − µN+1 in (3.32). Calculating the last integral explicitly, we easily
find

∑

Λk≥µN+2

|zN,k(t)|2α,σ ≤ 4C0e
−2(µN+2−µN+1)t +

M2
N te

−2δN t

µN+2 − µN+1 − δN
≤ CNe

−δN t, (3.40)

for some constant CN > 0.
Combining (3.38) and (3.40) gives

∞∑

k=1

|zN,k(t)|2α,σ = O(e−δN t). (3.41)

(d) Let Λ∗ be the smallest Λn such that Λn ≥ max{4Λ, µN+1}. By (3.30) and formulas
(3.33), (3.34), (3.36), we have

pN+1,k ∈ F1(PΛk
H) ⊂ F1(PΛ∗H), for Λk ≤ Λ∗, and pN+1,k = 0, for Λk > Λ∗. (3.42)

Define, for t ∈ R,

qN+1(t) =

∞∑

k=1

pN+1,k(t− TN). (3.43)

Thanks to (3.42), the sum in (3.43) is only a finite sum, and qN+1 ∈ F1(PΛ∗H).
Obviously,

RΛk
qN+1(t + TN) = pN+1,k(t), (3.44)
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hence, zN,k(t) = RΛk

(
wN(t + TN)− qN+1(t + TN)

)
. It follows from (3.41) that

|wN(t+ TN )− qN+1(t+ TN )|2α,σ =
∞∑

k=1

|zN,k(t)|2α,σ = O(e−δN t),

which implies that

|wN(t)− qN+1(t)|α,σ = O(e−δN t/2).

Multiplying this equation by e−µN+1t, we obtain the desired statement (3.9) for N + 1.
(e) It remains to prove the ODE (3.10), for n = N +1. By (2.24) of Lemma 2.9, we have,

for each k, that

p′N+1,k(t) + (Λk − µN+1)pN+1,k(t) +
∑

1≤m,j≤N
µm+µj=µN+1

RΛk
BΩ(TN + t, qm(TN + t), qj(TN + t)) = 0.

From this and (3.44), we deduce

(RΛk
qN+1(t))

′ + (Λk − µN+1)RΛk
qN+1(t) +RΛk

∑

1≤m,j≤N
µm+µj=µN+1

BΩ(t, qm(t), qj(t)) = 0.

Multiplying this equation by e−µN+1t yields

(RΛk
vN+1(t))

′ + A(RΛk
vN+1(t)) +RΛk

∑

1≤m,j≤N
µm+µj=µN+1

BΩ(t, vm(t), vj(t)) = 0,

where vN+1(t) = qN+1(t)e
−µN+1t. Note in this equation that vN+1(t) and BΩ(t, vm(t), vj(t))

all belong to PΛ∗H . Then summing up the equation in k, for which Λk ≤ Λ∗, yields that the
ODE system (3.10) holds for n = N + 1. According to Remark 2.4, the S-polynomial qN+1

is independent of α. Therefore, the statement (HN+1) is proved.
By the induction principle, the statement (HN) holds true for all N , i.e., the Claim is

proved.
Now, we note that at step n = N +1, the qn’s, for n = 1, 2, . . . , N , are those from the step

n = N , and are used in the construction of qN+1. Therefore, for each σ > 0, such recursive
construction gives the existence of the S-polynomials qn’s, for all n ∈ N. By Remark 2.4
again, all these qn’s are, in fact, independent of σ. Therefore, (3.9) holds true for all N , α,
σ. Then estimate (3.1) follows thanks to (2.7). Finally, by Lemma 2.3, the S-polynomials
qn’s are unique. The proof is complete. �

Remark 3.5. The statement and proof of Theorem 3.1 can be presented simply with G0,σ

for all σ ≥ 0. Nonetheless, general calculations in the above proof for Gα,σ are flexible and
can be applied to cover the case when a non-potential force is included in the NSE and has
limited regularity in Gα,σ for a fixed σ, see [2, 3, 21].

Remark 3.6. It is not known whether the polynomials Qn’s in Theorem 3.2 have any limits
as |Ω| → ∞. However, such a question can be answered for some special solutions, see
Remark 5.5 below.

4. The case of non-zero spatial average solutions

In this section, we establish the asymptotic expansions for the solutions with non-zero
spatial averages.
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Assumption 4.1. Throughout this section, u(x, t) ∈ C2,1
x,t (R

3× (0,∞))∩C(R3× [0,∞)) and
p(x, t) ∈ C1

x(R
3 × (0,∞)) are L-periodic functions that form a solution (u, p) of the NSE

(1.1) and (1.2).

Note that any L-periodic function on R3 can be considered as a function on the flat torus
TL. In particular, u(t) = u(·, t) and p(t) = p(·, t) can be considered as functions on TL.

Suppose f is a L-periodic vector field on R3 and f ∈ D(AαeσA
1/2

), for some α, σ ≥ 0. Let

g(x) = f(x +X0), for some fixed X0 ∈ R3, then g ∈ H . Let f(x) =
∑′

f̂ke
iǩ·x, then

g(x) =
∑′

ĝke
iǩ·x, where ĝk = f̂ke

iǩ·X0.

It follows that |ĝk| = |̂fk|, and consequently,

|f(·+X0)|α,σ = |g(·)|α,σ = |f(·)|α,σ. (4.1)

Returning to the solution (u, p), denote, for t ≥ 0,

U(t) =
1

L1L2L3

∫

TL

u(x, t)dx.

Integrating equation (1.1) over the domain TL gives

U′(t) + ΩJU(t) = 0, t > 0.

Hence,

U(t) = e−ΩtJU(0) =




cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1


U(0). (4.2)

Theorem 4.2. There exist V-valued SS-polynomials Qn(t)’s, for all n ∈ N, such that

u(t)−U(t) ∼
∞∑

n=1

Qn(t)e
−µnt in Gα,σ, for all α, σ > 0. (4.3)

Proof. For t ≥ 0, define V(t) =
∫ t

0
U(τ)dτ , which, by (4.2), is

V(t) =
1

Ω




sin(Ωt) 1− cos(Ωt) 0
cos(Ωt)− 1 sin(Ωt) 0

0 0 Ωt


U(0). (4.4)

We use the following hyper-Galilean transformation [6]:

w(x, t) = u(x+V(t), t)−U(t), ϑ(x, t) 7→ p(x+V(t), t). (4.5)

By simple calculations, one can verify

wt −∆w + (w · ∇)w + ΩJw = −∇ϑ and divw = 0,

that is, (w, ϑ) is also a classical solution of the system (1.1) and (1.2) on R3 × (0,∞).
Note that (w, ϑ) is L-periodic, and w(·, t) has zero average for each t ≥ 0. Applying

Theorem 3.2 to the solution w(t) = w(·, t) we obtain

w(t) ∼
∞∑

n=1

Qn(t)e
−µnt in Gα,σ, for all α, σ > 0, (4.6)
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where Qn(t)’s are V-valued S-polynomials.
Assume each Qn(t) is a mapping x 7→ Qn(x, t). Note that each Qn(t) belongs to V, hence

Qn(x, t), as a function of x ∈ R3, is L-periodic. Let N ∈ N, α, σ > 0 and µ ∈ (µN , µN+1).
We have from (4.6) and (2.7) that

∣∣∣u(x+V(t), t)−U(t)−
N∑

n=1

Qn(x, t)e
−µnt

∣∣∣
α,σ

= O(e−µt).

This and (4.1) imply

∣∣∣u(x, t)−U(t)−
N∑

n=1

Qn(x−V(t), t)e−µnt
∣∣∣
α,σ

= O(e−µt),

which means
∣∣∣u(t)−U(t)−

N∑

n=1

Qn(t)e
−µnt

∣∣∣
α,σ

= O(e−µt), (4.7)

where Qn(t) = Qn(·−V(t), t) for n ∈ N. It remains to prove that Qn ∈ F2(V), for all n ∈ N.
Suppose

Qn(x, t) =
∑′

finitely many k

Q̂n,k(t)e
iǩ·x, with Q̂n,k(t) ∈ F1(Xk).

Then

Qn(t) =
∑′

finitely many k

Q̂n,k(t)e
−iǩ·V(t)eiǩ·x =

∑′

finitely many k

Q̂n,k(t)e
iǩ·x,

where Q̂n,k(t) = Q̂n,k(t)
[
cos(ǩ ·V(t))− i sin(ǩ ·V(t))

]
.

Using the formula of V(t) in (4.4), one can see that

ǩ ·V(t) = r1 cos(Ωt) + r2 sin(Ωt) + r3t + r4,

for some numbers r2, r2, r3, r4 ∈ R, that depend on ǩ.
By using the product to sum formulas between trigonometric functions, we have

Q̂n,k(t) cos(ǩ ·V(t)), Q̂n,k(t) sin(ǩ ·V(t)) ∈ F2(Xk).

Therefore, Q̂n,k(t) ∈ F2(Xk), and, by Lemma 2.6, Qn(t) ∈ F2(V). With this fact, we obtain
the expansion (4.3) from estimate (4.7). �

Remark 4.3. We can roughly rewrite (4.3) as an asymptotic expansion of u(t) as

u(t) ∼ U(t) +
∞∑

n=1

Qn(t)e
−µnt.

This shows that U(t) is the leading order term in the asymptotic approximation, as t →
∞, i.e., the O(1) term, is explicitly determined by (4.2), and is responsible for the non-
zero average of u(t). The following order terms in the approximation are all exponentially
decaying and are with zero spatial averages.
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5. Some special solutions

We present next some special solutions of (1.1) and (1.2). They are inspired by examples
in [7, 8, 16] for the case without rotation.

Let k = (k1, k2, k3) ∈ Z3 \ {0} with k̃ = (k̃1, k̃2, k̃3) be fixed. For any m ∈ Z∗ = Z \ {0},
we note from (1.5), (1.6) and (1.23) that

m̌k = mǩ, m̃k = sgn(m)k̃, and Jmk = sgn(m)Jk. (5.1)

We define Vk to be the space of all u ∈ V such that

u =
∑

m∈Z∗

ûmke
imǩ·x. (5.2)

By (1.12), one immediately sees that

(u · ∇)v = 0, for all u, v ∈ Vk. (5.3)

Let u ∈ Vk as in (5.2) and t ∈ R. We have, by (1.22), (5.2) and (5.1),

etSu =
∑

m∈Z∗

Ek(k̃3t)ûmke
imǩ·x.

Hence
etSu ∈ Vk. (5.4)

Combining (5.3) and (5.4) yields

[(etSu) · ∇](etSv) = 0, for all u, v ∈ Vk and t ∈ R. (5.5)

Theorem 5.1. Let k ∈ Z3 \ {0} be fixed and u0 ∈ Vk, then problem (1.16), with initial
condition u(0) = u0, has a unique global regular solution

u(t) = e−tAe−ΩtSu0, for t ≥ 0. (5.6)

Moreover, u(t) solves the linear equation

ut + Au+ ΩSu = 0, for t > 0. (5.7)

Proof. Let u0 =
∑

m∈Z∗
û0,mke

imǩ·x ∈ Vk. Set v(t) = e−tAu0. First, we have

vt + Av = 0, for all t > 0. (5.8)

Note that u(t) defined by (5.6) equals e−ΩtSv(t). Then u(0) = u0 and, by (5.8), u(t) solves
(5.7).

Clearly, v(t) ∈ Vk, for all t ≥ 0, hence, by (5.5),

(u(t) · ∇)u(t) = 0, (5.9)

which gives B(u(t), u(t)) = 0. The last fact and (5.7) imply that u(t) also solves (1.16).
Since u(t) is a global, regular solution, it is unique. �

Remark 5.2. We find some special solutions for which the helicity H(t)
def
= 〈∇ × u(t), u(t)〉

vanishes for all t ≥ 0. (See [23,24] for the physics of helicity, and [7,8] for its analysis in the
case of non-rotating fluids.) We consider the solution in Theorem 5.1, which can be written
explicitly as

u(t) =
∑

m∈Z∗

e−m2|ǩ|2t
{
cos(k̃3Ωt)û0,mk − sin(k̃3Ωt)k̃× û0,mk

}
eimǩ·x. (5.10)
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Then the vorticity is

∇× u(t) =
∑

m∈Z∗

e−m2|ǩ|2tim|ǩ|
{
cos(k̃3Ωt)k̃× û0,mk + sin(k̃3Ωt)û0,mk

}
eimǩ·x,

and the helicity is

H(t) = L1L2L3

∑

m∈Z∗

e−2m2|ǩ|2tim|ǩ|
{
cos2(k̃3Ωt)Jkû0,mk · û0,mk − sin2(k̃3Ωt)û0,mk · Jkû0,mk

− cos(k̃3Ωt) sin(k̃3Ωt)
[
û0,mk · û0,mk − Jkû0,mk · Jkû0,mk

]}

= L1L2L3

∑

m∈Z∗

e−2m2|ǩ|2tim|ǩ|
[
Jkû0,mk · û0,mk

]

− L1L2L3

∑

m∈Z∗

e−2m2|ǩ|2tim|ǩ|
[
2 cos(k̃3Ωt) sin(k̃3Ωt)|û0,mk|2

]
.

When summing over m and −m, the last sum vanishes. Hence,

H(t) = L1L2L3

∑

m∈Z∗

e−2m2|ǩ|2t2m|ǩ|
[(
Re(û0,mk)× Im(û0,mk)

)
· k̃

]
.

Thus, H(t) = 0 for all t ≥ 0, provided that

(
Re(û0,mk)× Im(û0,mk)

)
· k̃ = 0, for all m ∈ Z∗. (5.11)

However, since û0,mk is orthogonal to k̃ then Re(û0,mk)× Im(û0,mk) is co-linear with k̃, and
as result (5.11) is equivalent to

Re(û0,mk)× Im(û0,mk) = 0, for all m ∈ Z∗. (5.12)

This class of solutions (5.10), (5.12) with vanishing helicity for the NSE of rotating fluids
has more restrictive wave vectors, i.e., themk’s in (5.10), than those studied in [7, Proposition
6.4] for the NSE without the rotation.

Corollary 5.3. There exist infinitely many vector spaces of infinite dimensions that are
invariant under the NSE (1.16), and each space is not a subspace of any of the others.

Proof. According to Theorem 5.1, each vector space Vk is invariant under the NSE (1.16),
and each has infinite dimension. Moreover, there are infinite many k’s which are pairwise not
co-linear. For those k’s, the corresponding Vk’s are the vector spaces for which the statement
holds true. �

Next, we consider the case of non-zero spatial average solutions.

Theorem 5.4. Suppose u0 = U0 + w0, where U0 is a constant vector in R3, and

w0 =
∑

m∈Z∗

û0,mke
imǩ·x ∈ Vk.
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Let U(t) = e−ΩtJU0 and V(t) =
∫ t

0
U(τ)dτ . Define, for x ∈ R3 and t > 0,

u(x, t) = U(t) +
∑

m∈Z∗

e−m2|ǩ|2te−imǩ·V(t)Ek(−k̃3Ωt)û0,mke
imǩ·x, (5.13)

p(x, t) = p∗(t)− Ω
∑

m∈Z∗

i

m|ǩ|
e−m2|ǩ|2te−imǩ·V(t)

·
[
cos(k̃3Ωt)J k̃ + sin(k̃3Ωt)e3

]
· û0,mke

imǩ·x, (5.14)

where p∗(t) is any scalar function. Then (u, p) is a solution of (1.1) and (1.2) on R3×(0,∞).

Proof. Let w(t) = e−tAe−tΩSw0, which we write as w(t) = w(·, t). By Theorem 5.1, particu-
larly, (5.7) and (5.9), we have

(w · ∇)w = 0 and wt −∆w + ΩJw = −∇q,

where the scalar function q(x, t) satisfies the geostrophic balance

Ωdiv(Jw) = −∆q.

We solve this equation by

q(x, t) = p∗(t) + Ω(−∆)−1div(Jw(x, t)), (5.15)

where the inverse operator (−∆)−1 is meant to apply to functions having zero spatial average
over TL.

We note that w(x, t) is Gevrey-regular, for each t > 0. Therefore, the following calcula-
tions are valid in the classical sense. Define

u(x, t) = w(x−V(t), t) +U(t) and p(x, t) = q(x−V(t), t). (5.16)

(The functions u and p in (5.16) will be proved to agree with those in (5.13) and (5.14)
later.)

Since w is divergence-free, then, clearly, so is u. We calculate, with the shorthand notation
u = u(x, t) and w = w(x−V(t), t),

ut = wt − (U · ∇)w +U′ = wt − (U · ∇)w − ΩJU,

(u · ∇)u = [(w +U) · ∇]w = [U · ∇]w.

Therefore,
[
ut −∆u+ (u · ∇)u+ ΩJu

]
(x,t)

=
[
wt −∆w + ΩJw

]
(x−V(t),t)

= −
[
∇q

]
(x−V(t),t)

= −
[
∇p

]
(x,t)

.

We conclude that (u, p) defined by (5.16) is a solution of (1.1) and (1.2) on R3 × (0,∞).
It remains to calculate them explicitly. First, we have

w(x, t) =
∑

m∈Z∗

e−m2|ǩ|2tEk(−k̃3Ωt)û0,mke
imǩ·x. (5.17)

Then, thanks to (5.16) and (5.17), we obtain formula (5.13) for u(x, t). Next, we calculate
div(Jw) by

div(Jw(x, t)) =
∑

m∈Z∗

e−m2|ǩ|2timǩTEk(−k̃3Ωt)û0,mke
imǩ·x. (5.18)
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Denote z = û0,mk ∈ Xk, then

ǩTJEk(t)z = cos(t)|ǩ|k̃ · Jz+ sin(t)|ǩ|k̃ · (e3 × Jkz)

= |ǩ|
[
cos(t)(JTk̃) · z− sin(t)e3 · J2

kz
]

= |ǩ|[− cos(t)J k̃+ sin(t)e3] · z.
(We used the fact J is anti-symmetric and relation (A.2) below.) Thus, together with (5.15)
and (5.18),

q(x, t) = p∗(t)− Ω
∑

m∈Z∗

i e−m2|ǩ|2t

m|ǩ|
[
cos(k̃3Ωt)J k̃ + sin(k̃3Ωt)e3] · û0,mke

imǩ·x. (5.19)

From (5.16) and (5.19), we obtain formula (5.14) for p(x, t). The proof is complete. �

Remark 5.5. Let k and u0 be as in Theorem 5.1. We rewrite (5.6) as

u(t) =
∞∑

n=1

Qn,Ω(t)e
−Λnt, (5.20)

where Qn,Ω(t) = e−ΩtSRΛnu0. By (2.14), Qn,Ω ∈ F1(V). Therefore, (5.20) is the asymptotic
expansion of u(t).

By (1.22) and (5.2), we have either Qn,Ω = 0, or there is a unique number m ∈ N with

m2|ǩ|2 = Λn and

Qn,Ω(t) = (cos(k̃3Ωt)I3 − sin(k̃3Ωt)Jk)[ûmke
imǩ·x + û−mke

−imǩ·x]. (5.21)

In case k3 = 0, we then have Qn,Ω(t) = RΛnu0 which is independent of Ω.
Consider the case k3 6= 0. Given T > 0, define the time averaging function

Q̄n,Ω(t) =
1

T

∫ t+T

t

Qn,Ω(τ)dτ. (5.22)

One can see from (5.21) and (5.22) that

lim
Ω→±∞

Q̄n,Ω(t) = 0, for any t ∈ R.

Appendix A.

Proof of (1.22). First, we have from (1.17) that

etSu =
∑′

etSk ûke
iǩ·x, (A.1)

where Sk = P̂kJP̂k. Using formula (1.9) for P̂k and the fact k̃TJ k̃ = 0, we can compute

Sk = J − k̃k̃TJ − J k̃k̃T + k̃k̃TJ k̃k̃T = J − k̃k̃TJ + (k̃k̃TJ)T.

With |k̃|2 = 1, we have

Sk =




0 −1 + k̃2
1 + k̃2

2 k̃3k̃2
1− k̃2

1 − k̃2
2 0 −k̃3k̃1

−k̃3k̃2 k̃3k̃1 0


 =




0 −k̃2
3 k̃3k̃2

k̃2
3 0 −k̃3k̃1

−k̃3k̃2 k̃3k̃1 0


 = k̃3Jk.

Let z ∈ Xk. Then

J2
kz = k̃× (k̃× z) = (k̃ · z)k̃− (k̃ · k̃)z = −z. (A.2)
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We observe
d

dt

(
Ek(t)z

)
= −(sin t)z+ (cos t)Jkz = (sin t)J2

kz+ (cos t)Jkz,

thus,
d

dt

(
Ek(t)z

)
= Jk

(
Ek(t)z

)
.

This linear ODE yields the solution Ek(t)z = etJkEk(0)z = etJkz. Therefore,

etSkz = ek̃3tJkz = Ek(k̃3t)z. (A.3)

Letting z = ûk, we obtain (1.22) thanks to (A.1) and (A.3). �

Proof of Lemma 2.8. Denote

I(t) =

(
eαt cos(ωt)
eαt sin(ωt)

)
and D−1 =

1

α2 + ω2

(
α ω
−ω α

)
.

First, we prove, for all m ∈ N ∪ {0}, that
∫

tmI(t)dt =

m∑

n=0

(−1)m−nm!

n!
tn(D−1)

m+1−nI(t) +C, (A.4)

where C denotes an arbitrary constant vector in R2. Indeed, it is well-known that∫
I(t)dt = D−1I(t) +C, (A.5)

which proves (A.4) for m = 0. For m ∈ N, integration by parts, with the use of (A.5), yields
∫

tmI(t)dt = tmD−1I(t)−mD−1

∫
tm−1I(t)dt+C.

By iterating this recursive relation, we obtain (A.4). Then the statement of Lemma 2.8
obviously follows from (A.4). �

Lemma A.1. Let m ∈ N and an, bn ∈ C, ωn ∈ R for 1 ≤ n ≤ m. Suppose the function
f : R → C defined by

f(t) =
m∑

n=1

[an cos(ωnt) + bn sin(ωnt)], for t ∈ R, (A.6)

satisfies
lim
t→∞

f(t) = 0. (A.7)

Then f(t) = 0 for all t ∈ R.

Proof. By considering the real and imaginary parts of f , we can assume, without loss of
generality, that an, bn ∈ R for all n = 1, . . . , m. Equation (A.6) can be rewritten so that ωn’s
are strictly increasing non-negative numbers. We then convert (A.6), with some re-indexing,
to the following form

f(t) = A0 +

N∑

n=1

An cos(ωnt+ ϕn), (A.8)

where N ≥ 0, A0, An and ϕn, for 1 ≤ n ≤ N , are constants in R, and ωn’s are positive,
strictly increasing in n.
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Claim: An = 0 for all 0 ≤ n ≤ N .
With this Claim, we have f = 0 as desired. We now prove the Claim by induction in N .
Case N = 0. Then f(t) = A0, which, by (A.7), yields A0 = 0. Therefore, the Claim is

true for N = 0.
Let N ≥ 0. Assume the Claim is true for any function of the form (A.8) that satisfies

(A.7). Now, suppose function

f(t) = A0 +
N+1∑

n=1

An cos(ωnt + ϕn) (A.9)

satisfies (A.7), with positive numbers ωn’s being strictly increasing in n.

Set T = 2π/ωN+1 > 0, and define function g(t) =
∫ t+T

t
f(τ)dτ .

On the one hand, we have, for 1 ≤ n ≤ N , that
∫ t+T

t

cos(ωnτ + ϕn)dτ =
2

ωn
sin(ωnT/2) cos(ωnt+ ϕn + ωnT/2)

= Dn cos(ωnt+ ϕ′
n),

where Dn = 2ω−1
n sin(ωnπ/ωN+1) > 0 and number ϕ′

n ∈ R. On the other hand,
∫ t+T

t

cos(ωN+1τ + ϕN+1)dτ = 0.

Hence,

g(t) = A0T +
N∑

n=1

AnDn cos(ωnt+ ϕ′
n).

Moreover, it follows from (A.7) that g(t) → 0, as t → ∞. By the induction hypothesis
applied to function g, we obtain A0T = 0 and AnDn = 0, for 1 ≤ n ≤ N . Thus, An = 0, for
0 ≤ n ≤ N , and (A.9) becomes

f(t) = AN+1 cos(ωN+1t+ ϕN+1).

This form of f and property (A.7) imply AN+1 = 0. Therefore, the Claim holds true for
N + 1. By the induction principle, it is true for all N ≥ 0. �
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