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ABSTRACT 

 

Improving Efficiency of III-N Quantum Well Based Optoelectronic Devices 

through Active Region Design and Growth Techniques 

 

by 

 

Nathan Garrett Young 

 

The III-Nitride materials system provides a fascinating platform for developing 

optoelectronic devices, such as solar cells and LEDs, which have the power to dramatically 

improve the efficiency of our power consumption and reduce our environmental footprint. 

Finding ways to make these devices more efficient is key to driving their widespread 

adoption. This dissertation focuses on the intersection of challenges in physics and 

metalorganic chemical vapor deposition (MOCVD) growth at the nanoscale when designing 

for device efficiency.  

In order to create the best possible InGaN solar cell, a multiple quantum well 

(MQW) active region design had to be employed to prevent strain relaxation related 

degradation. There were two competing challenges for MQW active region design and 

growth. First, it was observed current collection efficiency improved with thinner quantum 

barriers, which promoted efficient tunneling transport instead of inefficiency thermally 

activated escape. Second, GaN barriers could planarize surface defects in the MQW region 

under the right conditions and when grown thick enough. A two-step growth method for 

thinner quantum barriers was developed that simultaneously allowed for tunneling transport 
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and planarized V-defects. Barriers as thin as 4 nm were employed in MQW active regions 

with up to 30 periods without structural or electrical degradation, leading to record 

performance. Application of dielectric optical coatings greatly reduced surface reflections 

and allowed a second pass of light through the device. This both demonstrated the feasibility 

of multijunction solar integration and boosted conversion efficiency to record levels for an 

InGaN solar cell. 

III-N LEDs have achieved state-of-the-art performance for decades, but still suffer 

from the phenomena of efficiency droop, where device efficiency drops dramatically at high 

power operation. Droop is exacerbated by the polarization-induced electric fields in InGaN 

quantum wells, which originate from a lack of inversion symmetry in GaN’s wurtzite crystal 

structure. These fields can be screened by using highly doped layers, but the extreme dopant 

densities predicted by simulation for complete screening may require using Ge as an 

alternative n-type dopant to Si. GaN:Ge layers with excellent electrical characteristics were 

grown by MOCVD with doping densities exceeding 10
20

 cm
-3

. However, their surface 

morphologies were very poor and they proved a poor screening dopant in LED structures. 

Using Si as the n-type screening dopant, LEDs with single QW active regions were grown, 

packaged, and tested. Biased photoluminescence showed strong evidence of complete 

polarization screening. The LEDs had low droop, but also low peak efficiencies. Possible 

explanations for trends in efficiency with varying QW width and field screening will be 

discussed.  
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Introduction 
 
 
1.1 III-N Material Background 

1.1.1 GaN Crystal Structure 

 (Ga,Al,In)N can have either a wurtzite or zinc blende crystal structure (Fig. 1.1), but 

the wurtzite form is more thermodynamically stable and thus much more common – it will 

be the only structure considered in this dissertation. In the wurtzite crystal structure, each 

group-III atom is tetrahedrally coordinate with 4 nitrogen atoms. The stacking sequence is 

ABABAB, where A and B each refer to III-N bilayers. Wurtzite is a hexagonal crystal 

system and can be thought of as interlaced hexagonal close-packed (HCP) sublattices of the 

individual constituent atom types. The wurtzite space group, P63mc, is non-centrosymmetric 

(it lacks inversion symmetry), meaning that wurtzite GaN possesses internal polarization, 

not present in zinc blende GaN, which gives it many unique properties, the effects of which 

will be discussed throughout this dissertation. The crystal can be oriented either in the Ga-

polar sense (0001) or N-polar sense (000-1). The (0001) c-plane is the normal growth 

direction of GaN, but by utilizing different substrates, other orientations of GaN can be  
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Figure 1.1:  Crystal structure of wurtzite III-N compounds with coordination polyhedra. Larger 

yellow atoms are group-III atoms and smaller grey atoms are nitrogen. 

 

 

grown, such as nonpolar (11-20) a-plane and (1-100) m-plane, which are perpendicular to 

the c- growth direction, and a whole host of semipolar planes oriented at angles between 0 

and 90 degrees.  

 

1.1.2 Polarization   

Current state-of-the-art III-nitride thin films, heterostructures, and devices are grown 

along the [0001] axis.  The total polarization of such films consists of spontaneous (Psp) and 

piezoelectric (Ppz) polarization contributions, both of which originate from the single polar 

[0001] axis of the wurtzite III-nitride crystal structure.  When III-nitride heterostructures are 

grown pseudomorphically, polarization discontinuities are formed at surfaces and interfaces 

within the crystal.  These discontinuities lead to the accumulation or depletion of carriers at 

surfaces and interfaces, which in turn produces an electric field. Since the direction of the  
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Figure 1.2:  Surface charges and direction of electric field and polarization field for spontaneous and 

piezoelectric polarization in III-nitrides for Ga- and N-face orientations.
1
 

 

 

polarization-induced electric field coincides with the typical [0001] growth direction of III-

nitride thin films and heterostructures, it has the effect of “tilting” the energy bands of III-

nitride devices. Certain III-N devices have harnessed polarization effects to great effect. For 

example, AlGaN/GaN high electron mobility transistors (HEMTs) have a polarization-

induced two dimensional electron gas (2DEG) channel that enables very high performance.
2
 

 As mentioned above there are two separate components of the total in a thin film 

layer of III-N material. Spontaneous polarization arises from the lack of inversion symmetry 

in the wurtzite crystal structure, while piezoelectric polarization is caused by strain in the 

lattice. In III-N materials such as GaN, AlN, and InN, Psp is the result of cation and anion 

positions deviating from the ideal wurtzite lattice positions. If one knows the strain 

perpendicular (ϵxx) and normal (ϵzz) to the surface (an easy conversion using the elastic 

constants of the material) then Ppz can be calculated: 

 𝑃𝑝𝑧 = 𝑒33𝜖𝑧𝑧 + 2𝑒31𝜖𝑥𝑥, (1.1) 

where e31 and e33 are piezoelectric constants. The total polarization, P, then, is simply Ppz + 

Psp. Spatial variation of P leads to a volume charge density: 
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Figure 1.3:  Band diagram of GaN/InGaN/GaN showing the polarization field Ep acting in the opposite 

direction as the built-in field Ebi.  

 

 

 𝜌𝑃𝐸 = −∇ ∙ 𝐏, (1.2) 

but at an abrupt heterointerface, P has a step function change, both due to the difference in 

Psp between the two materials and the difference in strain, giving rise to an interface sheet 

charge density: 

 𝜎𝑃𝐸 = −𝐧 ∙ ∆𝐏, (1.3) 

where n is the unit vector normal to the interface.  

As shown in Fig. 1.2, Psp and Ppz can act in the same direction or opposite directions 

depending on whether the strain in the layer is compressive or tensile, and whether the 

material is Ga- or N-face. In the case of Ga-face InGaN on GaN, which will be the 

heterostructure studied in detail in this dissertation in the context of solar cells and LEDs, 

the strain in the InGaN layer is compressive and Psp and Ppz are opposite each other. In the 

blue-emitting regime with indium compositions near 20%, Ppz dominates, and the resulting 

interfacial sheet charge density is very large, approximately 2 x 10
13

 cm
-2

.
3
 In a 

GaN/InGaN/GaN quantum well (QW) the resulting calculated electric field is enormous: 

3.25 MV/cm. This electric field acts in the opposite direction of the built-in electric field of 
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a GaN/InGaN/GaN p-i-n (top down) junction (Fig. 1.3), which has very important 

consequences in InGaN device design that will be discussed throughout the dissertation.   

  

1.2 Solar Cells 

1.2.1 The Solar Resource 

 The sun is the primary source of energy used to create and sustain life on our planet. 

It is also involved in the creation of most sources of human power. The sun provided the 

energy to form organic biomass, which, over millions of years in the heat and pressure 

beneath the earth’s surface, forms hydrocarbon fossil fuels: coal, oil, and natural gas. 

Nuclear power from the fission of plutonium and uranium is also the result of another star’s 

violent death. All elements in the universe heavier than iron originated from supernovae. As 

the world’s population continues to grow at increasing rates, and with large developing 

countries just reaching the point of rapid industrial growth, the world’s energy demand has 

been increasing dramatically. In 2012, the total world energy consumption equaled the 

equivalent of about 9 billion tons of oil.
4
 That number is expected to increase to 12 billion 

tons of oil by 2035, even with new energy policies still under consideration. One of the 

greatest challenges of the 21
st
 century will be to meet this energy demand without further 

harming the environment through the burning of fossil fuels.  

Direct conversion of solar to electrical energy using photovoltaic (PV) systems 

promises to play a significant role in replacing fossil fuels with renewable energy sources. 

Since the turn of the century, the adoption of PV power in the US and worldwide has 

increased rapidly. The total installed PV capacity in 2014 alone was 40 GW, bringing the 

total to 177 GW worldwide.
5
 As PV technology improves, increasing efficiency and 
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decreasing costs, it will soon reach grid parity, where it becomes economically preferable to 

coal and natural gas as a way to generate electrical power for the grid. One way to enable a 

large jump in PV efficiency is to concentrate the incident light using a relatively inexpensive 

optical system onto a smaller area, but highly efficient PV device. Concentrated 

photovoltaic (CPV) technology is a particular area where III-N materials could have a 

significant impact.  

 

1.2.2 The Electromagnetic Spectrum 

 The sun acts as a nearly ideal blackbody radiator with an equivalent temperature of 

~5800 K, emitting electromagnetic radiation over a wide range of wavelengths. The power 

in the emission spectrum peaks in the visible wavelengths, between 400 and 700 nm (Fig. 

1.4). Just above the earth’s atmosphere, the total integrated solar power density is 1353 

W/m
2
. The actual photon flux spectrum is shifted to longer wavelengths (there are many 

photons more available in the IR than in the UV) but the energy per photon drops with 

increasing wavelength: 

 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 =
ℎ𝑐

𝜆
≈

1240

𝜆
 (

𝑒𝑉

𝑛𝑚
), (1.4) 

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of light in 

nanometers.  

As light travels through the atmosphere to the earth’s surface, some is reflected back 

into space and some is absorbed by gasses in the atmosphere. Ultraviolet (UV) light below 

300 nm is absorbed by oxygen, nitrogen, and ozone, while H2O and CO2 absorb specific 

bands of the infrared (IR) spectrum. The attenuation of solar power in the atmosphere is  
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Figure 1.4:  Solar spectral irradiance outside the earth’s atmosphere as a function of the wavelength 

of light.  

 

 

described by the “Air Mass” (AM) standard, which is related to the distance light travels 

through the atmosphere to reach the earth’s surface. The AM factor can be calculated as: 

 𝐴𝑀 =
𝐿

𝐿0
=

1

cos 𝜗
 , (1.5) 

where L is the length of the path light takes through the atmosphere, L0 is the minimum 

thickness of the atmosphere form sea level (normal to the surface), and 𝜗 is the zenith angle 

of the sun above the ground. It is easy to see that Air Mass will vary with time of day, 

season, and latitude.  

There are some common AM spectra
i
 used for standardization of solar cell efficiency 

measurements. AM0 is the solar spectrum just outside the atmosphere, and is used for 

spaced based applications. AM1 is the yearly averaged solar spectrum at the equator, while 

AM1.5 is the solar spectrum at a zenith angle of 48.2°, corresponding to the northern US 

and most of Europe and commonly used as a testing standard by the solar industry. The  

                                                             
i The standard spectrum is the yearly average of the spectra at solar noon. 
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Figure 1.5:  Solar spectral irradiance of the AM0, AM1.5 global, and AM1.5 direct spectra.  

 

 

standardized power density of the AM1.5 spectrum is 1000 W/m
2
, decreased by atmospheric 

effects by 26% from the AM0 power density. There are two variants of the AM1.5 

spectrum: AM1.5G (global) and AM1.5D (direct). AM1.5G includes diffusely scattered 

light, while AM1.5D only includes directly incident light from the sun. CPV systems use the 

AM1.5D spectrum as a standard because the angle of acceptance of the concentrating optics 

is very small. The power density of the AM1.5D spectrum is only 768 W/m
2
. Figure 1.5 

plots the AM0, AM1.5G, and AM1.5D spectra against one another for comparison.  

 

1.2.3 Photovoltaic Operation 

 At the simplest level, a solar cell is a device that converts light into electrical power. 

This process is known as the photovoltaic effect, which was first discovered A. E. Becquerel 

in 1839,
6
 and it requires the creation of both a voltage and electrical current in a material 

that is exposed to light. Solar cells come in many different types, including organic bulk  
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Figure 1.6:  Band diagram of a p-n junction in equilibrium.  

 

 

heterojunctions and dye-sensitized cells, but by far the most common form is the p-n 

junction diode solar cell.  

 A p-n junction occurs when a p-type (doped with electron accepting impurity states) 

and n-type (doped with electron donating impurity states) material are brought into contact 

(usually through direct epitaxial growth or implantation of dopants into part of a single slab 

of material). The Fermi level is pinned near the conduction band in the n-type material 

(excess electrons), near the valence band in p-type material (excess holes), and lies near the 

center of the bandgap in intrinsic materials. The Fermi level must remain constant at 

equilibrium, so near the junction, the energy bands bend (Fig. 1.6). The bending of the 

bands creates a voltage drop (the built in voltage, VBI) in the junction region, which is 

depleted of charge carriers and is thus called the depletion region or space charge region. In 

the depletion approximation, this region begins and ends abruptly at the edges of the quasi-

neutral regions on either side of the junction. It has a width of WD given by:  
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 𝑊𝐷 =
𝑉𝐵𝐼

𝐸𝐵𝐼
= √

2𝜖

𝑞
𝑉𝐵𝐼(𝑁𝐴 + 𝑁𝐷), (1.6) 

where 𝜖 is the dielectric constant, q is the charge of an electron, NA is the concentration of 

acceptors, ND is the concentration of donors, and EBI is the electric field produced by ionized 

dopants in the space charge region.  

There is a diffusion current (positive) cause by the electron concentration gradient, 

which is counteracted by the drift current (negative) of electrons in the electric field of the 

depletion region. At equilibrium these currents exactly balance and no current flows. The 

diffusion current increases exponentially as the potential barrier of the junction is lowered 

by applying a positive external voltage. The drift current from minority carriers (electrons 

on the p-side, for instance) reaching the edge of the depletion region is largely bias 

independent. The net I-V characteristics of the diode look as follows: 

 𝐼𝐷 = 𝐼𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 − 𝐼𝑑𝑟𝑖𝑓𝑡 = 𝐼𝑠 (exp (
𝑞𝑉

𝑘𝑇
) − 1) , (1.7) 

where V is the applied voltage, T is the temperature, k is Boltzman’s constant, and Is is the 

reverse saturation current. Is is thermally generated, and thus is independent of bias. In the 

ideal case, the current at reverse bias will be constant. Deviations from the ideal case result 

from additional recombination current and will affect the slope of the curve.  

 Under illumination, there is a constant reverse current from photogenerated carriers 

in the depletion region and within a diffusion length of the depletion region (as long as the 

p- and n- terminals are connected in a circuit). If the illuminated diode is disconnected from 

a circuit (open circuit) then no current can flow, but a forward voltage (photovoltage) builds 

across the junction to balance the generation current with the diffusion current. If the 

illuminated diode is connected to a circuit with a load, then reverse current will flow  
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Figure 1.7: (a) J-V curve of a solar cell in the dark and under illumination. (b) P-V curve (black) and 

J-V curve (red) of an illuminated solar cell. 

 

 

 through the diode while a photovoltage drives the charges through the external circuit, thus 

delivering electric power. The diode electrical characteristics under illumination are very 

similar to Eq. (1.7) with the addition of a term for the photogenerated current, IL: 

 𝐼𝑖𝑙𝑙 = 𝐼𝐷 − 𝐼𝐿 = 𝐼𝑠 (exp (
𝑞𝑉

𝑘𝑇
) − 1) − 𝐼𝐿 . (1.8) 

 Equation (1.8) is the governing characteristic of a solar cell, and many figures of 

merit can be derived from it. Three important bias points for a solar cell are the open circuit 

voltage (V = Voc), short circuit (V = 0) and maximum power (V = Vmp). Voc is defined as the 

voltage at which no net current flows, and Vmp is defined as the voltage at which the 

current*voltage product is a maximum. At short circuit, the current that flows is called the 

short circuit current, Isc, which in the ideal case of Eq. (1.8) is equal to IL. Solving Eq. (1.8) 

for voltage at open circuit gives us: 

 𝑉𝑜𝑐 =
𝑘𝑇

𝑞
ln (

𝐼𝐿

𝐼𝑠
+ 1) ≈  

𝑘𝑇

𝑞
ln (

𝐼𝑠𝑐

𝐼𝑠
). (1.9) 
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Figure 1.8:  J-V curve of an illuminated solar cell with shaded areas showing the maximum power and the 

ideal maximum power bracketed by Voc and Jsc. The ratio of the darker shaded area to the lighter shaded 

area is the fill factor.  

 

 

 It is important to note that Voc will increase with Isc, a factor in the increased efficiency with 

higher solar concentration. Figure 1.7(a) shows an example solar cell J-V curve with and 

without illumination, pointing out the open circuit voltage and short circuit current. Figure 

1.7(b) shows the power-voltage curve for the same device, pointing out the maximum power 

point.  

Another important figure of merit from the I-V characteristic is the fill factor (FF), a 

measure of the “squareness” of the I-V curve. A solar cell with a perfectly square I-V curve 

would have a FF of 100% and a maximum power operating point at Voc and Isc. The FF is 

defined as follows: 

 𝐹𝐹 =
𝑉𝑚𝑝𝐼𝑚𝑝

𝑉𝑜𝑐𝐼𝑠𝑐
. (1.10) 

Figure 1.8 shows a graphical illustration of the FF on an illuminated J-V curve.  In reality, 

the FF can never reach 100% because of Eq. (1.8): current has an exponential dependence 



13 
 

on voltage and the “squareness” of the knee of the curve depends on the magnitude of the 

exponential, which in turn depends on the voltage. Therefore, devices with higher Voc will 

generally have high FF. The power conversion efficiency of a solar cell is related to its 

figures of merit in the following way: 

 𝜂𝑐𝑜𝑛𝑣 =
𝐹𝐹𝑉𝑜𝑐𝐼𝑠𝑐

𝑃𝑖𝑛
. (1.11) 

where Pin is the total power of the solar irradiance incident on the solar cell.  

 So far the discussion has been limited to ideal solar cells. Real solar cells have non-

idealities, such as electrical leakage, excess recombination, and imperfect contacts. These 

non-idealities can be described using two parasitic resistance terms: the series resistance, Rs, 

and the shunt resistance, Rsh, as well as a diode ideality factor, n. In an ideal device, Rs = 0 

and Rsh = infinity. In the I-V curve, shunt resistance is seen as a slope at or near short circuit, 

and series resistance is seen as a slope at or near open circuit. The ideality factor becomes 

more than one when there is excess recombination in the diode. When these terms are 

incorporated into the solar cell equation (Eq. (1.8)), the more general form can be written as 

follows: 

 𝐼𝑖𝑙𝑙 = 𝐼𝑠 (exp (𝑞
𝑉 + 𝐼𝑅𝑠

𝑛𝑘𝑇
) − 1) +

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ
− 𝐼𝐿 . (1.12) 

The presence of the non-ideal terms results in a reduction of FF.  

 The final figure of merit for a solar cell is the external quantum efficiency (EQE). 

The EQE is a measure of the number of electrons collected as current per incident photon at 

a given wavelength. Any photons that are not absorbed will not contribute to the current, so 

EQE at those wavelengths is zero (below the bandgap energy, for example). For photons 

that are absorbed, there is another efficiency term, the internal quantum efficiency (IQE), 
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that measures the efficiency of the conversion of generated electron-hole pairs to collected 

current.  

 𝐸𝑄𝐸 = 𝐼𝑄𝐸 ∗ 𝐴𝑏𝑠 (1.13) 

A measurement of EQE is spectrally resolved – each specific wavelength has a unique EQE 

value. Often the peak value of the EQE spectrum is quoted. EQE falls off near the bandgap 

of the solar cell material, as its absorption spectrum falls off. Absorption in solar cells with 

different architectures will be discussed in Chapter 3. Integrating the product of EQE and 

spectral irradiance over all wavelengths will yield the Jsc of the solar cell. Knowledge of the 

EQE and I-V figures of merit gives a full understanding of the performance of a solar cell. 

 

1.2.4 Solar Cell Efficiency Limit 

The efficiency of a single junction solar cell is limited to about 30% under one sun 

illumination.
7
 This is known as the detailed balance limit and was derived by Shockley and 

Quiesser in 1961. Detailed balance uses only thermodynamic principles and no assumptions 

about the material itself to arrive at a limiting efficiency. It assumes that the solar cell is a 

perfect black body (at 300K) in radiative contact with the sun, also a black body (at 6000K). 

At equilibrium the radiation from the sun incident on the solar cell must be equal to the 

radiation of the solar cell itself. The efficiency reaches its limit when there is perfect 

radiative coupling between the black bodies and no nonradiative recombination within the 

solar cell. Thermodynamically speaking, the mechanism by which efficiency is limited is 

the fact that the solid angle subtended by the sun in the sky is very small. Using optics to 

concentrate sunlight effectively increases this angle. Even with arbitrarily large 

concentration, however, the maximum achievable efficiency is 44% because below-bandgap 
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light is not absorbed (and a zero bandgap material that absorbed all the light would generate 

no voltage). The maximum achievable efficiency depends on bandgap, and without 

concentration, it peaks at about 30% at a bandgap of about 1.1 eV.  

 

1.2.5 Multijunction Solar Cells 

The efficiency of a single junction solar cell is limited to 30% mainly due to the 

energy lost to thermalization after the absorption of photons with energies greater than the 

bandgap. The only way to increase the efficiency of a photovoltaic device at the same light 

concentration factor is to add more junctions that can more efficiently convert smaller 

sections of the solar spectrum. This type of device is known as a multijunction solar cell 

(MJSC). Figure 1.9 shows a schematic of a triple junction solar cell made up of three 

material junctions of descending bandgap connected optically and electrically in series. 

Each junction absorbed the slice of the solar irradiance spectrum above its bandgap, and 

below the bandgap of the junction above it. These slices of the solar spectrum have been 

color coded in Fig. 1.9. Long wavelength light below the bandgap of the bottom junction 

material passes through the device unabsorbed.  

The reason an MJSC is more efficient than a single junction device that absorbs the 

same amount of the solar spectrum (for example, a single junction made up of the material 

that forms the bottom junction in the MJSC) is thermalization losses. No matter the energy 

of an absorbed photon, the generated electron and hole will almost instantaneously 

thermalize, or lose energy to lattice vibrations, down to the lowest available state at the 

conduction and valence band edges. By stacking materials in descending order of bandgap, 

the solar  
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Figure 1.9:  A schematic cross section of a triple junction solar cell with three materials of 

descending bandgap energy that absorb different slices of the solar irradiance spectrum, color coded 

to match each material. Long wavelength light below the bandgap of Material 3 passes through the 

structure unabsorbed. 

 

 

spectrum gets absorbed in slices. Each slice that is absorbed by a higher bandgap than the 

bottom junction converts more of its energy to power in the device.  

Theoretically, with an infinite number of junctions, a solar cell could reach 86% 

conversion efficiency.
8
 In practice, the highest performance MJSCs are 4 junction devices 

that have reached above 45% efficiency.
9
 There are many practical limitations to 

approaching the theoretical limit, or even to increasing efficiencies to 50%. Since the 

junctions are most often connected electrically in series, they must be current matched or the 

lowest current producing junction will limit the current of the other junctions and drive 

down overall efficiency. Achieving current matching involves carefully choosing the exact 

bandgap values and absorber thicknesses for each junction so that the photons absorbed for 

each slice of the spectrum (Fig. 1.9) are equal. However, arbitrary bandgaps are not easily 
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achievable over a wide range of energies. The easiest way to connect junctions in series is 

by growing a single epitaxial stack with many different materials and tunnel junctions 

between each junction. These designs usually begin with either a GaAs or Ge substrate. 

Materials that make up other junctions in the device are often InGaAs (for lower bandgaps) 

and InGaP (for higher bandgaps). While it is possible to grow multiple junctions with the 

same lattice constant and avoid strain relaxation, that approach limits the available bandgaps 

and the maximum possible efficiency. The most efficient MJSC devices are based on an 

inverted metamorphic (IMM) structure.
10–12

 An example of an IMM growth begins with a 

GaAs substrate, which forms the middle junction. Then a lattice matched top junction of 

InGaP is grown on one side (lattice matching maintains material quality, which is most 

important in the widest bandgap junction that produces the most power), and a metamorphic 

InGaAs junction is grown on the other side with a compositionally graded buffer in 

between. The growth of IMM cells, and any MJSC for that matter, is extremely time 

consuming, complex, and expensive. That is why the dominant current market for these 

devices is in space, where power per area or weight is a far more important metric than cost. 

Terrestrially, MJSCs are employed in CPV systems with complicated optics and solar 

tracking equipment.  

CPV systems using MJSCs can achieve efficiencies far exceeding those of systems 

that use conventional single junction solar cells.
7,13

  One of the most effective ways of 

reducing the system cost is to increase the efficiency of the MJSC.  However, the number of 

junctions must be increased to significantly improve MJSC efficiency.  Current state-of-the-

art MJSCs with 3 or 4 junctions achieve greater than 40% power conversion efficiency 

under concentrations up to 1000 suns, but the top junction bandgap energy is limited to 
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below 2 eV in these designs due to inherent materials limitations in arsenide and phosphide-

based III-V semiconductors.
10,11,14

 Efficient utilization of higher energy photons requires an 

additional junction with a wider bandgap, preferably near 2.6 eV for a 5
th

 junction.
15

  InGaN 

is a viable candidate material for this additional junction because of its tunable direct 

bandgap, high absorption coefficient, radiation resistance, and extensive development for 

use in high-performance light-emitting diodes, which have very similar structures to InGaN-

based solar cells.
16–18

 The details of how a nitride-integrated MJSC could be achieve will be 

discussed in Chapter 4.  

 

1.3 Light-Emitting Diodes 

1.3.1 Basic LED Operation 

 An LED is in many ways identical to a solar cell that is operated in reverse: current 

flows into it instead of out of it, using power to generate light instead of using light to 

generate power. The internal structure of an LED is very similar to that of a solar cell. Both 

rely on a P-N junction diode structure. During operation, current flows from the P and N 

contacts into the active layers of the LED, where electrons and holes recombine. In a well-

designed LED, most of that recombination will be radiative, emitting light at the wavelength 

corresponding to the recombination transition energy (see Eq. (1.4)). The recombination 

transition energy is the bandgap of the active material in a homojunction or double 

heterojunction structure with no quantum confinement or electric field. The transition 

energy in a QW is larger than the bandgap by the energy separation of the ground electron 

and hole states. The need for efficient radiative recombination means that LEDs must be 
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made from direct bandgap materials, a constraint not placed on solar cells, which treat any 

type of recombination as a loss.
i
  

Whereas a solar cell operates at voltages below diode turn on (below the bandgap of 

the active material), an LED operates at voltages that are generally above the bandgap of the 

active material. The LED’s voltage during operation is known as the forward voltage (Vf). 

The light output power (LOP) of an LED is the cumulative energy of each photon emitted 

per second. Often a single wavelength approximation is made when calculating LOP, but 

real LEDs have a somewhat broad, approximately Gaussian, distribution of wavelengths 

around the peak wavelength. A figure of merit for the broadness of LED emission is called 

the full width at half maximum (FWHM), which is the width of the emission spectrum in 

nm at half the peak intensity. The input electrical power to the LED is Vf times the injected 

current density, J, and the electrical efficiency of an LED is known as the wall-plug 

efficiency (WPE), which has the following relationship: 

 𝑊𝑃𝐸 =
𝐿𝑂𝑃

𝑉𝑓 × 𝐽
 . (1.14) 

Another way to look at the performance of an LED is through quantum efficiency. 

There are two types of quantum efficiency, much like in solar cells: IQE and EQE. The 

definitions differ slightly from solar cells, however. IQE in an LED is defined as the ratio of 

photons created to electrons injected into the active region. It can also be called the radiative 

efficiency. It is useful to look at IQE in terms of recombination rates, since all injected 

electrons must recombine with holes by either a radiative or nonradiative process. There are 

three types of recombination processes with rates that depend to varying degrees on the 

                                                             
i
 This assumes no photon recycling, where radiatively emitted photons are re-absorbed. Photon recycling is a 
minor contribution to most solar cells, but is an essential consideration in devices that approach the 
thermodynamic efficiency limit. Nitride LEDs have minimal self-absorption due to a large Stokes shift. 
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active carrier density n: Shockley-Read-Hall (SRH) non-radiative recombination 

(proportional to n), bimolecular radiative recombination (proportional to n
2
), and Auger 

non-radiative recombination (proportional to n
3
). The injected current density J can be 

written as the sum of these rates: 

 𝐽 = 𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3, (1.15) 

where A, B, and C are proportionality coefficients for SRH, radiative, and Auger 

recombination, respectively. IQE is simply the ratio of radiative recombination to total 

recombination: 

 𝐼𝑄𝐸 =
𝐵𝑛2

𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3
. (1.16) 

EQE, on the other hand, is the ratio of emitted photons to injected electrons. The 

difference between EQE and IQE lies in the extraction efficiency of the device (ηext).  

 𝐸𝑄𝐸 = 𝐼𝑄𝐸 × 𝜂𝑒𝑥𝑡 (1.17) 

Only photons that escape the LED into air contribute to EQE. The details of light extraction 

are beyond the scope of this dissertation, but the significance of its impact is illustrated by 

the example of a GaN LED with perfectly flat, parallel surfaces and no coatings. Snell’s law 

dictates that the critical angle for total internal reflection between GaN and air is only about 

23 degrees. In this case, any photon emitted more than 23 degrees from perpendicular to the 

surface will not escape. With only one escape cone (light can only escape out of the top 

surface and does not reflect off of any other surface) ηext is only about 4% in a GaN based 

LED. If light can escape out of all 6 sides, then there are 6 escape cones and ηext increases to 

24%. There are several strategies to improve light extraction, such as chip shaping, surface 

roughening, and encapsulation. Light extraction is a close relative to light trapping in solar 

cells, which will be discussed in more detail in chapter 5.  
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1.3.2 Efficiency Droop 

 In an ideal LED, light output power should scale linearly with injected current. Real 

devices, however, suffer from a phenomena called droop in which the LOP is sublinear with 

current (Fig 1.10(a)). A more formal definition of droop is in terms of efficiency. The 

quantum efficiency of an LED peaks at a certain current density and decreases at higher 

current densities, determining the droop: 

 𝐷𝑟𝑜𝑜𝑝 = 1 −
𝑄𝐸(𝐽 > 𝐽𝑝𝑒𝑎𝑘)

𝑄𝐸(𝐽𝑝𝑒𝑎𝑘)

, (1.18) 

where Jpeak is the current density at peak quantum efficiency (Fig 1.10(b)). The reason that 

the IQE has a maximum point can be seen from the ABC model for efficiency in Eq. (1.16). 

As J increases, so does n. At low carrier density, IQE is dominated by the A term. As n 

increases, the B term begins to take over, which causes IQE to increase. At high carrier 

density, the C term takes over from the B term, causing a drop in IQE. From this simple 

ABC model, it appears that Auger recombination is the clear cause of droop; however, this 

has been the topic of intense debate for years.  

 A few different potential mechanisms for efficiency droop have been proposed. It 

was initially thought that the Auger coefficient in GaN would be far too low for Auger to be 

responsible for droop.
19

 When theorists took into account higher order conduction bands
20

 

and phonon scattering,
21

 they saw Auger scattering become a realistic possibility. Besides 

Auger, many have hypothesized that carrier overflow from the active region at high currents 

was responsible for droop.
22

 Others blamed carrier delocalization at high injection from 

quantum dot-like regions of high indium content.
23

 When droop was observed by PL and in  
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(a) 

 

(b) 

 
 

Figure 1.10: LED droop is seen in (a) the sublinear increase of LOP with current, and (b) the drop in 

efficiency after a peak at lower current density. 

 

 

bulk GaN homojunctions, the theories of carrier injection effects and indium segregation 

effects were disproven.
24

 Still, until recently, no one had observed direct evidence of Auger 

recombination in III-N LEDs. That changed when Iveland, et al. performed electron 

emission spectroscopy measurements on InGaN QW-based LEDs.
25

 They observed a high 

energy electron peak simultaneously with a drop in radiative efficiency. The fact that there 

was a linear correlation between the high energy electron current and the “droop current” 

was convincing evidence that an Auger process was the dominant mechanism responsible 

for LED droop.  

 

1.4 Preview of the Dissertation 

 This dissertation focuses on the growth and characterization of InGaN/GaN quantum 

well-based optoelectronic structures. Specifically, this work examines novel methods in 

MOCVD growth and active region design for increasing the efficiency of III-N solar cells 

and LEDs. Chapter 2 will focus on the specific background necessary to understand the 
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challenges faced in growing InGaN/GaN QW structures. Of particular interest are the role of 

threading dislocations, InGaN compositional fluctuations, and V-defects. Chapter 3 will 

discuss the details of optical processes in III-N QW structures. Starting from Fermi’s 

Golden Rule, the effects of quantum confinement, excitons, and electric fields on absorption 

will be examined. Chapter 4 will cover advancements in InGaN based multiple quantum 

well (MQW) solar cells. After a discussion of carrier transport in MQW structures, results of 

the optimization of a two-step barrier growth method will be shown. The optimized growth 

structure is then used in InGaN solar cells with optical coatings that show record 

performance. Chapter 5 will cover the results of polarization screened single QW LEDs, 

starting with a discussion of the effects of polarization on droop and continuing with 

simulations predicting full screening of polarization fields through doping. The electrical 

and optical results of fully packaged single QW LEDs with and without screening will be 

discussed in detail to prove the effectiveness of polarization screening and explain 

remaining sources of inefficiency. Chapter 6 will cover efforts in doping GaN with 

germanium. Electrical characteristics and structural analysis of GaN:Ge layers will be 

presented. Finally, Chapter 7 will summarize the overall conclusions from this dissertation, 

as well as present ideas for future work.   
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2 
 
 

MOCVD Growth of InGaN/GaN  
Quantum Well Structures 

 
 
2.1 MOCVD growth of GaN 

All devices and thin films described in this dissertation are grown by metal organic 

chemical vapor deposition (MOCVD).  MOCVD growth of GaN requires gallium and 

nitrogen precursors: typically tri-methyl gallium (TMGa) or tri-ethyl gallium (TEGa) and 

ammonia (NH3). TEGa is often used in active regions of solar cells, LEDs, and laser diodes 

because of its lower carbon impurity incorporation compared to TMGa. The ethyl groups 

have a C-C double bond that makes them more stable and results in less free carbon in the 

reactor that can be incorporated onto the substrate. Growth of InGaN or AlGaN alloys 

requires indium and aluminum precursors: typically tri-methyl indium (TMIn) and tri-

methyl aluminum (TMAl). N2 and/or H2 carrier gas flows through these metal-organic (MO) 

sources either bubbling through a liquid or flowing over a solid surface. The vapor pressure 

of the MO, controlled by temperature, allows some to be picked up in the vapor phase and 

carried into the reactor by the carrier gasses. Since nitride optoelectronics are p-n diode-

based devices, n- and p-type dopant sources must also be present. Typically disilane (Si2H6)  
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Figure 2.1:  Schematic of a novel two-flow MOCVD reactor for GaN growth.
1
  

 

and bis(cyclopentadienyl)magnesium (Cp2Mg) as silicon (n-type) and magnesium (p-type) 

sources. Disilane is a direct gas source, while Cp2Mg is a bubbler. Generally with these 

doping sources, the flow rate is proportional to the dopant incorporation.  

The reactor used for growths in this dissertation was a horizontal flow design with a 

vertical subflow, designed by Nakamura (Fig. 2.1).
1
 Flows of MO gasses and NH3, pushed 

by carrier gasses, combine is a nozzle and then flow into the reactor chamber and over the 

substrate. The substrate sits on a graphite puck, which rests on a SiC susceptor, which is 

indirectly heated during growth. Susceptor temperatures for (In,Al)GaN growth range from 

600°C to 1200°C, though the temperature at the growth surface is slightly lower. High 

temperatures are necessary to crack MO source molecules, separating the group III metal 

from its organic side groups (and separating N from NH3). The presence of the vertical 

subflow helps depress the thermal boundary layer, which is the characteristic region of 
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concentration gradients in which reactants are depleted. Essentially, only MOs that enter the 

boundary layer contribute to epitaxial growth, and the thinner the boundary layer, the higher 

and more controllable the growth rate. Carrier flow rates and subflow rates must be chosen 

carefully to ensure laminar flow of gasses over the substrate for a consistent growth rate. 

The susceptor also rotates during growth to ensure uniformity over the substrate.  

 

2.2 Substrates and Threading Dislocations 

 An early difficult for GaN epitaxy was the lack of a native GaN substrate. Several 

non-native substrates were explored, such as spinel (MgAl2O4), SiC, and sapphire (Al2O3), 

which turned out to be the most common and is the substrate used for most growths 

described in this thesis. The lattice mismatch between sapphire, with a corundum crystal 

structure, and GaN is about 13%. Therefore, when GaN is grown metamorphically on 

sapphire, a low temperature nucleation layer of GaN or AlN must first be grown. This layer 

is highly dislocated. Then during high temperature GaN growth dislocations undergo self-

annihilations and the film coalesces.  The threading dislocation density (TDD) of early GaN 

on sapphire was well over 10
10

 cm
-2

. Improved nucleation layers and thicker buffer 

templates have improved the TDD of GaN on sapphire to near 10
8
 cm

-2
. Much more in 

depth information on nucleation layer evolution can be found in a review article by Koleske 

et al.
2
 This is still many orders of magnitude higher than defect densities seen in other 

optoelectronic materials, such as GaAs. It is nothing short of miraculous that GaN can 

produce such efficient devices with so many defects.  

 Threading dislocations are electrically charged. They therefore attract carriers, which 

then recombined nonradiatively at defect states in the bandgap at the dislocation. From a 
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device perspective, TDs act as nonradiative centers and leakage pathways.
3,4

 The largely 

accepted theory for why radiative recombination remains efficient in GaN based devices 

with large TDD is that alloy fluctuations lead to carrier localization at potential minima 

where the majority of recombination takes place, away from the dislocations.
5
  

 We may be reaching the limits of how efficient devices can be made on foreign 

substrates with high defect densities. The path to higher efficiencies may lie in bulk 

freestanding GaN substrates that are much more expensive than sapphire at the moment, but 

can achieve TDDs of 10
3
 cm

-2
 and possibly below.

6
 There are three main techniques used to 

grow bulk GaN. Hydride vapor phase epitaxy (HVPE) has high growth rates but only 

marginally improved TDD. It is the main method used to create commercial bulk GaN 

wafer today, up to 6” in diameter. The ammonothermal method uses ammonia as a solvent, 

and grows GaN crystals at relatively low temperatures around 600°C, but very high 

pressures of hundreds of MPa.
7
 The sodium flux method involves adding Na to a Ga melt to 

increase the N concentration in solution. It involves a slightly higher temperature, but much 

lower pressure than ammonothermal growth.
8
 

 

2.3 InGaN Quantum Well Growth 

2.3.1 Indium Segregation and Phase Separation 

InGaN must be grown at significantly lower temperatures than GaN because of 

indium’s tendency to desorb from the surface at higher temperatures and lower growth rates. 

One part of the challenge in growing InGaN layers with relatively high indium content is 

compositional instability that occurs at low growth temperatures. A large miscibility gap is 

predicted between GaN and InN that originates from the lattice mismatch.
9,10

 Phase  
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Figure 2.2:  Schematic illustration of carrier localization in InGaN. Each structure may act as a QW, 

segmented QW, Q disk, or Q dot depending on the lateral size and the degree of the potential 

inhomogeneity at room temperature.
11

  

 

separation depends on growth temperature and composition, but models predict it should 

occur at lower compositions than those for which it is observed. Biaxial strain present in 

InGaN epitaxial films helps suppress phase separation by lowering the critical temperature 

for spinodal decomposition.
12

  Phase separation remains an issue for In compositions over 

40%, but studies have also demonstrated single phase InGaN over the entire composition 

range by MOCVD.
13

 Phase separation decreases the efficiency of a solar cell because the 

lowest bandgap phase will dominate the Voc.  

Large scale phase separation is rarely observed except in extremes of InGaN 

composition and thickness, but smaller scale compositional fluctuations are present in most 

InGaN films. These fluctuations in composition are consistent with a random alloy
14

 and are 

suspected to be responsible for defect-insensitive light emission in nitride LEDs and LDs.
5
 

Figure 2.2 shows a schematic of the different scales of compositional inhomogeneity in 

InGaN layers. In solar cells, the resulting potential inhomogeneity in the absorbing InGaN 
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layers can act as shallow traps and potentially reduce device performance.
15

 The scale of the 

fluctuation also increases with increasing indium content.
16

 Simulations of LED 

performance are greatly improved by including random indium fluctuations in line with 

observations in atom probe tomography.
14

 These simulations show that indium fluctuations 

are responsible for emission broadening, for much lower than expected operating voltage, 

and possibly for the Auger recombination dominance of efficiency droop. 

 

2.3.2 Strain and Relaxation 

While strain may help InGaN solar cells by suppressing phase separation, it also has 

significant drawbacks. InN and GaN have a lattice mismatch of about 11%. Blue-emitting 

QWs with a composition of In0.18Ga0.82N have a mismatch of about 1.8%. As InGaN grows 

pseudomorphically on GaN, strain builds up in the InGaN layer because of the large lattice 

mismatch. At a thickness defined as the Matthews-Blakeslee critical thickness, the strain 

builds to a point where the film starts to relax by either through three-dimensional growth 

followed by dislocation mediated relaxation, or by direct formation of misfit dislocations.
17

 

The (0001) plane is the basal slip plane in GaN, on which misfit dislocations could glide and 

relieve strain via plastic deformation. Semipolar planes oriented at angles from c-plane relax 

in this manner. However, growth on c-plane means that there is no resolved shear stress on 

the (0001) plane and consequently no misfit glide. InGaN relaxation on c-plane likely 

occurs due to local shear stresses around three dimensional growth features such as V-

defects.
18

 In essence, existing threading dislocations open up into inverted hexagonal 

pyramidal pits, relieving strain elastically. On bulk GaN substrates with a very low TDD, 

however, there are few nucleation sites for these kinds of three-dimensional features. In  
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Figure 2.3:  a) A TEM image of V-defects in (0001) GaN. b) (10-11) planes terminate the inner 

sidewalls and nucleation occurs on TDs. c) QWs thickness and spacing changes on v-defect 

sidewalls.
19

  

 

these situations and with indium compositions greater than 11% and thicknesses greater than 

100 nm, it has been found that relaxation occurs via misfit dislocation formation and glide 

on the secondary (11-22) slip system.
20

  

 

2.4 V-Defects 

As discussed in the previous section, V-defects are inverted hexagonal pyramidal 

pits that nucleate on existing threading dislocations during MOCVD growth of c-plane 

InGaN and GaN. Figure 2.3 shows a cross sectional TEM of V-defects along with 

schematics of their structure and their effect on an MQW. V-defects may play a role in 

relieving stress during InGaN layer growth, but their development is not primarily driven by 

strain in the crystal lattice. Instead they form due to kinetically limited growth on the {10-

11} sidewall facets.
19

 The low temperatures associated with InGaN QW and GaN barrier 
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growth (generally 700 – 900°C) reduce the surface diffusivity of Ga atoms. The {10-11} 

sidewalls become depleted of Ga since less can diffuse there, and the growth rate of the 

sidewalls decreases relative to the surface. V-defects will continue propagating and growing 

in surface area during low temperature GaN growth. In layers of very high indium content 

or on substrates with low TDD, V-defects do not always nucleate on pre-existing threads. 

They have been found to also form at stacking faults and misfits, which generate new 

threads within the highly stressed layer.
21,22

 

V-defects have been shown to act as nonradiative recombination centers and leakage 

pathways that severely degrade the Voc of InGaN solar cells,
23,24

 and increase efficiency 

droop in InGaN LEDs.
25

 They also cause QW disorder, which can negatively impact the Jsc 

of InGaN solar cells. On the other hand, it has been suggested that V-defects may create a 

potential barrier that shields injected carriers from dislocation cores in InGaN LEDs, thus 

reducing nonradiative recombination and improving their efficiency.
26

 This beneficial effect 

has been corroborated by some experimental data,
27

 but it may be the effect of other 

changing variables that improves efficiency. For instance, V-defects increase surface 

roughness, which in turn improves light extraction.
28

 While it is an interesting theory, there 

is not strong evidence to support V-defects as a means of improving LED performance.  

 

2.5 Conclusion 

 MOCVD growth of III-nitrides involves flows of metalorganic precursors flowing 

over a heated substrate, decomposing to release the group-III and N atoms, and the 

arrangement of the group-III and N atoms on the surface to form a crystal lattice. 

Nakamura’s vertical subflow design greatly improved nitride growth quality by suppressing 
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the thermal boundary layer. There is no natural native substrate for GaN growth, and 

creating large area bulk GaN substrates is difficult and expensive. Most GaN is grown on 

sapphire substrates using a low temperature nucleation layer. The large lattice mismatch 

between sapphire and GaN leads to a highly dislocated growth. Even with larger densities of 

dislocations that can act as leakage paths and recombination centers, nitride optoelectronic 

devices are able to operate efficiently.  

 When InGaN is grown at low temperature and high InN percent it has a tendency to 

phase separate. At moderate InN percentages common in blue LEDs, compositional 

fluctuations are present without complete phase separation, and they cause potential 

inhomogeneities that have been theorized as the cause of efficient radiative recombination in 

InGaN QWs. InGaN even at moderate compositions has a significant lattice mismatch to 

GaN. Growing a bulk layer or more than a few QWs can lead to relaxation via stacking 

faults, misfit dislocation formation, or v-defect formation. V-defects are inverted hexagonal 

pyramidal pits that nucleate on threading dislocations and act as nonradiative recombination 

sites. Their growth is kinetically controlled, so they usually form during low temperature 

InGaN growth. Despite the challenges faced when growing InGaN QW structures by 

MOCVD, very efficient optoelectronic devices can be grown, as will be discussed in the 

coming chapters.  
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3 
 
 

Optical Processes in Semiconductors 
 
 
3.1 Fermi’s Golden Rule 

Absorption and emission rates in direct band gap semiconductors can be calculated 

using Fermi’s Golden Rule, an important result of time-dependent perturbation theory. If the 

initial (i) and final (f) states of an electron in the presence of a perturbing electromagnetic 

field (light) are known, Fermi’s Golden Rule gives the rate of transition between those 

states.
1
 

 𝑊𝑖𝑓 =
2𝜋

ℏ
|𝐻̂𝑓𝑖|

2
𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) (3.1) 

In Eq. 3.1, 𝐸𝑓 is the energy of the final state, 𝐸𝑖 is the energy of the initial state, ℏ𝜔 is the 

energy of the photon being emitted or absorbed, and 𝐻̂𝑓𝑖 is the transition matrix element: 

 𝐻̂𝑓𝑖 = 〈𝜓𝑓|𝐻̂𝑝𝑜(𝐫)|𝜓𝑖〉, (3.2) 

𝜓𝑖 and 𝜓𝑓 are the wavefunctions of the initial and final states, and 𝐻̂𝑝𝑜(𝐫) is the time-

independent perturbing Hamiltonian. The transition matrix element can be written explicitly 

as: 



39 
 

 〈𝜓𝑓|𝐻̂𝑝𝑜(𝐫)|𝜓𝑖〉 = ∫ 𝜓𝑓
∗(𝐫) 𝐻̂𝑝𝑜(𝐫)𝜓𝑖(𝐫)𝑑3𝐫, (3.3) 

which shows the dependence of the transition rate of the spatial overlap of initial and final 

state wavefunctions. If the transition takes place between the valence and conduction bands, 

as in absorption and spontaneous emission in a semiconductor, the wavefunction overlap 

term has the form: 

 𝐹𝑐𝑣 = ∫ 𝜓𝑐
∗(𝐫) 𝜓𝑣(𝐫)𝑑3𝐫. (3.4) 

Taking a step back, the full expression for the perturbing Hamiltonian is: 

  𝐻̂𝑝(𝐫, 𝑡) = 𝐻̂𝑝𝑜(𝐫)[exp(−𝑖𝜔𝑡) + exp(𝑖𝜔𝑡)], (3.5) 

but only the exp(−𝑖𝜔𝑡) is retained when restricting discussion to absorption processes, and 

it is necessary in order to continue with this semiclassical description.
i
  The perturbing 

Hamiltonian can also be written as the following: 

 𝐻̂𝑝(𝐫, 𝑡) =̃
𝑒

𝑚0
𝐀 ∙ 𝐩̂, (3.6) 

where A is the electromagnetic vector potential, 𝐩̂ is the momentum operator, and m0 is the 

free electron mass. Treating the wavefunctions as Bloch states, assuming that momentum is 

conserved, and assuming that the wavelength of the perturbing light is much greater than the 

crystal lattice spacing, then the transition matrix element can be rewritten in terms of a 

momentum matrix element, pcv: 

 𝐻̂𝑓𝑖 = −
𝑒𝐴0

2𝑚0
𝑝𝑐𝑣, (3.7) 

where 𝐩̂ operates on conduction and valence band Bloch states. The momentum matrix 

element retains the dependence on wavefunction overlap. Now the absorption transition rate 

between two states can be written as:  

                                                             
i The second term describes stimulated emission. 
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 𝑊𝑎𝑏𝑠 =
2𝜋

ℏ
(

𝑒𝐴0

2𝑚0
)

2

|𝑝𝑐𝑣|2𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) (3.8) 

Since Eq. 3.8 only represents the transition rate between a particular valence band 

and conduction band state, in order to calculate the absorption coefficient, for instance, we 

must know the total transition rate, 𝑊𝑇𝑂𝑇: 

 𝑊𝑇𝑂𝑇 =
2𝜋

ℏ
(

𝑒𝐴0

2𝑚0
)

2

∑|𝑝𝑐𝑣|2𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔).
𝑖,𝑓

 (3.9) 

Next we convert the sum over all possible transitions to an integral using the 3-dimensional 

joint density of states, 𝑔𝐽(𝐸𝐽): 

 𝑔𝐽(𝐸𝐽) =
1

2𝜋2
(

2𝑚𝑒𝑓𝑓

ℏ2
)

3/2

(𝐸𝐽 − 𝐸𝑔)
1

2⁄
 (3.10) 

where meff is the electron effective mass and EJ is Ec - Ek. So by combining Eqs. (3.9) and 

(3.10) and integrating over EJ we arrive at the expression: 

 𝑊𝑇𝑂𝑇 =
2𝜋

ℏ
(

𝑒𝐴0

2𝑚0
)

2

|𝑝𝑐𝑣|2
1

2𝜋2
(

2𝑚𝑒𝑓𝑓

ℏ2
)

3/2

(ℏ𝜔 − 𝐸𝑔)
1

2⁄
 (3.11) 

𝑊𝑇𝑂𝑇 can then be used to find α, the probability of absorbing a photon per unit 

length, known as the absorption coefficient.  

 𝛼 =
𝑊𝑇𝑂𝑇

𝑛𝑝
=

ℏ𝜔𝑊𝑇𝑂𝑇

𝐼
 (3.12) 

Here np is the number of incident photons per unit area and I is the optical intensity, which 

can be written: 

 𝐼 =
𝑛𝑟𝑐𝜀0𝜔2𝐴0

2

2
, (3.13) 
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where 𝑛𝑟 is the refractive index, c is the speed of light, and 𝜀0 is the permittivity of free 

space. Another parameter can be defined with units of energy that is often used in actual 

calculations: 

 𝐸𝑝 =
2

𝑚0

|𝑝𝑐𝑣|2. (3.14) 

Finally, combining Eqs. (3.10) – (3.14) we arrive at an expression for the absorption 

coefficient as a function of incident photon energy: 

 𝛼(ℏ𝜔) =
𝜋ℏ𝑒2

2𝑚0𝑐𝜀0

1

𝑛𝑟

𝐸𝑝

ℏ𝜔
𝑔𝐽(ℏ𝜔) (3.15) 

Since 𝛼(ℏ𝜔) is proportional to 𝐸𝑝, a parameter that depends on the squared modulus of the 

𝑝𝑐𝑣, the strength of absorption in any system will depend on the overlap of the electron and 

hole wavefunctions.  

 Incidentally, while optical absorption can be explained within the framework of the 

Schrödinger Equation, spontaneous emission cannot. That is because, while electronic 

energy levels were considered to be quantized, electric field was not. Considering an atomic 

system, the excited states and ground state have no spatial overlap, so the excited state 

cannot spontaneously decay to the ground state in the presence of a classical 

electromagnetic field. It was not until the advent of quantum field theory and quantum 

electrodynamics that spontaneous emission could be completely explained.  

 

3.2 Electroabsorption: The Franz-Keldysh Effect 

In bulk semiconductors, the presence of an electric field causes a weak tail of below-

gap absorption. Introducing a constant field into the Hamiltonian for the system leads to 

electron and hole wavefunctions represented by Airy functions, which decay exponentially 
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into the band gap. The presence of electron and hole wavefunctions in the gap decreases the 

effective band gap, but since the wavefunctions decrease exponentially in this regions, 

optical transitions (which depend on wavefunction overlap) will also decrease exponentially 

in strength. This exponential tail of below-gap absorption is known as the Urbach edge. 

Dampened oscillations in the bulk absorption spectrum are also seen above the band edge. 

They are caused by the change the relative phases of overlapping wavefunctions due to the 

electric field. The combination of a significant below-gap absorption tail and above-gap 

oscillations in the presence of an electric field is known as the Franz-Keldysh Effect.
2
  

 To complete the picture of semiconductor absorption, excitons must also be 

considered. Excitons represent a bound electron and hole with a Coulombic interaction 

similar to a hydrogen atom. The dominant exciton in III-V materials is the Wannier type 

exciton, which is spread over many unit cells. Excitons are responsible for a characteristic 

peak in absorption spectra slightly below the band gap energy. At 0K, excitons have discrete 

states for negative binding energies, given by the Bohr model,  

 𝐸𝑏𝑛 =
ℏ2

2𝜇𝑎𝐵
2 𝑛2

 (3.16) 

where µ is the reduced mass, aB is the Bohr radius, and n is the quantum number.
2
 The 

optical transition energies for these states are given by 𝐸𝑔 − 𝐸𝑏𝑛. These discrete sub-band 

gap absorption lines broaden and merge with each other and the continuum by means of 

scattering due to impurities, defects, and phonons. Excitonic absorption above 𝐸𝑔 is 

accounted for by the Sommerfeld factor, or Coulomb enhancement factor, which 

substantially increases absorption near the band edge relative exciton-free calculations.
2
 At 

room temperature, bulk excitonic features are almost completely washed out, limited to a  
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Figure 3.1:  Absorption spectra of bulk GaAs and 50x10 nm GaAs MQW.
3
 

 

 

slight bump near the absorption edge in GaAs (Fig. 3.1).
3
 In the presence of an electric field, 

the symmetry of the Coulomb potential well is broken, and there is a Stark shift of excitonic 

energy levels to lower energies. However, increasing field also decreases the ionization 

potential of the exciton, making it easier for electrons and holes to escape from the potential 

well. The exciton peak broadens and disappears completely above the ionization field. 

Therefore, the maximum shift of the exciton resonance is limited to about 10% of the 

binding energy in the bulk.
4
  

 

3.3 Absorption and Recombination in Quantum Wells: The 

Quantum-Confined Stark Effect 

 Whereas there are a continuum of states below and above the band gap in bulk 

semiconductors, quantum wells contain discrete energy levels. Absorption will only take 

place between occupied states in the valence band and unoccupied states in the conduction 

band. This leads to an increase in the absorption edge in quantum wells because of the finite 

energy of the ground state above the conduction band and below the valence band. Because 

of the inverse square dependence of subband energies on well width, the absorption edge 
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will increase in energy as the well becomes narrower. Wavefunction overlap must also be 

considered in a confined system. In an infinite potential well, which is a decent 

approximation for many real-life systems, the overlap integral is nonzero only for electron 

and hole subbands of equal quantum number (ne=nh). All other transitions are “forbidden”. 

Quantum confinement also splits the hole band into heavy hole (hh) and light hole (lh) 

bands, which both contribute to nh=1 absorption. The density of states in a quantum well is 

step-like, which leads to a step-like absorption spectrum in the ideal case, when excitons are 

neglected. In finite wells, the wavefunctions penetrate into the barriers, decreasing overlap. 

Furthermore, since the heights of the electron and hole barriers is often not the same, and 

their effective masses are different, selection rules no longer strongly apply, and forbidden 

transitions become possible.
2
  

 A full picture of absorption in quantum wells must include excitons, which are much 

more important in a 2D confined system than in bulk. While in the bulk, excitons tend to 

dissociate at room temperature due to a binding energy that is less than kT (26 meV), in 

quantum wells they are apparent even at room temperature. Fig. 3.1 compares the absorption 

spectra of bulk GaAs with 10 nm GaAs quantum wells. The first notable difference is that 

the absorption edge in the MQW sample is blue-shifted significantly because of energy level 

quantization. Secondly, multiple excitonic peaks are clearly resolved in the MQW sample, 

and they exhibit stronger absorption than a bulk layer of twice the total absorber thickness.  

Peaks are visible for the n = 1, 2, and 3 transitions, as well as the hh and lh transitions for 

n=1. Quantum confinement increases the electron and hole Coulomb interaction, and thus 

the exciton binding energy. Coulomb potential changes as 1/L, while confinement potential 

changes as 1/L
2
, where L is the thickness of the well. Therefore, for wells narrower than the  
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Figure 3.2:  Variation of exciton binding energy with well thickness for infinite and GaAs/AlxGa1-

xAs finite wells. Solid lines represent heavy hole excitons and dashed lines represent light hole 

excitons.
3
 

 

 

exciton’s Bohr radius, confinement will dominate in the direction perpendicular to the well. 

Theory predicts a maximum 4-fold increase in binding energy for the 1s exciton in an 

infinite well, as well as a 16-fold increase in oscillator strength, which explains increased 

peak resolution and absorption enhancement compared to the bulk.
2,3

 In real finite wells, the 

maximum binding energy increase is limited by about 2 times. Fig. 3.2 compares 

calculations of infinite well and finite well binding energy as a function of well thickness. 

𝐸𝑏𝑛 will increase as L decreases until wavefunction penetration into the barriers overcomes 

enhanced confinement. Above the bandgap, the 2D Sommerfeld factor leads to a factor of 2 

increase in absorption over the bulk.
6
  

 Application of an electric field to a quantum well gives rise to QCSE and QCFK 

effects. Miller et al. defined QCFK in purely numerical terms as a special case of the Franz-

Keldysh effect in a quantum confined system without consideration of excitons.
5
 An electric 

field creates a sloped quantum well potential, and the resulting triangular wells localize the  
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Figure 3.3:  Valence and conduction band energy levels and wavefunctions at 0 and 10
5
 V/cm.

5
 

 

 

electron and hole wavefunctions on opposite sides of the well, as depicted in Fig. 3.3. The 

energies of the lowest subbands in the conduction and valence band decrease quadratically 

with field, red-shifting the absorption edge, but higher order transitions hardly change in 

energy. Energy levels in the valence band shift more because holes are heavier and less 

confined than electrons. The electric field breaks the symmetry of the well, allowing 

forbidden transitions even in the infinite well case. In many cases those forbidden transitions 

are actually stronger than the allowed transitions. Fig. 3.4 compares theoretical bulk GaAs 

absorption to 10nm and 30nm quantum wells, neglecting excitons, at 0 field and 10
5
 V/cm. 

The 0 field quantum wells have quadratically spaced steps that are spaced closer in the 

thicker well. At 10
5
 V/cm, the 10nm well clearly shows a red-shift of the first transition and 

shows a couple of forbidden transitions, but the 30nm well exhibits many forbidden 

transitions, and much more closely mirrors the bulk spectrum, including Franz-Keldysh 

oscillations above the band gap.   

 It is worth pointing out that, while an electric field allows many previously forbidden 

transitions, it does not cause a net change in the total absorption due to the sum rule.
3
 For  
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Figure 3.4:  Calculated absorption in a 10 nm (large dash) 30 nm (small dash) and infinite thickness 

(solid) slab with (a) 0 field and (b) 10
5
 V/cm.

5
 

 

 

every gain in strength of a forbidden transition, allowed transitions lose strength so that the 

sum of step heights in absorption due to all transitions is conserved. This occurs physically 

because the electron and hole are separated in the well by sloped potential, and their overlap 

decreases. As well width increases, steps become shorter and more numerous, and the 

spectrum more closely matches the bulk. 

 Miller et al. defined the quantum confined Stark effect as the large shift in 

absorption edge that occurs when an electric field is applied perpendicular to a quantum 

well.
4
 The electric field moves the electrons and holes apart in the z direction, but brings 

them closer in potential, creating a Stark shift in the exciton absorption. Meanwhile, for 

wells thinner than the 3D exciton diameter, the barriers contain carriers and prevent field 

ionization. This explains why exciton peaks are resolved at up to 50x the bulk ionization 

field. The exciton binding energy decreases with increasing field as electron and hole are 

pulled apart, but the effect of binding energy change is dominated by the shift in single  
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Figure 3.5:  Absorption spectra with perpendicular field (a) 1E4 V/cm (b) 4.7E4 V/cm (c) 7.3E4 

V/cm.
7
 

 

 

particle states. Miller compared two theoretical models to calculate the change in single 

particle energy levels and the exciton peak shift. The first was a tunneling resonance 

method, where the resonant energies of tunneling current out of a well correspond to energy 

levels. The second was an effective width infinite well model based on variational 

calculations, where an effective well width was used that matched an infinite well’s ground 

states with those of the finite well at zero field. The two models agreed well with each other 

and with experiment.
4
     

QCSE has been observed experimentally by optical absorption spectroscopy, 

photocurrent spectroscopy, photoluminescence, electroluminescence, and 

electroreflectance.
3
 Miller et al. prepared novel device structures and investigated 

absorption under bias in GaAs/AlGaAs MQWs with 60 periods grown by MBE.
7
 To test 

perpendicular field, the MQW was imbedded in the intrinsic region of the device, where 

there would ideally be a constant electric field. The results of the experiment clearly show 

the band edge shifting to lower energies with increasing reverse bias (Fig. 3.5). Excitonic 

peaks were resolved up to a field of 10
5
 V/cm. They also observed that the shift in  
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Figure 3.6:  Band diagram and corresponding structure for a modulation-doped quantum well.
3
 

 

 

absorption edge was nonlinear with field, shifting relatively less at low fields. They also 

performed a separate experiment with the electric field applied parallel to the quantum 

wells, which produced markedly different results. At low field, the excitonic resonances for 

light and heavy holes are still resolved, but even moderate fields destroy those resonances. 

In the parallel field case, electrons and holes are still confined in the z-direction, creating 

strong room temperature excitonic feature, but when a field is applied in the plane of the 

well, where wavefunctions can be treated more like plane waves, excitons broaden due to 

field ionization much like they do in the bulk. However, the ionization field in still higher 

than it is in the bulk. 

A large population of free carriers in a quantum well, either from ionized donors or 

photogeneration, can change its absorption spectrum.  One strategy for injecting free carriers 

into a quantum well is modulation doping of the barriers. A representative device structure 

is shown in Fig. 3.6.
3
 Only the barriers are doped, but the ionized carriers diffuse into the 

well and become trapped. The presence of a carrier gas causes the band gap to decrease 

slightly due to band gap renormalization. Fig. 3.7 shows experimental absorption spectra of  
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Figure 3.7:  Absorption spectra of (a) undoped and (b) modulation doped MQW structures.
3
 

 

 

undoped and doped MQW structures at different temperatures. The absorption edge red 

shifts with temperature because of the decrease in band gap, however the absorption edge is 

at a slightly higher energy in the doped case at each temperature. Also of note is that the n = 

1 exciton peaks completely disappear in the doped case, even at low temperature, while the 

n = 2, 3 peaks are much less affected by the doping. A large population of free carriers has 

several effects on absorption physics that explain these results. Excitons broaden because 

their coulomb interaction is screened by the carrier gas. Also, phase space filling (PSF) 

causes a blue shift of the absorption edge. The blue shift occurs because an empty state in 

the valence band and a full state in the conduction band will be further separated in the 

presence of electron and hole gasses. This also explains one origin of the Stokes shift, 

because emission generally occurs between the bottom of the conduction band and the top 

of the valence band. PSF is also responsible for eliminating excitons when the Fermi energy  
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Figure 3.8:  Absorption spectrum of GaN at room temperature and 77K.
8
 

 

 

reaches the exciton resonance energy, since excitons and electrons cannot occupy the same 

space.
3
 

 

3.4 Electroabsorption in the III-Nitrides 

The absorption coefficient of high quality bulk GaN layers in on the order of 10
5
 cm

-

1
.
8
 Figure 3.8 shows the GaN absorption spectrum with an excitonic peak visible at room 

temperature, and clear peak resolution at 77K. It is unusual for excitonic peaks to be so well 

resolved at room temperature in bulk materials, but in GaN, there are few active LO 

phonons at room temperature available to broaden the peak. GaN excitons also have a large 

binding energy (26 meV), comparable to kT at room temperature.
10

  

 When an electric field is applied to bulk GaN, the Franz-Keldysh effect causes the 

below-gap absorption tail to increase. Jacobson and colleagues found that the Urbach slope 

of logarithmic sub-Eg absorption increases linearly with electric field (Fig. 3.9).
9
 The effect 

of an electric field on excitons in GaN was measured by absorption and photocurrent 

response.
11

 Room temperature absorption data shows a Stark shift, broadening, and slight  
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Figure 3.9:  Dependence of sub-band gap GaN absorption spectra on electric field.
9
 

 

 

quenching of the peaks. Photoresponse data at room temperature shows similar quenching 

and a peak shift to lower energy, but at 80K, the peak amplitude actually increases with 

field, contrary to the result at room temperature. The transition from an increase to a 

decrease in peak amplitude with field when going from low to higher temperature is due to 

interplay between changes in binding energy, ionization probability, and thermal energy.  

 The large electric fields in InGaN quantum wells, induced by the piezoelectric effect, 

have a significant effect on optical processes of absorption and emission. Observing the 

shifts caused by the QCSE in PL measurements and electroabsorption spectroscopy (EA) 

has allowed researchers to quantify Fpz in InGaN quantum wells, which is in excess of 1 

MV/cm for even moderate indium concentrations.
12,13

 When a reverse bias was applied to a 

20nm InGaN/GaN DH, the resulting change in absorption was plotted for each applied field 

(Fig. 3.10). In this case, the well is too wide for confinement to produce a strong QCSE, but 

there is a noticeable FK effect on the below gap absorption. The structure is such that the 

constant built-in depletion field is opposite Fpz in the well, so applying an increasing reverse  
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Figure 3.10:  Measured absorption changes in 20 nm InGaN layer for various fields. Inset shows 

absorption change at first minimum vs. reverse bias.
12

 

 

 

bias will gradually decrease the net field in the well until it is completely compensated. 

Since an electric field causes increased below-gap absorption, the bias for which the below-

gap absorption change is the most negative corresponds to the compensating field (see inset 

in Fig. 3.10). Knowing the compensating field, the strength of the intrinsic electric field due 

to piezoelectric polarization can be calculated. Figure 3.11 plots the relationship between Fpz 

and In content. The field is above 1 MV/cm for concentrations above about 7%, which is 

higher than previous assumptions. Takeuchi, for example, calculated only 1.08 MV/cm for 

13% In.
13

  

 Interpreting the effects of electric field on absorption and emission from quantum 

wells is also necessary to investigate screening of the piezoelectric field. The addition of a 

large number of free carriers in a well with an electric field will lead to a carrier distribution 

that will counteract the existing field. Takeuchi showed a blue-shift of low temperature PL 

peaks with increasing excitation intensity in a MQW sample, while in a strained bulk layer 

there was no change in peak position.
13

 QCSE should cause a blue-shift of emission when 

field decreases. A comparison of high and low excitation PL at different well widths  
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Figure 3.11:  Polarization field strength vs indium content in an InGaN/GaN double heterostructure. 

Solid line is calculated, and squares are experimental data points.
12

 

 

 

revealed that an intensity of 200 kW/cm
2
 completely screened Fpz, since its peak transition 

energy approached the bulk value (Fig. 3.12). Similar results are found when increasing the 

drive current in electroluminescence measurements (EL). For Fpz on the order of a MV/cm, 

the total shift due to QCSE will be on the order of 100 meV.
10

  

Screening of Fpz can also be accomplished by doping of the wells and/or barriers.
14–

17
 Either well doping or modulation doping of barriers will produce a large density of free 

carriers in the wells, with the same screening effects as high intensity optical excitation. A 

screened field is evidenced by a decreased Stokes shift, decreased PL decay time, and 

steeper absorption edge.
14

 Comparison of PL and photoluminescence excitation (PLE), 

which is similar to absorption, for doping densities up to 10
19

 cm
-3

 shows a strong blue shift 

of PL, and a reduction in the broadness of the absorption tail. Deguchi et al. showed that it 

is possible to dope heavily enough (10
19

 cm
-3

) to fully screen Fpz and eliminate QCSE.
15

 

Meanwhile, Dalfors et al. suggested that the shift in emission energy could only be partially 

explained by piezoelectric field screening, and that the rest of the shift must be due to the 

screening of localized potential fluctuations.
16
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Figure 3.12:  PL peak energy of an InGaN MQW under low and high excitation, calculated and 

experimental.
13

 

 

 

 InGaN epilayers exhibit a Stokes-like shift between emission and absorption in 

quantum wells. The piezoelectric field in quantum wells is one mechanism that causes 

Stokes shifts.  It separates electron and hole wavefunctions, reducing the oscillator strength 

of low order absorption, and broadening the absorption edge. On the other hand, emission is 

dominated by the ground state transition, so its peak will be at a lower energy than the 

absorption peak. The emission peak is generally located at the end of the absorption tail. 

Figure 3.13 shows four different cases representing different relationships between well 

thickness L, internal field F, valence band discontinuity (∆𝐸𝑉), and the exciton Bohr radius 

aB. In Case 1 when L < aB, and F*L < ∆𝐸𝑉, the electron and hole are confined with strong 

overlap, and there is not an appreciable Stoke shift. In Case 2, when L < aB, and F*L > ∆𝐸𝑉 

the hole wavefunction is confined to the triangular well, with continuum states above. In 

Cases 3 and 4, L > aB, the wavefunctions are fully separated, excitons are broadened, and  
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Figure 3.13:  Schematic band diagrams of InGaN QWs with width L, under field F, with Bohr radius 

aB, and valence band discontinuity ΔEV.
14

 

 

 

both QCSE and QCFK play a role in absorption. Stokes shift is present for cases 2-4 

because of a loss of strength of the lowest energy absorption transitions.
14

 As expected, 

there is an increase in Stokes shift as L increases. However, the change is not linear; a sharp 

increase in Stokes shift occurs at 3.6 nm, or about the exciton Bohr radius in GaN, which 

corresponds to the transition from Case 2 to Case 4. Similarly, as indium content increases, 

Fpz increases, and Stokes shift increases as a result. There is a critical value of composition 

(x = 0.1) where the Stokes shift begins to increase more rapidly, which corresponds to a 

transition between Cases 1 and 2. 

 The other potential cause of Stokes shift is potential inhomogeneity and exciton 

localization.
10,14,19

 Chichibu et al. blamed the observed Stokes shift in Case 1 wells on these 

localization potentials.
14

 Potential fluctuations may be caused by monolayer thickness 

fluctuations, compositional or strain undulations, or small scale phase separation.
10

 They 

result in regions of different band gap, termed quantum disks or segmented quantum wells,  



57 
 

 
 

Figure 3.14:  Measured absorptance and EQE curves for an InGaN MQW solar cell at different 

growth temperatures, corresponding to different In-contents and polarization fields.
18

 

 

 

which are visible through cathodoluminescence. The Stokes shift arises because carriers fall 

into regions of lower band gap before recombining. The blue shift of emission with 

excitation would be attributed to band filling of these localized potential wells. While there 

is strong support for the relation of the Stokes shift to localization potentials, some believe it 

can be fully explained by QCSE due to piezoelectric fields.
20

  

 The effects of electroabsorption on nitride solar cells have not been directly 

investigated, but evidence of electric field effects are present in some published EQE and 

absorption data.
21–25

 Absorption data for a thick layer of c-plane InGaN exhibits a long 

absorption tail due to the Franz-Keldysh effect. Subtracting measured EQE from absorption 

yields IQE values of over 90%.
22,23

 Long absorption tails are also apparent for high In 

content MQW devices.
21

 There is also evidence from EL measurements that In fluctuations 

in solar cell active layers cause a substantial Stokes shift when compared to EQE.
24,25

 

Recent EQE data from UCSB clearly shows the effects of QCSE in c-plane MQW devices. 

The absorption edge pushes out to longer wavelengths and becomes less steep as the growth 

temperature of InGaN decreases, which corresponds to an increase in indium content and 

higher polarization field. Absorption data matches the trend of EQE (Fig. 3.14). Bias- 
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Figure 3.15:  Normalized EQE curves for an InGaN MQW solar cell under increasing reverse bias.
18

 

 

 

dependent EQE measurements show that as reverse bias increases and the field in the wells 

decreases, the absorption edge blue-shifts, EQE becomes steeper, and EQE just above the 

band gap increases (Fig. 3.15). This should be reflected in the absorption spectrum due to 

QCSE and sum rules, which require an increase in absorption at longer wavelengths to be 

coupled with a decrease at shorter wavelengths.  Due to the relative scarcity of absorption 

data for nitride MQW solar cells, there is a strong opportunity for future research in this 

area. 

 

3.5 Conclusions 

Optical absorption and spontaneous emission are key processes to the operation of 

solar cells and LEDs. Fermi’s Golden Rule gives the rate of absorption and spontaneous 

emission transitions that leads to an expression for the absorption coefficient. Electric fields 

in bulk semiconductors lead to a broadening of the absorption edge due to the Franz-

Keldysh effect. In quantum wells, confinement leads to quantized energy levels, and 

excitons become relevant at room temperature. When an electric field exists in a QW, as is 

the case in strained InGaN wells due to piezoelectric polarization, energy levels change 
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significantly. QCFK and QCSE result in a red-shifted and broadened absorption edge or 

emission peak with strong forbidden transitions, and above-gap oscillations in absorption 

spectra. Increased free carrier concentration in wells screen existing fields and increase the 

absorption edge energy. Broad absorption edges due to fields or potential inhomogeneity in 

nitrides lead to a Stokes-like shift between the peaks of absorption and longer wavelength 

emission. Electroabsorption in nitride solar cells has not been investigated in depth, 

although absorption spectra and EQE characteristics display evidence of QCSE. There 

remain many promising experiments involving electroabsorption that can be performed to 

further investigate material and device properties in nitride solar cells. 
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4 
 
 

InGaN Based Multiple Quantum Well  
Solar Cells 

 
 
4.1 Motivation and Background 

4.1.1 Nitride Solar Cells 

 The III-nitrides have several important advantages over the far more popular silicon 

for photovoltaic applications. The InGaN ternary system has a wide band gap range from 

0.7 to 3.4 eV,
1
 which covers most of the usable solar spectrum (Fig. 4.1).

2
 GaN is a direct 

band gap material with a high absorption coefficient ,
3
 and requires roughly 1000 times less 

material than silicon to absorb the same amount of light. Nitrides are also highly radiation 

resistant, making them suitable for space applications.
4
 Finally, nitride solar cells are drift-

based devices, where high electric fields in the intrinsic region negate poor diffusion length 

in GaN and allow very high collection efficiency.
5
  

 In order to absorb a significant amount of the solar irradiance, InGaN must be grown 

with a composition of indium above 20%, with a bandgap below 2.7eV. Unfortunately, 

there are significant problems associated with the growth and operation of high composition  
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Figure 4.1:  A plot of solar spectral power density, along with indicated bandgaps of many common 

semiconductor materials. Almost the entire solar spectrum falls between the band gaps of GaN and 

InN.
2
  

 

 

devices. One problem is phase separation caused by a miscibility gap between GaN and InN 

that originates because of large lattice mismatch.
6,7

 Phase separation or compositional 

fluctuations reduce the open circuit voltage (Voc) of solar cells and act as shallow quantum 

wells that trap carriers.
8
 Additionally, lattice mismatch between the GaN bulk and InGaN 

epitaxial layers (Fig. 4.2)
9
 builds strain, which past a critical thickness, causes the film to 

start relaxing by forming defects like misfit dislocations and v-pits, which in turn increase 

current leakage.
10,11

 The III-Nitrides also possess a low symmetry wurtzite structure that 

leads to macroscopic spontaneous polarization. As a result, strained layers develop large 

piezoelectric polarization induced electric fields. In typical InGaN/GaN heterostructures, the 

piezoelectric field in the InGaN acts opposite the built-in field of the diode, which can result 

in a net field that opposes carrier collection, severely degrading device performance.
12,13

 

Research in nitride solar cells has focused on overcoming these basic challenges and 

achieving efficient conversion at longer wavelengths.
14

  

Figure 1: The band gap energies of various materials relative 
to the AM1.5 solar spectrum [5]
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Figure 4.2:  Eg and lattice constants for the (Al,In,Ga)N alloy system, highlighting the InGaN 

composition range applicable to solar cells.
9
 

 

 

 

4.1.2 Active Region Evolution 

The first published work on nitride solar cells was characterized by p-i-n double 

heterostructure (DH) devices with poor internal quantum efficiency (IQE < 60%) for indium 

contents less than 10%, and severe phase separation for higher compositions.
15–17

 It was 

predicted, however, that an all-nitride multi-junction solar cell (MJSC) could achieve 40% 

efficiency.
18

 In 2008, several groups reported improvements in EQE, IQE, and fill factor 

(FF) at In compositions over 10%.
19–22

 Neufeld et al. achieved 94% peak IQE (63% EQE) 

and a FF of 75% with only 200nm of 12% InGaN, while Zheng et al. attained an 81% FF 

with 150nm of 10% InGaN. These improvements were attributed to improved growth 

conditions and p-GaN contact schemes. Further improvements to DH solar cells were made 

by growth on bulk GaN and by surface roughening.
23–25

 Bulk GaN has a threading 

dislocation density (TDD) 2 orders of magnitude lower than GaN on sapphire, which 

reduces leakage current and leads to improvements in Voc and FF. Surface roughening  
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(a) 

 

(b) 

 
 

Figure 4.3:  (a) J-V curves of InGaN MQW solar cell with increasing Si doping. Inset shows high 

doping EQE curve. (b) Simulated band diagrams for InGaN MQW solar cell with low and high Si 

doping at zero bias and low doping at -3V. Doping affects net field in the wells.
13 

 

 

increases the average optical path length in the active region, increasing absorption and EQE 

(see Section 4.4.1).  

 There is an inherent trade-off in growing high performance single junction InGaN 

solar cells. On one hand, the bandgap of the absorbing layer must be decreased in order to 

absorb more of the incident power of the solar spectrum. This is accomplished by increasing 

the amount of indium in the InGaN, and compositions near or above 20% In are generally 

necessary to make devices with theoretical efficiencies that even approach 10%. On the 

other hand, hundreds of nanometers of InGaN must be grown to fully absorb that incident 

light, and at these compositions and thicknesses, catastrophic relaxation will occur in single 

DH layers. The large lattice mismatch between GaN substrates and InGaN epilayers then 

necessitates the use of a multiple quantum well (MQW) active region for devices with 

higher compositions of indium in order to maintain InGaN material quality. In III-nitride 

solar cells, MQW structures are not used for their potential to boost efficiency theoretical  
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Figure 4.4:  Cross-sectional schematic of InGaN MQW solar cell with roughened surface.
26

 

 

 

efficiency (see Section 4.1.3), but for their ability to alleviate stress built up during thick 

active region growth.  

Performance of bulk P-i-N structure InGaN solar cells have decreased dramatically 

in the 20% In composition range,
16

 while MQW cell performance has remained high with an 

absorption edge extending beyond 500 nm.
26

 Because the critical thickness of epitaxial 

(0001) InGaN decreases exponentially with increasing indium, many groups have turned to 

MQW structures, which breaks the absorber thickness up into wells only a few nm thick. 

MQW structures with In content up to 40% show no phase separation, while 200nm single 

layers of the same composition show severe phase separation and pit formation.
27,28

 Neufeld 

et al. solved the problem of the IV kink in MQW cells by increasing the Si doping on the n-

side of the active region (Fig. 4.3(a)), which decreased band bending in the n-GaN, 

preventing the built-in field in the intrinsic region from being overcome by the polarization-

induced field in the QWs (Fig. 4.3(b)).
13

 Meanwhile, Farrell et al. found that short circuit 

current (Jsc) and peak EQE increase when going from 10 to 30 QW periods with 28% In in 

the wells.
26

 A 30 period cell with an intentionally roughened surface (Fig. 4.4) displayed 

Figure 9: Device schematic for MQW solar cell with 
roughened p-GaN. [37]
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decent electrical characteristics and absorption out to 520nm, the longest wavelength 

absorption yet published for a nitride solar cell. More recently, a very high Voc of 2.31V was 

demonstrated for a MQW device with a 449nm absorption edge, which represents a near 

ideal bandgap-Voc offset of 0.45V.
29

  

In more long-range research, InGaN nanowire array solar cells have also been 

investigated,
30

 and the idea of compositionally graded P-i-N structures has been 

theoretically explored.
31

 An intermediate band nitride solar cell with InGaN quantum dot 

layers has been proposed with a theoretical efficiency of over 55%.
32

 Some are even 

exploring the use of InGaN MQW solar cells for hydrogen gas production in an artificial 

photosynthesis system.
33

 

 

4.1.3 Quantum Well Solar Cells 

Quantum well solar cells (QWSC) were first proposed and demonstrated by 

Barnham and colleagues at the Imperial College in London.
34–39

 In theory, the addition of 

quantum wells to a solar cell’s active region (intrinsic region of a p-i-n structure) should 

increase the short circuit current over what is expected from a homojunction device made 

solely from the barrier material, and simultaneously increase Voc over what is expected from 

a homojunction device made solely from the well material. The resulting device efficiency 

was originally proposed to be an enhancement relative to a bulk homojunction cell made 

from either material.
34

 Detailed thermodynamic analysis, however, claimed that no 

efficiency enhancement over an ideal singe bandgap solar cell is possible.
40

 The argument 

against this analysis and for potential gains in theoretical efficiency rely on the quasi-Fermi 

level separation in the QWs being reduced compared to the barrier regions (and therefore  
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Figure 4.5:  Experimental and calculated spectral response of a 50 period AlGaAs/GaAs MQW solar 

cell showing theoretical absorption in the p- n- and i-regions.
37

 

 

 

compared to the applied bias), and on the assistance of carrier escape from QWs by phonons 

instead of only photons, as is assumed in the radiative limit.
39,41,42

 In either case, it is 

expected that any efficiency enhancement will depend strongly on material quality, 

recombination in the wells and barriers, and the particular choice of bandgaps.
43

  

Looking in more detail at the enhancements that are possible in a QWSC, the current 

enhancement clearly derives from the fact that the lower bandgap QWs extend the 

absorption edge to longer wavelengths. QWSC spectral response has been accurately 

modeled,
44

 and it show an extended absorption edge compared to the bulk, as well as several 

quantum well excitonic resonance peaks (Fig. 4.5). The voltage enhancement is a topic of 

some debate, but it has been shown experimentally and verified theoretically that the open 

circuit voltage is greater than one would expect given the separation of quantized ground 

states (seen as the change in absorption edge).
36–38,43

 This effect is the result of lower dark 

current in MQWSCs than that in bulk cells of the same band gap. Figure 4.6 shows  
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Figure 4.6:  Experimental PL spectra and theoretical absorption spectra with electric fields ranging 

from 0 to 7 V/cm.
37

 

 

 

experimental photoluminescence (PL) spectra compared with theoretical absorption spectra 

in an AlGaAs/GaAs single quantum well (SQW) for different electric fields in the well. The 

effect of QCSE is clearly seen as the peak redshifts and broadens, and there is a noticeable 

Stokes shift between emission and absorption.  

Even if a slight efficiency enhancement was possible in a QWSC design, it would 

rely so strongly on the specifics of the design and materials involved that it would probably 

not be worth pursuing on its own. In the nitrides, however, as discussed in the previous 

section, strain alleviation and the large incremental gains from small increases in the 

absorption edge give QWSCs a clear advantage over single bandgap designs.  
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4.2 Carrier Transport in InGaN/GaN Multiple Quantum Wells 

4.2.1 Carrier Rate Equations 

The processes of carrier escape from quantum wells and carrier collection are 

essential to the function of MQW solar cells. In order for these devices to operate, generated 

electrons and holes must escape wells and transit to the contacts before recombining. After a 

photon has been absorbed, and an electron-hole pair is created in a QW, those charge 

carriers can either be lost due to recombination or contribute to the photocurrent. Each 

potential fate for the charge carrier has its own associated characteristic time, and the total 

carrier lifetime in a QW (𝜏𝑄𝑊) can be expressed as a competition between recombination 

and escape mechanisms:  

 
1

𝜏𝑄𝑊
=

1

𝜏𝑅𝑎𝑑
+

1

𝜏𝑁𝑅
+

1

𝜏𝑇
+

1

𝜏𝑇𝐸
. (4.1) 

Carriers might recombine radiatively (𝜏𝑅𝑎𝑑) or nonradiatively (𝜏𝑁𝑅), which both represent 

loss from the perspective of a solar cell. One might point out the potential for “photon 

recycling” following radiative recombination, but due to the large polarization fields 

intrinsic to the InGaN/GaN system and the resulting Quantum-Confined Stark Effect 

(QCSE),
45

 there is negligible overlap between absorption and emission spectra, especially in 

MQW devices. Otherwise, the carriers might escape from the well, a process that can 

happen either by thermionic emission (TE) over the quantum barrier (𝜏𝑇𝐸), tunneling 

through the barrier (𝜏𝑇). The tunneling rate from any quantum well state n can be estimated 

through the WKB-approximation as a product an attempt rate  (
𝜈

𝐿𝑊
), which is a function of the 

carrier velocity, and the tunneling probability from that QW state (𝑇(𝐸𝑛)):
46
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1

𝜏𝑇
=

𝜈

𝐿𝑊
𝑇(𝐸𝑛) =

𝑛𝜋ℏ

2𝐿𝑊
2 𝑚∗

exp ∫ −2√
2𝑚∗(𝐸𝐶,𝑉(𝑥) − 𝐸𝑛)

ℏ2

𝐿𝑏

0

𝑑𝑥. (4.2) 

Meanwhile, the rate of thermionic emission depends exponentially on the temperature and 

on the height of the barrier (found by identifying the maximum potential in the conduction 

or valence band barrier (𝐸𝐶,𝑉𝑚𝑎𝑥
)) relative to the energy level of a confined state: 

 
1

𝜏𝑇𝐸
= (

𝑘𝐵𝑇

2𝜋𝑚∗𝐿𝑊
2 )

1/2

exp (−
𝐸𝐶,𝑉𝑚𝑎𝑥

− 𝐸𝑛

𝑘𝐵𝑇
). (4.3) 

In both Eqs. (4.2) and (4.3), kb is Boltzman’s constant, T is the absolute temperature, Lw and 

Lb are the QW and QB thicknesses, respectively, while m
*
 is the effective mass for electrons 

or holes. The combination of tunneling and thermionic emission time gives us the escape 

time (𝜏𝑒𝑠𝑐): 

 𝜏𝑒𝑠𝑐 = (
1

𝜏𝑇

+
1

𝜏𝑇𝐸

)
−1

. (4.4) 

The thermionic emission rate will increase with increasing temperature or decreasing 

well depth as the thermal distribution places more carriers above the top of the barrier. 

Tunneling rate, on the other hand, increases mainly due to decreasing barrier thickness. 

Once a carrier has made it to the continuum of states above the wells and barriers through 

either of these methods, it is free to move in the built-in electric field of the diode and will 

be swept toward the respective contacts. The time it takes for an average carrier to cross the 

entire intrinsic region is known as the transit time (𝜏𝑡𝑟𝑎𝑛𝑠). If the effective mobility of the 

MQW intrinsic region (𝜇𝑀𝑄𝑊) is known (difficult to estimate in practice, but for the sake of 

this argument it can be assumed) then the average transit time of a photogenerated carrier is 

simply half the width of the MQW intrinsic region over the drift velocity: 
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 〈𝜏𝑡𝑟𝑎𝑛𝑠〉 =
𝐿𝑀𝑄𝑊

2𝜇𝑀𝑄𝑊𝐸
, (4.5) 

where E is the built-in electric field of the junction. To simplify the expression, it is assumed 

that carriers drifting in the continuum of states above the QB conduction band maximum do 

not see the local polarization-induced electric fields in the QW and QB regions. This 

assumption would be valid if transport of carriers after they escape a QW is primarily 

ballistic in nature.  

Complications arise when the field is weak enough so that the transit time is less 

than the recapture time, or the time it takes a carrier to thermally relax back into a well. 

After a recapture event, that carrier will have to go through the same escape and transit 

process again before recombining in order to contribute to the photocurrent. The total time 

from generation to collection is called the carrier sweep-out time (𝜏𝑠𝑤𝑒𝑒𝑝), which can be 

simplified by ignoring recapture to the addition of the average transit time and the escape 

time: 

 𝜏𝑠𝑤𝑒𝑒𝑝 = 〈𝜏𝑡𝑟𝑎𝑛𝑠〉 + 𝜏𝑒𝑠𝑐. (4.6) 

Another complication to this simplified model arises with the consideration of hot carriers. 

When photons with energy above the bandgap of the InGaN QW are absorbed, the carriers 

they generate exist initially in an excited state. From there, it is possible in principle for 

them to escape the QW before relaxing back to the lowest available energy state in the QW. 

Escape times for hot carriers should actually be shorter due to field-assisted barrier thinning, 

and the possibility that a photon of high enough energy could promote a carrier directly into 

the continuum of states above the QW. Effects of hot carriers on escape, transit, and 

recapture have been discussed in detail the context of QW infrared photodetectors.
47
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3.2.2 Methods of Extracting Characteristic Times 

The carrier extraction model laid out in the previous section is only useful if the 

various characteristic carrier times are known. Several experimental methods have been 

demonstrated to extract the relevant carrier lifetimes in quantum well structures. Some of 

these experiments have been performed on InGaN QWs, while others have only been done 

in other materials systems, but none have been performed on the specific structure of an 

InGaN solar cell, where active region thickness and operating bias differ significantly from 

other types of devices. The experimental lifetimes can then be used to further refine 

theoretical models, and comparing the lifetimes will reveal where in the device collection 

efficiency is limited.  

Time-resolved photoluminescence (TRPL) is a popular measurement technique for 

determining the net recombination lifetime 𝜏𝑅, and it has been previously used for InGaN 

QWs.
48,49

 A femtosecond pulsed laser is required at a wavelength that will resonantly pump 

the QW, along with a time-resolved high resolution optical measurement system. The 

characteristic recombination time is extracted from the decay of PL intensity as a function of 

time after the exciting pulse. Low temperature TRPL (7K) will freeze out non-radiative 

recombination and yield 𝜏𝑅𝑎𝑑. The escape time, 𝜏𝑒𝑠𝑐, is a combination of the tunneling and 

TE lifetimes from equations (4.2) and (4.3), as well any thermally assisted tunneling or hot 

carrier escape. It can be measured via time-resolved electroabsorption measurements, where 

the change in transmission is measured as a function of time after a femtosecond pulse 

excitation.
50

 As carriers transit the active region, they generate a varying space-charge bias, 

which modulates the electric field in the structure, and causes a shift in transmission. In 

these pump-probe measurements, the rise time of the differential electroabsorption signal  
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Figure 4.7:  Schematic of carrier capture in a AlAs/AlGaAs separate confinement heterostructure 

with a single GaAs QW used for measuring electron capture rates. Electron energy levels are 

marked.
54

 

 

 

corresponds to 𝜏𝑒𝑠𝑐. Time from absorption to collection, 𝜏𝑠𝑤𝑒𝑒𝑝, can be experimentally 

derived by using time-resolved photocurrent (TRPC) measurements.
51

 The difference 

between 𝜏𝑠𝑤𝑒𝑒𝑝 and 𝜏𝑒𝑠𝑐 is the active region transit time, 𝜏𝑡𝑟𝑎𝑛𝑠, which would ideally 

depend only on the drift velocity, and the active region width. Carrier drift velocities can 

also be measured by the time-resolved electroabsorption method.
52,53

 However, carrier 

recapture events would potentially lengthen this transit time.  

The capture time of a carrier into a QW (𝜏𝑟𝑒𝑐𝑎𝑝 in our case) can be measured using a 

technique similar to experiment of Blom et al.
54

 They employed a separate confinement 

heterostructure with a single quantum well in the center of larger confined region, where the 

outer barriers are much higher than the inner barriers (AlAs/AlGaAs/GaAs) (Fig. 4.7). Two 

different methods using this structure resulted in experimental capture times. The first 

examined the rise time of QW luminescence. Using a short laser pulse and a frequency 

mixing technique for which the time resolution is comparable to the laser pulse width, the 

difference in the QW PL rise time between direct (well) and indirect (barrier) excitation 
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gives the capture time. Taking the difference accounts for the time of relaxation to the 

luminescence level as long as the direct excitation is near the top of the well. The second 

method examines the decay of barrier excitation. In a pump-probe two pulse setup, the 

barrier region is excited by the first laser pulse, and after a delay, a second pulse. After the 

second pulse the luminescence from the barrier is measured. The first pulse will saturate the 

barrier states with carriers, decreasing the absorption of the second pulse, unless the delay 

between the pulses is long enough for carriers to be captured by the well. Therefore, the PL 

signal due to the probe pulse will increase with delay time until all the carriers are captured. 

In a nitride system, a single InGaN QW with GaN barriers, or a MQW, could be embedded 

between layers of AlGaN to form the SCH. Another method for measuring 𝜏𝑟𝑒𝑐𝑎𝑝 might be 

the transient differential transmission method.
55

  

Another important characteristic time is the hot carrier relaxation time (𝜏𝑟𝑒𝑙𝑎𝑥). In 

order to measure 𝜏𝑟𝑒𝑙𝑎𝑥, one can examine the decay in the average energy of the carrier 

distribution as a function of time after a pulsed photoexcitation.
56

 To obtain average 

distribution energies, the sample is hit by a short laser pulse, and the time-resolved PL 

signal is measured, then converted to an energy distribution and averaged. The average 

energies decay on the order of 1 ns, and the distribution becomes thermal. This may not 

work properly in InGaN QWs because it requires samples of high purity where the acceptor 

to conduction band luminescence lineshape is clearly distinguished. Another way to 

measure 𝜏𝑟𝑒𝑙𝑎𝑥 is via the transient differential transmission method, as described above for 

measuring escape time and drift velocity.
57
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4.2.3 The Importance of Electric Fields for Carrier Escape 

Electric fields in the wells and barriers also play an important role in carrier escape. 

For (0001) InGaN/GaN, the field in the wells due to piezoelectric polarization is opposite 

and much larger than the field due to the built-in voltage drop across the junction (VBI_GaN ~ 

3.3 V). The net field in the wells, assuming complete depletion, heavily doped side regions, 

and a uniform built-in electric field (FBI), is as follows, 

 

𝐹𝑄𝑊 = 𝐹𝐵𝐼 + 𝐹𝑃𝑜𝑙 + 𝐹𝐴𝑝𝑝  

≅
𝑉𝐵𝐼

𝑡𝑖
+

𝜎𝑃𝑜𝑙

𝜖
−

𝑉𝐴𝑝𝑝

𝑡𝑖
, 

(4.7) 

where 𝑡𝑖 is the thickness of the i-region, 𝜎𝑃𝑜𝑙 is the polarization sheet charge density, 𝜖 is the 

dielectric permittivity, and 𝑉𝐴𝑝𝑝 is the applied bias. Since 𝜎𝑃𝑜𝑙 is a material property that 

only depends on the crystal orientation and composition of InGaN (assuming coherent 

growth), only variations in 𝑡𝑖 and 𝑉𝐴𝑝𝑝will produce changes in 𝐹𝑄𝑊. Whereas the net field in 

the wells will be opposite the direction of carrier collection at zero bias, the polarization 

field in the barriers is of opposite sense to that in the wells; therefore, the net barrier field 

(FQB) will be in the same direction as FBI, the direction of carrier collection. Besides locally 

aiding carrier sweep-out for carriers above the barrier,
i
 this field will also effectively thin the 

barrier because of its triangular potential profile. This will have two effects on carrier 

escape. First, the TE rate will be weakly field-dependent because of field-assisted barrier 

lowering.
51

 Second, and more importantly, tunneling rates will increase nearly exponentially 

due to a Fowler-Nordheim type tunneling mechanism as the field effectively lowers and 

narrows the barrier. Carriers at energies closer to the top of the barrier will escape much  

                                                             
i
 It was assumed in section 3.2.1 that the local QW and QB fields do not affect carrier drift. What may happen 

is that the QB field could give an initial boost in velocity to carriers that have just surmounted the barrier. That 

boost could be enough to move the carrier into the continuum of states above the wells and barriers, where it 

will see primarily the built-in field. 



77 
 

 

 

Figure 4.8:  Band diagrams for 15X MQW solar cell structures with barrier thicknesses of 3.8nm, 

6.5nm, and 9.7nm. Zoomed in sections on the right show QW field increasing and barrier field 

decreasing with increasing barrier thickness.
46

 

 

 

more quickly, which would aid hot carrier escape, wherein carriers are initially excited into 

a higher energy state in the well by an above-gap photon and escape before relaxing via 

phonon emission.
47

  

A study was performed to try and learn more about carrier transport mechanisms in 

InGaN MQW solar cells.
46

 It involved three samples, A, B, and C, with barrier thicknesses 

of 3.8, 6.5, and 9.7 nm respectively, the same QW thickness (2.5 nm), and the same number 

of periods (15), grown on sapphire substrates by ammonia molecular beam epitaxy (NH3-

MBE). Fig. 4.8 shows band diagrams for the three devices with increasing barrier thickness 

simulated using SiLENSe version 5.2 software. When zoomed in on the QWs on the right of 

Fig. 12, it is apparent that there is approximately a 0.4 MV/cm increase in the field in QW  
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Figure 4.9:   External quantum efficiency for samples A, B, and C plotted at 0 applied bias (dotted 

curve), reverse bias corresponding to calculated flat-band quantum wells (solid curve), and a 

uniform reverse bias of -5V (inset).
46

 

 

 

region between samples A and C, and the field in the barrier regions is similarly decreasing.  

This behavior is expected because the magnitude of FBI is decreasing as the thickness of the 

structure increases.  

The effect should be detrimental to carrier collection for the reasons explained 

above, and indeed the steady state EQE drops dramatically in thicker barrier samples (Fig. 

4.9). Solving Eq. (4.7) for flat band in the wells (𝐹𝑄𝑊 = 0) gives values ranging from -7 V 

for the 3.8 nm barrier sample, to -20 V for the 9.7 nm barrier sample. Applying this 

respective bias to each sample should give a very similar local environment for carrier 

extraction, and improve extraction efficiency due to effective barrier thinning and creating 

effectively shallower wells. In fact, as can be seen in Fig. 4.9, at the flat-well bias point of 

each sample, their EQE spectra lay almost on top of each other. The IQE of the samples at 

these biases is estimated at near 100% due to the relatively small amount of InGaN (37 nm, 

less than one quarter of an absorption length) and the ~18% Fresnel surface reflection 
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losses. There are clearly field-dependent carrier extraction issues in InGaN MQW devices 

that get proportionally worse with increasing barrier thickness, and these the extraction 

issues dominate device performance. The next section will discuss the identification of the 

exact mechanism limiting extraction.  

 

4.2.4 Temperature Dependent J-V Measurements 

To separate which extraction mechanism, tunneling or thermionic emission (TE), 

dominates in InGaN MQW solar cells,
i
 electrical measurements were performed on the 

samples described in section 4.2.3 over a range of temperatures from 150
 
K to 393

 
K (Fig. 

4.10).
46

 The tunneling rate should be temperature independent while the TE rate will be 

strongly temperature dependent.  

There is very little change in the J-V curves of the thin barrier sample A across the 

temperature range, and there is only the expected slight decrease in Voc and increase in Jsc 

due to bandgap shrinkage with increasing temperature, which allows the InGaN layers to 

absorb more photons.
58

 On the other hand, the J-V curves of the 9.7 nm barrier sample C 

show a substantial decrease in FF and Jsc with decreasing temperature. There is also 

significant bias dependence of the photocurrent in sample C: at every temperature, the 

photocurrent recovers to near the same value at -5 V. In fact, the room-temperature 

photocurrent saturates at the same value of ~0.6 mA/cm
2
 in all three samples. As was seen 

in the reverse-biased EQE spectra in Fig. 4.9, a sufficient reverse bias will increase the 

carrier collection efficiency to near 100% regardless of barrier thickness.  

                                                             
i
 Specifically, which mechanism is dominant when the InGaN composition in the QWs is on the order of 20%, 

or when the absorption edge or emission peak is beyond 450 nm.  
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Figure 4.10:   (left) Current density vs. bias for samples A, and C having 3.8, and 9.7 nm barriers, 

respectively, as a function of temperature from 150 to 393K with and without 1-sun intensity 

illumination. Data for sample B, with 6.5 nm barriers, is also shown from 296 to 393 K. (right) 

Schematics for relevant escape mechanisms for each sample: T = tunneling and TE = thermionic 

emission.
46

 

 

 

It is clear that there is no temperature dependent mechanism in play for 3.8 nm 

barriers, but a strongly temperature dependent mechanism affects the 9.7 nm barriers. The 

dominant mechanism in the thicker barrier sample is mitigated by a strong reverse bias, 

which would effectively thin the barriers. Therefore, carrier escape from QWs with thin 

barriers or at large reverse bias must be dominated by tunneling, while for thick barriers at 

small reverse bias or forward bias, escape is dominated by TE.  

 

4.2.5 Carrier Extraction Modelling  

To confirm the experimental results from section 3.2.4 with a theoretical model, 

escape lifetimes for the exact structures of samples A, B, and C were calculated at 300 K 
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and 400 K and as a function of bias from -5 to +3 V using a coupled Schrodinger-Poisson 

drift-diffusion solver (Fig. 4.11).
46,59

 Escape was only considered from the ground state 

energy levels for electrons and holes, since that is the worst case scenario for carrier escape 

and a good assumption in the absence of high excitation levels or hot carrier effects.  

The calculations show that the hole is the rate limiting carrier for both tunneling and 

TE, due to its larger effective mass.
i
 Tunneling is clearly much faster with thinner barriers, 

and the lifetimes also decrease with reverse bias, as expected due to barrier 

lowering/thinning. At room temperature, tunneling remains dominant in sample A at all 

biases. For sample B, tunneling escape for the rate limiting carrier, holes, becomes faster 

than 𝜏𝑇𝐸, at positive bias, but below Voc. Finally, for sample C, 𝜏𝑇𝐸 for holes remains faster 

than 𝜏𝑇 until zero bias. When the calculations for 𝜏𝑇𝐸 are performed at 400 K,
ii
 the 

thermionic emission lifetime drops and its relation to 𝜏𝑇 changes. Now the voltage at which 

𝜏𝑇𝐸 drops below 𝜏𝑇 for holes shifts farther toward negative bias. The black lines on Fig. 

4.11 represent an assumed aggregate recombination lifetime of 1 ns,
iii

 in accordance with 

measurements on InGaN MQW structures.
60

 The limiting carrier escape lifetime must be 

smaller than this value in order for carriers to be collected efficiently.  

 Comparing Figures 4.10 and 4.11, it is clear that at -5 V reverse bias, when all 

devices have reach their saturation current and IQE should be near 100%, that tunneling is 

dominant in all devices for electrons and holes. The increasing tunneling lifetimes as barrier 

thickness increases directly correlates to the decrease in FF of these devices. The bias point 

at which both the electron and hole tunneling lifetimes become shorter than the  

                                                             
i
 At steady state, both electrons and holes must escape at the same rate. When one carrier type has a slower 

escape rate, space charge will build up to the point that the energy bands readjust until steady state is reached. 
ii
 Remember that tunneling rates are assumed to be independent of temperature.  

iii
 In reality this recombination lifetime will have some bias dependence because the overlap of electron and 

hole wavefunctions affect both radiative and non-radiative recombination rates.  
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Figure 4.11:   Calculated lifetimes for thermionic emission (TE) at 300K and 400K and tunneling (T) 

at 300K for electrons (e) and holes (h) from the lowest energy bound states of the quantum wells in 

the three structures. Black horizontal lines represent an assumed aggregate recombination time of 1 

ns.
46

 

 

 

recombination lifetime, corresponds closely to the point in the J-V curves at which the 

photocurrent saturates. These bias points are approximately +1.5 V, -1.8 V, and -5 V for 

samples A, B, and C respectively. Increasing temperature partially compensates the lack of 

tunneling efficiency by decreasing 𝜏𝑇𝐸, but does not have much effect on the point of 

saturation, since 𝜏𝑇𝐸 remains above 1 ns when it is also less than 𝜏𝑇. Therefore, it is clear 

that tunneling is the more efficient carrier escape mechanism, even at reasonably elevated 

temperatures that might be experienced during normal operation. This finding has 

influenced the design of both solar cell and LED active regions by illustrating the 

importance of decreasing barrier thickness in order to promote tunneling transport.  
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Figure 4.12:   Schematic of a single period of a InGaN/GaN MQW solar cell with the optimized two 

step barrier.  

 

 

4.3 Optimizing the Multiple Quantum Well Active Region 

4.3.1 The Two-Step Barrier Growth Method 

The need to decrease QB thickness must be balanced against the need to avoid V-

defect formation, which occurs during low temperature c-plane GaN or InGaN growth by 

MOCVD. Refer to Chapter 2 for an in-depth discussion of the properties of V-defects. For 

the purposes of InGaN solar cells, V-defects act as non-radiative recombination centers and 

leakage pathways that can severely degrade the open-circuit voltage.
61,62

 A two-step QB 

growth process can be employed to mitigate the propagation of V-defects through an 

InGaN/GaN MQW stack.
63,64

 Figure 4.12 shows a schematic of one period of a MQW 

employing a two-step barrier. A low temperature GaN capping layer immediately above the 

InGaN QW protects the integrity of the QW against indium desorption and/or thickness 

fluctuations, which can be induced during the ramp up to higher temperatures and in the 

presence of H2.
65

 This GaN cap is grown at the same temperature as the QW and with N2 as  
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Figure 4.13:   (a) HAADF-STEM image showing disordered QWs with 1.5nm GaN cap due to (c) a 

process of H2 etching of the InGaN well. (b) Ordered wells with 3.0 nm cap, (d) which is thick 

enough to prevent well exposure during the etching process.
63

 

 

 

the carrier gas. The subsequent GaN layer is grown at higher temperature and with H2 added 

to the carrier gas mixture in order to improve surface adatom mobility and effectively fill in 

V-defects before they can grow and propagate.
64,66–68

 Growth of barriers at higher 

temperatures and with the addition of H2 carrier gas without a sufficiently thick protective 

GaN cap layer have been shown to be detrimental to InGaN/GaN MQW solar cell 

performance.
69

  

Previously, a correlation had been demonstrated between thicker low temperature 

GaN cap layers and superior microstructure and device performance.
63

 Figure 4.13 shows 

the process by which InGaN QWs are degraded during high temperature barrier growth. 

High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) 

of InGaN/GaN MQWs with two-step barriers reveal severe thickness fluctuations when the 

cap thickness is 1.5 nm (Fig. 4.13(a)), but no evident fluctuations when the cap thickness is 

3.0 nm (Fig. 4.13(b)). The origin of the fluctuations was proposed to be hydrogen back- 
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Figure 4.14:  APT data from (a) the sample with 1.5 nm GaN cap layers and (b) the sample with 3.0 

nm GaN cap layers. 3-D indium atom maps are shown in the upper part of the figure and 1-D 

profiles of the average indium concentration are shown in the lower part of the figure. The 

isoconcentration surfaces in the 3-D atom maps identify the locations at which the indium 

concentration (x in InxGa1_xN) is equal to 5%. 
63

 

 

 

etching of the cap and QW (Fig. 4.13(c)). When the cap is thick enough, the etching does 

not penetrate the QW during high temperature barrier growth (Fig. 4.13(d)). The erosion of 

the GaN cap due to the reaction of GaN with H2 likely occurs at the end of the temperature 

ramp when H2 is first introduced at the beginning of the high temperature growth step 

because there is not already TMIn or TEGa in the reactor driving growth.  

Atom probe tomography (APT) confirmed the difference in thickness fluctuations 

between QWs with 1.5 nm and 3.0 nm cap thicknesses (Fig. 4.14(a) and Fig. 4.14(b), 

respectively), and also revealed a large difference in average and maximum compositions 

between the respective InGaN layers. The APT results correlated with electrical 

characteristics as well as PL and EQE spectra. In the case where the cap layer was too thin 

and had been eroded to the point where parts of the InGaN QW had been exposed and 
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decomposed, the amount of InGaN material volume available for absorption of incident 

photons decreased. Also, the average InGaN composition decreased, so the average bandgap 

increased, which also would lead to fewer photons being absorbed. These effects caused the 

decreases in EQE, Jsc, and peak PL intensity in the sample with a 1.5 nm cap, as well as the 

blue-shift in PL peak intensity. The observed differences are characteristic of solar cells that 

suffer from QW thickness fluctuations and indium desorption.  The need to protect the 

integrity of the QW with a sufficiently thick cap must then be balanced against the need to 

decrease total GaN barrier thickness in order to promote efficient tunneling transport. 

Growth optimization around that trade-off will be the subject of the next section. More 

recently, an AlGaN capping layer has been proposed, which could, if kept thin, preserve fast 

carrier escape while also of the QW layers and interfaces.
70

 

 

4.3.2 Optimization of Thin Quantum Barriers 

 Section 4.2 explained the benefit of thinner quantum barriers for carrier transport in 

the InGaN/GaN MQW solar cell structure, and section 4.3.1 described the benefits and 

limitations of a two-step barrier growth scheme. The challenge for developing a process for 

MOCVD growth of a thin barrier MQW InGaN solar cell lies in using a two-step barrier 

growth method while simultaneously shrinking the barrier thickness as much as possible. 

There is a three way trade-off between decreasing barrier thickness for improved carrier 

transport, increasing cap thickness for better well protection, and increasing barrier 

temperature for better v-defect control. It was necessary to optimize each of these variables 

sequentially in order to arrive at the best possible (0001) MQW device on sapphire.  
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Figure 4.15:  Average values of Voc, Jsc, and FF for 10X In0.2Ga0.8N MQW solar cells with 2.5 nm 

wells plotted as a function of barrier thickness, with optimum thickness of 4.7 nm marked by a 

dashed line.   

 

 

For all of the devices described in the optimization series in this section, the active 

region consisted of a 10 period MQW with ~2.5 nm In0.2Ga0.8N QWs grown at 800
o
C, 

corresponding to an absorption edge between 450 and 460 nm. The low temperature cap 

layer in all devices was also grown at 800
o
C, and the cap growth and subsequent 

temperature ramp prior to the high temperature barrier growth were performed in N2. High 

temperature barrier growth was performed with a mix of N2 and H2 carrier gases. During 

temperature ramps either up or down, the temperature was allowed to settle before the 

growth of the next step proceeded. Samples were grown by MOCVD on double-side-

polished (0001) sapphire wafers. After the nucleation seed layer, a 3 µm Si-doped n-GaN 

([Si] = 6 x 10
18

 cm
-3

) template layer was grown followed by a 10 nm highly Si-doped n
+
-

GaN ([Si] = 2 x 10
19

 cm
-3

) layer. Immediately after the final QW of the active region, 25 nm  
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(a) 

 

(b) 

 
 

Figure 4.16:   (a) EQE spectra and (b) J-V characteristics for 10X In0.2Ga0.8N MQW solar cells with 

cap thicknesses ranging from 1.5 nm to 3.0 nm. 

 

 

of highly Mg-doped p
+
-GaN ([Mg] = 5 x 10

19
 cm

-3
), 20 nm moderately Mg-doped p-GaN 

([Mg] = 2 x 10
19

 cm
-3

), and a 10 nm highly Mg-doped p
+
-GaN contact layer ([Mg] = 1 x 

10
20

 cm
-3

) were subsequently grown. 

Characterization of all samples discussed in this section proceeded as follows. The 

sample surfaces were characterized by atomic force microscopy (AFM). The QW and QB 

thicknesses and indium composition were measured by x-ray diffraction (XRD). Absorption 

spectra were measured using a UV-VIS-NIR spectrophotometer coupled with an integrating 

sphere.
24

  The samples were then processed into solar cells using standard contact 

lithography. Cl2-based reactive ion etching was used to define 1 mm by 1 mm mesas. The p-

contact scheme consisted of 30/300 nm Pd/Au electron-beam deposited grids on the top of 

each mesa with a grid spacing of 200 µm and a grid width of 5 µm, and the n-contact 

scheme consisted of 30/300 nm Al/Au electron-beam deposited rings around the base of 

each mesa. After fabrication, dark and illuminated current density versus voltage (J-V) 

measurements were taken using a Keithley 2632 source meter. An Oriel 300 W Xe lamp  



89 
 

 

T
b 
(C) Voc

avg
 (V) FF

avg
 (%) Jsc

avg
 (mA/cm

2

) 

875 2.24 69.0 0.91 

900 2.25 70.0 0.97 

925 2.20 69.0 0.95 

950 2.16 68.9 0.95 

 

Table 4.1:  Average values of Voc, Jsc, and FF for 10X In0.2Ga0.8N MQW solar cells with barrier 

growth temperatures ranging from 875°C to 950°C. 

 

 

provided broadband illumination with an unfiltered intensity of 1 sun, as determined by 

integration of the external quantum efficiency (EQE) spectra over the AM0 solar spectrum. 

EQE spectra were measured under monochromatic illumination using the same lamp with 

an Oriel 260 monochromator and were calibrated using a reference Si photodetector. 

The initial series of devices examined reducing barrier thickness by reducing the cap 

and barrier simultaneously, maintaining and 1:1 thickness ratio. Total GaN QB thicknesses 

ranged from 3.0 to 11.5 nm. The resulting trends for important device figures of merit are 

shown in Fig. 4.15. The Voc held relatively constant over the full range of barrier 

thicknesses, always more than 2V, but the Jsc and FF decreased substantially on either side 

of a 4.7 nm total barrier thickness. For thicknesses greater than 4.7 nm, the degradation can 

be attributed to inefficient tunneling and poor carrier collection. For thicknesses less than 

4.7 nm, the degradation is likely due to a loss of well integrity resulting from the reduced 

cap thickness.  

 In order to reduce barrier thickness below 4.7 nm without QW degradation, it is 

necessary to find the thinnest cap that does not result in QW damage. When Hu et. al. 

performed a similar experiment (described in section 4.3.1), they found that device 

performance increased with cap thickness up to a 3 nm cap; however, their total barrier was 

much thicker.
63

 A series of devices was grown with a total barrier thickness fixed at of 4.5  
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Figure 4.17:  Photoluminescence spectra for 10X In0.2Ga0.8N MQW solar cells with barrier growth 

temperatures ranging from 875°C to 950°C. 

 

 

nm, while the low temperature cap thickness was varied between 1.5 nm and 3.0 nm. 

Electrical results (Fig. 4.16) reveal that the EQE and J-V curves of devices with a cap 

thickness greater than 1.5 nm are very similar within normal run-to-run variations, but there 

is a significant drop in voltage, current, and EQE for the 1.5 nm cap device. The decision 

was made to move forward in the optimization with a cap thickness of 2.0 nm as it was as 

thin as possible while being safely above the cutoff for performance drop, which occurred 

somewhere between 1.5 and 1.9 nm.  

Next, the growth temperature of the high temperature barrier step was optimized. 

Morphology was expected to improve due to improved v-defect filling with increased 

growth temperature, but there is also an increased chance of QW degradation through 

thickness fluctuations and indium desorption. Table 4.1 shows that there was very little 

change in the device metrics between barrier temperatures of 875
o
C and 950

o
C, besides a 

slight drop in Voc above 900
o
C. Because the goal is to develop a process that will be robust  
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Figure 4.18:  Trend of Jsc vs. barrier thickness for 10X In0.2Ga0.8N MQW solar cells with 2.5 nm 

wells. 

 

 

when increasing the indium content of the wells, which might need to be done in the future 

to optimize for MJSC integration, a temperature should be chosen that closes v-defects 

without being close to the limit for well damage. AFM scans of the top barrier in the MQW 

showed that pits begin filling at 900
o
C, while PL emission began to show characteristic 

signs of high temperature QW damage – peak quenching and the formation of a second peak 

at shorter wavelengths – starting at 925
o
C (Figure 4.17). Therefore, it was decided that 

900
o
C was the most appropriate barrier temperature.   

 Finally, another series was grown to further decrease barrier thickness with an 

optimized cap thickness and barrier temperature. Unfortunately, there was not much 

improvement over the unoptimized structures. The 10 period MQW samples had barrier 

thicknesses ranging from 2.5 to 3.4 nm, each with a 2 nm cap, wells grown at 800
o
C and 

barriers grown at 900
o
C. There was not much change in FF or Voc, but the Jsc dropped 

sharply for barriers less than 4 nm thick (Fig. 4.18). The most probable cause for this 

behavior is that the high temperature portion of the barrier was not grown thick enough to 
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effectively fill pits and mitigate v-defect propagation. Since this effect was seen in the 

absorption spectra as well, there was most likely a decrease in well integrity with decreasing 

barrier thickness.  Other factors limiting FF increase (expected to occur with thinner barriers 

and more efficient carrier collection) could be the high TDD on sapphire substrates or other 

impurities. It was important to examine in the next steps not only higher numbers of MQW 

periods, but also the effect of lower TDD on free standing GaN substrates.  

 

4.3.3 High Performance Devices with Thin GaN Barriers 

After optimizing the two-step GaN barrier for minimal thickness, a series of solar 

cells were grown using the optimal barrier conditions with increasing numbers of 

well/barrier periods. MOCVD was used to grow InGaN/GaN MQW solar cells on co-loaded 

substrates consisting of half of a 50 mm double-side-polished (0001) sapphire wafer with a 

2 µm n-GaN ([Si] = 6 x 10
18

 cm
-3

) template and a 5 mm x 5 mm piece of a hydride vapor 

phase epitaxy (HVPE) grown bulk (0001) GaN substrate from Furukawa Denshi Co., Ltd. 

The bulk (0001) GaN substrate had a threading dislocation density (TDD) of less than 3 x 

10
6
 cm

-2
, while the TDD of GaN grown on sapphire was at least 2 orders of magnitude 

higher.
71

  As shown in the schematic structure in Figure 4.19, the MOCVD growth consisted 

of a 2 µm Si-doped n-GaN ([Si] = 6 x 10
18

 cm
-3

) template layer followed by a 10 nm highly 

Si-doped n
+
-GaN ([Si] = 2 x 10

19
 cm

-3
) layer. The intrinsic active region consisted of an 

undoped In0.2Ga0.8N/GaN MQW with 10 to 50 periods, 2.3 nm QWs for samples grown on 

sapphire, 3.0 nm QWs for samples grown on bulk (0001) GaN, and 4.0 nm QBs for all 

samples. The final QW was immediately followed by a 25 nm highly Mg-doped p
+
-GaN  
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Figure 4.19:  Cross sectional schematic of general device structure for a InGaN/GaN MQW solar 

cell with a varying number of QW periods and optimized thin barriers. 

 

 

([Mg] = 5 x 10
19

 cm
-3

) layer, a 20 nm moderately Mg-doped p-GaN ([Mg] = 2 x 10
19

 cm
-3

) 

layer, and a 10 nm highly Mg-doped p
+
-GaN contact layer ([Mg] = 1 x 10

20
 cm

-3
). 

Following the MOCVD growth, the sample surfaces were characterized by atomic 

force microscopy (AFM) with a Digital Instruments Dimension 3000 AFM, the QW and QB 

thicknesses and indium composition were measured by x-ray diffraction (XRD) using a 

PANalytic MRD PRO diffractometer, and the layer thicknesses were confirmed by high 

angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The 

absorption spectra of the samples were measured using a Shimadzu UV-3600 UV-VIS-NIR 

spectrophotometer coupled with an integrating sphere.
24

  The samples were then processed 

into solar cells using standard contact lithography. Cl2-based reactive ion etching was used 

to define 1 mm by 1 mm mesas. The p-contact scheme consisted of 30/300 nm Pd/Au 

electron-beam deposited grids on the top of each mesa with a grid spacing of 200 µm and a 

grid width of 5 µm, and the n-contact scheme consisted of 30/300 nm Al/Au electron-beam 

deposited rings around the base of each mesa. After fabrication, dark and illuminated current  
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(a) 

 

(b) 

 
 

Figure 4.20:   EQE (solid lines) and absorption (dashed lines) measurements for InGaN solar cells 

with 10–50 QWs. Samples were grown on co-loaded (a) bulk (0001) GaN substrates and (b) 

sapphire substrates with 2 µm n-GaN templates.
72

 

 

 

density versus voltage (J-V) measurements were taken using a Keithley 2632 source meter. 

An Oriel 300 W Xe lamp provided broadband illumination with an AM0 intensity of 1 sun, 

as determined by integration of the external quantum efficiency (EQE) spectra over the 

AM0 solar spectrum. EQE spectra were measured under monochromatic illumination using 

the same lamp with an Oriel 260 monochromator and were calibrated using a reference Si 

photodetector. 

Figures 4.20(a) and 4.20(b) show the EQE and absorption spectra of solar cells with 

10, 20, 30, and 50 QW periods grown concurrently on bulk (0001) GaN and sapphire, 

respectively. The bulk (0001) GaN devices increased in EQE across the spectrum with 

increasing QWs, and reached a peak EQE of 60% with 50 QWs. The sapphire devices, in 

contrast, showed a similar increase in EQE between 10 and 20 QWs, but diminishing 

improvement compared to the bulk (0001) GaN devices as the number of QWs increased 

above 20. In addition, the internal quantum efficiency (IQE), which can be extracted by 

taking the ratio of the EQE and absorption spectra, was significantly better for the bulk  
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(a) 

 

(b) 

 
 

Figure 4.21:   J-V curves for InGaN solar cells with 10–50 QWs grown on co-loaded (a) bulk (0001) 

GaN and (b) sapphire substrates.
72

 

 

 

(0001) GaN devices with more than 20 QWs than for the sapphire devices with more than 

20 QWs. IQE, which is a measure of carrier collection efficiency, is very sensitive to non-

radiative recombination resulting from TDs and V-defects, so this trend is not surprising. 

Crossing of the absorption and EQE spectra near the absorption edge in Fig. 4.20(a) is not 

physical and likely resulted from on wafer wavelength variations between different 

measurement areas. 

Dark and illuminated J-V measurements for the solar cells on bulk (0001) GaN are 

presented in Fig. 4.21(a), while the corresponding measurements for solar cells on sapphire 

appear in Fig. 4.21(b). These thin barrier devices exhibited very high open circuit voltages 

(Voc) as a whole, with values up to 2.28 V. Additionally, they demonstrated fill factors (FFs) 

up to 80%. The best performing device overall was the 30X MQW solar cell on bulk (0001) 

GaN, with a peak EQE of 51.2%, a Voc of 2.26 V, a FF of 70.4%, a short circuit current 

density (Jsc) of 2.10 mA/cm
2
, a maximum power density (Pd,max) of 3.33 mW/cm

2
, and a 

conversion efficiency of 2.4% compared to the AM0 integrated power density of 1366.1 

W/m
2
.  
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Figure 4.22:  Dependence of (a) open circuit voltage, (b) short-circuit current density, (c) fill factor, 

and (d) maximum power density on number of QWs for InGaN solar cells grown on co-loaded bulk 

(0001) GaN and sapphire substrates.
72

 

 

 

The main difference between growth on non-native sapphire and native GaN 

substrates is the large difference in TDD in the epitaxial layers. Threading dislocations act 

as non-radiative recombination centers and leakage pathways in GaN-based devices;
11,73

 

therefore, improved performance on bulk (0001) GaN substrates is expected. A comparison 

of device performance for growth on sapphire and bulk (0001) GaN substrates can be seen 

in Figs. 4.22(a)-(d), which show the dependence of Voc, Jsc, FF, and Pd,max on the number of 

QWs in the active region, respectively. Each of these values, with the exception of FF, 

clearly improved on bulk (0001) GaN substrates. On sapphire, the decrease of Voc and FF 

and the relative drop of Jsc compared to bulk (0001) GaN are likely due to the propagation  
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(a) 

 

(b) 

 
 

Figure 4.23:  AFM micrographs (10 µm scan) of the p-GaN surface of InGaN solar cells with 50 

QWs grown on co-loaded (a) bulk (0001) GaN and (b) sapphire substrates. 

 

 

of V-defects through the MQW stack. AFM images show pits on the surface of the p-GaN 

on sapphire samples starting with 20 QWs, and the size of the pits increasing monotonically 

with increasing QW number (Fig. 4.23(a)). Increasing the number of QWs promotes V-

defect formation in this case,
74

 despite growth conditions designed to prevent them. All 

samples on bulk GaN, in contrast, were smooth and pit-free, as expected due to the low 

TDD (Fig. 4.23(b)). Nevertheless, some degradation still occurred between the 30 QW and 

50 QW bulk (0001) GaN devices in the absence of V-defects, as indicated by the decrease 

seen in Pd,max in Fig. 4.22(d). 

Samples with 50 QWs on both sapphire and bulk (0001) GaN were investigated by 

HAADF-STEM to verify layer thicknesses and compare structural degradation mechanisms. 

Figure 4.24(a) shows a cross sectional image of the 50 QW sample on bulk (0001) GaN, 

with good structural quality through the entire stack, though there were some slight barrier 

width fluctuations. This contrasts with the image of the 50 QW sample on sapphire (Fig. 

4.24(b)), which shows severe QW width fluctuations. In addition, it was noted that the QWs  
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Figure 4.24:  HAADF-STEM images of partial MQW stacks for InGaN solar cells with 50 QWs 

grown on coloaded (a) bulk (0001) GaN and (b) sapphire substrates. Additionally, images of a defect 

in the (0001) bulk GaN 50 QW sample (c) at low magnification and (d) at higher magnification.
72

 

 

 

were 30% thicker (3.0 nm vs. 2.3 nm) on the bulk (0001) GaN substrate even though the 

samples were loaded during the same growth. The difference in InGaN growth rate without 

a change in GaN QB growth rate or a significant change in InGaN composition is not fully 

understood at this time and is a subject of further investigation. The resulting larger total 

thickness of InGaN on bulk (0001) GaN devices than on sapphire explains some of the 

difference in current and EQE due to higher absorption, but the IQE is also significantly 

better on bulk (0001) GaN (see Fig. 4.20), indicating the higher material quality on bulk 

(0001) GaN.  

The HAADF-STEM images in Figs. 4.24(c) and 4.24 (d) show one defect 

originating in the middle of the 50 QW stack and propagating in the [0001] growth 
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direction. It is unlikely to have been associated with a preexisting TD, since no TD was 

observed beneath the MQW, and the chance of finding a preexisting TD at this 

magnification with a TDD of less than 3 x 10
6
 cm

-2
 is very small. This defect is likely a TD 

initiated by a misfit dislocation generated within the MQW stack due to strain accumulation, 

which has been previously observed in InGaN QWs on bulk (0001) GaN.
75

 This evidence of 

a structural degradation mechanism on bulk (0001) GaN that occurs without the presence of 

preexisting TDs would explain the drop in device performance between 30 QWs and 50 

QWs. 

 

4.3.4 Comparison to an Ideal Device 

Although state-of-the-art at the time of its demonstration, the performance of the 30 

QW device on bulk (0001) GaN is still far from that of an ideal InGaN solar cell with 

perfect growth quality, no defect generation, and enough InGaN to absorb all of the incident 

light. Table 4.2 compares the actual values of Jsc, Voc, FF, and Pd,max from the 30 QW device 

to those of an ideal InGaN/GaN cell with the same bandgap. This ideal device is a p-i-n 

double heterostructure with 500 nm of In0.2Ga0.8N in the active region for full absorption. 

Collection efficiency is assumed to be perfect so that EQE is 100% above the InGaN 

bandgap of 2.73 eV. Therefore, the ideal Jsc is calculated by integrating the AM0 solar 

irradiance spectrum normalized by photon energy over all wavelengths above the bandgap. 

Ideal Voc is a function of the minimum effective bandgap-voltage offset Woc,eff, defined as 

the difference between the solar cell’s effective bandgap and Voc.
76

 The effective bandgap of 

454 nm is estimated by extrapolating the linear shoulder of the EQE spectrum to the  
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Parameter 
Measured 

Value 

Theoretical 

Value 

Percent of 

Ideal 

Jsc (mA/cm
2
) 2.10 6.23 33.7% 

Woc,eff (V) 0.47 0.388 78.9% 

Voc (V) 2.26 2.343 96.5% 

FF (%) 70.4 89.5 78.7% 

Pd,max (mW/cm
2
) 3.33 13.06 25.5% 

 

Table 4.2:  Comparison of device parameters between values measured for the 30 QW InGaN/GaN 

solar cell on bulk (0001) GaN and values for an ideal InGaN-based solar cell with the same 

bandgap.
72

 

 
 

wavelength axis. In the ideal case where radiative recombination is the dominant 

recombination mechanism, Woc,eff is given by: 

 𝑊𝑜𝑐,𝑒𝑓𝑓 =
𝑘𝑇

𝑞
ln (

𝑞𝑤𝐵𝑁𝐶𝑁𝑉

𝐽𝑝ℎ
), (4.8) 

where w is the active region thickness.
76

 We use a value of 5 x 10
-11

 for B, the InGaN 

radiative recombination coefficient.
77

 NC and NV are the conduction and valence band 

effective density of states for In0.2Ga0.8N,
9
 respectively, and Jph is the photogenerated current 

density, assumed to be equal to the ideal Jsc. Ideal FF can be approximated very closely by 

the following expression:  

 𝐹𝐹 =
𝑣𝑜𝑐 − ln(𝑣𝑜𝑐 + 0.72)

𝑣𝑜𝑐 + 1
, (4.9) 

where voc is the normalized open circuit voltage, equal to ideal Voc divided by nkT/q.
78

 We 

assume the ideality factor n equals 2 since the active region is fully depleted in an ideal p-i-n 

structure.  

It is clear from Table 4.2 that the Jsc shows the largest discrepancy compared to an 

ideal device, and thus has the largest impact on the maximum output power, which is equal 

to 𝑃𝑑,𝑚𝑎𝑥 = 𝑉𝑜𝑐 × 𝐽𝑠𝑐 × 𝐹𝐹. Jsc is limited mainly by the thickness of InGaN that can be 

grown before the onset of structural instabilities due to mismatch stresses, as seen in Fig. 
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4.24. Likewise, the FF can be improved significantly by limiting non-radiative 

recombination, while the Voc is already very close to its theoretical value. One possible 

solution for preventing strain-related degradation is a strain-balanced InGaN/AlGaN MQW 

active region, though any solution will involve significant materials growth challenges. 

 

3.4 Optical Coatings for Multijunction Integration 

3.4.1 Light Trapping in Solar Cells 

 Idealized solar cell structures generally assume that light passes directly through the 

device, perpendicular to the top surface, and if it is not absorbed it passes out the other side 

and is lost. This simple approach ignores the very important contributions of reflections and 

scattering to the solar cell’s efficiency. The idea of light trapping, or having multiple passes 

of light through an absorbing layer, was first proposed for thin film solar cells in 1974 by 

Redfield.
79

 Of course, putting a perfect planar mirror on the back surface will double the 

optical  

path length in a solar cell. Redfield proposed that if the back surface is not parallel to the 

front surface (that it is angled or textured) then it is possible to design reflection angles that 

will be totally internally reflected, allowing multiple passes of unabsorbed light through the 

film. Statistical-mechanical analysis by Yablonovitch and Cody shows that absorption in a 

randomly textured (Lambertian) semiconductor film can be enhanced by a factor of up to 

4n
2
, where n is the index of refraction of the semiconductor, compared to a planar film (Fig. 

4.25).
80

 This model relies on the assumption that after a few reflections, light will be 

completely randomized and fill the entire phase space, increasing the optical density. It was 

then applied successfully to solar cell devices,
81

 and to a better model for solar cell limiting  
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Figure 4.25:  Two optical sheets with different surface textures. (a) Randomized angles of reflections 

in a Lambertian film lead to intensity enhancement. (b) Parallel planar surfaces cause no angular 

randomization.
80

  

 

 

efficiency.
82

 Controlled repeating patterns have also been proposed as an alternative to 

Lambertian roughness, but they perform worse unless engineered very precisely.
83

 Beyond 

simple macroscopic surface texturing, another way to trap light in a thin film absorbing 

layer is by employing surface plasmons.
84–86

 Surface plasmon polaritons occur when there is 

a nanostructured metallic film on the semiconductor surface – they are free electron 

oscillations at the metal/semiconductor interface. They can confine and guide light into 

films that are thinner than the wavelength of the light being absorbed, something that cannot 

be accomplished with traditional surface patterning. Plasmonic enhancement has been 

successfully applied to photovoltaic devices as well.
87,88

As for light trapping in nitride solar 

cells, various methods have been applied to InGaN-based devices in order to improve light 

coupling: such as backside mirrors,
25,89,90

 backside roughening,
91,92

 p-GaN roughening,
24,93–

96
 and plasmonic scattering.

97
 

 



103 
 

4.4.2 Multijunction Integration of Nitride Solar Cells 

Efficient utilization of higher energy photons requires an additional junction with a 

wider bandgap, preferably near 2.65 eV for a 5
th

 junction.
98

 Because of the large lattice 

mismatch between GaN and common multijunction solar cell materials, such as InGaP and 

GaAs, InGaN-based devices cannot be grown epitaxially on underlying junctions composed 

of those materials.  One way around this problem is to integrate the InGaN/GaN subcell in a 

bonded configuration.  We refer to this configuration as a 3 junction + 1 junction design or a 

4 junction + 1 junction design, where the number of the junctions in the first term depends 

on the design of the underlying MJSC.  Due to the relatively small current that would be 

produced by an InGaN-based solar cell with an absorption edge near 2.65 eV,
72

 efficient 

current matching with underlying junctions would not be possible, and the InGaN/GaN 

subcell must be electrically isolated from the underlying MJSC in a three or four terminal 

design.
98

  The bonding layer therefore does not need to be electrically conductive, and the 

bonding process can be simplified by using a transparent polymer such as benzocyclobutene 

(BCB). A schematic of a potential 4 junction + 1 junction device is shown in Fig. 4.26. The 

4 junction underlying multijunction device is an inverted metamorphic structure based on a 

GaAs substrate.
100

 Direct bonding of GaAs and InP-based subcells for a five junction solar 

cell has been successfully demonstrated.
101

  

Multijunction solar cells are often operated in concentrating photovoltaic systems 

with optical concentration factors of 300-1000 suns. This presents extra challenges for 

device design because of heating and high current density. Usually high temperature 

operation causes a reduction in efficiency for solar cells because of a drop in Voc. InGaN 

MQW solar cells, on the other hand, have been shown to have a positive temperature  
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Figure 4.26:  Cross-sectional schematic of 1 junction + 4junction MJSC with an InGaN/GaN MQW 

top cell.
99

 

 

 

coefficient up to 100°C, due to greater thermionic emission from QWs contributing to 

higher Jsc.
102

 InGaN solar cell operation under concentrated illumination has been reported 

up to 300 suns and 4% efficiency.
29,103

 Correct choice of metal contacts and current 

spreading layers becomes very important under concentration because of the high current 

density and subsequent larger power loss due to series resistance.  

 

4.4.3 Design and Fabrication of Dielectric Optical Coatings for InGaN/GaN 

Solar Cells 

 Careful optical design is essential for successful integration of an InGaN/GaN solar 

cell with an underlying MJSC. For example, there are two important considerations with the 

4 junction + 1 junction design. First, it is necessary to maximize transmission for photons 

with energies between 0.7 and 3.4 eV through the topside of the InGaN/GaN solar cell. This 
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is the range of useful absorption between the bandgap of the bottom junction material of a 

MJSC, which is commonly near 0.7 eV,
104

 and the bandgap of GaN, which is 3.4 eV. To 

accomplish this, a broadband antireflection coating (ARC) needs to be designed and 

deposited on the topside of the InGaN/GaN solar cell. ARCs have been demonstrated on 

InGaN/GaN solar cells,
105,106

 but have not yet exhibited antireflection properties over wide 

wavelength ranges.  

Second, since the total InGaN thickness must be kept relatively small to avoid strain-

induced material degradation,
72

 an increase in light coupling for photons with energies 

between 2.65 eV (the ideal InGaN bandgap) and 3.4 eV is highly beneficial for the 

InGaN/GaN subcell. However, it is also necessary to maximize transmission for unabsorbed 

light between 0.7 eV and 2.65 eV at the bonding interface to avoid degrading the 

performance of the fully integrated device. While the optical path length in the InGaN can 

be doubled with a well-designed dichroic mirror, it would be possible to increase this factor 

to 4𝑛2, where 𝑛 is the index of refraction of GaN, with a cleverly designed scattering 

structure.
80

 However, it is important that these structures do not affect the operation of the 

lower four junctions by scattering light below 2.65 eV. Alternate methods for improving 

light coupling into InGaN/GaN solar cells such as backside mirrors, and front or backside 

roughening, are problematic because they result in reflections or scattering of wavelengths 

of light that are useful to underlying subcells. To increase light coupling to the InGaN 

absorber layer while avoiding undesired reflections and scattering, a broadband dichroic 

mirror (DM) needs to be designed and deposited on the backside of the InGaN/GaN solar 

cell. 
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Both the ARC and DM coatings were designed using TFCalc by Software Spectra, 

Inc., an optical coating simulation tool that utilizes the transfer-matrix method. It optimizes 

the thickness of each layer of SiO2 and Ta2O5 to minimize the difference between a target 

reflectance spectrum and the simulated reflectance spectrum. The ARC target was 100% 

transmission for wavelengths from 365 nm (3.4 eV) and 1771 nm (0.7 eV). The DM target 

was 100% reflectance for wavelengths between 365 and 470 nm (2.65 eV) and 100% 

transmission between 470 and 1771 nm. It should be noted that this DM was designed for a 

GaN/air interface rather than the GaN/bonding layer interface that would be present in a 4 

junction + 1 junction design. 6 layers were found to be optimal for the ARC. For the DM, 

additional layers generally provided higher reflectivity from 365 – 470 nm. We chose a 14 

layer coating for the DM to balance performance and complexity. In the final design, the 6 

layer ARC and 14 layer DM were optimized with layer thicknesses ranging from 9.5 to 148 

nm. 

Dielectric layers for the optical coatings were deposited using ion-beam deposition. 

The 6 layer ARC was deposited on the front side of the sample (the 30X MQW solar cell on 

bulk GaN substrate described in section 4.3.3), with patterned via holes to allow contact to 

the n-type and p-type electrodes. Then the 14 layer DM was deposited on the back side of 

the sample. Single side polished bulk GaN substrates were co-loaded during the deposition 

of the ARC and DM for the purpose of measuring the reflectance of the coatings. The 

backside of the sample was then coated with black paint to minimize backside reflections, 

and the reflectance of the topside of the sample was measured using a Cary 500 

spectrophotometer.  
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Figure 4.27:  Simulated and measured reflectance of (a) the ARC and (b) the DM. ARC reflectance 

is compared to the spectrum of AM0 solar irradiance. DM reflectance is compared to the uncoated 

device EQE spectrum. Inset in (b) clearly shows the range of InGaN photoresponse between 365nm 

and 455 nm. Left axis in the inset in (b) represents the same quantities and is in the same units as the 

left axis of the main plot.
107

 

 

 

Figure 4.27 shows the reflectance spectra of the ARC and DM coatings. The 

simulated and measured spectra of the ARC are in very good agreement (Fig. 4.27(a)). 

Between 365 and 1771 nm, the average reflectance is 2.4%. This wavelength range 

corresponds to the vast majority of the power in the AM0 solar spectrum which is plotted in 

Fig 4.27(a) and should be absorbed by successive layers in a MJSC. In Fig. 4.27(b), the 

simulated and measured DM reflectance spectra are also in good agreement, aside from a 

~15 nm blue-shift of the actual coating, likely caused by a slight drift in the Ta2O5 

deposition rate. For comparison, the EQE spectrum of the uncoated device is plotted 

alongside the DM spectra. The highly reflecting portion of the DM spectrum has an average  
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Figure 4.28:  Cross sectional schematic of a 30X InGaN/GaN MQW solar cell with deposited anti-

reflective coating and dichroic mirror.
107

 

 

 

reflectance of 89.3% in the region coinciding with the InGaN photoresponse (365 to 460 

nm), as seen in the inset of Fig. 4.27(b). At wavelengths beyond 470 nm, the reflectance 

remains below 10% and averages 3.0%. 

 

4.4.4 InGaN Solar Cells with Optical Coatings 

 The device used to test the application of optical coatings was the 30X MQW solar 

cell described in detail in section 4.3.3, which was chosen because it exhibited the highest 

maximum power density. A cross-sectional schematic of the general structure of the solar 

cell with optical coatings is shown in Figure 4.28. Electrically characterized was performed 

at three stages in the process: prior to coating deposition, after the ARC deposition, and after 

the DM deposition. J-V measurements and EQE measurements were performed using the 

same procedures and equipment described in section 4.3.3.  
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Figure 4.29:  Electrical measurements of the 30 QW solar cell device before and after depositing 

both the ARC and DM. (a) EQE spectra and (b) current density and power density vs. voltage 

characteristics. Dotted lines in (a) represent calculations of expected EQE after ARC and DM 

deposition based on uncoated EQE data and optical coating reflectance data presented in Fig. 4.27.
107

 

 

 

The improved electrical characteristics as a result of the optical coatings are shown 

in Fig. 4.29. Peak EQE improved by 27% (relative) over the uncoated value after the 

application of the ARC, and by 56% (relative) after both the ARC and DM were applied. 

The measured EQE data in Fig. 4.29(a) agree well with the expected EQE values after 

coating deposition (dotted lines). The expected EQE with the ARC alone was calculated by 

multiplying the measured EQE for an uncoated device (𝐸𝑄𝐸0) by (1 − 𝑅𝐴𝑅𝐶) (1 − 𝑅𝐺𝑎𝑁)⁄ , 

the ratio of front surface transmission between the coated and uncoated sample, where 𝑅𝐴𝑅𝐶  

is the measured reflectance of the ARC, and 𝑅𝐺𝑎𝑁 is the reflectance from an air/GaN  
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Figure 4.30:  Schematic of the evolution of the optical power of radiation incident on an absorbing 

layer after a series of reflections off of the top and bottom surfaces. The incident power is Pin. The 

reflectivities of the top and bottom surfaces are R1 and R1, respectively. The absorption that occurs 

during a single pass of light through the film is A’. The sum of the optical power in the film after 

each reflection, for an infinite number of reflections, gives the total effective optical power in the 

film. 

 

 

interface. With both the ARC and DM, the expected EQE was calculated using the 

following formula:  

 𝐸𝑄𝐸𝐷𝑀+𝐴𝑅𝐶 = 𝐸𝑄𝐸0

{1 − 𝑅𝐴𝑅𝐶}{1 + 𝑅𝐷𝑀(1 − 𝐴′)}{1 − 𝑅𝐺𝑎𝑁
2(1 − 𝐴′)2}

{1 − 𝑅𝐺𝑎𝑁}{1 + 𝑅𝐺𝑎𝑁(1 − 𝐴′)} {1 − 𝑅𝐴𝑅𝐶𝑅𝐷𝑀(1 − 𝐴′)2}
, (4.10) 

which was derived by considering an infinite number of internal reflections off the front and 

back interfaces for both coated and uncoated GaN (Fig. 4.30). 𝐸𝑄𝐸𝐷𝑀+𝐴𝑅𝐶 is the EQE after 

deposition of both the ARC and DM, 𝑅𝐷𝑀 is the measured reflectance of the DM, and 𝐴′ is 

single pass absorption of light normalized to its maximum value. A' has been calculated 

from the normalized measured absorption, A, of the InGaN/GaN MQW sample using the 

following equation: 

 𝐴′ =
𝐴(1 − 𝑅𝐺𝑎𝑁)

1 − 𝐴 × 𝑅𝐺𝑎𝑁
, (4.11) 
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Coating 
Peak EQE 

(%) 
Voc (V) FF (%) 

Jsc 

(mA/cm
2
) 

Pd,max 

(mW/cm
2
) 

Change in  

power 

density 

No coatings 53.8 2.25 70.2 2.10 3.31 -- 

ARC 64.8 2.26 69.9 2.46 3.87 +16.9% 

ARC + DM 79.8 2.26 67.9 2.97 4.55 +37.5% 

 

Table 4.3:  Comparison of average values of device parameters for three devices per data point on 

the same bulk (0001) GaN substrate before coating deposition, after ARC deposition, and after DM 

deposition.
107

 

 

 

which was derived in a way analogous to Eq. (4.11). These calculations assume that no 

reflections arise at the InGaN/GaN QW interfaces. The close agreement between measured 

and modeled EQE shown in Fig. 4.29(a) is an indication that this assumption is valid, and 

that the model discussed above provides a good approximation of the actual performance of 

the cells.  

Significant improvement was also observed in the J-V characteristics after deposition 

of the optical coatings (Fig. 4.29(b)). As expected, the increase in performance was 

dominated by an increase in the current density, which led to an increase in power density 

with little change in open circuit voltage (Voc) or fill factor (FF). Table 4.3 shows the 

average values of device parameters from three devices per data point on the bulk (0001) 

substrate. The deposition of the ARC and DM led to a substantial 37.5% increase in Pd,max, 

which is equivalent to a relative increase in conversion efficiency of the same magnitude. 

The resulting Pd,max of 4.55 mW/cm
2
 corresponds to a conversion efficiency of 3.33% for an 

AM0 integrated spectral power density of 1366 W/m
2
.  
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4.5 Conclusions 

The III-N material system has been proposed as a revolutionary photovoltaic 

technology, with a bandgap that has the potential to span the entire range of the useful solar 

spectrum. However, several key difficulties have limited the performance of InGaN-based 

solar cells. Absorbing layers of InGaN must be made thick enough, hundreds of nanometers 

at least, to absorb most of the incident light. The large lattice mismatch between InN and 

GaN means that only a small fraction of indium can be incorporated, and the bandgap can 

only decrease into the blue or green wavelengths, before strain relaxation begins to severely 

degrade performance. Transitioning from a DH design to an MQW design alleviates the 

strain to some degree, allowing thicker active regions, more indium incorporation, and 

improved performance, but high performance devices with an absorption edge beyond 500 

nm remain elusive. Polarization-induced electric fields also present problems. They act 

opposite the direction of the junction field, hampering current collection, and they cause 

QCSE, weakening absorption near the band edge.  

MQW designs have improved efficiencies overall, but present new challenges in 

carrier transport. Generated carriers must be able to escape QWs and transit the active 

region before recombining. Many techniques, including time-resolved PL and 

electroabsorption, have been discussed, which can measure relevant carrier lifetimes within 

the collection process. Biased dependent EQE measurements demonstrated the electric field 

dependence on carrier collection in InGaN/GaN MQW solar cells. Increased reverse bias 

improved extraction efficiency by promoting tunneling transport out of wells through 

effective barrier lower and thinning. Temperature dependent I-V measurements 

demonstrated the importance of having thinner quantum barriers to promote tunneling 
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transport over thermionic emission for carrier escape out of QWs. Carrier escape modelling 

confirmed the temperature dependent results, giving an accurate comparison of tunneling 

rates, thermionic emission rates, and recombination rates in InGaN MQW devices with 

varying barrier thickness.  

In order to grow high quality InGaN MQW solar cell active regions with thin 

barriers by MOCVD, a two-step barrier growth processed needed to be optimized. When 

barriers are grown at the well temperature it allows V-defects to propagate through the 

active region, severely degrading performance. Elevated growth temperatures and the 

presence of H2 carrier gas contribute to the filling in of V-defects, but also cause indium 

desorption and thickness fluctuations in QWs. A thin low temperature cap layer with only 

N2 carrier gas must be grown on top of each QW, followed by a high temperature GaN 

barrier layer with H2 carrier gas. After growth and testing of optimization series for cap 

layer thickness, barrier layer temperature and barrier layer thickness, the final optimized 

barrier structure consisted of a 2 nm cap layer grown at the QW growth temperature 

(800°C), and a 2 nm barrier layer grown at 900°C. Thinner barriers were not able to prevent 

the propagation of V-defects.  

High performance InGaN/GaN MQW solar cells have been demonstrated with thin 

barriers to promote efficient carrier transport. Growth on low TDD bulk (0001) GaN 

substrates provided improvements in performance compared to sapphire substrates, 

especially with an increasing number of QWs.  Device degradation occurred as MQW 

thickness increased, with the onset being delayed on bulk (0001) GaN substrates.  Results 

indicate that V-defects form on preexisting TDs during MQW growth on sapphire, while 

new defects nucleate during MQW growth on bulk (0001) GaN.  Thin barrier solar cells 
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exhibited EQEs up to 60%, Voc as high as 2.28 V, FF up to 80%, and a maximum conversion 

efficiency of 2.4% under 1 sun AM0 equivalent illumination. 

Results of applying optical coatings indicate that well-designed broadband dielectic 

coatings can enhance the performance of current state-of-the-art InGaN-based solar cells 

while also allowing for high transparency to underlying junctions.  Ion beam deposition of a 

6-layer ARC on the front surface and a 14-layer DM on the back surface increased the peak 

EQE of a 30 QW InGaN/GaN solar cell by 56% (relative). In addition, the AM0 conversion 

efficiency increased by 37.5% (relative), resulting in a conversion efficiency of 3.33% after 

deposition of optical coatings.  Significant improvements can still be made in ARC 

transparency as well as DM reflectivity and long wavelength transparency, which should 

further enhance the performance of InGaN/GaN solar cells with broadband optical coatings.  
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5 
 
 

Polarization Screening in Single Quantum 
Well Light-Emitting Diodes 

 
 
5.1 Polarization Fields and Droop 

As was discussed in Chapter 1, polarization discontinuities at heterointerfaces 

between different compositions of c-plane wurtzite III-nitride materials ((Ga,Al,In)N alloys) 

cause large electric fields to develop. In a strained InGaN/GaN quantum well (QW), the 

polarization-induced electric field (dominated by piezoelectric polarization) leads to "tilted" 

energy bands that spatially separate the electron and hole wavefunctions (Fig 5.1).  Spatial 

charge separation reduces the wavefunction overlap (Fcv, see Eq. 3.4), which reduces the 

oscillator strength, and therefore the rate, of all recombination transitions. Every carrier 

injected into an LED will recombine either radiatively or non-radiatively, and so, as shown 

in Eq. 1.15, the total current density J can be written as the sum of three recombination 

types that depend to differing degrees on the carrier density, n: Shockley-Read-Hall (SRH) 

non-radiative recombination (An), bimolecular radiative recombination (Bn
2
), and Auger 

non-radiative recombination (Cn
3
). It is important, however, to know the dependency of 

each of  
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Figure 5.1:  (a) Schematic of the enegy bands of a (0001) InGaN/GaN quantum well with separated 

electron and hole wavefunctions. The piezoelectric field in the QW reduces wavefunction overlap, 

Fcv. (b) The reduction in |Fcv |
2
 affects each type of recombination: (i) Shockly-Read-Hall (SRH, rate 

An), (ii) radiative (rate Bn2
), (iii) Auger (rate Cn3

, responsible for LED efficiency droop). Figure 

adapted from Kioupakis et al.1  

 

 

the recombination coefficients on the wavefunction overlap so that conclusions about IQE 

and droop (see Eq. 1.16) can be drawn.  

If the coefficients A, B, and C each have the same functional dependence on Fcv, then 

Auger recombination will become relatively more influential with higher QW electric field, 

since it depends on the cube of the carrier density. Kioupakis et al. make a theoretical case 

for A, B, and C to each depend on the square of the wavefunction overlap.
1
  They note that 

𝐵 = 𝐵0|𝐹𝑐𝑣|
2 because the radiative coefficient is proportional to the square of the matrix 

element of the coupling Hamiltonian, which in turn is proportional to the electron-hole 

wavefunction overlap (see Chapter 3 for more details). They also argue that 𝐶 = 𝐶0|𝐹𝑐𝑣|
2 

because in this three carrier process,
i
 the wavefunction the third carrier (excited state) 

overlaps completely with its corresponding recombining carrier and so doesn’t need to be 

considered in the overlap integral. It is an assumption that holds especially well for the hhe 

                                                             
i Electron-electron-hole or hole-hole-electron Auger recombination are both possible, but hhe is more probable 

in GaN. 
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Auger process, which dominates in GaN.
2
 Finally, they argue that the rate of SRH at a deep 

level defect should be proportional to the square of the overlaps of each carrier’s 

wavefunction with that defect, and since the extent of a defect is very small compared to a 

carrier’s wavefunction, the rate of SRH is simply given by 𝐴 = 𝐴0|𝐹𝑐𝑣|
2. It is worth noting 

that this assumption would break down if the capture of one carrier by the defect changed 

the probability of capture of the other carrier through Coulomb attraction, of if the 

distribution of defects were not equivalent over the full extent of both the electron and hole 

wavefunctions.  

Interestingly, an increase in wavefunction overlap would increase both radiative and 

non-radiative recombination rates, so it might not be immediately obvious that something 

had been gained. Many discussions of polarization fields and wavefunction overlap 

oversimplify the problem by claiming that only the radiative rate is affected and that IQE is 

improved as a direct result of increasing overlap. In fact, if the recombination mechanisms 

all have the same functional dependence on overlap, as described above, the IQE would be 

independent of Fcv at a given n, and the peak IQE will not change. The improvement in LED 

performance as a result of better overlap can be understood as follows. If all the carrier 

recombination coefficients are proportional to the square of the wavefunction overlap, then 

the current density in the device can be written as  

 𝐽 = 𝑞𝑑 ∙ (𝐴0𝑛 + 𝐵0𝑛
2 + 𝐶0𝑛

3)|𝐹𝑐𝑣|
2, (5.1) 

similar to Eq. 1.15, but with the wavefunction overlap term factored out. From Eq. 5.1, it 

can be easily seen that at a given injected current density, n will increase when the 

wavefunction overlap decreases due to increased internal electric field in the QW. This also 

makes intuitive sense because a decrease in Fcv causes slower recombination, leading to a 
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build-up of higher carrier density. As n increases, the 𝐶0𝑛
3 Auger term should begin to 

dominate and IQE will decrease at a given J. It has been well-established that Auger 

recombination is primarily responsible for efficiency droop in III-N LEDs,
2–7

 so reducing 

net field in InGaN QWs should improve droop performance. Indeed, a one-to-one 

correlation has been found between the net electric field in the active region and the 

magnitude of efficiency droop for c-plane III-nitride LEDs.
8
 The peak IQE of the device 

should not change, but increasing wavefunction overlap will shift the peak to higher current 

densities. 

In addition to lowering radiative efficiency, internal QW fields also red-shift the 

emission wavelength.  These effects are manifestations of the quantum confined Stark effect 

(QCSE) and have been thoroughly analyzed for III-nitride QWs (see Chapter 3 for more 

information on QCSE).
9–14

 Under device operation, the large polarization-induced electric 

fields can be partially screened by injected carriers.
15

 While this diminishing of the internal 

electric field inside the quantum wells increases radiative efficiency, it also causes a 

significant blue-shift in emission wavelength with increasing injection. The wider the QW, 

the larger the blue-shift is expected to be because of the additional potential drop in the QW, 

as long as emission always comes from ground state transitions.
16

 QCSE due to polarization 

fields results in emission spectra that are difficult to engineer accurately. 

Rather than reducing QW polarization fields by growing on nonpolar or semipolar 

planes of GaN,
17–21

 which involve using much smaller and more expensive substrates, or by 

using AlInN /InGaN QWs in a “polarization-matched” active region,
22,23

 which would add 

significant growth complications, it would be preferable to grow InGaN/GaN LEDs on c-

plane. The wide single quantum well (SQW) active regions and low droop demonstrated on 
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semipolar planes such as (20-2-1) and (30-3-1) should also be achievable on (0001) if the 

polarization field can be effectively eliminated. In LEDs grown on c-plane, the polarization 

field in the InGaN QW is in the opposite sense to the built-in field of the p-n junction. 

Therefore, the impurity doping profile can be designed so that the built-in field effectively 

screens the polarization field, resulting in a near zero net field in the active region of a 

properly doped SQW device.  These doping profiles can also be tuned so that there is zero 

field at the current density of interest for device operation. Using doping to screen 

polarization fields and suppress QCSE was first proposed by Fiorentini and Bernardini.
24

 

Because of the large polarization discontinuities on the polar (0001) plane, giving rise to 

electric fields in excess of a MV/cm, very large dopant concentrations well in excess of 1 x 

10
19

 cm
-3

 may be necessary to screen fixed polarization charges at heterointerfaces. Other 

groups have correlated n-type doping with a reduction in QW electric field and increase in 

radiative efficiency, though they do not agree on the physical methods involved.
25–28

 In 

nitride solar cells, a similar effect of polarization screening through doping was observed to 

improve carrier transport out of the active region.
29

 

Decreasing the net electric field in the InGaN also allows for the growth of thicker 

QWs without a loss of wavefunction overlap. Thicker QW designs will also decrease the 

carrier density and reduce efficiency droop. LEDs with a properly designed doping profile 

should result in minimal electric field in QW, maximum wavefunction overlap, allowing 

thicker active volume, and thus droop onset at higher currents. Additionally, a c-plane QW 

with a screened polarization field would behave more like an m-plane QW, and should 

exhibit no droop dependence on indium content, potentially allowing more efficient devices 

at longer wavelengths.
1
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5.2 Polarization Screened Single Quantum Well Simulations 

Before attempting to grow polarization screened SQW LEDs, simulations were 

performed to find the correct doping level for flattening the electric field and maximizing 

the wavefunction overlap in the QW and to see the effect of QW thickness on overlap.  

Figure 5.2 shows a cross-sectional schematic of the (0001) SQW LED structure under 

consideration. The structure consists of a 120 nm n-GaN layer with [Si] = 1E18 cm
-3

, a 10 

nm n-GaN barrier layer with varying doping level, an In0.20Ga0.80N QW of varying thickness 

with an n-type background doping level of 1E16 cm
-3

, a 10 nm p-GaN barrier layer with 

varying doping level, a 15 nm p-Al0.20Ga0.80N electron blocking layer with [Mg] = 5E19 cm
-

3
, a 100 nm p-GaN layer with [Mg] = 1E19 cm

-3
, and a 15 nm p-GaN contact layer with 

[Mg] = 1E20 cm
-3

.  Since equal fixed positive and negative sheet charges exist at the top and 

bottom interfaces of the SQW, respectively, the doping levels in the n-GaN and p-GaN 

barrier layers were varied equally and concurrently.  For the purposes of the simulation, 

LEDs with four SQW thicknesses of 3, 5, 8, and 12 nm were considered with 

unintentionally doped (UID) GaN barrier.
i
 Additionally, LEDs with four barrier layer 

doping levels of 1E19 cm
-3

, 4E19 cm
-3

, 7E19 cm
-3

, and 1E20 cm
-3

 were considered with a 

12 nm SQW. For the sake of simplicity, only effects on the longitudinal (along (0001)) 

ground state of the SQW structure are described. While it is an excellent approximation for 

the thinnest QW structure, an exact rendition would need to model excited states in thicker 

layer samples, which would add unnecessary complexity without changing the arguments 

developed below.  

                                                             
i The UID layers were given an n-type background doping of 1E16 cm

-3
 due to oxygen impurities. 
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Figure 5.2:  Cross-sectional schematic of a (0001) SQW LED structure. 

 

 

All simulations were performed using the SiLENSe version 5.4 software.
7
  Figure 

5.3 shows simulated energy band diagrams and ground state electron and hole 

wavefunctions under forward bias (at a current density, J = 100 A/cm
2
) for LEDs with 

varying QW thicknesses and UID barrier layers. The low background doping in the barrier 

layers will not screen the polarization fields in the QW.  As shown in Fig. 5.3(a), the ground 

state electron and hole wavefunctions are pressed together by the wide bandgap barrier 

confinement even though the electric field in the QW is very high. The high degree of 

confinement in a 3 nm SQW LED maintains a significant carrier wavefunction overlap, 

about 18% at zero current injection (Fig. 5.4). In Figs. 5.3(b-d), as the QW thickness 

increases, the separation of the ground state wavefunctions also increases, resulting in 

decreased wavefunction overlap. The potential remains large in the case of 5, 8, and 12 nm 

QWs even though the electric field is non-uniform because it has been partially screened at 

the relatively high injected current density of  J = 100 A/cm
2
. This corresponds to the high 

excitation regime defined by Della Salla et al.
15

 In the case of the 12 nm QW, the field is 

nearly flat in the center, but increases significantly at the right and left edges, causing the 

electron and hole ground state wavefunctions to be confined at the edges of the well rather  



130 
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

 

Figure 5.3:  Simulated energy band diagrams and ground state electron and hole wavefunctions 

under forward bias (J = 100 A/cm
2
) for SQW LEDs with QW thicknesses of (a) 3 nm, (b) 5 nm, (c) 

8 nm, and (d) 12 nm. 

 

 

than spreading across the entire width of the well. Well-designed n-type and p-type barrier 

layer doping is necessary to fully screen the polarization charges at the QW interfaces and 

flatten the electric field in the QW, thereby increasing wavefunction overlap.  

Figure 5.4 summarizes the simulated dependence of the square of the wavefunction 

overlap on current density for LEDs with a range of active region thicknesses and no 

intentional barrier layer doping.  As shown in Fig. 5.4, the LEDs with QW thicknesses of 3, 

5, and 8 nm exhibited wavefunction overlap that increased monotonically as a function of  
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Figure 5.4:  Simulated dependence of the square of the wavefunction overlap on current density for 

SQW LEDs with a range of QW thicknesses. 

 

 

current density.  There was, however, a dramatic decrease in the values of wavefunction 

overlap between the 3 nm QW and the 5 nm QW, and again between the 5 nm QW and the 

8 nm QW.  The LED with a thickness of 12 nm exhibited nearly zero wavefunction overlap 

with little dependence on current density.  The increase in wavefunction overlap with 

increasing current density is indicative of the expected partial screening of polarization by 

injected carriers.  Nevertheless, the maximum overlap of all four LEDs with nominally 

undoped barriers was still less than less than 0.35 at 1 kA/cm
2
 due to incomplete screening 

of the polarization, which becomes worse for the thicker active layers due to their increased 

separation between the electron and hole ground state wavefunctions.  

Larger QW thicknesses are desired, however, in order to reduce efficiency droop by 

reducing active region carrier density at a given drive current density.  This is due to the 

non-linear dependence of the Auger non radiative process causing droop on the carrier 

density.
3
 Two main effects from the screening of polarization fields to increase electron hole 

pair overlap for thick active layers are expected: (i) the retention of large overlap even for  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Figure 5.5:  Simulated energy band diagrams and ground electron and hole wavefunctions under 

forward bias (J = 100 A/cm
2
) for12 nm SQW LEDs with doping levels of (a) 1E19 cm

-3
, (b) 4E19 

cm
-3

, (c) 7E19 cm
-3

, and (d) 1E20 cm
-3

 in the barrier regions on either side of the QW. 

 

 

thick active layers; (ii) increased overlap compared to the value reached in thin QWs 

without screening. 

Figure 5.5 shows simulated energy band diagrams and ground state electron and hole 

wavefunctions under forward bias (at J = 100 A/cm
2
) for LEDs with concurrently varying n 

and p barrier doping levels and a thick 12 nm QW.  Figure 5.5(a) shows that even with n 

and p barrier layer doping of 1E19 cm
-3

, there is little difference from the undoped case 

(Fig. 5.5(d)): the electric field in the QW is still in the opposite sense to the built-in field 

since the polarization field remains largely unscreened. This leads to a spatial separation of 
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the ground state electron and hole wavefunctions, yielding a near zero wavefunction 

overlap.  Figure 5.5(b) shows that upon increasing the doping to 4E19 cm
-3

, the electric field 

in the QW begins to decrease and the energy bands begin to flatten, bringing the electron 

and hole wavefunctions closer together and increasing the overlap, though it is apparent that 

the wavefunctions are still spatially separated. Increasing the doping slightly more to 7E19 

cm
-3

, as shown in Fig. 5.5(c), results in nearly zero electric field in the QW,
i
 indicating that 

the polarization field in the QW was fully screened. The wavefunction overlap in this case is 

very high. In contrast, Fig. 5.5(d) once again shows some spatial separation between the 

electron and hole wavefunctions. The doping level of 1E20 cm
-3

 was high enough to be 

degenerate on the n-side of the QW and cause an accumulation of electrons. This resulted in 

a lowering of the bands on the n-side of the well, which lead to a localization of the electron 

wavefunction nearer to the n-side of the well. The hole wavefunction remained largely 

unchanged between Figs. 5.5(c) and 5.5(d). According to these simulations, the condition of 

near zero electric field in the QW is met at a doping level near 7E19 cm
-3

. 

Figure 5.6 summarizes the simulated dependence of the square of the wavefunction 

overlap on current density for LEDs with a range of doping levels.  As shown in Fig. 5.6, 

the LED with a doping level of 1E19 cm
-3

 exhibited nearly zero wavefunction overlap over 

a large range of current densities.  The LED with a doping of 4E19 cm
-3

 exhibited a 

relatively low but non-zero wavefunction overlap that increased monotonically with 

increasing current density.  Likewise, the LED with a doping level of 1E20 cm
-3

 showed a 

similar, albeit much higher, dependence of overlap on current density.  In contrast, the LED 

with a doping level of 7E19 cm
-3

 exhibited a high wavefunction overlap with little  

                                                             
i There is still some curvature in the bands due to an accumulation of electrons in the QW. The electron Fermi 

level lies above the conduction band of the QW, which means that the QW is modulation doped.  
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Figure 5.6:  Simulated dependence of the square of the wavefunction overlap on current density for 

SQW LEDs with a range of QW thicknesses. 

 

 

dependence on current density above J = 100 A/cm
2
.  This behavior is similar to that 

expected for a nonpolar LED with the same structure and indicates that the polarization field 

in the QW was fully screened with a doping level of 7E19 cm
-3

. It should be noted that, in 

the case of a doping level of 7E19 cm
-3

, the overlap has a local maximum near J = 100 

A/cm
2
. Increasing the doping further pushes that maximum point to higher overlaps and 

higher current densities. No maximum is evident in the curve for the case of an LED with a 

doping level of 1E20 cm
-3

, but above J = 400 A/cm
2
, the wavefunction overlap is actually 

higher than the case of 7E19 cm
-3

 doping. However, it is desirable to design a structure that 

has high overlap, and therefore high radiative efficiency, at both low and high drive current 

densities. A structure like the one described above, with a wide active region and high 

wavefunction overlap over a wide range of drive current densities, is likely to exhibit a 

minimal amount of efficiency droop. 
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5.3 Decreasing the Number of Quantum Wells 

 The first InGaN-based high power LEDs were based on SQW or double 

heterostructure
i
 active regions.

30–32
 Eventually the width of the SQW InGaN layer was 

narrowed and more QWs were added in order to maintain good crystal quality and high 

power when going to longer wavelengths, and MQW active regions had already been 

proven for efficient laser diodes.
33,34

 Going from today’s standard c-plane MQW LED to a 

SQW design with polarization screening is not trivial. Factors such as the wavelength of 

emission, the active volume, and the wavefunction overlap will change significantly. It has 

been shown that in a MQW LED, emission is dominated by one or two wells on the p-side 

of the active region.
35

 In this case, the slow diffusion of holes across the quantum barriers of 

the active region limits current spreading. This limitation leads to higher carrier densities 

and greater droop than if there were even current spreading and emission over all the QWs. 

A SQW LED would not suffer from this limitation, and all of its InGaN volume would be 

active in recombination.  

 An experiment was performed on LEDs with decreasing number of QWs, but with 

the nominal InGaN volume remaining constant. The samples were grown by MOCVD on 

single-side polished (SSP) sapphire substrates and included a ~3 μm GaN template doped at 

6 x 10
18

 cm
-3

. Below the active region there was a 10 nm n
+
 layer of GaN:Ge

ii
 doped at 7 x 

10
19

 cm
-3

, and above the active region there was a 10 nm p
+
 layer of GaN:Mg doped at 7 x 

10
19

 cm
-3

. There was a ~10 nm Al0.12Ga0.88N electron blocking layer (EBL) immediately 

after the p+ layer. The EBL was followed by ~280 nm p-GaN doped at 5 x 10
19

 cm
-3

. In the  

                                                             
i Many consider a layer of lower bandgap between layers of higher bandgap to be a double heterostructure if its 

thickness is more than 10 nm because “quantum well” implies significant quantum confinement and layers 

start to behave more “bulk-like” at around 10 nm.  
ii Chapter 6 will discuss germanium doping of GaN in detail. For now, the reader can assume it behaves the 

same as silicon. 
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Figure 5.7:  Quicktest electrical results of voltage and light output power as a function of  injected 

current density for LEDs with active regions comprised of a varying number of InGaN/GaN QWs, 

but the same total InGaN thickness, from 1x12 nm to 6x2 nm. The dotted lines are extensions of the 

maximum slopes of the L-I curves, and the difference between the dotted line and the actual power 

curve represents the droop in device efficiency.  

 

 

series, the number of QWs and their thicknesses in the active region were 1 x 12 nm, 2 x 6 

nm, 3 x 4 nm, 4 x 3 nm, and 6 x 2 nm. The UID GaN barrier thickness between each QW 

was 20 nm, and the thickness of the UID GaN barriers between the outermost QWs and the 

doped layers was 10 nm. The QWs contained roughly 17% indium and emitted close to 450 

nm.  

 Figure 5.7 shows the quicktest electrical results, which utilize indium top contacts, a 

scratched n-contact, and extract light out of the backside of the substrate. There does not 

seem to be a trend in turn-on voltage with decreasing QW number and increasing QW 

thickness. There may be a slight increase in series resistance from the 6 x 2 nm sample to 

the 1 x 12 nm sample, but quicktest is notoriously unreliable for voltage and resistance. The 

clear trend is in the light output power (Lop). As the number of QWs increases and the QW 

thickness increases, Lop decreases dramatically at all measured injection current densities. At 

the same time, the onset of droop occurs at higher current densities. In the case of an L-I  
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Figure 5.8:  High resolution Ω-2Θ XRD scans of LEDs with active regions comprised of a varying 

number of InGaN/GaN QWs, but the same total InGaN thickness, from 1x12 nm to 6x2 nm.  

 

 

relationship, the droop is defined as the difference between the actual measured power and 

the extension of the maximum slope, which is shown on the plot.  

 There are two explanations for the observed behavior. First, the polarization fields in 

these QWs are not screened because the heavily doped layers are not immediately adjacent 

to the QWs. As the QW thickness increases, electron and hole wavefunctions are further 

separated by the field. Section 5.1 explained in detail how a decrease in wavefunction 

overlap will result in peak efficiency and droop onset occurring at higher current densities. 

Another explanation for the large decrease in output power with increasing QW thickness is 

degradation in material quality caused by the increasing strain in the thick InGaN layers. 

Figure 5.8 shows high resolution X-ray diffraction (XRD) Ω-2θ scans for each of the 

different QW number samples. The initial InGaN layer peak on the left shoulder of the GaN 

substrate peak is in the same position for the MQW samples, but broadens significantly as 

QW thickness increases. The fringe peaks for the MQW samples also broaden. The 1 x  
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QW 

Number 

n-side 

barrier 

(nm) 

n-side 

doping 

(cm
-3

) 

p-side 

barrier 

(nm) 

p-side 

doping 

(cm
-3

) 

Voltage 

(V) 

Lop 

(mW) 
λ (nm) 

FWHM 

(nm) 

6 10 6e18 10 7e19 4.96 7.05 440 19.9 

1 10 6e18 10 7e19 4.78 2.29 423 16.9 

1 0 1e19 10 7e19 4.83 3.31 447 26.0 

1 0 5e19 0 7e19 4.71 2.39 441 23.0 

 

Table 5.1: Growth parameters and quicktest LED metrics for devices progressing from a standard 

blue c-plane MQW LED to a polarization screened SQW LED. QW thickness for all samples was ~3 

nm. Quicktest results were taken at 20 A/cm
2
.  

 

 

12nm SQW sample scan barely has a discernable layer peak severe broadening. The peak 

broadening is a sign up InGaN layer degradation relaxation and associated defect formation.  

 Even before the onset of relaxation, thick c-plane InGaN QWs behave poorly as 

LEDs when the polarization field remains unscreened, as was seen in the experiment just 

described. Moving toward a thick, polarization screened SQW LED like the device 

simulated in Section 5.2 required a careful step-by-step progression of growths starting with 

a standard c-plane blue LED structure on a patterned sapphire substrate (PSS), consisting of 

6 well/barrier periods of approximately 3 nm and 20 nm, respectively. The n-GaN template, 

EBL, and p-GaN in the standard blue LED are identical to the devices in the QW number 

series described above, but it does not include the heavily doped n
+
 and p

+
 layers on either 

side of the active region.  

Table 5.1 displays the relevant growth parameters as well as key quicktest LED 

metrics for devices progression from the standard blue LED to a SQW LED with heavily 

doped n
+
 and p

+
 layers immediately adjacent to the QW. The QW thicknesses for each 

device in Table 5.1 are ~ 3 nm, and quicktest results were taken at 20 A/cm
2
. The first step 

away from the standard blue 6 QW LED was to eliminate all but one QW, leaving the 10 

nm outer barriers. The result was a significant drop in Lop, probably because of an increased  
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Figure 5.9:  Quicktest output powers of SQW LEDs grown on PSS with varying levels of silicon 

doping in a 10 nm GaN layer immediately below the 3 nm InGaN QW.   

 

 

A coefficient. There is not a proven explanation for this effect, but it likely has to do with 

the role that initial InGaN layers, grown at lower temperature than typical n-GaN layers, 

play in “conditioning” the structure, resulting in fewer point defects higher in the epitaxial 

stack. It has been demonstrated that an InGaN underlayer or superlattice added below the 

active region reduces the point defect density in the active region and improves radiative 

efficiency.
36

 That could explain why a MQW, where light is only emitted from the p-side 

QWs some distance away from the first grown QW on the n-side, would perform better at 

relatively low current density where A plays a large role. The drop in emission wavelength 

from 440 nm to 423 nm was due to the blue shift resulting from the increase of the built-in 

field of the p-n junction (because of the decrease in active region thickness) cancelling out 

some of the polarization field in the QW. In subsequent SQW devices, the InGaN was 

grown at a colder temperature to incorporate more In and raise the emission wavelength to 

the blue range (440-460 nm).  

The next step shown in Table 5.1 was to dope the 10 nm layer on the n-side of the 

SQW with a silicon concentration of 1 x 10
19

 cm
-3

, which was known to be achievable 
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without device degradation. Power increased from 2.29 mW to 3.31 mW, perhaps due to an 

increase in wavefunction overlap, or because of a decreased injection barrier to electrons. 

The increase in the full width at half maximum (FWHM) of the emission spectrum from 

16.9 to 26.0 is likely due to the increased indium content needed to get back to ~ 450 nm. 

When the doping on the n-side was increased to 5 x 10
19

 cm
-3

 and the p-side undoped barrier 

was eliminated, the device approximates the polarization screening device simulated in 

Section 5.2. The decrease in Lop from 3.31 mW to 2.39 mW could be due to an increase in 

SRH caused by the heavily doped layer in immediate proximity to the QW.   

A series of SQW LEDs identical to sample from the last row of Table 5.1 but with 

varying levels of Si doping from 1 x 10
19

 cm
-3

 to 2 x 10
20

 cm
-3

. The quicktest output powers 

of the samples in the Si doping series are shown in Fig. 5.9. There is a significant decline in 

performance when increasing the [Si] below the QW from 1 x 10
19

 cm
-3

 to 1 x 10
20

 cm
-3

, the 

same trend that was seen in Table 5.1. Again, this is most likely due to an increase in SRH 

recombination. Heavy silicon doping has been known to add strain to the lattice and cause 

morphological degradation, so this is not necessarily a surprising result.
37

 While this series 

does not indicate the extent to which the polarization field has been screened, a quicktest 

power over 2 mW when the doping level is close to what simulations say will fully screen 

the polarization is high enough to investigate the effects of field screening on thicker SQW 

LEDs in a more detailed experiment.  
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5.4 Increasing Single Quantum Well Thickness 

5.4.1 Screened vs. Unscreened Wells 

In order to properly asses the effects of doping on the QW electric field and LED 

performance, devices with polarization-screened SQWs of varying thicknesses were 

compared to equivalent unscreened SQWs. InGaN QWs in which the polarization field is 

screened by proper doping in the adjacent GaN layers should have greater electron-hole 

wavefunction overlap than unscreened wells. That increase in overlap should lead to higher 

efficiencies at higher injection current density and less efficiency droop. The difference 

between screened and unscreened devices should become even greater with wider SQWs. 

Additionally, there should be much less emission wavelength shift as a function of injection 

current in screened devices. Section 5.4.2 will demonstrate conclusive proof of full 

polarization screening, so until then it can be assumed that there is no polarization field 

present in the screened devices and that wavefunction overlap is maximized.   

Blue SQW LEDs of varying QW thickness were grown by MOCVD on 2” patterned 

sapphire substrates (PSS) from Precision Micro Optics, with and without doped layers to 

screen polarization. The grown structures (schematic shown in Fig. 5.10) were very similar 

to the simulated structures from Section 5.2. The MOCVD growth consisted of a 4 µm Si-

doped n-GaN ([Si] = 6 x 10
18

 cm
-3

) template layer followed by a 10 nm layer that was either 

highly Si-doped n
+
-GaN ([Si] = 7 x 10

19
 cm

-3
) or left undoped. The intrinsic active region 

consisted of an undoped In0.17Ga0.83N SQW with thicknesses of 3.8 nm, 5.0 nm, 7.5 nm, and 

11.3 nm (confirmed by HAADF-STEM). The SQW was immediately followed by a 10 nm 

layer that was either highly Mg-doped p
+
-GaN ([Mg] = 7 x 10

19
 cm

-3
) or left undoped.  

There was a 10 nm Mg-doped p-Al0.18Ga0.82N ([Mg] = 5 x 10
19

 cm
-3

) EBL immediately after  
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Figure 5.10:  A schematic cross-section of the LED structure grown for the screened SQW thickness 

series. 

 

 

the p
+
 layer. The EBL was followed by a ~130 nm Mg-doped p-GaN ([Mg] = 5 x 10

19
 cm

-3
) 

layer, and a 15 nm highly Mg-doped p
+
-GaN contact layer ([Mg] ~ 1 x 10

20
 cm

-3
). 

In addition, a MQW blue LED on PSS was used for comparison against the SQW 

LEDs. Its structure was identical to the SQW samples described above except for the 

following differences. It contained an underlying short period superlattice (SPSL) consisting 

of 50 periods of 2.5 nm In0.035Ga0.0965N and 2.5 nm GaN layers situated directly beneath the 

light-emitting active region, for the purpose of improving device efficiency. The underlying 

superlattice has been suggested as a getter for point defects,
36

 or as a prestrain layer that 

improves strain relaxation and reduces QCSE.
38–40

 The active region of the MQW LED 

contained 6 QWs instead of one. The QWs were approximately 3 nm thick and grown in the 

exact same conditions as in the SQW samples. The GaN barriers surrounding the QWs were 

approximately 20 nm thick.  

Following the MOCVD growth, an Asylum MFP-3D AFM was used to characterize 

the sample surfaces. The QW thicknesses and indium composition were measured by XRD 
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using a PANalytic MRD PRO diffractometer, and the QW layer thicknesses were confirmed 

by HAADF-STEM. The samples were then processed into LEDs using standard contact 

lithography. Following a 30 sec dip in 1:1 HCl:H20 to remove surface oxide, a current 

spreading layer consisting of 110 nm of tin-doped indium oxide (ITO) was deposited on the 

p-GaN surface by electron-beam deposition. During deposition, the samples were heated to 

300°C using a custom-built resistive heater to improve ITO transparency and conductivity.
41

 

The ITO deposition rate was measured in-situ using a quartz crystal monitor and the 

thickness was confirmed ex-situ using a J. Woolam ESM-300 Ellipsometer.  Then 

rectangular mesas (active area of 0.1mm
2
) were defined using a methane-hydrogen-argon 

etch to remove the ITO and a Cl2-based reactive ion etch to down to the n-GaN below the 

active region. Finally, Ti/Al/Ni/Au n-contacts and Cr/Ni/Au p- and n-pads were deposited 

by electron-beam evaporation and a conventional liftoff process. The samples were then 

thinned and polished from the backside to ~170 μm and devices were singulated using a 

diamond tip scribing tool. After singulation, devices were bonded to silver headers using 

Ag-paste, wire bonded with Au wires, and encapsulated in silicone. In contrast, the MQW 

LED was bonded to a transparent ZnO vertical stand before being encapsulated in silicone.
42

  

Packaged LEDs were tested at current densities up to 900 A/cm
2
 in an Instrument 

Systems integrating sphere with a MAS 40 spectrometer, and driven using an Agilent 

8114A pulse generator with a 10 µs pulse width and 1% duty cycle to avoid heating. 

Injected current was calculated by measuring the voltage pulse across a 50Ω resistor in 

series with the LED on a Tektronix DPO 3014 oscilloscope. L-I-V data for the 4 screened 

and 4 unscreened SQW LEDs with varying QW width are shown in Fig. 5.11(a). The 

voltage of the screened SQW LEDs is lower than that of the unscreened SQW LEDs at all  
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Figure 5.11: Fully packaged LIV results (a) and EQE results (b) for screened and unscreened SQW 

LEDs with QW thickness ranging from 3.8 nm to 11.3 nm at operating current densities up to 900 

A/cm
2
.  

 

 

current densities by nearly 1 V. The voltage difference is likely caused by a combination of 

improved lateral current spreading in the n-GaN due to the highly Si-doped layer, and a 

lowering of the barriers to electron and hole injection, as seen in Fig. 5.5. Light output 

powers for the screened LEDs are higher than the unscreened LEDs with the same QW 

width across the entire range of current densities, except for a crossover at 600 A/cm
2 

in the 

5.0 nm QW devices. There is also a trend of increasing output power with increasing QW 

width for the screened SQW LEDs, until the power drops dramatically at a QW width of 

11.3 nm.  

The trends seen in Lop are even more clear in EQE as a function of current density 

(Fig. 5.11(b)). EQE increases with increasing QW width up to 7.5 nm in the screened LEDs, 

and EQE of the screened LEDs are higher than for the unscreened LEDs with the same QW 

width across the entire current density range (except for the same crossover seen in Lop for 

the 5.0 nm QW LEDs). From the EQE curves we can make observations about how the 

internal electric fields in the screened and unscreened LEDs impact device performance.  

In Section 5.1 an argument was put forth about how changes in electron-hole 

wavefunction overlap should affect LED efficiency. This argument states that if all other 
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factors remain equal, LEDs with greater wavefunction overlap in their QWs will have a 

lower carrier density at a given current density. Therefore, they should exhibit lower 

efficiency droop but the same value of peak efficiency occurring at a higher current density. 

A similar argument holds for LEDs with increasing QW width. The data in Fig. 5.11, 

however, does not support either of those arguments. First, when comparing screened and 

unscreened LEDs of the same QW width, we do not see similar peak efficiencies, and with 

the exception of the 3.8 nm QW devices, the peak in the unscreened devices, which have 

lower wavefunction overlap, occurs at higher current density. Second, when comparing 

screened LEDs of increasing QW width, the peak efficiency does not remain the same, but 

in fact increases.
i
  

Finally, the unscreened devices present a difficult case. They actually hold to the 

argument based on QW width reasonably well, having similar peak efficiencies and 

increasing current density at peak EQE with increasing QW width. However, increasing 

active region volume is in this case convoluted with decreasing wavefunction overlap, and a 

case can be made that the decreasing overlap is a dominant trend (see Fig. 5.4 overlap 

summary) and should result in increasing carrier density and decreasing J at peak EQE with 

increasing QW width. It has been shown, however, that higher order transitions from excited 

states play an increasingly dominant role in recombination in thicker QWs.
43

 Evidence for 

excited state emission occurring in these unscreened SQW LEDs will be discussed in detail 

later. In screened QWs, the overlap remains high between ground state wavefunctions, so 

band-filling will not be sufficient to populate excited states. In unscreened QWs, on the 

other hand, ground state wavefunctions are spatially separated by the electric field and have 

a low overlap, so excited states will become populated at lower current densities. The 

                                                             
i Until an 11.3 nm QW width. 
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excited states are less localized and have a larger spatial extent and higher overlap; 

therefore, there should be a net reduction in carrier density with increasing QW width at 

most current densities. A similar efficiency trend to the one observed in the unscreened 

SQW LEDs in Fig. 5.11(b) has been seen with increasing QW thickness in (0001) SQW and 

MQW structures.
16,44

 

The disagreement of the LED data with the wavefunction overlap argument can be 

explained in one of two ways: (1) if the argument itself is flawed and the A, B, and C 

coefficients are not all proportional to |Fcv|
2
, and (2) if the mechanisms governing 

recombination vary from sample to sample independent of the wavefunction overlap. The 

first case is highly possible, if not likely. Consider the case mentioned briefly in Section 5.1, 

in which there is sequential capture electrons and holes by a non-radiative defect. It is easy 

to imagine that after the first capture event, a charged defect state will locally bend the 

potential and more effectively attract the opposite charge carrier. In this case, one carrier 

may dominate the effective SRH non-radiative rate: the one with the faster capture rate. The 

dependence of A on Fcv would then be of order less than 2. This could not explain the 

difference in peak EQE between the screened SQW LEDs in Fig. 5.11, but it may help 

explain the much lower efficiencies at low and mid current densities in the unscreened SQW 

LEDs.   

In the second case, the A0, B0, and C0 recombination coefficients from Eq. 5.1 with 

Fcv factored out are not identical between the devices. The differences in EQE are much 

more pronounced at low current densities, so a likely source of the discrepancies is the A0 

coefficient. Specifically, A0 would be decreasing with increasing QW thickness in the 

screened SQW LEDs, leading to higher peak EQE. In the unscreened SQW LEDs, the drop  
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Figure 5.12: Comparison of EQE as a function of current density of screened and unscreened 7.5 nm 

SQW LEDs with a MQW LED (3 nm QWs).  

 

 

in peak EQE relative to the screened devices could be attributed to a relatively higher A0, but 

an additional effect and explanation for the delayed efficiency “turn-on” could come from 

the population of excited states leading to a smaller effective carrier density.  

Additional evidence for an elevated A0 coefficient can be seen in Fig. 5.12, which 

shows an EQE comparison of the high performance blue MQW LED with the screened and 

unscreened 7.5 nm SQW LEDs. The measured EQE for the MQW LED was derated by 

12% (relative), which is the demonstrated difference in extraction efficiency between the 

transparent ZnO vertical stand package used for the MQW LED and the conventional silver 

header package used for the SQW LEDs.
42

  The efficiency droop is much larger in the 

MQW LED than the screened SQW LED, but even with derating, the MQW LED has 

higher EQE out to 800 A/cm
2
. Again following the wavefunction overlap argument, it is 

expected that the peak EQE for these devices would be close to the same value, but clearly, 

that is not the case here. The most likely explanation is that the A0 coefficient is much higher 

in the SQW LED. A theory for the cause of this effect will be presented in Section 5.4.3.  
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(a) 

 

(b) 

 
 

Figure 5.13: (a) EL centroid wavelength as a function of current density for screened and unscreened 

SQW LEDs with QW thickness ranging from 3.8 nm to 11.3 nm at operating current densities up to 

900 A/cm
2
. Open square symbols represent the screened devices and closed symbols the unscreened 

devices. (b) EL spectra at 20 A/cm
2
 for the devices in (a). Solid lines represent the screened devices 

and dotted lines the unscreened devices. 

 

 

 Power and efficiency are not the only data that can yield important information 

about the recombination dynamics in SQW LEDs with different widths and electric fields. 

For instance, EL wavelength shift as a function of current density will reveal the effects of 

QCSE on emission (Fig. 5.13). Figur 5.13(a) shows the centroid wavelength of the EL 

emission spectrum for each measured current density for the screened (open squares) and 

unscreened (solid squares) SQW LEDs. The wavelength of the unscreened devices is 

redshifted from their screened counterparts at small current densities due to the internal field 

causing QCSE. With increasing J, the unscreened emission blue-shifts considerably, while 

the screened emission blue-shifts only slightly. This is expected because injected carriers 

help screen the internal field in the unscreened QWs. The lack of blue-shift in the screened 

wells is evidence that there is nearly zero net internal field.   

The wavelength of emission from screened QWs increases monotonically with 

increasing well width as expected due to the decrease in quantization, but more interesting  
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Figure 5.14: HAADF-STEM image of a dislocation generated within the InGaN QW region of the 

11.3 nm screened SQW LED.  

 

 

phenomena occur in the unscreened wells. The largest blue-shift from low to high current 

density is actually seen in the 5.0 nm QW, even though a simple model would assume that 

the blue-shift would keep increasing with wider wells. Furthermore, there is a cross-over in 

emission wavelength between the 3.8 nm and 5.0 nm SQWs at around 50 A/cm
2
. The 

ground-state transition is still at a lower energy in the 5.0 nm QW, but its emission becomes 

higher in energy than from the 3.8 nm QW. The answer can be seen by looking at the 

emission spectra for each device at 20 A/cm
2
 (Fig. 5.13(b)). The unscreened 5.0 nm QW 

device has two peaks evident in its emission that nearly match in wavelength the peaks of 

the 3.8 nm and 7.5 nm QW devices. The double-peaked emission is not an artifact caused by 

InGaN decomposition, and it has been confirmed by SiLENSe-simulated emission spectra 

not shown here. This is evidence of a transition from ground state emission to excited state 

emission as QW thickness increases, but only in the unscreened QWs, a phenomena that has 
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been observed and explained previously.
43

 Even as injected current density partially screens 

the polarization field and flattens the bands in most of the QW, there are regions of much 

higher field at the edges of the QW where the grounds states are confined (see Fig. 5.3). The 

ground state separation increases with QW width and their overlap is small. Their 

recombination lifetime is long, so they fill up quickly, leading to a population of excited 

states, which are not localized at the edges of the QW, have much better overlap, and thus 

are not as affected by QCSE. The transition to emission from excited states will occur at a 

lower injected current density for wider unscreened QWs. In the 5.0 nm QW, the transition 

to excited state emission is occurring between zero and 100 A/cm
2
, causing a much larger 

blue-shift and a cross-over to higher energy emission. The 3.8 nm QW is too thin for the 

transition to occur at all – its ground state wavefunctions have relatively high overlap. The 

thicker QWs emit from excited states over the entire measured range, so their emission 

wavelength is higher in energy shifts less. 

The decrease in output power and efficiency of the screened 11.3 nm SQW LED has 

not yet been touched on, but can be explained by strain-related defect generation in the thick 

InGaN layer. 11.3 nm very close to the predicted critical thickness of dislocation generation 

for an In0.17Ga0.83N layer on (0001) GaN.
45

 The presence of dislocations generated in the 

InGaN layer is confirmed by HAADF-STEM (Fig. 5.14). While carefully designed doping 

profiles can screen polarization fields and allow for arbitrarily thick active regions without 

suffering from QCSE, the QW thickness is, in practice, still limited by strain relaxation.  
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5.4.2 Biased Photoluminescence 

 The full screening of QW polarization fields by doping can be verified by examining 

photoluminescence (PL) as a function of applied bias. Typical biased PL experiments on c-

plane QW structures reverse bias the device past the point where flat band conditions exist 

in the QW, and then can calculate the magnitude of the polarization-induced electric field 

based on the flat-well bias point.
46

 Other methods of measuring the internal electric field in 

a nitride QW include: PL decay time as a function of bias,
47

 PL peak shift with changing 

well width and illumination intensity,
9,48

 and electroabsorption (see Chapter 3 for more 

details).
49

 Previous experiments have examined wavelength shift of the PL centroid 

wavelength as function of bias for different polarization fields and QW widths.
13,14

 They 

saw significant wavelength shift of PL at biases below device turn-on on c-plane, but 

negligible shift in nonpolar and semipolar devices where the field is zero or very small. 

Others have studied the extent to which polarization fields can be screened by doping by 

examining PL blue-shift and decay time reduction as the field is screened.
27,28

  

In this experiment, illumination was provided by a resonantly exciting 405 nm laser 

diode operated at ~100mW with an approximately 100 μm diameter spot size. Bias was 

applied and photocurrent measured with a Keithley 2420 sourcemeter. PL spectra were 

measured using an optical fiber perpendicular to the path of the incident beam that then fed 

into an Ocean Optics USB2000+ spectrometer. The saturated photocurrent at short circuit of 

the screened 5.0 nm SQW LED was measured to be 1.11 mA, corresponding to a 

photocurrent density of approximately 14 A/cm
2
. Assuming that the collection efficiency at 

photocurrent saturation is 100%, the generation rate in the QW can be calculated: 1.75 x 

10
26

 cm
-3

.   
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Figure 5.15: Biased photoluminescence spectra over the full range of voltage between complete 

carrier sweep-out (reverse bias) and EL turn-on (forward bias) for a screened (a) and unscreened (b) 

5.0 nm SQW LED. 

 

 

 Figure 5.15 shows the PL spectra of the screened and unscreened 5.0 nm QW LEDs 

over a range of doping, spectrally color coded with the violet end of the spectrum. The 

doping range for each device extended from the extinction of the PL signal at reverse bias to 

the onset of electroluminescence (EL) at forward bias. PL extinction at reverse bias is 

caused by the carrier sweep-out rate being higher than the radiative recombination rate. In 

this regime, the LED operates like a solar cell or photodetector. The extinction bias for PL is 

determined by the size of the potential barriers for electrons and holes to escape the QW. 

Thinner and lower barriers will cause faster escape through increased rates of tunneling and 

thermionic emission, respectively.  
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Figure 5.16: Simulated energy band diagrams and ground state electron and hole wavefunctions 

under forward bias (+1 V) for 5 nm SQW LEDs with barrier regions on either side of the QW (a) 

doped at 7 x 10
19

 cm
-3

, and (b) left undoped. These diagrams correspond to the devices used in the 

biased PL experiment shown in Fig. 5.15. The green and orange arrows represent extraction of 

photogenerated electrons by tunneling and thermionic emission processes, respectively.   

 

 

Figure 5.16 shows the contrast between band diagrams of the screened and 

unscreened SQW LEDs at low forward bias (+1 V), where there is no PL signal from the 

screened device, but a large PL signal form the unscreened device. In the screened case 

where heavy doping extends up to the edge of the QW (Fig. 5.16(a)), the potential barrier is 

very thin and low because the lack of polarization field means that the built in voltage can 

drop across the QW and not in the barrier regions. This barrier can be easily tunneled 

though, as shown by the short green arrow going through the barrier, and easily thermally 

emitted over, as shown by the orange arrow curving over the barrier. These factors explain  
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Figure 5.17: Photocurrent measured during biased PL measurements on screened and unscreened 5 

nm SQW LEDs.  

 

 

why carrier sweep-out is complete and photocurrent saturates (Fig. 5.17) at positive bias 

(+1.2 V) in the screened device.  

In the unscreened well case on the other hand (Fig. 5.16(b)), the 10 nm undoped 

regions on either side of the QW support a large voltage drop due to both the built-in 

voltage of the junction and the unscreened polarization charges at the InGaN/GaN 

interfaces. The polarization field also localizes carriers on the opposite side of the QW from 

where they would escape to contribute to the photocurrent, causing the QW itself to 

contribute to the barrier for carrier escape. The green and orange arrows in Fig. 5.16(b) 

clearly show how the tunneling distance and barrier height have increased relative to the 

screened case in Fig. 5.16(a). These large potential barriers for carrier escape decrease the 

sweep-out rate, explaining why the PL signal at +1 V is so much larger in the unscreened 

case. To effectively thin these barriers and achieve the same sweep-out rate as in the 

screened case, a large reverse bias must be applied to promote field-assisted barrier lowering 

and tunneling. This explains why significant reverse bias (less than -5 V) is necessary for 

photocurrent saturation in the unscreened case (Fig. 5.17).  
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Over the full range of biases where only PL is visible (before EL), there is no 

noticeable wavelength shift in the screened SQW LED, but a large wavelength shift in the 

unscreened SQW LED (Fig. 5.15). The peak wavelength from the unscreened QW redshifts 

24 nm from -5 V to +2.5 V, and even looking over only the same bias range as in the 

screened case, it still redshifts by 5 nm. The dramatic difference in wavelength shift between 

the screened and unscreened QWs is evidence of a significant reduction in internal electric 

field in the screened QW compared to the unscreened QW. Additionally, the peak PL 

intensity increases monotonically with increasing bias in the screened SQW LED, but 

reaches a maximum at -1 V in the unscreened SQW LED (Fig. 5.15(b)). The decrease in 

intensity going toward negative bias can be explained by the increase rate of carrier sweep-

out, and the decrease in intensity going toward forward bias can be explained by QCSE. 

In an unscreened c-plane InGaN QW the built-in field of the junction acts against the 

polarization-induced field, so with increasing forward bias the net field in the QW should 

increase. This will increase the impact of QCSE, leading to a redshift of emission and a 

reduction in radiative efficiency, which is exactly what is seen in the unscreened SQW LED 

(Fig. 5.15(b)). A fully screened c-plane QW should behave like an m-plane QW and should 

not exhibit a significant wavelength shift as a function of bias.
13

 The lack of wavelength 

shift in the SQW LED with doped barriers, coupled with the clear evidence of QCSE in the 

SQW LED with undoped barriers, is a strong indication that the polarization field has been 

fully screened by doping.  
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5.4.3 Barrier Modal Overlap 

 Even though complete polarization screening was confirmed by biased PL, there are 

still trends in the LED data from Fig. 5.11 that cannot be explained by wavefunction overlap 

arguments alone. There needs to be another explanation for why the peak efficiency 

improves going from 3.8 nm to 7.5 nm screened SQW LEDs, and why the peak efficiencies 

in the screened SQW LEDs occur at lower J than in the unscreened SQW LEDs for a given 

QW thickness. As described in Section 5.4.1, a likely culprit is a difference in the 

wavefunction overlap-independent SRH recombination coefficient, A0. An unchanging A0 

between devices with difference active region geometries and electrostatics assumes that A0 

is spatially constant throughout the active region: that is it the same across the well and 

barrier. This is probably not the case, however. The GaN barrier layers in the screened 

devices are extremely highly doped, which could easily cause an increase in non-radiative 

sites in the barrier compared to the InGaN well. Additionally, the n
+
 GaN layer is rough 

compared to high quality UID GaN, which could cause additional recombination sites near 

the GaN/InGaN interface. There may also be some as-yet unexplained reason for increased 

levels of non-radiative defects in GaN compared to InGaN, regardless of doping. In any 

case, carriers with significant probability of existing outside the QW will have less chance 

of recombining radiatively in the QW, and any other outcome is considered loss.  

 If A0 is locally different in the GaN barrier regions and the InGaN QW, then the 

modal overlap of the electron and hole wavefunctions with the barrier regions of either side 

of the SQW will determine the overall effective A0 for the device. Band structures and 

electron and hole envelope wavefunctions for all states localized in the QW were calculated 

using SiLENSe version 5.4 software for each device in the SQW thickness series (screened  
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(a) 

 

(b) 

 

 

 

(c) 

 

(d) 

 

 

 

 

 

Figure 5.18:  (a) Simulated barrier overlap percentage of the square of the electron and heavy hole 

ground state wavefunctions plotted alongside measure device EQE as a function of screened SQW 

width. (b) Simulated energy band diagrams of electron and heavy hole ground state envelope 

wavefunctions at each QW width showing decreasing barrier modal overlap with increasing width. 

(c) Simulated barrier overlap percentage of the square of the electron and hole ground state and first 

excited state wavefunctions, as well as the first split hole wavefunction, plotted alongside measure 

device EQE as a function of unscreened SQW width. (d) Simulated energy band diagrams of 

electron and heavy hole ground state, first excited state, and split hole envelope wavefunctions at 

each QW width showing increased barrier modal overlap for excited states. Simulations and 

measurements performed at 100 A/cm
2
.  

 

 

and unscreened), with thicknesses and composition as measured (see Section 5.4.1), and at 

an operating current density of 100 A/cm
2
.  Barrier modal overlap (FiB) was calculated for 

electrons and holes in all supported states using the following relation: 
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∗(𝑧)𝜓𝑖(𝑧)𝑑𝑧

∞

−∞

, (5.2) 

where 𝜓𝑖 is the normalized envelope wavefunction for either carrier in any state.   

Values of FiB, which corresponds to the probability that a given carrier in a given 

state is located in the barrier region, are plotted in Fig. 5.18(a) for the screened SQWs and in 

Fig. 5.18(c) for the unscreened SQWs as a function of QW thickness, along with the EQE 

values for those devices, all at an injected current density of 100 A/cm
2
. Additionally, the 

calculated envelope wavefunctions for electrons and holes are plotted on the simulated 

energy band diagram in the vicinity of the QW for each thickness of screened QW (Fig. 

5.18(c)) and unscreened QW (Fig. 5.18(d)), also at 100 A/cm
2
. In Fig. 5.18(a,b) only the 

ground state electron and heavy hole wavefunctions are plotted, as these are the only states 

in which significant carrier population should exist due to the high overlap and 

corresponding high recombination of the ground states.  In Fig. 5.18(c,d), first excited states 

of electrons and holes, as well as the ground state split-off hole wavefunction, are plotted in 

addition to the ground states because the poor overlap of the ground states makes it much 

more likely that higher level states will be populated and contribute to recombination, as 

discussed in Section 5.4.1.
43,50

 It is assumed that carriers will have time to relax to the 

lowest available energy state in the QW before recombining.  

First focusing on the trend of improved EQE between screened and unscreened 

SQW LEDs of the same QW thickness, it is clear from comparing values in Figs. 5.18(a) 

and (c) that carriers confined in the screened QWs overlap much less with the barrier 

regions. This is visually confirmed in the band diagrams of Figs. 5.18(b), where the 

wavefunctions are centered in screened QWs with flat energy bands and overlap minimally 

and equally with barrier regions above and below the well. In Fig. 5.18(d), on the other  
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Figure 5.19: The combination of the relative changes in simulated barrier modal overlap and 

electron-hole wavefunction overlap match well to the relative change in measured EQE with 

increasing QW width, all at 100 A/cm
2
.  

 

 

hand, tilted energy bands in the unscreened QWs confine the ground state wavefunctions to 

opposite sides of the well where they overlap more with the barrier region on the side where 

they are confined. The higher order transitions in the unscreened QWs are more centered, 

but also have a larger spatial extent and are less confined to the QW region. Interestingly, 

the unscreened 3.8 nm QW only supports a single electron state at 100 A/cm
2
 according to 

simulation, while the others support at least two. That may explain why its EQE peaks so 

much earlier than the thicker QW LEDs: it can only emit from a highly localized state and 

so maintains a higher carrier density. If A0 is indeed higher in the barrier regions, we would 

expect the efficiency of the unscreened SQW LED to be much lower at low current density, 

but to increase relative to the screened SQW LED as current density increases. This is 

exactly what we see in the EQE curves of Fig. 5.11(b).  Higher order transitions in the 

unscreened wells have a greater Fcv but also a greater FiB, so they may not gain anything in 
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terms of radiative efficiency, which could explain the relatively lower peak EQE values in 

the unscreened devices.  

Next, we focus on the trend of increasing peak EQE with increasing QW width in 

the screened QW LEDs. There is a stark decrease of barrier modal overlap with increasing 

QW width in these devices (Fig. 5.18(a)); because, without electric field, the ground state 

wavefunctions remain centered in the QW and don’t significantly increase their spatial 

extent, so the tails of the wavefunctions interact less with the barrier regions (Fig. 5.18(b)). 

The relative decrease in barrier overlap as QW thickness increases, coupled with the relative 

change in wavefunction overlap,
i
 matches reasonably well to the relative increase in EQE, 

as shown in Fig. 5.19.  This correlation shows that there is a high probability that the extent 

to which the wavefunctions overlap the barriers affects LED efficiency.  

It is likely that A0 is not the only changing recombination coefficient causing 

differences in device efficiency. EQE in the SQW devices is depressed over a wide range of 

current densities, not just at low current where SRH recombination dominates. There is the 

possibility of a so far unidentified non-radiative process with a higher order dependence on 

carrier density limiting radiative efficiency in the mid-range of current density, but we 

cannot speculate on its nature or origin.  

 

5.5 Conclusion 

 There are large polarization discontinuities at (0001) InGaN/GaN interfaces that 

induce large electric fields in InGaN quantum wells. These polarization fields spatially 

separate electron and hole wavefunctions causing a reduction in the electron-hole 

                                                             
i A small effect, but included for completeness 
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wavefunction overlap. SRH non-radiative, bimolecular radiative, and Auger non-radiative 

recombination have been proposed to each proportional to the square of the wavefunction 

overlap, |Fcv|
2
. An increase in overlap causes an increase in the rate of all types of 

recombination, which lowers the carrier density for a given injection current density. That 

leads to the wavefunction overlap argument for LEDs, which says that if LED structures are 

identical except for their wavefunction overlap, then they should have the same peak 

efficiency and that the peak efficiency will occur at larger injection current densities for 

larger overlaps. The consequence, then, of increasing Fcv is to decrease efficiency droop at 

high current density. One way to increase the overlap is to screen polarization fields in 

InGaN QWs by doping.  

 Simulations of blue-emitting InGaN single quantum well LED structures reveal that 

increasing the width of an unscreened increases the separation of electron and hole 

wavefunctions and decreases their overlap. There is only a moderate overlap for thin QWs, 

and almost none for QWs thicker than 5 nm. When the doping immediately adjacent to the 

active region is increased equally on either side (n-type below and p-type above to screen 

the negative and positive sheet charges, respectively), the polarization field can be 

completely screened and the energy bands in the QW flatten, maximizing wavefunction 

overlap over a wide range of injected current density. In the simulation, this occurs at a 

doping level near 7x10
19

 cm
-3

. Doping at that level in real LED structures should be able to 

screen polarization and improve droop by allowing for growth of wider QWs without a 

damaging loss of wavefunction overlap. 

 Growth of polarization screened SQW LEDs was approached systematically by first 

decreasing the number of QWs in the active region while maintaining the same total InGaN 
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thickness. The result was a decreasing in Lop at low current densities and droop onset at 

higher current density for increasing QW width and decreasing QW number, consistent with 

the wavefunction overlap argument presented in Section 5.4.1. Going from a MQW to a 

SQW with the same QW thickness resulted in a significant drop of Lop, probably due to 

increased non-radiative recombination from point defects. A separate series was grown to 

investigate the effect of increasing Si-doping adjacent to a SQW. Lop decreased with 

increasing [Si], probably again due to increased SRH recombination caused by high 

impurity concentration close to the QW, but the power remained high enough for at doping 

levels that would screen polarization for further studies to be done. 

 To test the theory and the simulations that say proper doping can completely screen 

polarization fields, allowing for wider QWs and less droop, a series of 4 screened and 4 

unscreened SQW LEDs with QW widths ranging from 3.8 nm to 11.3 nm was grown, 

packaged, and tested. The widest QW suffered from strain-related defect formation in the 

InGaN layer. The other screened LEDs showed an increase in peak EQE and low droop with 

increasing QW thickness. Each screened LED had higher EQE and peak EQE at lower 

wavelength than its unscreened counterpart with identical QW thickness. The results don’t 

completely agree with the wavefunction overlap argument. It was clear that overlap-

independent recombination coefficients must not be consistent between samples. A potential 

explanation was presented: the A0 coefficient may be higher in the barrier region or at the 

interface between the barrier and well. This explanation would explain the increase in peak 

EQE of the screened LEDs, and in fact, the trend in decreasing simulated barrier modal 

overlap matched the trend in increasing EQE. In the unscreened wells, it was argued that the 

transition from ground state to excited state recombination could explain the apparent drop 
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in carrier density between screened and unscreened SQWs, especially at larger QW 

thicknesses.  

 Finally, biased PL measurements were carried out on the 5.0 nm screened and 

unscreened SQW LEDs. No wavelength shift or other evidence of QCSE was observed in 

the screened QW as a function of bias. On the other hand, a significant red-shift and 

decreasing intensity of emission was observed with increasing forward bias in the 

unscreened QW. The biased PL results present strong evidence of full polarization screening 

by doping. There is hope that with more optimized growth conditions, a screened SQW 

LED will be able to match the peak efficiency of a MQW LED, but with much less 

efficiency droop at high current density.  
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6 
 
 

Germanium Doping of GaN 
 
 
6.1 Motivation and Background for Germanium Doping 

6.1.1 Motivation for Heavy Doping  

Efficiency droop significantly limits the performance of nitride LED devices (see 

Section 1.3.3 for more details on droop). The phenomenon is defined as a reduction in IQE 

with increasing drive current. Droop worsens as the InN fraction of the InGaN QWs in the 

active region of the LED increases, but higher indium content is necessary for decreasing 

the bandgap of the QW and emitting longer wavelength light.
1
 High power LED operation 

and efficient green LEDs for white lighting applications are significantly hampered by 

droop.  

Nitride LEDs grown on the (0001) plane of GaN suffer from large polarization 

discontinuities at heterojunction interfaces between InGaN QWs and GaN barriers (see 

Chapter 1, Section 1.1.3). Polarization sheet charges lead to large electric fields in the QWs, 

where they  spatially separate the electron and hole wavefunctions, reducing wavefunction 

overlap and consequently reducing the rate of recombination (radiative and non-radiative) 
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(see Section 5.1).
2
 A reduction of recombination rate results in a higher carrier density in the 

QWs for a given drive current density. According to the ABC model of carrier 

recombination, 𝐽 = 𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3, an increase in carrier density will increase the Auger 

recombination rate (𝐶𝑛3) by a factor of n more than the radiative recombination rate (𝐵𝑛2). 

If you are operating in the droop regime, at current densities above the maximum efficiency 

of the LED, the fraction of nonradiative recombination will increase, and IQE will decrease. 

This is the process by which polarization-induced electric fields in InGaN QWs cause LED 

droop. Higher indium content QWs (longer wavelength emission) have higher electric fields 

and will experience more droop. To reduce efficiency droop and enable longer wavelength, 

higher power LEDs for efficient lighting applications, these polarization fields must be 

eliminated.  

 Rather than reducing QW polarization fields by growing on nonpolar or semipolar 

planes of GaN,
3–7

 which involve using much smaller and more expensive substrates, or by 

using AlInN /InGaN QWs in a “polarization-matched” active region,
8,9

 which would add 

significant growth complications, it would be preferable to grow InGaN/GaN QW LEDs on 

c-plane. Since the net polarization field in blue c-plane InGaN QWs is in the opposite 

direction of the built-in electric field of the p-n junction, doping profiles can be designed to 

effectively screen the polarization field.  Polarization field screening through heavy doping 

was first proposed by Fiorentini and Bernardini,
10

 and it has been demonstrated 

experimentally in nitride LEDs and solar cells.
11–15

 A diminished electric field allows for the 

growth of a thicker single QW active region without a loss of wavefunction overlap, which 

would further reduce carrier density and decrease droop. It was shown through extensive 

simulation that high doping density in excess of 7E19 cm
-3

 is necessary to fully screen the 
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polarization field in a blue-emitting SQW LED (see Section 5.2). These very high n-type 

dopant densities may present new growth challenges, which will be described below. 

 

6.1.2 Germanium vs. Silicon for n-Type Doping of GaN 

Effective n-type dopants must have low enough ionization energy for full ionization 

at room temperature. The only impurity elements that act as shallow donors in GaN are 

silicon, germanium, oxygen, and selenium.
16

 The donor ionization energies of Si and Ge in 

GaN are both 19 meV, shallow enough to be fully ionized at room temperature regardless of 

dopant concentration.
17

 Silicon has been the n-type dopant of choice in III-N devices since 

their first development in the early 1990s. Silicon and germanium doping of high quality 

MOCVD-grown GaN layers were first demonstrated by Nakamura et al. in 1992.
18

 It was 

found that the incorporation efficiency of germanium was ten times less than that of silicon 

with those particular growth conditions. Until recently there have been few additional 

reports of Ge-doping of III-nitrides, by either MBE or MOCVD,
19,20

 but no advantage over 

Si-doping was reported.  

The extremely high doping densities required to fully screen piezoelectric 

polarization related electric fields on c-plane may require a different n-type dopant than Si, 

which has been shown to add tensile stress to the III-N film during growth.
21–27

 There is 

some disagreement over the exact mechanism, but it is generally accepted that edge-type 

dislocation climb is responsible for the increase in tensile stress. Some claim the climb is 

driven by surface roughness,
24–26

 others that it is due to SiN masking of the dislocation 

core.
27

 It has been shown that Ge-doped GaN does not develop additional stress during 

growth, due to its negligible effect on dislocation climb compared to Si-doping.
28,29

 There is  
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Figure 6.1:  GaN (0002) XRD peaks  in ω/2Θ scans for layers with (a) Si-doping with carrier 

concentrations ranging from 3 x 10
18

 cm
-3

 to 6 x 10
20

 cm
-3

, and (b) G-doping with carrier 

concentrations ranging from 3 x 10
18

 cm
-3

 to 6 x 10
20

 cm
-3

. The dashed vertical line marks the 2Θ 

angle for relaxed GaN. Figure from Fritz et al.
29

   

 

 

also an opposing view that Ge-doping does increase GaN layer tensile stress due to vacancy 

generation triggered by the Fermi level and leading to dislocation climb, but this result has 

not been duplicated.
30

  

 Fritz et al. demonstrated that high concentrations of Si will add significant strain, 

but that similar concentrations of Ge will not, by performing XRD scans of the (0002) GaN 

peak for MOCVD grown 1 µm layers doped with Si and Ge up to concentrations of 6E20 

cm
-3

 and 1.9E20 cm
-3

 respectively (Fig. 6.1).
29

 The GaN:Si peaks broaden and develop a 

second peak above a concentration of [Si] = 3E18 cm
-3

, indicative of two GaN layers with 

different strain: the undoped GaN template and the Si-doped layer. On the other hand, the 

GaN:Ge peaks do not broaden, maintaining a coherent, compressively stressed surface for 

all doping levels.  GaN:Si layers with a concentration above 6.7E18 cm
-3

 were also found to 

be relaxed, causing significant morphological breakdown, as seen in Fig. 6.2, which shows  
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Figure 6.2:  Nomarski microscope images of (a) a Si-doped GaN surface, and (b) a Ge-doped GaN 

surface with a carrier concentration of ~6 x 10
19

 cm
-3

. Figure adapted from Fritz et al.29
   

 

 

optical micrographs of GaN:Si and GaN:Ge surfaces with a carrier concentration of 6E19 

cm
-3

. The Ge-doped GaN surface is much smoother at a carrier concentration close to the 

7E19 cm
-3

 level that should achieve polarization field screening in blue SQW LEDs (see 

Chapter 5). Controllable high levels of Ge-doping have been demonstrated for plasmonic 

applications
31

 as well as polarization field screening in AlN/GaN nanowire superlattices 

grown by MBE.
32,33

 They found no solubility limits for Ge in GaN up to a concentration of 

3.3 x 10
20

 cm
-3

.  

 

6.2 MOCVD Growth of GaN:Ge 

The well-behaved precursor gas disilane (Si2H6) has traditionally been used as a 

silicon source for n-type doping of GaN during MOCVD growth.
34

 It incorporates linearly 

with mole fraction ratio of Si2H6 to the Ga source TMGa, and, unlike SiH4, its incorporation 

is not temperature dependent at reduced temperatures typical of active region growth 

(~800°C). For effective n-type doping with germanium, a Ge source with similar 

characteristics should be used. Germanium doping has been previously demonstrated by 
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MOCVD using germane (GeH4) as the Ge source.
18,31

 Also, Ge doping of bulk GaN films 

has been demonstrated by HVPE using GeCl4 as the dopant source.
35

 

For MOCVD growth of all GaN:Ge films described in this chapter, a new source 

bubbler was installed on a custom Nippon-Sanso two flow MOCVD system: isobutyl 

germane (IBGe). IBGe is a liquid metalorganic compound with a high vapor pressure (155 

torr at 25°C) and low cracking temperature (350°C), making it well suited to nitride growth 

on this system.
36,37

 It is not pyrophoric, much less toxic and expensive than GeH4, does not 

have problems with premature decomposition like GeH4, and readily cracks at nitride 

growth temperatures unlike other Ge-containing metalorganic compounds such as trimethyl 

and monomethyl GeH4. IBGe has also been used for MOCVD growth of germanium 

films.
38,39

  It has more importantly been demonstrated to achieve Ge incorporation in GaN 

above 1E20 cm
-3

.
29

 Vapor pressure curves of IBGe have not been published, but with two 

published data points of vapor pressure and bubbler temperature, a relationship can be fit: 

 log 𝑃𝑣𝑎𝑝 = 𝐴 −
𝐵

𝑇
 , (6.1) 

where A and B are fitting parameters, T is the bubbler temperature, and Pvap is the vapor 

pressure of the metalorganic gas in the bubbler. The two published data points that were 

used to determine A and B were (Pvap, T) = (155 torr, 25°C) and (45 torr, 0°C).
36

 Once the 

vapor pressure is known at the particular bubbler temperature (3°C in this case), the molar 

flow rate of the source gas can be calculated as follows (assuming the ideal gas law): 

 𝑁̇ = 𝑉̇ (
𝑃𝑣𝑎𝑝

𝑃𝑏𝑢𝑏
 ) (

𝑃𝑏𝑢𝑏

𝑅𝑇
), (6.2) 

where 𝑉̇ is the volumetric flow rate usually given in standard cubic centimeters per minute 

(sccm), 𝑃𝑏𝑢𝑏 is the total pressure of gas in the bubbler, R is the ideal gas constant, and T is  
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IBGe flow (sccm) 
RMS Roughness 

(nm) 
Carrier Density (cm

-3
) Mobility (cm

2
/Vs) 

0.06 0.35 8.77 x 1017 337 

0.2 0.34 5.32 x 1018 215 

0.4 2.85 1.24 x 1019 163 

2.0 1.73 4.18 x 1019 135 

10.0 14.8 1.29 x 1020 109 

 

Table 6.1:  Summary of continuously doped 300 nm GaN:Ge layer characteristics for different IBGe 

flow rates: RMS surface roughness measured by AFM, carrier density and mobility measured by 

Hall Effect measurement. Layers were grown on top of 4 µm of insulating GaN at 1180°C, with a 

TMGa flow of 15 sccm, a growth rate of 8 Å/s, and with H2/N2 mixed carrier gas.  
 

 

the temperature of the bubbler. In this case, the IBGe source is kept at 3°C, with a vapor 

pressure of 52.8 torr.  

During MOCVD growth of GaN:Ge layers, a precursor containing Ga (TMGa or 

TEGa), a precursor containing N (NH3), and a precursor containing Ge (IBGe) are injected 

into the reactor chamber (see Chapter 2). These precursor gasses are mixed with H2 and/or 

N2 carrier gas and directed to flow over the substrate material, which is heated to between 

500°C and 1200°C during growth. Over most of the relevant range of growth rates and 

temperatures, the concentration of Ge in the GaN:Ge film is proportional to the molar flow 

ratio of IBGe to TMGa over the full range of bubbler flow rates (Fig. 6.4). In this case, 

when IBGe flow rates were varied over the full range of the mass flow controller from 0.06 

sccm to 10 sccm (0.14 to 23.8 µmole/min) with a TMGa flow rate of 15 sccm (54.1 

µmole/min) (molar flow ratios of Ge to Ga ranging between 0.0026 and 0.44), resulting 

carrier concentrations
i
 from Hall Effect measurements (Section 6.3) ranged between 8.8E17 

cm
-3

 to 1.3E20 cm
-3

, respectively. Table 6.1 summarizes the carrier concentration, mobility, 

                                                             
i It is assumed that carrier concentration is equal to dopant incorporation because Ge is a shallow donor and 

should be fully ionized.  
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and surface roughness of the continuously doped 300 nm GaN:Ge layers for different IBGe 

flows.  

Additionally, Ge incorporation was not affected strongly by temperature between 

800°C and 1200°C, as long as the layer growth remained in the mass flow limited regime.
i
 

There was only a slight decrease in [Ge] from 1.24E19 cm
-3

 to 9.47E18 cm
-3

 when going 

from 1180°C to 870°C. There was also negligible effect on incorporation from changes in 

NH3 flow between 3.2 and 7.0 standard liters per minute (slm) or growth rate between 1 Å/s 

and 8 Å/s with a constant molar flow ratio.  

Ge can also be introduced via a pulsed flow of IBGe, where the Ga containing 

carrier gas flow remains uninterrupted. A pulsed doping scheme allows the incorporation of 

high concentrations of dopant while maintaining a relatively smooth surface morphology. 

Delta doping of Si in GaN was first demonstrated in 1999 as an extension of Si delta doping 

in GaAs to improve field effect transistor mobility.
40,41

 Periodic delta doping of Si in GaN 

layers have been shown to reduce dislocation density by causing bending and annihilation of 

screw dislocations of opposite Burgers vectors.
42

 Also, periodic delta doping of Si has 

resulted in a reduction of tensile stress and surface roughness,
43

 as well as a reduction in 

yellow luminescence and no variation of film stress with increasing electron concentration.
44

 

Pulsed doping of Mg in p-GaN layers improved doping efficiency and p-GaN mobility.
45

 

Incorporating both n- and p-type delta doped layers above and below a UV LED active 

region led to improved surface morphology, dislocation density, and device performance.
46

 

All pulse-doped layer were grown at 1000°C with a constant flow of NH3 and a 

TEGa flow of 35 sccm (8.05 µmole/min, growth rate of 1.1 Å/s) while modulating the flow  

                                                             
i As opposed to the kinetically limited regime at low temperatures/high growth rates, or the desorption limited 

regime at high temperatures/low growth rates. 
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Pulse 

Periods 

Pulse 

Time 

(sec) 

Duty 

Cycle 

Layer 

thickness 

(nm) 

Substrate 

RMS 

Roughness 

(nm) 

Carrier Density 

(cm
-3

) 

Mobility 

(cm
2
/Vs) 

50 10 50% 110 Sapp 18.1 1.05 x 1020 81 

50 10 50% 110 PSS 5.48 1.03 x 1020 117 

40 5 50% 45 PSS 3.18 1.04 x 1020 106 

20 10 50% 45 PSS 2.58 1.00 x 1020 103 

10 10 25% 45 PSS 2.76 8.43 x 1019 113 

 

Table 6.2:  Summary of pulse-doped GaN:Ge layer characteristics with different number of IBGe 

pulse periods, pulse lengths, and duty cycles: RMS surface roughness measured by AFM, carrier 

density and mobility measured by Hall Effect measurement.  Samples were grown on either 

unpatterned sapphire substrates or PSS. GaN:Ge layers were grown on top of 4 um of  insulating 

GaN at 1000°C, with a modulated IBGe flow rate of 0.1 sccm, a continuous TEGa flow rate of 35 

sccm, a constant growth rate of 1.1 Å/s, and with N2 only carrier gas.  
 

 

of IBGe, either by opening and closing the line valve to the gas manifold, or by turning on 

and off the mass flow controller (MFC). Cycling of the MFC would preserve the life of the 

valve over a large number of iterations, but it was found to adversely affect surface 

morphology, likely due to slower ramping affecting the interfaces between doped and 

undoped layers (see Section 6.4.2). IBGe flow was either 0.05 sccm (0.12 µmole/min) or 0.1 

sccm (0.24 µmole/min), and each cycle consisted of 10 or 20 seconds with the IBGe flow 

open followed by 10-30 seconds with the IBGe flow closed. The number of periods varied 

from 50 x [10 sec on, 10 sec off] for a total thickness of 110 nm, to 10 x [10 sec on, 30 sec 

off] for a total thickness of 45 nm. Growth in the presence of H2 improved surface 

roughness but also decreased Ge incorporation significantly, canceling out the morphology 

benefit. This was likely the result of H2 induced dynamic GaN etching.
47

 

Table 6.2 summarizes the carrier concentration, mobility, and surface roughness of 

the pulse-doped GaN:Ge layers for different number of periods, IBGe flow time, and duty 

cycle. The expected trend would probably be Ge incorporation proportional to duty cycle, 

but when the duty cycle doubles, the carrier concentration only increases by a factor of 1.2. 
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In fact, when comparing 50 x [10 sec on, 10 sec off] 110 nm layer with an IBGe flow of 0.1 

sccm and an average molar flow ratio over the entire layer of 0.015, to a continuously doped 

layer from Table 6.1 with the same average molar flow ratio, the expected carrier 

concentration would be 2-3E19 cm
-3

 instead of 1E20 cm
-3

.  It is difficult without additional 

high resolution TEM or atom probe tomography analysis to assess what the actual average 

Ge concentration is, and how the correlation between carrier concentration and [Ge] might 

differ between continuously doped and periodically doped layers.  

There are other ways to arrange the pulsed doping scheme that might have different 

effects but have not been tried. In the continuous growth scheme described above, there is a 

broad range of conditions that remain unexplored. With a 50% doping duty cycle and the 

IBGe MFC being operated near its minimum controllable flow rate, which is ~2% of the 

maximum flow rate of 3 sccm, the measured carrier concentration was still above 1E20 cm
-

3
. Increasing the IBGe flow rate and decreasing the duty cycle substantially may be an 

improvement, though little effect was seen, on Ge incorporation, morphology, or mobility 

when keeping the same IBGe flow and going from 50% to 25% duty cycle. One could also 

modulate both the Ga source and IBGe flows, either on the same schedule or on alternating 

schedules. In this case, growth would only occur while the Ga source is flowing. If IBGe 

flows without Ga, it will likely form a wetting layer of Ge on the growth surface that will be 

incorporated in the GaN film during the subsequent Ga flow step.  

 

6.3 GaN:Ge Electrical Characteristics 

Figure 6.3 shows the epitaxial structure grown by MOCVD that was used to 

characterize GaN:Ge layers electrically and morphologically via Hall Effect measurements,  
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Figure 6.3:  Schematic of the epitaxial structure used for characterization of GaN:Ge layers by Hall 

Effect measurement, AFM, and c-TLM. 

 

 

circular transmission line measurements (c-TLM), and AFM. The first micron of the GaN 

template was doped with Mg, but left unactivated, to ensure a completely insulating buffer, 

which was verified. Hall Effect measurements were performed using indium contacts in a 

van-der-Pauw geometry. Indium dots were placed in the corners of a ~1 cm
2
 sample scribed 

out from the original 2” wafer after growth. For c-TLM measurements, metal contact was 

made with e-beam-deposited Ti/Au, 30/300 nm in thickness, respectively. Spacings between 

the inner and outer rings (r) of the c-TLM patterns were 5, 10, 15, 25, 50, and 75 μm, and 

the radius of the inner ring (g) was 40 μm. Resistances were extracted from I-V 

characteristics that were measured by the four-point-probe method. They were linear with 

TLM spacing, and the contacts were ohmic for average dopant concentrations above 4E19 

cm
-3

. Resistances for non-ohmic I-V characteristics were taken at a reasonable operating 

condition of 100A/cm
2
. The linear approximation with correction factors was used to 

calculate contact resistivity (Rc) and sheet resistance (Rsh).
48–50

 Even though the necessary 

assumption for simplification that r >> g is not met in this case, the linear fit after correction 

factors were applied was highly linear, and the expected error is less than 10%.   
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Figure 6.4:  Hall Effect measurement results of carrier concentration (n) and mobility (µ) as a 

function of IBGe volumetric flow rate for MOCVD-grown GaN:Ge layers. Layers were 300 nm 

thick, continuously doped, and grown at 1180°C and at a growth rate of 8 Å/s with TMGa as the Ga 

source (15 sccm). Sample details can be found in Table 6.1. 

 

 

In addition to achieving high carrier concentrations in excess of 1E20 cm
-3

, the 

GaN:Ge layers also maintained relatively high mobility. Figure 6.4 shows the carrier 

concentration (n) and mobility (μ) derived from Hall effect measurements on 300 nm thick 

layers of GaN:Ge on top of an insulting GaN template as a function of IBGe flow (values 

and growth parameters in Table 6.1). Once again, the carrier concentration is assumed to be 

equal to the Ge concentration. IBGe flow rates were varied in the study from 0.06 sccm to 

10 sccm. Molar flow ratios of Ge to Ga ranged between 0.0026 and 0.44, and resulting 

carrier concentrations (Ge concentrations) ranged between 8.8E17 cm
-3

 to 1.3E20 cm
-3

, 

respectively. Over that range of carrier concentrations, the mobility ranged from 337 to 109 

cm
2
/Vs. A pulse-doped sample grown on PSS had a mobility of 117 cm

2
/Vs (Table 6.2).  
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Figure 6.5:  Hall mobility (µ) vs. carrier concentration (n) for continuously doped 300 nm GaN:Ge 

layers with different IBGe flows. Samples details can be found in Table 6.1. 

 

 

Figure 6.5 shows the product of n and μ. The point at the bottom right of this plot 

represents a record n*μ product,
i
 higher that the best demonstrated by MOCVD Si-doped 

GaN, although there have not been many attempts to grow highly Si-doped GaN layers by 

MOCVD.
34

 It is possible that the greater similarity in size of Ga to Ge atoms, compared to 

Si atoms, results in less lattice scattering, hence the slight increase in mobility. It’s also 

worth noting that highly Si-doped MBE grown GaN has achieved slightly higher μ above n 

= 1E20 cm
-3

.
51

 Regardless, Ge-doping could present an avenue toward increased 

performance in MOCVD-grown high speed/high power III-N electronics. 

Figure 6.6(a) shows the measured bulk resistivity (ρ) from Hall measurements and 

TLM for GaN:Ge layers of varying thickness and dopant concentration grown with both 

continuous and pulsed doping. Values from Hall and TLM measurements agree closely. 

Resistivity decreases with increased Ge doping as expected, down to a minimum value 

(measured by Hall) of 4.4E-4 Ωcm at a carrier concentration of 1.3E20 cm
-3

, corresponding  

                                                             
i Equivalent to conductivity 
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(a) 

 

(b) 

 
 

Figure 6.6:  (a) Bulk resistivity as a function of carrier concentration measured by both Hall Effect 

and c-TLM and (b) contact resistance measured by c-TLM for 300 nm continuously doped GaN:Ge 

layers and pulse-doped GaN:Ge layers of 110 and 45 nm thickness. All layers were grown on 

sapphire substrates and 4 µm of insulating GaN. The 110 nm pulse-doped layer had 10 second pulses 

of IBGe flow and a 50% duty cycle, while the 45 nm pulse-doped layer had 10 second IBGe pulses 

and a 25% duty cycle. Sample details can be found in Tables 6.1 and 6.2.  

 

 

to a Rsh of 14.8 Ω/□ for the 300 nm layer.  Bulk resistivity values for the pulsed-doped 

samples are nearly identical. Sheet resistances measured in typical Si-doped layers 2-4 μm 

thick are usually near or slightly below 20 Ω/□, which corresponds to ρ in the mid 10
-3

 Ωcm. 

Highly Ge-doped films have bulk resistivities an order of magnitude lower. It stands to 

reason that a several micron thick Ge-doped layer would achieve much lower sheet 

resistance and hence better current spreading than the Si-doped n-GaN in typical LEDs, as 

long as good material quality could be maintained. 

Figure 6.6(b) shows the measured Rc from c-TLM measurements for GaN:Ge layers 

of varying thickness and dopant concentration grown with both continuous and pulsed 

doping. The samples showed the expected trend of lower Rc with higher n-doping. At high 

doping near 1E20 cm
-3

, continuously doped samples had higher Rc than pulse-doped 

samples due to a large increase in surface roughness (see Table 6.1). The pulse-doped 

samples had much smoother surfaces with similarly high carrier concentrations (see Table 
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6.2), leading to superior contact resistance, as low as 2E-6 Ωcm
2
. This result is near the 

range of the lowest reported contact resistances to n-GaN.
52

  

 

6.4 GaN:Ge Structural Characteristics 

6.4.1 Continuously Doped Layer Morphology 

 The surface morphologies of the 300 nm GaN:Ge films grown for Hall 

measurements (see Section 6.3) were also characterized by AFM.  The AFM micrographs 

for the IBGe flow series are shown in Fig. 6.7, and the electrical characteristics and growth 

parameters can be found in Table 6.1. There is a marked increase in root mean square 

(RMS) surface roughness from 0.34 nm to 14.8 nm as the Ge concentration increases from 

5.3E18 cm
-3

 to 1.3E20 cm
-3

. The surface in Fig. 6.7(a) is indicative of a typical undoped or 

moderately Si-doped high temperature GaN template. Pits begin to form when [Ge] goes 

above 1E19 cm
-3

, and then step-bunching is evident at above [Ge] = 4E19 cm
-3

. Finally, 

above [Ge] = 1E20 cm
-3

, the growth is totally three dimensional, with a network of 

relatively flat plateaus and valleys.  

The GaN:Ge layer in an LED device for the purpose of polarization screening does 

not need to be 300 nm thick; it only needs to be 10 nm thick. Another series of GaN:Ge 

layers was grown and investigated by AFM with thicknesses decreasing from 300 nm to 10 

nm and growth conditions identical to the sample in Fig. 6.7(d) and Ge concentration 

measured by Hall of [Ge] = 1.6E20 cm
-3

. Figure 6.8 shows the AFM micrographs for 

samples in the GaN:Ge layer thickness series. The same plateau/trench morphology that was 

seen in Fig. 6.7(d) is evident for all thicknesses in Fig. 6.8, even as the RMS roughness 

decreases from 14.6 nm to 3.3 nm as the nominal layer thickness decreases from 300 nm to  
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(a) 

 

(b)

 
(c) 

 

(d) 

 
 

Figure 6.7:  AFM micrographs of 300 nm continuously doped GaN:Ge layers with Ge 

concentrations of (a) 5.3 x 10
18

 (b) 1.2 x 10
19

 (c) 4.2 x 10
19

 (d) 1.3 x 10
20

. RMS stands for root-mean-

square roughness. Sample details can be found in Table 6.1.   

 

 

10 nm. The size of the plateaus and the spacing between them decreases as layer thickness 

decreases, and the peak-to-trough difference is always on the order of the nominal layer 

thickness. This rules out an explanation of a buildup of stress because the three dimensional 

morphology begins right from the start of GaN:Ge layer growth when the concentration is 

near 1E20 cm
-3

. Wide range XRD scans have not identified a different phase or material that 

might be present in these plateau regions. The nature of the plateau regions and the growth 

mechanics that lead to their formation are at this point still not understood.    
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Figure 6.8:  AFM micrographs of continuously doped GaN:Ge layers with Ge concentration of 1.6 x 

10
20

 with thicknesses of (a) 10 nm (b) 40 nm (c) 100 nm (d) 300 nm. Layers were grown at 1180°C 

with an IBGe flow of 5 sccm, a TMGa flow of 15 sccm, a growth rate of 8 Å/s, and in H2/N2 carrier 

gas. RMS stands for root-mean-square roughness.  

 

 

 Additionally, surface morphology was not affected strongly by temperature between 

800°C and 1200°C, though there are a few more pits and consequently larger RMS 

roughness when going from 1180°C (Fig 6.7(b)) to 870°C (Fig 6.9(a)). The morphology 

actually got worse going from H2/N2 mixed carrier gas (Fig 6.8(a)) to N2 only (Fig 6.9(b)). 

The negative morphological effects going to lower temperature and N2 carrier gas could be 

explained by the resulting lower surface atom mobility making it more likely that pits or  
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                                     (a) 

 
(b) 

 

(c) 

 
 

Figure 6.9:  AFM micrographs of continuously doped GaN:Ge layers: (a) a 300 nm layer with Ge 

concentration of 9.5 x 10
18

, grown at 870°C with an IBGe flow of 0.4 sccm, a TMGa flow of 15 

sccm, and a growth rate of 8 Å/s; (b) a 10 nm layer with Ge concentration of ~1.5 x 10
20

, grown at 

1180°C with an IBGe flow of 5.0 sccm, a TMGa flow of 15 sccm, a growth rate of 8 Å/s, and grown 

with only N2 carrier gas; (c) a 10 nm layer grown on a free standing GaN substrate with Ge 

concentration of ~1 x 10
20

, grown at 1000°C with an IBGe flow of 0.4 sccm, a TMGa flow of 1.5 

sccm growth rate of 1 Å/s. RMS stands for root-mean-square roughness.   

 

 

plateaus will form. Changing substrate dislocation density (on free standing GaN with 3 x 

10
6
 cm

-2
 TDD and on sapphire with more than 5 x 10

8
 cm

-2
 TDD) changed the character of 

the morphology, but not the scale of the roughness, though it is likely that the TDD has no  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Figure 6.10:  AFM micrographs of continuously doped GaN:Ge layers with Ge concentration of ~1 x 

10
20

 with thicknesses of (a) 10 nm (b) 40 nm (c) 100 nm (d) 300 nm. Layers were grown at 1000°C 

with an IBGe flow of 0.4 sccm, a TMGa flow of 1.5 sccm, a growth rate of 1 Å/s, and in H2/N2 

carrier gas.  RMS stands for root-mean-square roughness.   

 

 

affect (Fig. 6.9(c)). The change in surface step density between growth of bulk and sapphire 

substrates is likely responsible for what difference there is, and step-bunching and islanding 

are still evident.  

Finally another GaN:Ge layer thickness series (10 nm to 300 nm) was grown at 

lower temperature (1000°C) and lower growth rate (1 Å/s) using TMGa as the Ga source 

(flow rate of 1.5 sccm, 5.4 µmole/min) and H2/N2 carrier gas. The temperature had to be 

reduced below 1100°C when lowering the TMGa flow to 1.5 sccm, or else desorption would 
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dominate and the growth rate would be essentially zero. The AFM scans from this series are 

shown in Fig. 6.10. Comparing to Fig 6.8, there are some differences although the 

roughness remains high even for thin layers. The plateaus appear to be smaller and spaced 

closer together. The roughness for the 40 nm and 100 nm layers is smaller than their 

counterparts in Fig. 6.8, but the 300 nm layer is far rougher.  The lower growth rate does 

appear to be promoting a “spreading out” of the highly localized plateau regions, possibly 

because the atoms have more time to migrate on the surface. It is still far too rough for good 

device growth, however, and it is difficult to grow much slower than 1 Å/s without losing 

control of Ge incorporation because of the high vapor pressure of the IBGe bubbler and the 

unavailability of lower flow MFCs. The IBGe bubbler is already kept at 3°C and would 

have to be cooled far below freezing to make a significant difference in the vapor pressure 

and Ge incorporation, requiring reactor modifications.  

 

6.4.2 X-Ray Diffraction 

 The continuously doped samples with varying IBGe flow rates shown in Table 6.1 

were further characterized by high resolution XRD of the (0002) GaN reflection in an ω-2Θ 

configuration using a PANalytic MRD Pro diffractometer. Figure 6.11 shows the peaks of 

the GaN:Ge layers as well as that of a reference Si-doped GaN layer with the same doping 

concentration (~6 x 10
18

 cm
-3

) used in standard n-GaN template layers. The reflections have 

been plotted on a relative 2Θ axis centered on the peak position of each scan so that they 

may be more easily compared. Whereas the scans of Fritz et al. over a similar range of Ge 

concentration show no peak splitting or appreciable broadening (Fig. 6.1(b)),
29

 here a 

shoulder to the left of the main GaN peak, along with thickness fringes, appears at  
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Figure 6.11:  GaN (0002) XRD peaks  in ω/2Θ scans for 300 nm GaN:Ge layers with Ge-doping 

concentrations ranging from 5.3 x 10
18

 cm
-3

 to 1.6 x 10
20

 cm
-3

, and one GaN:Si layer with a Si-

doping concentration of 5.7 x 10
18

 cm
-3

. The dashed vertical line marks the 2Θ angle for relaxed 

GaN. 

 
 

concentrations exceeding 4 x 10
19

 cm
-3

. The shoulder appearing on the left of the main 

reflection peak indicates compressive strain in the GaN:Ge layer. There is no well-defined 

second peak, however, so the absolute amount of strain in the layer is clearly less than in the 

GaN:Si layers shown in Fig. 6.1(a). As discussed in Section 6.1.2, the mechanism for tensile 

strain evolution in GaN:Si layers is reasonably well understood. There is no existing theory 

for why the incorporation of Ge would add compressive strain to the layer. Evidence of 

compressive strain in the symmetric XRD scans of GaN:Ge layers corresponds with the 

onset of severe step bunching and three dimensional growth seen in the AFM scans in Fig. 

6.7. Again, Fritz et al. saw no evidence of changing strain with increasing Ge concentration 
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and they observed smooth surfaces by optical micrograph (Fig. 6.2(b)). The surface quality 

of the highly strained GaN:Si layer they observed, on the other hand, was very poor (Fig. 

6.2(a)). Clearly there is a correlation between strain buildup and morphological breakdown 

in highly doped films, whether the dopant is Si or Ge, and whether the strain is tensile or 

compressive. Further investigation will need to be done to determine the mechanism behind 

compressive strain evolution in GaN:Ge films. 

 

6.4.3 Pulsed Doping Morphology 

Pulsed doping can be used to achieve high doping concentrations with relatively 

smooth surfaces as described in Section 6.2. In an attempt to improve on the morphology of 

the continuous doped GaN:Ge layers, a pulsed Ge-doping scheme was developed with 

constant layer growth and IBGe flow modulation. Table 6.2 lists growth parameters, 

electrical characteristics, and RMS surface roughness for pulse-doped layers. Figure 6.12 

shows AFM micrographs of 50 alternating doped and undoped 1.1 nm layers with an IBGe 

flow of 0.24 µmole/min and a TEGa flow of 8.05 µmole/min (molar flow ratio of 0.03) for 

110 nm total thickness on co-loaded PSS and unpatterned sapphire substrates. The carrier 

concentration in the layers on each substrate was 1.0E20 cm
-3

. The surface was much 

smoother on PSS, with an RMS roughness of only 5.5 nm compared to 18.1 nm on 

unpatterned sapphire. Most notably, the plateau morphology seen in the continuously doped 

layers is no longer evident. The plateaus have been replaced by a high pit density on the 

unpatterned sapphire, and some step bunching with a lower pit density on PSS. The 

difference between the co-loaded substrates is most likely due to the lower step edge density  
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(a) 

 

(b) 

 
 

Figure 6.12:  AFM micrographs of 110 nm pulse-doped GaN:Ge layers with carrier concentration of 

~1 x 10
20

 measured by Hall Effect, grown on co-loaded (a) unpatterned sapphire and (b) PSS. RMS 

stands for root-mean-square roughness. Sample details can be found in Table 6.2. 

 

 

seen in GaN on PSS. The lower roughness also led to better mobility and contact resistance 

in the pulse-doped layer. 

Figure 6.13 shows AFM micrographs for a series of pulse-doped GaN:Ge layers 

with different IBGe flow times and duty cycles grown on PSS (see Table 6.2 for sample 

details). Each exhibited a “cauliflower-like” morphology indicative of step bunching, and 

with a few small pits. There was little difference in roughness between the samples with 10 

sec/10 sec, 5 sec/5 sec, and 10 sec/30 sec IBGe flow on/off times in each pulse iteration. 

The sample in Fig. 6.13(a) had an identical pulse scheme to the sample in Fig. 6.12(b), but 

with 20 periods instead of 50 (45 nm total thickness). Decreasing the duty cycle to 25% by 

alternating 1.1 nm doped and 3.3 nm undoped layers for 45 nm total thickness resulted in a 

carrier concentration of 8.4E19 cm
-3

 and an RMS surface roughness of only 2.8 nm (Fig. 

6.13(c)). Smoother surfaces with similar carrier concentrations should result in better 

performance for LEDs with GaN:Ge layers. 
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                                    (a) 

 
(b) 

 

(c) 

 
 

Figure 6.13:  AFM micrographs of 45 nm pulse-doped GaN:Ge layers with carrier concentration of 

~1 x 10
20

 measured by Hall Effect with different pulse schemes: (a) 20 x (10 sec. IBGe on/10 sec. 

IBGe off) (b) 40 x (5 sec. IBGe on/5 sec. IBGe off)  (c) 10 x (10 sec. IBGe on/30 sec. IBGe off). 

RMS stands for root-mean-square roughness.  Sample details can be found in Table 6.2. 

 

 

Unfortunately, pulse-doped layers were not able to achieve good results in a 

polarization screened SQW LED device (Section 6.5.2). Figure 6.14 shows the unexpected 

result that a 10 nm pulse-doped GaN:Ge layer on PSS is actually rougher than a 10 nm 

GaN:Si layer with the same carrier concentration (nominally 7E19 cm
-3

). Interestingly, the 

morphologies were completely different, with the Ge-doped layer exhibiting step-bunching 

and the Si-doped layer exhibiting dendritic step growth with a much larger total step area.  
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(a) 

 

(b) 

 
 

Figure 6.14:  AFM micrographs of (a) a 10 nm pulse-doped GaN:Ge layer and (b) a 10 nm GaN:Si 

continuously doped layer, both with a carrier concentration of ~7 x 10
19

. RMS stands for root-mean-

square roughness. 

 

 

 

6.5 Germanium Doping in LED Structures 

6.5.1 GaN:Ge Layer Incorporated in a Standard LED Structure 

The feasibility of Ge-doping in an LED structure was tested by including a Ge-

doped layer 10 nm thick below a standard MQW blue-emitting active region. Figure 6.15 

shows the results of a packaged LED with and without a layer with 1E20 cm
-3

 Ge 

concentration. Aside from the GaN:Ge layer, the structure of the blue-emitting MQW LED 

was identical to the one described in Section 5.3. This is the first demonstration of Ge 

doping in an LED. The LIV curve in Fig. 6.15(a) shows a significant improvement in both 

voltage and output power in the LED with the Ge-doped layer. Since the active region in 

this case is a MQW, we do not attribute the improved performance to field screening in the 

QWs, but instead to improved carrier injection and lateral current spreading on the n-side.  
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(a) 

 

(b) 

 
 

Figure 6.15: Packaged LED results comparing devices with a 10 nm GaN:Ge layer (doped ~1E20 

cm
-3

) beneath the MQW active region (6 periods of 3 nm In0.15Ga0.85N QW/20 nm GaN barrier) and  

an identical device without the GaN:Ge layer: (a) LIV plot and (b) EQE vs. current density. 

Measurements were taken with continuous current injection, so heating effects are included. The 

dotted line in (b) represents EQE droop.   

 

 

The EQE curves in Fig. 6.15(b) show a higher EQE for the Ge-doped LED, but the 

efficiency droop is similar. This is expected since there is no reason to believe that the 

polarization field in every QW has been screened in this case.  

Figure 6.16 shows simulated band diagrams for a 3 QW LED at a current density of 

100 mA/cm
2
. In Fig. 6.16(a), the doping on the n-side is 1E18 cm

-3
 extending up to the first 

QW interface. In Fig. 6.16(b), the doping on the n-side is 1E20 cm
-3

 extending up to the first 

QW interface. The size of the barrier that electrons see when injecting from the n-GaN into 

the active region is significantly reduced with higher doping. This level of doping would be 

obtainable with Ge. Lowering the barrier for current injection would improve carrier 

injection efficiency, improving external quantum efficiency and decreasing operating 

voltage. Indeed in the simulations in Fig. 6.16, the applied voltage in Fig 6.16(a) is 4.15 V, 

while in Fig 6.16(b) it is 3.29 V. Significant performance improvements can be expected 

when utilizing Ge in high concentrations on the n-side of nitride LEDs. 
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Figure 6.16:  Simulated band diagrams at an injection current of 100 mA/cm
2
 of, in Figure 5(a), a 3 

QW LED with n-side doping of 1e18 cm
-3

 extending up to the first QW and, in Figure 5(b), a 3 QW 

LED with n-side doping of 1e20 cm
-3

 extending up to the first QW. 

 

 

 

6.5.2 Single Quantum Well Spacer Series with Germanium Doping 

 In order to test the viability of highly Ge-doped layers for polarization screening in a 

SQW LED, a 10 nm pulse-doped GaN:Ge layer was placed underneath a SQW with a 

spacer layer of UID GaN in between. The GaN:Ge layer was identical to the layers 

described in Section 6.4.3, but with 4 periods of 10sec on/20sec of IBGe flow of 0.1 sccm 

(0.24 µmole/min) during continuous TEGa flow of 35 sccm (8.05 µmole/min, 1.1 Å/s). The 

nominal carrier concentration in the layer was ~1E20 cm
-3

. The GaN spacer thickness varied 

from 0 nm (the condition for a polarization screened design) to 100 nm, where the layer is  
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Figure 6.17:  Quick test output power at 20 A/cm
2
 and FWHM as a function of UID GaN spacer 

thickness between a 10 nm GaN:Ge layer with Ge concentration ~7E19 cm
-3

 and a 3 nm QW in a 

blue SQW LED structure.  

 

 

much too far away from the InGaN/GaN interface to actually screen the polarization sheet 

charge.  

The expectation was that moving the doped layer closer to the SQW would improve 

the output power at 20 A/cm
2
 due to polarization field screening and greater wavefunction 

overlap, but the opposite trend was observed (Fig. 6.17). As the heavily doped GaN:Ge 

layer came within 20 nm of the SQW, the output power declined sharply. At zero 

separation, the device did not light up at all. The drop in power at 10 nm spacer thickness 

was accompanied by an increase in FWHM of the EL spectrum from 32 to 39 nm and a 

decrease in the EL peak wavelength from 493 to 450 nm. The wavelength blue-shift is likely 

due to a decrease in the internal electric field in the QW. The increase in FWHM could be 

caused by the roughness GaN:Ge in closer proximity to the QW. It is not just the roughness 

of the layer that causes the power to drop to zero, however. Previously results of LEDs 

grown on underlying InGaN layers or superlattices with high roughness due to V-defects 
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show no sign of a negative correlation between output power and roughness beneath the 

QW. More likely in this case is the possibility that the Ge doping has brought a much higher 

density of non-radiative defects into the QW, with an effective tail of 10-20 nm from the 

edge of the doped layer. These could be point defects related to energetics of Ge 

incorporation at such high levels, or impurities such as carbon brought in by the IBGe 

source. This would explain why power recovers when the Ge-doped layer is further from the 

QW, and why a MQW device performs well. The same effect is not seen with Si-doping, 

which achieves good SQW output power when the doped layer is immediately adjacent to 

the QW (see Chapter 5).  

 

6.6 Conclusion 

 There are large internal electric fields in (0001) InGaN/GaN QWs due to 

polarization discontinuities at the heterointerfaces. These fields spatially separate electron 

and hole wavefunctions and cause a reduction in the electron-hole wavefunction overlap. A 

decrease in overlap leads to reduced recombination rate and higher carrier density in the 

active region of an LED. Higher carrier density leads to an increase in Auger recombination 

rate and a subsequent increase in efficiency droop at moderate to high injection current 

densities. Eliminating the polarization fields in InGaN QWs would decrease droop on its 

own, and additionally allow for new active region designs with thick SQWs to further 

reduce carrier density and droop. The polarization fields in InGaN/GaN QWs on the (0001) 

plane can be screened by heavy doping adjacent to the InGaN/GaN interfaces, but the level 

of doping needed, at least 7E19 cm
-3

, presents difficulties for layer growth.  
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 Silicon is the traditional n-type dopant used in GaN, but germanium is another 

option with equally small ionization energy. Silicon doping at densities above 1E19 cm
-3

 has 

been shown to cause an increase in tensile stress through edge dislocation climb, along with 

a breakdown in surface morphology. Recently, it was discovered that Ge doping up to levels 

in excess of 1e20 cm
-3

 did not add stress to the film and maintained a relatively smooth 

surface. These characteristics make Ge a more attractive n-type dopant for polarization 

screening in (0001) SQWs.  

 In order to test Ge as a dopant, an IBGe source was installed on our MOCVD 

reactor. IBGe is a well-behaved metalorganic source with a high vapor pressure, low 

cracking temperature, and linear incorporation with flow rate over a broad range of III-N 

growth conditions. It is also not pyrophoric and much less toxic than GeH4. Ge 

incorporation in excess of 1E20 cm
-3

 was easily achieved. Pulsed doping was also employed 

in an attempt to improve surface morphology while maintaining high carrier concentration. 

 Electrical characteristics of GaN:Ge layers were measured by Hall Effect 

measurements and circular TLMs. The mobility decreased as doping density increased, but 

the n*µ product of the heavily doped layers was higher than anything previously reported 

for MOCVD grown n-GaN. Sheet resistance and bulk resistivity decreased with increasing 

Ge concentration as expected. Contact resistance decreases with increasing doping, and 

pulsed doping improves contact resistance at very high doping because of its lower 

roughness. 

 GaN:Ge layer morphology was characterized extensively by AFM. For continuously 

doped layers, there was a dramatic increase in roughness going over the full range of 

possible IBGe flows. Near [Ge] = 1E20 cm
-3

, the morphology became three dimensional, 
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with plateau regions and trenches in between. The plateaus remained as the layer thickness 

decreased down to only 10 nm, and the height of the plateaus was on the order of the 

nominal layer thickness. There was no improvement on the morphology with changes in 

growth temperature, substrate TDD, carrier gas, or growth rate. XRD scans of the (0002) 

peak indicated compressive strain evolution corresponding to the breakdown of surface 

morphology. Pulsed doping was employed as a way to improve morphology with some 

success. Pulse-doped GaN:Ge layers eliminated the plateaus and were relatively smoother 

but still suffered from step bunching and has RMS surface roughness well over 1 nm.  

 Incorporating a GaN:Ge heavily doped layer in a standard blue MQW LED structure 

led to improvements forward voltage and output power. The likely explanation is improved 

spreading resistance in the n-GaN and lowering of the injection barrier. When a heavily 

doped GaN:Ge layer was placed near a SQW for the purpose of polarization field screening, 

however, the output power decreased dramatically. The reason for this behavior is unknown, 

but it is suspected to involve a non-radiative defect associated with the Ge doping or IBGe 

source specially, because the same trend is not seen with Si doping as the same densities in 

the same structures. There is still much work left to be done in growing and characterizing 

GaN:Ge films. Secondary ion mass spectroscopy, atom probe tomography, and other 

techniques could be used to investigate the nature of plateau regions in extremely rough 

films, and to discover the mechanism that causes LED failure when the GaN:Ge layer is too 

near the QW. Pulsed doping needs to be explored over a much wider range of conditions 

and pulse schemes.   
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7 
 
 

Conclusions and Future Work 
 
 

7.1 Conclusions 

 The III-nitrides offer a rich set of both device and growth physics that provided a 

fruitful platform for tackling the many challenges involved in developing efficient 

optoelectronic devices. The limits of MOCVD growth were tested in trying to balance the 

sometimes competing demands of high structural quality and high device efficiency. The 

InGaN alloy itself presented significant challenges when aiming for higher indium content 

and lower bandgap that would allow conversion of more incident photons and enable 

multijunction integration of an InGaN solar cell: large lattice mismatch to GaN limits the 

thickness (and therefore absorbing volume) that can be grown before relaxation, and low 

growth temperatures lead to the formation and propagation of deleterious V-defects. 

Another challenge that the wurtzite III-N material system presented was the large 

piezoelectric polarization present in strained InGaN layers. Polarization-induced electric 

fields cause the Quantum-Confined Stark Effect, which has negative effects for InGaN QW 

based optoelectronic devices: it decreases the absorption strength near the band edge of a 

solar cell, and it red-shifts and decreases the efficiency of radiative transitions in an LED.  
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 The key tradeoff in the development of InGaN solar cells was growing enough 

InGaN absorber layer thickess to absorb most of the incident above-bandgap photons while 

also incorporating enough indium to reduce the bandgap to a reasonable level for solar 

conversion. A MQW design allowed the strain from the InGaN layers to be spread over a 

larger distance so that more total InGaN thickness could be incorporated in the device active 

region. The MQW structure brought up the problem of carrier transport out of the active 

region. It was found through temperature dependent measurements of InGaN MQW solar 

cells that thinner quantum barriers improved collection efficiency by promoting tunneling 

escape of electrons and holes from QWs in favor of thermionic emission. A two 

dimensional carrier escape model confirmed these results.  

 MOCVD growth of thick MQW active regions with thin barriers proved to be a 

delicate balance. On one hand, higher growth temperature and the presence of H2 in the 

barriers could mitigate the formation of V-defects. On the other hand, those same conditions 

attacked the integrity of the InGaN QWs. The solution was a two-step barrier growth with a 

low temperature capping layer followed by a +100°C ramp and a GaN layer grown in H2. 

After optimization, a 4 nm total barrier thickness provided maximum solar cell performance 

while maintaining smooth interfaces. With the optimized MQW structure, solar cell 

performance increased up to 30 QW periods, after which point strain relaxation related 

defect formation degraded efficiency. These devices exhibited record high Voc and FF due to 

the thin barrier design. Dielectric optical coatings were deposited on the best device (30 

QWs) in order to boost efficiency and demonstrate feasibility for multijunction integration. 

The front surface anti-reflective coating and rear surface dichroic mirror were composed of 

alternating layers of SiO2 and Ta2O5 deposited by ion beam deposition. Eliminating surface 
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reflections and providing a second pass of light, while allowing light not absorbed by the 

InGaN layers to pass through for potential underlying solar junctions, boosted conversion 

efficiency by 37.5%. The resulting efficiency of 3.33% at AM0 was a record for a stand-

alone nitride solar cell.  

 III-N LEDs are based on InGaN QWs, which, when grown on c-plane, contain large 

piezoelectric polarization-induced electric fields. These fields spatially separate electron and 

hole wavefunctions, reducing the transitions rate for all types of recombination. If SRH, 

radiative, and Auger recombination each depend on the square of the wavefunction overlap, 

as has been postulated in theory and experiment, then an argument can be constructed about 

the relationship between wavefunction overlap and LED efficiency: increased overlap will 

decrease the carrier density at a given current density; the peak IQE will not change, but will 

push to larger current densities; the efficiency droop will therefore decrease.   

 Simulations of blue LEDs with a single QW active region showed that increasing the 

width of the QW decreases the wavefunction overlap because of the polarization field. By 

doping n- and p-type immediately adjacent to the QW, the polarization field could be 

screened. Complete screening was predicted at a very high doping level of 7x10
19

 cm
-3

. To 

test the screening of polarization fields, blue c-plane SQW LEDs were grown with and 

without screening doping at QW thicknesses of 3.8 to 11.3 nm. The widest QW samples 

showed degradation due to defect formation in the InGaN layer. The other screened LEDs 

showed increasing peak EQE with increasing QW thickness, which went against the 

wavefunction overlap argument. The unscreened LEDs had lower peak EQEs than their 

screened counterparts and a very delayed turn-ons except for the thinnest QW device. There 

must have been a difference in the SRH nonradiative coefficient between these devices. A 
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possible explanation is that the extent to which electron and hole wavefunctions overlap 

barrier regions could change the degree of nonradiative recombination in these devices. 

Finally, biased PL measurements proved complete polarization screening in the doped 

SQWs. No wavelength shift was observed in devices with doping, but significant shifts were 

observed in devices without doping.   

 The high levels of doping necessary to screening polarization fields in blue InGaN 

QWs can present problems with n-type doping. The traditional donor impurity, Si, has been 

shown to, at large concentrations, cause dislocation climb, resulting in the development of 

tensile stress in the film. Germanium also acts as a donor in GaN, and has been shown to not 

increase tensile strain. The Ge source IBGe was installed on the MOCVD reactor and 

showed linear incorporation with flow rate. Hall Effect measurements showed relatively 

high mobility at Ge concentrations exceeding 1E20 cm
-3

. The layer conductivities were the 

highest reported in an MOCVD grown GaN film. TLM measurements showed decreasing 

sheet resistivity with increasing doping and low contact resistance. 

 However, above a concentration of 1E19 cm
-3

, the morphology of GaN:Ge layers 

degraded significantly. A plateau-like morphology developed with heights on the order of 

the nominal layer thickness. XRD scans of the (0002) peak indicated compressive strain in 

these layers. A pulsed doping scheme improved surface morphology and contact resistance, 

but the morphology was still rougher than ideal for a layer immediately adjacent to a QW. A 

MQW LED with a highly Ge doped layer beneath the active region performed slightly better 

than a control sample, likely due to improved carrier injection and lateral current spreading. 

When the highly Ge doped layer was grown immediately adjacent to an InGaN SQW, there 
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was no EL output power. Light output recovered as the Ge doped layer was moved away 

from the QW by at least 20 nm.  

 The methods and results described in this thesis illustrate the value of a combined 

focus on materials growth and device physics. The field of III-N optoelectronic devices in 

particular straddles a line between those two disciplines. Significant challenges to progress 

in device efficiency lie both in overcoming difficult material growth problems, and in 

designing novel active regions within the growth constraints that either harness or minimize 

the unique properties of the material system, such as polarization. Device design simply 

cannot be effective without considering the interplay between materials and physics.  

 

7.2 Future Work 

7.2.1 Solar Cells 

 The work on InGaN MQW solar cells in this dissertation represents a nearly 

complete optimization of the device structure and materials growth strategies. Further 

improvements on this structure would need to take a truly novel path, not just one of 

incremental improvement. Future work in nitride solar should focus on the following areas: 

integrating with an existing multijunction solar cell, expanding the wavelength range of 

absorption and enabling thicker active region growth, and improving IQE.  

 A scheme for integrating a nitride solar cell junction into a MJSC is described in 

detail in section 4.4.2. The underlying III-V 4-junction solar cell has already been highly 

developed and is not a concern in this design. The top junction of that device is normally 

thinner than necessary for full absorption for the sake of current matching, so adding a 

nitride junction on top would not scavenge many photons from that junction. Also, the 
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nitride device would be electrically decoupled, so current matching would not be an issue. 

The efficiencies of the nitride solar cell and the underlying MJSC are nearly additive as long 

as the most important layers of design can be engineered properly: the optical coatings and 

the bonding interlayer. Antireflection coating and dichroic mirror design is discussed in 

detail in section 4.4. One strategy to improve upon the design of alternating planar dielectric 

layers is to implement a nanostructured coating known as a moth eye design.
1
 The bonding 

interlayer between the nitride cell and the underlying MJSC is a key and difficult part of the 

overall design. Optically, it must be low loss over a very wide wavelength range, and 

structurally it must provide a strong and flexible bond that will not delaminate during the 

large temperature swings common in CPV operation. The combination of BCB as a bonding 

layer and well-designed coatings shows promise as a theoretical design.
2
 An actual 

integrated device has yet to be built and tested, however.  

 An aspect of the InGaN solar cell performance that is important for integration is the 

steepness of the EQE spectrum. Any slope of the absorption edge of the EQE spectrum will 

both reduce the potential efficiency of that junction and scavenge photons from the next 

junction. As discussed in Chapter 3, polarization fields in c-plane InGaN layers cause a 

smearing of the absorption edge, which would be detrimental to both the InGaN cell 

efficiency and the underlying cell efficiency in an integrated MJSC. Eliminating 

polarization fields would also be important for improving IQE and pushing to longer 

wavelength absorption by increasing the In content of InGaN.  Polarization fields get larger 

and more detrimental with higher indium content. Without polarization field, and making 

the bad assumption that there is no strain limitation, InGaN layers could be grown arbitrarily 

thick without developing a field that acts counter to the normal junction field, which is 
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responsible for carrier collection. The MQW design could be replaced by a simple DH, 

which would improve carrier collection efficiency. 

One potential strategy for reducing polarization fields is to grow on nonpolar or 

semipolar planes of GaN. There are little in the literature on this approach, but it has been 

attempted at UCSB. Reduction of field in the InGaN QWs is achievable,
3
 but InGaN layers 

on these planes relax much more easily than on c-plane because of the presence of 

dislocation glide plane with resolved shear stress. Even at modest compositions (absorbing 

near 450 nm), the total thickness of InGaN that can be grown before degradation from 

relaxation is not enough to compete with the best c-plane devices. Another strategy would 

be to surround InGaN layers with polarization-matched AlInN or AlInGaN layers so that 

there is no net polarization sheet charge at the interface.
4–7

 Polarization matching with these 

layers has been predicted and demonstrated, but their growth is particularly complicated by 

the presence of both Al, which prefers higher growth temperatures, and In, which does not 

incorporated effectively except at lower growth temperatures. More importantly, the strain 

in ternary and quarternary layers polarization matched to InGaN is also compressive; 

meaning that even less InGaN could be grown before relaxation. This approach may work in 

an LED, but it seems doomed in a solar cell that requires thick active regions, unless a 

reduced strain structure can be implemented.  

 Strain is the main limiting factor in increasing the total InGaN thickness and in going 

to lower bandgap absorbing layers by increasing the indium content. The holy grail of strain 

reduction in the nitrides would be a relaxed InGaN buffer. The idea of a relaxed buffer is to 

grade the lattice constant though misfit dislocation glide while containing the defects to the 

buffer region. Layers above the buffer would be grown coherently to the lattice constant of 
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the relaxed InGaN. In this case, the active region could be grown as an InGaN homojunction 

of arbitrary thickness. Relaxed buffers are common in arsenide-based MJSCs, grading the 

lattice constant between material junctions without introducing new defects.
8
  Because 

dislocation glide is necessary for this kind of relaxation, semipolar planes of GaN should 

allow much easier growth of relaxed buffers.
9
 However, two dimension relaxation onset 

creates new threading dislocations which are catastrophic to device performance. Graded 

buffers on c-plane are possible by MBE and have been used to increase the performance of 

MOCVD-grown long wavelength LEDs.
10

 That approach is complicated by the use of both 

MBE and MOCVD growth, but an acceptable MOCVD-only approach has yet to be 

demonstrated. 

In a standard MQW design, strain in the InGaN well can be compensated by using 

tensile strained barriers. On a GaN template, the barrier would have to be AlGaN, AlInN, or 

AlInGaN. On an InGaN template, the barrier could be GaN, which would reduce the growth 

complication in the MQW. Strain balanced MQWs have been used successfully in GaAs-

based solar cells,
11

 and have also been demonstrated with InGaN quantum wells.
12

 

Incorporation of AlGaN capping layers in a green InGaN MQW have also been shown to 

improve device performance, though the effect is not thought to be strain related.
13,14

 

Replacing the GaN cap with AlGaN in the two-step barrier growth method described in 

Chapter 4 could allow improved efficiencies of InGaN MQW solar cells absorbing at green 

wavelengths and beyond.  
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7.2.2 SQW LEDs 

 The SQW LED effort presented in this dissertation has been successful with regards 

to effectively screening the polarization field in an InGaN QW with doping. What remains 

incomplete, however, is a full understanding of the factors influencing the efficiency of 

these devices.  The next steps along this line of research will be to characterize the nature of 

recombination occurring in the SQW active regions. The speculation in Chapter 5 is that the 

highly doped barrier layers may contribute to a much higher than normal SRH coefficient. 

That would explain why thicker wells, with less wavefunction-barrier interaction, have 

higher peak EQE. The other possibility is that the dependence of A, B and C coefficients on 

wavefunction overlap is not the same. It is entirely possible that A and C do not depend on 

the square of the overlap like B does, and that could itself explain the observed efficiency 

dependence on screening and well thickness, as discussed in Chapter 5. Choosing the right 

experiments to differentiate between these possible explanations, or to find another un-

thought-of explanation, will be essential going forward.  

 Time-resolved measurements are generally the best way to observe recombination 

characteristics. TRPL and TREL show how the luminescence of a sample decays as a 

function of time after an input pulse of light or current. The characteristic decay time of the 

luminescence is a measure of the total recombination lifetime. At very low temperature (7K 

for instance) SRH recombination should be frozen out, and assuming that the injected 

carrier density is low enough so that the radiative process dominates over Auger, the decay 

time will represent the radiative recombination lifetime.
15

 Comparing low temperature and 

high temperature lifetimes gives information about the SRH coefficient. Differential lifetime 

measurements coupled with IQE measurements can also give valuable information about the 
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relative contributions of radiative and nonradiative processes to the total lifetime.
16

 Another 

technique that could be very useful is electron emission spectroscopy, which can detect the 

Auger signature of electrons excited to high energies in the conduction band.
17–19

 These 

measurements would determine if Auger recombination is happening at all in the screened 

SQW structures, even at very high current density, or if another recombination process is 

dominant, which could explain why the EQE is low and relatively flat.  

 In addition to the SQW structures described in Chapter 5, further structures could be 

grown for recombination investigations. The highly doped layers can be moved away from 

the SQW on the n-side and p-side separately in order to see if either has a strong proximity 

effect on A. The EBL can be removed and then a hole blocking AlGaN layer can be added 

underneath the SQW to see if electron or hole overflow is causing significant efficiency 

loss. These measurements should also be done on structures grown on other planes of GaN 

to compare similar different QW fields without the presence of highly doped layers. 

 

7.2.3 Germanium Doping  

 The work on Ge doping of GaN in this dissertation only represents the first small 

step toward an understanding of how to effectively incorporate large concentrations of Ge 

and how to integrate such highly doped layers into a device. Many challenges have 

presented themselves during the short time this project has been active, and continuing 

research should prove fruitful. There are two broad areas where work remains to be done: 

GaN:Ge layer growth and the incorporation of GaN:Ge layers into new device structures. 

 Throughout the investigations in this dissertation, the morphology of highly doped 

GaN:Ge layers remained relatively poor. Pulsed doping via a modulated IBGe flow made 
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some headway toward improving the morphology, but significant further improvement will 

be necessary before heavily doped GaN:Ge layers can be reliably incorporated into device 

structures. Only a small amount of the potential growth space for pulsed doping has thus far 

been explored. There are several ways to adjust the scheme in order to attempt to change the 

growth mode while maintaining a high effective doping density. Instead of a 50% duty cycle 

of IBGe flow, that ratio can be dropped. This would give more time to UID GaN growth in 

order to more effectively recover the surface morphology in between GaN:Ge spikes. The 

time of the GaN:Ge layer can also be decreased, irrespective of duty cycle. Alternating 10 

nm layers, which have been grown so far, are relatively thick. More spike-like layers of 1-2 

nm could maintain both high structural quality and high carrier density.
20,21

  Another 

strategy that should be explored is the addition of growth interrupts between the doped layer 

and undoped GaN in the periodic sequence. The interrupt should remove excess dopant 

atoms from the surface, making sharper spikes of doping and possibly allowing for better 

morphology throughout the stack. Digital GaN:Ge doping could also be attempted. In this 

scheme, flows of TMG (TEG) and IBGe alternate. The hope is that with a high enough 

IBGe flow, Ge will accumulate on the surface and introduce very sharp spikes of dopants 

into the GaN layer. Finally, perhaps the most promising avenue toward high n-type doping 

concentrations using Ge is to combine it with Si doping. Figure 6.14 showed the very 

different morphologies of GaN:Ge and GaN:Si, with the former preferring step bunching 

and the latter preferring very large step area. If one can find the right combination of Ge and 

Si incorporation, it is likely that these morphological effects will offset, and the layer will 

grow smoothly in step-flow. Additionally, the strain introduced by high Si and Ge 
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incorporation in the GaN lattice is opposite – GaN:Ge develops compressive stress and 

GaN:Si develops tensile stress – so a GaN:Ge+Si layer could be grown largely unstrained.  

 An initial attempt was made (see Chapter 6) to use a GaN:Ge layer for polarization 

screening in a SQW LED, but that device suffered a catastrophic loss of output power. 

When the GaN:Ge layer was moved away from the SQW by 20 nm, the power recovered. It 

will need to be determined what effect the GaN:Ge layer had to cause this sharp drop in 

efficiency when in close proximity to a QW. SIMS or atom probe measurements could show 

whether there is a short tail of Ge atom or other impurity atoms into the QW that could act 

as nonradiative recombination centers. TRPL and TREL can be performed on structures 

with varying placement and concentration of Ge doping to extract rates of recombination. 

Iterating these measurements with changes in architecture or growth mode may lead to a 

solution with complete field screening and high radiative efficiency. 

Beyond use in SQW LEDs, Ge doping could be used in other devices that need 

highly doped layers or high mobility layers. Tunnel junctions (TJs) require a p-n junction 

with thin degenerately doped layers. Electron states in conduction band of the n-side of the 

junction line up in energy with hole states in the valence band on the p-side of the junction, 

and if the junction field is strong enough and the tunneling distance through the bandgap is 

short enough, then a low resistance TJ can be formed. This is difficult in GaN because of its 

large bandgap, so especially high levels of doping must be used, along with other strategies 

such as polarization engineering
22

 and rare-earth nanoparticles.
23

 Ge could provide an 

advantage over Si on the n-side of the TJ since it does not develop large tensile strains. GaN 

TJs could enable the elimination of troublesome p-contacts and deposited current spreading 

layers.
24

 They could also allow stacking of multiple active regions of LEDs, for lower 
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carrier density or multiple colors, or multiple junctions in a nitride solar cell.
25–27

 Highly Ge 

doped layers can also be used as low resistance contact and current spreading layers in GaN 

electronic devices and top contact LEDs. Since GaN:Ge seems to have slightly higher 

mobility than GaN:Si, very low doping could be used in n-channel transistors.   

  



216 
 

References 
 

1. Perl, E. E., McMahon, W. E., Friedman, D. J. & Bowers, J. E. Ultrabroadband and 

Wide-Angle Hybrid Antireflection Coatings With Nanostructures. IEEE J. 

Photovoltaics 4, 962–967 (2014). 

2. Toledo, N. G. et al. Design of integrated III-nitride/non-III-nitride tandem 

photovoltaic devices. J. Appl. Phys. 111, 054503 (2012). 

3. Zhao, Y. et al. Indium incorporation and emission properties of nonpolar and 

semipolar InGaN quantum wells. Appl. Phys. Lett. 100, 201108 (2012). 

4. Fiorentini, V., Bernardini, F., Della Sala, F., Di Carlo, a. & Lugli, P. Effects of 

macroscopic polarization in III-V nitride multi-quantum-wells. 60, 11 (1999). 

5. Dadgar, a. et al. Green to blue polarization compensated c-axis oriented multi-

quantum wells by AlGaInN barrier layers. Appl. Phys. Lett. 102, (2013). 

6. Jena, D. et al. Polarization-engineering in group III-nitride heterostructures: New 

opportunities for device design. Phys. Status Solidi 208, 1511–1516 (2011). 

7. Schubert, M. F. et al. Polarization-matched GaInNAlGaInN multi-quantum-well 

light-emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 93, 2006–2009 

(2008). 

8. Geisz, J. F. et al. 40.8% Efficient Inverted Triple-Junction Solar Cell With Two 

Independently Metamorphic Junctions. Appl. Phys. Lett. 93, 123505 (2008). 

9. Koslow, I. L. et al. Onset of plastic relaxation in semipolar () InxGa1−xN/GaN 

heterostructures. J. Cryst. Growth 388, 48–53 (2014). 

10. Däubler, J. et al. Long wavelength emitting GaInN quantum wells on metamorphic 

GaInN buffer layers with enlarged in-plane lattice parameter. Appl. Phys. Lett. 105, 

111111 (2014). 

11. Mazzer, M. et al. Progress in quantum well solar cells. Thin Solid Films 511-512, 76–

83 (2006). 

12. Van Den Broeck, D. M., Bharrat, D., Hosalli, a. M., El-Masry, N. a. & Bedair, S. M. 

Strain-balanced InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 105, 031107 

(2014). 



217 
 

13. Shioda, T., Yoshida, H., Tachibana, K., Sugiyama, N. & Nunoue, S. Enhanced light 

output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW 

structure on sapphire (0001) substrate. Phys. Status Solidi 209, 473–476 (2012). 

14. Koleske, D. D., Fischer, A., Bryant, B. N., Kotula, P. G. & Wierer, J. J. On the 

increased efficiency in InGaN-based multiple quantum wells emitting at 530–590nm 

with AlGaN interlayers. J. Cryst. Growth 415, 57–64 (2015). 

15. Sun, C.-K. et al. Radiative recombination lifetime measurements of InGaN single 

quantum well. Appl. Phys. Lett. 69, 1936 (1996). 

16. David, A. & Grundmann, M. J. Droop in InGaN light-emitting diodes: A differential 

carrier lifetime analysis. Appl. Phys. Lett. 96, 1–4 (2010). 

17. Iveland, J., Martinelli, L., Peretti, J., Speck, J. S. & Weisbuch, C. Direct 

Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting 

Diode under Electrical Injection: Identification of the Dominant Mechanism for 

Efficiency Droop. Phys. Rev. Lett. 110, 177406 (2013). 

18. Iveland, J. et al. Origin of electrons emitted into vacuum from InGaN light emitting 

diodes. Appl. Phys. Lett. 105, 052103 (2014). 

19. Piccardo, M. et al. Determination of the first satellite valley energy in the conduction 

band of wurtzite GaN by near-band-gap photoemission spectroscopy. Phys. Rev. B 

89, 235124 (2014). 

20. Wang, L. S., Zang, K. Y., Tripathy, S. & Chua, S. J. Effects of periodic delta-doping 

on the properties of GaN:Si films grown on Si (111) substrates. Appl. Phys. Lett. 85, 

5881–5883 (2004). 

21. Aoyagi, Y., Takeuchi, M., Iwai, S. & Hirayama, H. Formation of AlGaN and GaN 

epitaxial layer with high p-carrier concentration by pulse supply of source gases. AIP 

Adv. 2, 012177 (2012). 

22. Krishnamoorthy, S., Akyol, F., Park, P. S. & Rajan, S. Low resistance 

GaN/InGaN/GaN tunnel junctions. Appl. Phys. Lett. 102, 113503 (2013). 

23. Krishnamoorthy, S. et al. GdN nanoisland-based GaN tunnel junctions. Nano Lett. 

13, 2570–5 (2013). 

24. Jeon, S.-R. et al. Lateral current spreading in GaN-based light-emitting diodes 

utilizing tunnel contact junctions. Appl. Phys. Lett. 78, 3265 (2001). 

25. Akyol, F., Krishnamoorthy, S. & Rajan, S. Tunneling-based carrier regeneration in 

cascaded GaN light emitting diodes to overcome efficiency droop. Appl. Phys. Lett. 

103, 081107 (2013). 



218 
 

26. Chang, S.-J., Lin, W.-H. & Yu, C.-T. GaN-based multiquantum well light-emitting 

diodes with tunnel-junction-cascaded active regions. IEEE Electron Device Lett. 

3106, 1–1 (2015). 

27. Grundmann, M. & Mishra, U. Multi‐color light emitting diode using polarization‐
induced tunnel junctions. Phys. status solidi 4, 2830–2833 (2007).  

 


	Thesis Title v4
	Thesis Ch1 Intro v3
	Thesis Ch2 Growth InGaN QWs v2
	Thesis Ch3 Optical v3
	Thesis Ch4 MQW Solar v3
	Thesis Ch5 SQW LEDs v4
	Thesis Ch6 Ge Doping v3
	Thesis Ch7 Conclusions v2



