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ABSTRACT
An enhanced rate of stellar tidal disruption events (TDEs) may be an important characteristic
of supermassive black hole (SMBH) binaries at close separations. Here, we study the evolution
of the distribution of stars around an SMBH binary due to the eccentric Kozai–Lidov (EKL)
mechanism, including octupole effects and apsidal precession caused by the stellar mass
distribution and general relativity. We identify a region around one of the SMBHs in the
binary where the EKL mechanism drives stars to high eccentricities, which ultimately causes
the stars to either scatter off the second SMBH or get disrupted. For SMBH masses 107 and
108 M⊙, the TDE rate can reach ∼10−2 yr−1 and deplete a region of the stellar cusp around
the secondary SMBH in ∼0.5 Myr. As a result, the final geometry of the stellar distribution
between 0.01 and 0.1 pc around the secondary SMBH is a torus. These effects may be even
more prominent in nuclear stellar clusters hosting a supermassive and an intermediate mass
black hole.

Key words: black hole physics – galaxies: kinematics and dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

Supermassive black holes (SMBHs) are ubiquitous at the centres
of galaxies (Kormendy & Ho 2013). Stars passing close to the
SMBH can be tidally disrupted, and the fall back of the stellar de-
bris produces a strong electromagnetic tidal disruption flare (e.g.
Gezari 2012). More than a dozen tidal disruption event (TDE) can-
didates have been observed until present (e.g. Bade, Komossa &
Dahlem 1996; Gezari et al. 2003, 2006, 2008, 2009; van Velzen et al.
2011; Gezari et al. 2012; Holoien et al. 2014), including two can-
didates with relativistic jets (Bloom et al. 2011; Levan et al. 2011;
Zauderer et al. 2011; Cenko et al. 2012). TDEs can provide valuable
information on dormant SMBHs, which are otherwise difficult to
detect.

The rate of the TDEs provides information about the SMBH
and the stellar distribution in the centre of galaxies (Stone &
Metzger 2014). The rate of TDEs is highly uncertain observation-
ally due to the small sample size. It is estimated to be in the range
of 10−5–10−4 per galaxy per year by Donley et al. (2002), Gezari
et al. (2008), Maksym (2012) and van Velzen & Farrar (2014). This
roughly agrees with the theoretical estimates, discussed by Frank &
Rees (1976), Lightman & Shapiro (1977), Cohn & Kulsrud (1978),
Magorrian & Tremaine (1999), Wang & Merritt (2004), Brock-
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amp, Baumgardt & Kroupa (2011) and Stone & Metzger (2014).
However, the TDE rate may be enhanced due to the presence of a
non-axisymmetric gravitational potential around the SMBH (Mer-
ritt & Poon 2004), or due to a massive perturber (Perets, Hopman &
Alexander 2007). In addition, the TDE rate may be higher in galax-
ies with more than one SMBH (Ivanov, Polnarev & Saha 2005; Chen
et al. 2009, 2011; Wegg & Bode 2011), or when the SMBH binary
(SMBHB) recoils due to the emission of gravitational waves (Stone
& Loeb 2011; Li et al. 2012; Stone & Loeb 2012). Some TDEs
may not appear as flares and therefore be missed in observations
(Guillochon & Ramirez-Ruiz 2015).

The interaction between an SMBHB and an ambient star cluster
has been discussed in the literature using numerical scattering ex-
periments by Sesana, Gualandris & Dotti (2011) and using direct
N-body simulations by Iwasawa et al. (2011), Gualandris & Merritt
(2012), Meiron & Laor (2013) and Wang et al. (2014). In partic-
ular, it has been shown that the star cluster may either increase or
decrease the eccentricity of the SMBHB depending on the fraction
of counter-rotating to corotating stars. The SMBHB ejects a pop-
ulation of stars from the cluster in an anisotropic manner, and the
SMBHB produces a deficit in the number density of stars, a dip in
the velocity dispersion in the inner regions, and an inner counter-
rotating and an outer corotating torus of stars with respect to the
binary.

In this paper, we focus on the distribution of stars orbiting close
to one member of the SMBHB and perturbed by the other SMBH
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through hierarchical three-body interactions. We examine the effect
of these hierarchical three-body interactions. Specifically, the outer
SMBH perturbs the stellar population around the inner1 SMBH, and
leads to long-term variations in the eccentricities and inclinations
of the stellar orbits while keeping the semimajor axes of their orbits
fixed. In particular, when the orbit of the SMBH secondary is circu-
lar and if the mutual inclination between the orbits of the SMBHB
and a star is over 40◦, the stellar eccentricity and inclination undergo
periodic oscillations, known as the quadrupole Kozai–Lidov mech-
anism (Kozai 1962; Lidov 1962). This is caused by the long-term
(orbit-averaged) Newtonian (NT) gravitational effect expanded in
multipoles to the quadrupole order, i.e. second order in the semi-
major axial ratio of the stellar and the outer SMBH’s orbit. More
generally, it has been found that when the outer orbit is eccentric,
the analogous octupole eccentric Kozai–Lidov (EKL) mechanism
(third order in semimajor axial ratio) causes the eccentricity to be
excited very close to unity and the inner orbit to flip relative to
the invariable plane from prograde to retrograde or vice versa (e.g.
Ford, Kozinsky & Rasio 2000; Katz, Dong & Malhotra 2011; Naoz
et al. 2011; Lithwick & Naoz 2011; Naoz et al. 2013a,b; Li et al.
2014a,b). The TDE rate has been discussed in the literature for stars
orbiting an SMBHB, where the quadrupole Kozai–Lidov mech-
anism can enhance the tidal disruption rate (Ivanov et al. 2005;
Chen et al. 2009, 2011; Wegg & Bode 2011). For the Galactic
Centre, the Kozai–Lidov mechanism driven by the stellar disc has
also been discussed and the additional effects of NT apsidal preces-
sion were shown to play a significant role (Chang 2009). In light of
recent developments in the understanding of hierarchical three-body
interactions, we revisit this problem. Since the stellar eccentricity
can be increased to a value much closer to unity by eccentric per-
turbers, we expect the EKL mechanism to enhance TDE rates with
respect to the circular case. We therefore seek to re-evaluate the
total number of stars vulnerable to TDE due to EKL.

It is well known that apsidal precession quenches the EKL mech-
anism (e.g. Ford et al. 2000; Blaes, Lee & Socrates 2002; Naoz
et al. 2013b). In galactic nuclei, this may be due to the NT gravita-
tional effect of the spherical stellar cusp or general relativistic (GR)
precession, provided that the corresponding precession time-scale
is much shorter than the Kozai time-scale (Chang 2009). Further-
more, the EKL mechanism may be quenched if the eccentricity of
the star is changed by the stellar cluster due to scalar resonant relax-
ation, or if the orbital plane is reoriented by the stellar cluster due
to vector resonant relaxation (Rauch & Tremaine 1996; Kocsis &
Tremaine 2011, 2015) or Lense–Thirring precession (Merritt et al.
2010; Merritt & Vasiliev 2012). We find that NT precession and GR
precession may have a large effect on the EKL mechanism, but tidal
effects, scalar and vector resonant relaxation, and Lense–Thirring
precession are typically less important. The time-scale on which
the EKL mechanism operates increases if the outer SMBH mass is
reduced. Thus, GR precession may dominate over and quench the
EKL mechanism most efficiently if the outer SMBH is less massive
than the inner SMBH (see fig. 2 in Naoz & Silk 2014). Similarly, we
find that NT precession also suppresses the EKL mechanism most
efficiently when the outer SMBH is less massive. Tidal disruption
is expected in the opposite regime when the EKL mechanism is
very prominent, i.e. when the outer SMBH is more massive than

1 We consider stars that initially orbit the ‘inner’ SMBH and whose orbits
are perturbed by the ‘outer’ SMBH regardless of which SMBH is more
massive.

Figure 1. The system configuration. ‘c.m.’ denotes the centre of mass of
the inner binary, which contains the star (with mass m1) and SMBH (with
mass m0). The other SMBH (with mass m2) is on an outer orbit.

the inner SMBH. We identify the outcome of the EKL mechanism
as a function of SMBHB parameters and quantify the TDE rate.

Our discussion is organized as follows. In Section 2, we describe
the adopted methods. In Section 3, we characterize the parameter
space to identify where the EKL mechanism is important. Then,
we calculate the tidal disruption rate and discuss the final stellar
distribution due to the EKL mechanism with an illustrative example
in Section 4, and for stars surrounding an intermediate-mass black
hole (IMBH) in Section 5. Finally, we summarize our main results
in Section 6.

2 M E T H O D

We study the tidal disruption of stars due to the EKL mechanism
in galaxies that host an SMBHB. The three-body system consists
of an ‘inner binary’ comprised of the SMBH and a star, and an
‘outer binary’ comprised of the outer SMBH and the centre mass
of the inner binary, as shown in Fig. 1. We denote the masses of the
objects by m0 (inner SMBH), m1 (star) and m2 (outer SMBH), and
for orbital parameters we use subscript 1 and 2 for the inner and outer
binary, respectively. In order for the EKL mechanism to operate,
we require the triple system to be in a hierarchical configuration:
the inner binary on a much tighter orbit than the third object, such
that (e.g. Lithwick & Naoz 2011; Katz et al. 2011),

ϵ = a1

a2

e2

1 − e2
2

< 0.1 , (1)

where a and e are, respectively, the semimajor axis and eccentricity.

2.1 Comparison of time-scales

We examine the range of orbital parameters in order to identify the
regions in which the EKL mechanism may operate. The relevant
processes’ time-scales can be expressed as

tK = 2πa3
2(1 − e2

2)3/2
√

(m0 + m1)(1 − e2
1)

√
Ga

3/2
1 m2

(2)

toct = 1
ϵ
tK (3)

tGR1 = 2πa
5/2
1 c2(1 − e2

1)
3G3/2(m0 + m1)3/2

(4)

tGR2 = 2πa
5/2
2 c2(1 − e2

2)
3G3/2(m0 + m1 + m2)3/2

(5)

tGR,int = 16
9

a3
2c

2(1 − e2
2)3/2(m0)3/2

√
a1e1

√
1 − e2

1G
3/2m2

0m2

(6)
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tNT = 2π

(√
Gm0/a

3
1

πm0e1

∫ π

0
dψ M∗(r) cos ψ

)−1

(7)

tRR,s = 4πω

β2
s &

2

m2
0

M∗(r)m1
(8)

tRR,v = 2πfvrr

&
m0

1√
M∗(r)m1

(9)

trel = 0.34
σ 3

G2ρm1 ln )
(10)

tLT = a3
1c

3(1 − e2)3/2

2G2m2
0s

(11)

tGW = a4
2

4
5
64

c5

G3m0m2(m0 + m2)
. (12)

Here tK is the quadrupole (O(a1/a2)2) Kozai time-scale. Following
Naoz et al. (2013b), toct is the octupole (O(a1/a2)3) Kozai time-
scale. tGR1 and tGR2 are the time-scales of the first-order post NT
GR precession at the quadrupole order (O(a1/a2)2) on the inner
and outer orbits, and tGR,int is the time-scale associated with the first
post-NT (1PN) order GR interaction between the inner and outer
orbits. Following Kocsis & Tremaine (2011), tNT is the time-scale
of the NT precession caused by the stellar potential, and tRR,s and
tRR,v are the time-scales of the scalar and vector resonant relaxation.
trel is the two-body relaxation time-scale. tLT is the Lense–Thirring
precession time-scale and tGW is the time-scale of the orbital decay
of the binary SMBHB due to gravitational wave radiation. For the
resonant relaxation time-scales, M∗(r) is the mass of the stars interior
to r, ω is the net rate of precession due to GR and NT, βs is estimated
to be 1.05 ± 0.02 by Eilon, Kupi & Alexander (2009), & is the
orbital frequency of the star and fvrr is estimated to be 1.2 by Kocsis
& Tremaine (2015). For the Lense–Thirring time-scale, sGm2

0/c is
the spin angular momentum of the inner SMBH (see references in
e.g. Peters 1964; Kocsis & Tremaine 2011; Naoz et al. 2013b). We
define some of these effects in more detail in Section 2.2 below.

The EKL mechanism operates if the following criteria are satis-
fied:

(i) The three-body configuration satisfies the hierarchical condi-
tion (ϵ < 0.1, see equation 1).

(ii) The stars stay in the Hill sphere of the inner SMBH in order
for them to remain bound to it, i.e. a1(1+e1)<a2(1−e2)(m0/3m2)1/3.

(iii) The quadrupole (O(a1/a2)2) Kozai time-scale, tK, needs to
be shorter than the time-scales of the other mechanisms that modify
the orbital elements, otherwise the EKL mechanism is suppressed.
The competing mechanisms include NT precession, GR precession,
scalar resonant relaxation, vector resonant relaxation, two-body re-
laxation, Lense–Thirring precession and the gravitational radiation.

Note that the secular approximation fails when the perturbation from
the outer SMBH is too strong or when the eccentricity reaches values
very close to unity (e.g. Antonini & Perets 2012; Katz & Dong 2012;
Antognini et al. 2014; Antonini, Murray & Mikkola 2014; Bode &
Wegg 2014). This means that there are some systems that are poorly
described by our approximation. However, we expect that those
systems reach even higher eccentricities than the one predicted by
the octupole approximation (e.g. Antognini et al. 2014), and thus
our overall qualitative conclusions may hold even for those systems,
but the quantitative rate values possibly underestimate the true rates.

Figure 2. The different time-scales as a function of the semimajor axis of the
stars (a1), where e1 = 2/3, m0 = 107 M⊙, a2 = 0.3 pc, m1 = 1 M⊙, e2 = 0.7.
In the upper panel, m2 = 106 M⊙, and in the lower panel, m2 = 109 M⊙.
In the grey region, ϵ > 0.1, the hierarchical approximation is violated. The
EKL mechanism does not operate in the grey region and wherever tquad is
not the shortest time-scale. The quadrupole Kozai time-scale is shorter than
the other time-scales for the semimajor axis range indicated by the light
green arrow.

To calculate the NT time-scale, the resonant relaxation time-
scales, and the two-body relaxation time-scale, we adopt the spher-
ically symmetric model for the stellar density discussed in O’Leary
& Loeb (2009). Specifically, the stellar density distribution is a
power law of semimajor axis and the normalization is fixed by the
M–σ relation,

ρ∗(r) = 3 − α

2π

m0

r3

(
GM0(m0/M0)1−2/k

σ 2
0 r

)−3+α

, (13)

where k = 4, M0 = 1.3 × 108 M⊙ and σ 0 = 200 km s−1 (Tremaine
et al. 2002), and we set α = 1.75.

Fig. 2 shows the time-scales for the case of a 1 M⊙ star orbiting
a 107 M⊙ SMBH. The separation of the SMBHB is set to 0.3 pc.
The upper panel corresponds to m2 = 106 M⊙, and the lower panel
corresponds to m2 = 109 M⊙. For the Lense–Thirring time-scale, s
is set to unity. The eccentricity of the star–SMBH system, e1, is as-
sumed to be 2/3 and e2 is assumed to be 0.7. The EKL-dominated
region is larger for higher e2 with fixed a1 and a2. Fig. 2 shows
that the EKL mechanism is suppressed for a 107–106 M⊙ binary
at all radii, but it may operate at least in a restricted range for a
107–109 M⊙ binary. Note that although the octupole time-scale toct

is longer than some of the other secular time-scales, our simulations
show that the eccentricity can nevertheless reach high values pro-
vided that tK is the shortest time-scale and toct is at most moderately
larger than the other time-scales. Since toct = tK/ϵ and 1/ϵ ∼ 10–30,
toct is only moderately larger than the other time-scales in most of
the relevant phase space when tK is the shortest time-scale. Thus, in
the following, we identify the regions where the eccentricity may
be excited using conditions (i)–(iii) above irrespective of toct. Typi-
cally, the conditions on the quadrupole Kozai time-scale (tK < tGR

and tK < tNT) set the lower limit for a1 for a fixed a2, and the
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Figure 3. The a1–a2 parameter space, m0 = 107 M⊙, m1 = 1 M⊙,
e2 = 0.7. In the upper panel, m2 = 106 M⊙, and in the lower panel,
m2 = 109 M⊙. The solid blue and red lines represent e1 = 0.001 and the
dashed blue and red lines represent e1 = 2/3. Above the red or blue lines,
the EKL mechanism is suppressed by the GR or the Newtonian precession.
Below the black line or the grey lines, the hierarchical configuration or the
Hill sphere limit is violated. The EKL mechanism is suppressed everywhere
in the upper panel, and the EKL mechanism dominates in the shaded regions
in the lower panel.

hierarchical configuration ϵ < 0.1 and the Hill sphere limit set the
upper limit on a1.

Next, we examine the a1–a2 parameter space to identify the pa-
rameters where EKL dominates. We plot two examples in Fig. 3:
m0 = 107 M⊙, m1 = 1 M⊙, m2 = 106 M⊙, e2 = 0.7 in the upper
panel, and m0 = 107 M⊙, m1 = 1 M⊙, m2 = 109 M⊙, e2 = 0.7 in
the lower panel. The EKL-dominated region is bigger for larger e2.
To test the dependence on e1, we include two e1 values: e1 = 0.001
(solid lines) and e1 = 2/3 (dashed lines), where e1 = 2/3 cor-
responds to the mean value of e1 in a thermal distribution. The
parameter space is independent of the mass of the star as long as
m1 ≪ m0. The EKL-dominated region is bounded by tK = tGR (blue
line) and tK = tNT (red line) from above and by the Hill sphere limit
(grey line) and the hierarchical condition (black line) from below.
In the upper panel, there is no region where the EKL mechanism
dominates. In the lower panel, the region where EKL dominates is
shaded with horizontal dashed lines for e1 = 2/3 and it is shaded
with vertical solid lines for e1 = 0.001.

We calculate the number of stars affected by the EKL mecha-
nism for the particular stellar density distribution around the inner
SMBH (equation 13). In Fig. 4, we consider the parameter space
of different m0, m2, a2, e2 and show the number of stars in the
range of a1 where all criteria are satisfied for the EKL mechanism
to operate. Each panel shows the parameter plane of m0 and m2

(assuming m1 ≪ m0), a2 is varied in different columns of panels
from 0.1 to 10 pc, and e2 is varied in the different rows from 0.1
to 0.7. We set the stellar eccentricity to e1 = 2/3 in all panels,

the mean eccentricity for an isotropic thermal distribution. There is
no systematic change in the number of stars affected by the EKL
versus e1. When e1 = 0.001, the numbers typically increase to
roughly twice the numbers of e1 = 2/3, since the maximum a1

allowed due to the Hill sphere criterion becomes larger. When
e1 = 0.999, the parameter region where stars can be affected in
the m0–m2 plane increases, since the NT precession time-scale in-
creases, while the changes in the numbers depend on the specific
m0–m2 configurations. In regions where the EKL mechanism is
important, approximately 105–6 stars are affected. Thus, the EKL
mechanism may significantly contribute to the TDEs. Note that the
EKL mechanism is more likely to be suppressed for stars orbiting
around the more massive SMBH. However, for parameters where
the EKL mechanism is not suppressed everywhere around the more
massive inner SMBH, the total number of stars affected by EKL
may be higher for stars orbiting the more massive SMBH than for
those orbiting the less massive SMBH.

2.2 Equations of motion

As shown in the previous section, GR and NT precessions represent
important limitations for the EKL mechanism. In this section, we
review the equations of motion which govern the long-term evolu-
tion of stars due to the EKL mechanism, GR and NT precessions,
and tidal effects adopted from Naoz et al. (2013a,b) and Tremaine
(2005). We use the Delaunay’s elements, which provide a con-
venient dynamical description of hierarchical three-body systems.
The coordinates are the mean anomalies, l1 and l2, the arguments
of periastron, g1 and g2 and the longitude of nodes, h1 and h2. Their
conjugate momenta are

L1 = m0m1

m0 + m1

√
G(m0 + m1)a1 (14)

L2 = m2(m0 + m1)
m0 + m1 + m2

√
G(m0 + m1 + m2)a2

G1 = L1

√
1 − e2

1, G2 = L2

√
1 − e2

2 (15)

H1 = G1 cos i1, H2 = G2 cos i2, (16)

where i denotes the inclination relative to the total angular mo-
mentum of the three-body system and G without subscript is the
gravitational constant. To leading order, the two binaries follow
independent Keplerian orbits where lj are rapidly varying and Lj,
Gj, Hj, gj and hj are conserved for j ∈ {1, 2}. These quantities are
slowly varying over longer time-scales due to the superposition of
the perturbations: the EKL mechanism, GR and NT precessions,
and tidal effects, discussed next.

2.2.1 Eccentric Kozai–Lidov mechanism

The equations of motion for the EKL mechanism may be de-
rived using the double-averaged Hamiltonian (i.e. averaged over
the rapidly varying l1 and l2 elements). We go beyond the analyses
of Chen et al. (2011) and Wegg & Bode (2011), who considered
only the quadrupole (O(a1/a2)2) Kozai–Lidov mechanism, where
the z-component of angular momentum is constant. This assump-
tion does not hold when the orbit of the SMBHB is eccentric,
and one needs to include the octupole order terms (O(a1/a2)3)
(e.g. Naoz et al. 2013a). The Hamiltonian can be decomposed as
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Figure 4. The number of stars (N) influenced by the EKL mechanism, assuming a stellar density distribution in equation (13), and that the stellar mass is
negligible and e1 = 2/3 (the mean eccentricity assuming a thermal distribution). We determine the range of stellar semimajor axis a1 where the EKL mechanism
operates for a fixed set of SMBH masses, m0, m2, and outer orbital parameters, e2 and a2. Plotting the corresponding number of stars as a function of m0 and
m2 for an array of e2 and a2 as shown, captures a large parameter space. The EKL mechanism affects a large number of stars over a wide range of SMBH
binary parameters when a2 ! 3 pc.

HKozai,quad = C2
{(

2 + 3e2
1

)
(3 cos2 itot − 1)

+ 15e2
1 sin2 itot cos 2g1

}
(17)

HKozai,oct = 15
4

ϵMe1C2
{
A cos φ + 10 cos itot sin2 itot

×
(
1 − e2

1

)
sin g1 sin g2

}
, (18)

where

ϵM = m0 − m1

m0 + m1
ϵ (19)

C2 = G2

16
(m0 + m1)7

(m0 + m1 + m2)3

m7
2

(m0m1)3

L4
1

L3
2G

3
2

(20)

A = 4 + 3e2
1 − 5

2
B sin2 itot (21)

B = 2 + 5e2
1 − 7e2

1 cos 2g1 (22)

cos φ = − cos g1 cos g2 − cos itot sin g1 sin g2. (23)

The equations of motion for the EKL mechanism are given by
Hamilton’s equations (equations A26– A35 in Naoz et al. 2013a).

2.2.2 GR effects

Next, we consider the leading order (1PN) effects of GR. We follow
Naoz et al. (2013b), who derived the double-averaged 1PN Hamil-
tonian to the octupole (O(a1/a2)3) order. The Hamiltonian consists
of four terms:Ha1 ,Ha2 ,Ha1a2 ,Hint (Naoz et al. 2013b). Here,Ha1a2

does not contribute to the dynamical evolution, and the long-term
effect of Hint is typically negligible, as its time-scale is longer than
that of the Kozai time-scale and the GR precession of the inner and
outer orbits as long as the star stays within the Hill sphere of the
inner SMBH. Thus, we only consider the effects of Ha1 and Ha2

which cause the GR precession of the arguments of periapsides,

dg1

dt

∣∣∣∣
1PN,a1

= −3G3/2(m0 + m1)3/2

a
5/2
1 c2(1 − e2

1)
, (24)

dg2

dt

∣∣∣∣
1PN,a2

= −3G3/2(m0 + m1 + m2)3/2

a
5/2
2 c2(1 − e2

2)
. (25)

Given that we neglect Hint, and higher order post-NT corrections
such as Lense–Thirring precession and gravitational radiation, the
other conserved quantities, Lj, Gj, Hj, hj, are not affected for j ∈
{1, 2}.

2.2.3 NT precession

The NT potential of a spherical stellar cusp causes apsidal preces-
sion at the rate (Tremaine 2005):

ġ1,NT =
(
1 − e2

1

)1/2

(
Gm0/a

3
1

)1/2
a1e1

d,∗

dr
cos ψ, (26)

where ,∗ is the stellar potential, r is the distance to the central
SMBH and ψ is the true anomaly of the inner orbit. The averaged
precession rate of g1 due to NT precession is expressed below:

ġ1,NT = (Gm0/a
3
1)1/2

πm0e1

∫ π

0
dψ M∗(r) cos ψ, (27)
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Figure 5. Comparison of the runs with tidal effects and the runs with no
tidal effects. The dashed green line indicates the case with tidal effects and
the blue lines indicates the case without tidal effects. The two lines are
nearly identical, suggesting that tidal effects are negligible in these runs.
The upper panel shows a case when a 1 M⊙ star orbits around a 107 M⊙
SMBH with a1 = 0.017 pc and e1 = 0.001, and is perturbed by a 109 M⊙
outer SMBH with a2 = 1 pc. The lower panel shows a case when a 10 M⊙
star orbits around a 107 M⊙ SMBH with a1 = 0.035 pc and e1 = 0.01, and
is perturbed by a 109 M⊙ outer SMBH with a2 = 1 pc, e2 = 0.7. We used
the constant time lag prescription for the tides, and the quality factor Q was
set to ∼105 for a 10 d orbit (Q ∼ 4 × 108 for a 100 yr orbit).

where M⋆(r) is the mass of the stellar system interior to r and
r ≡ r(ψ) = a1(1 − e2

1)/(1 + e cos ψ) from Kepler’s equation. Ex-
plicit analytic expressions for the apsidal precession rate are given
in appendix A of Kocsis & Tremaine (2015).

2.2.4 Tidal dissipation

To investigate if tides can suppress eccentricity excitation, we con-
sider the ‘equilibrium tide’ with constant time lag to calculate
the inner binary’s orbital evolution when the pericentre distance
is larger than 2Rt. Similarly to Naoz, Farr & Rasio (2012) and
Naoz & Fabrycky (2014), we include the differential equation gov-
erning the orbital evolution following Eggleton, Kiseleva & Hut
(1998), Eggleton & Kiseleva-Eggleton (2001) and Fabrycky &
Tremaine (2007). For the star, we assume the viscous time-scale
is 10 yr, which corresponds to the quality factor (Goldreich & Soter
1966) Q ∼ 105 for a 10 d orbit (or Q ∼ 4 × 108 for a 100 yr
orbit).

In Fig. 5, we show a representative example of the evolution with
and without tides. The effect of tides is negligible mainly because
the orbital period is long and Q is low.

3 SMBH-BINARY SYSTEM

Requiring the criteria listed in Section 2.1, the minimum and the
maximum distance of the star affected by the EKL mechanism
from the inner SMBH can be calculated. However, not all stars in
this region will be disrupted, since the excitation of the eccentric-
ity depends sensitively on the orbital orientation, and the param-
eter region where the eccentricity can be excited is complicated
(Li et al. 2014b). In addition, when the Kozai time-scale is only
slightly smaller than the GR or the NT time-scale (with tK still
being the smallest), the evolution of the inner orbit is complex.
For instance, the eccentricity of the inner orbit can be excited in
configurations where the eccentricity cannot be excited due to the
Kozai–Lidov mechanism alone. This excitation may be caused by
the resonances between the NT, GR or Kozai–Lidov precessions
(Naoz et al. 2013b).

We consider the following illustrative example: m0 = 107 M⊙,
m2 = 108 M⊙, a2 = 0.5 pc, e2 = 0.5. We adopt the isotropic
stellar distribution function of equation (13), assuming the stars
have a solar mass, and that the eccentricity distribution is thermal
(dN/de = 2e). We run large Monte Carlo simulations, integrating the
equations presented in Section 2, where the equations of motion for
the EKL mechanism are given by Hamilton’s equations (equations
A26– A35 in Naoz et al. 2013a), and ġ1 = ġ1,EKL + ġ1,GR + ġ1,NT,
ġ2 = ġ2,EKL + ġ2,GR. We distinguish three outcomes for the EKL
evolution: ‘TDE’, ‘scattered by the SMBH companion’ and ‘sur-
viving’, as explained now.

The eccentricity of the star needs to reach very close to unity to
cause tidal disruption. The tidal radius is Rt = 5 × 10−6 pc around
a 107 M⊙ SMBH. We identify the TDE with a1(1 − e1) < 3Rt,
since the stars may still be disrupted due to accumulated heating
under the strong tide outside the tidal radius (Li & Loeb 2013).
Since the size of the Hill sphere of the less massive SMBH is
small (i.e. 0.08 pc in our example), the star may reach the apoc-
entre outside the Hill sphere before disruption as the eccentricity
increases. Namely, the gravitational pull of the companion SMBH
(m2) will be larger than m0. We refer to this as a ‘scattering event’
(a1(1 + e1) > a2(1 − e2)(m0/(3m2))1/3). Note that the secular ap-
proximation is no longer valid for the scattering events. Three-body
integrations of the dynamical evolution of scattering events show
that they may either lead to an exchange interaction, where the star
is captured by the outer SMBH, they may cause the ejection of the
star producing a hyper-velocity star (Samsing 2015; Guillochon &
Loeb 2014), or they may be tidally disrupted. The scattering events
resulting in a capture may systematically increase the eccentricity
distribution of stars orbiting the companion SMBH. For the third
category, we label the stars neither disrupted nor scattered by the
companion after 1 Gyr as ‘survivors’.

Fig. 6 shows the results of the numerical simulation in the final
a1–i and a1–e1 planes. We use open circles to mark stars that under-
went TDEs, crosses for stars that were scattered by the companion
and full circles for stars that survived. The disruption/scattering
time is colour coded, and it indicates that most of the disruption
events occur within ∼0.5 Myr. This corresponds to the octupole
Kozai time-scale, which is roughly 0.2–2 Myr for these systems at
a1 = 0.03–0.08 pc. Out of all 1000 stars between a1 = 0.0275 and
0.075 pc, 57 are disrupted, and 726 are scattered by the outer black
hole. According to the stellar density distribution in equation (13),
there are ∼105 stars in this semimajor axis range. Normalized by
the total number of stars in this semimajor axis range, it indicates
that the tidal disruption rate is ∼10−2 yr−1 in the first ∼0.5 Myr
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Figure 6. The outcome of the evolution around an SMBH binary with
m0 = 107 M⊙, m2 = 108 M⊙, a2 = 0.5 pc, e2 = 0.5. We plot the final i1
versus a1 and e1 versus a1 for stars that survived, were disrupted, or were
scattered in the simulation after 1 Gyr. The colour code indicates the time
when the star is disrupted or is scattered. Out of the 1000 stars between
a1 = 0.0275 pc and 0.075 pc, 57 are disrupted, and 726 are scattered by
the outer black hole. The number of stars in this range according to the
distribution of equation (13) is ∼105 (assuming the stars are 1 M⊙). This
suggests that the tidal disruption rate is ∼10−2 yr−1 in the first ∼0.5 Myr
for the less massive black hole.

Figure 7. The initial distribution and the final distribution of the stars after
1 Gyr in our illustrative example shown in Fig. 6. The final distribution
represent the surviving stars.

for the less massive black hole due to EKL, while ∼7 × 104 stars
undergo scattering events by the outer SMBH.

Since the eccentricity of the stars with high inclinations are more
likely to be excited, the stars with high inclinations are more vulner-
able to tidal disruption, the final inclination distribution is no longer
isotropic (the lower panels in Fig. 7) and the stars around the SMBH
form a torus-like configuration (see Naoz & Silk 2014, for similar
results). The stars with larger semimajor axis have higher probabil-
ity to be scattered when their eccentricity become excited due to the
EKL mechanism, and thus the final distribution of stars surrounding
the less massive black hole will be truncated at a larger semimajor
axis. In addition, the distribution of the eccentricity of the surviving
stars shows deviations from thermal distribution with a suppression
of very eccentric stars (as expected since they get scattered by m2

more easily, and their eccentricity can be excited more easily at a
lower inclination; Li et al. 2014a). Furthermore, as shown in Fig. 8,
the stars that are closer to m0 (!0.04 pc) have an eccentricity distri-
bution closer to thermal. The stars that are closer to m2 ("0.04 pc)
have systematically smaller eccentricities. The thermal distribution
for closely separated stars (!0.04 pc) is similar to the observed S
stars in the centre of the Milky Way galaxy (Genzel, Eisenhauer &
Gillessen 2010), which shows a steeper slope.

Figure 8. The final cumulative distribution of the eccentricity of stars in our
illustrative example for m0 = 107 M⊙, m2 = 108 M⊙ separated by 0.5 pc in
an eccentric orbit with e2 = 0.5. For stars at distance larger than 0.04 pc, the
final eccentricity distribution becomes shallower than that inside of 0.04 pc.

4 SMBH–IMBH SYSTEM

Let us consider next the perturbations of an SMBH on stars orbiting
an IMBH. IMBHs may form through runaway mergers during core
collapse in globular clusters (Portegies Zwart & McMillan 2002).
Since globular clusters sink to the galactic centre through dynam-
ical friction, and the disrupted globular cluster could contribute to
most of the mass in nuclei stellar cluster for galaxies with total
mass below 1011 M⊙, this setup may be common in the Universe
(Portegies Zwart et al. 2006; Antonini 2013; Gnedin, Ostriker &
Tremaine 2014). Alternatively, IMBH may form at cosmologically
early times from Population III stars in galactic nuclei (Madau &
Rees 2001), or in accretion discs around SMBHs (Goodman & Tan
2004; McKernan et al. 2012, 2014). In the Milky Way centre, the
orbits of the S stars are consistent with that caused by the dynamical
interactions of IMBHs (Merritt, Gualandris & Mikkola 2009). In
addition, IRS 13E may potentially host an IMBH, though its ex-
istence is controversial (Maillard et al. 2004; Schödel et al. 2005;
Fritz et al. 2010). The TDE rate has been discussed by Chen & Liu
(2013) and Mastrobuono-Battisti, Perets & Loeb (2014). Here, we
consider the interactions of stars surrounding IMBHs in the centre
of galaxies with the central SMBH due to the hierarchical three-
body interactions, and consider the re-distribution of the stars as a
result of the interaction.

We set the IMBH mass to 104 M⊙ at a distance of 0.1 pc from Sgr
A∗ (a2 = 0.1 pc, e2 = 0.7, m0 = 104 M⊙ and m2 = 4 × 106 M⊙).
These parameters for the IMBH are allowed according to limits on
the astrometric wobble of the radio image of Sgr A∗ (Hansen &
Milosavljević 2003; Reid & Brunthaler 2004), the study of hyper-
velocity stars (Yu & Tremaine 2003) and the study of the orbits of
S stars (Gualandris & Merritt 2009). We set the distance of stars to
be uniformly distributed between 0.00045 and 0.0028 pc. The tidal
disruption radius for 1 M⊙ stars is 4.89 × 10−7 pc. The minimum
distance is set by requiring the GR precession time-scale to be
longer than the Kozai time-scale, and the maximum distance is set
by requiring the stars to stay in the Hill sphere of the IMBH. Note
that in this case the hierarchical criterion (i) in Section 2.1, ϵ < 0.1,
is satisfied as long as the stars are within the IMBH’s Hill sphere.
We assume the distribution of the stellar eccentricity to be uniform.
We take into account GR precession, NT precession and EKL at
octupole order in the integration.

In 1000 runs, we find that ∼40 end up in tidal disruption and ∼500
are scattered as shown in Fig. 9. The tidal disruption/scattering time
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Figure 9. The final distribution of stars surrounding a 104 M⊙ IMBH at a
distance of 0.1 pc from Sgr A⋆ after 100 Myr. The open circles represent stars
that get tidally disrupted, and the crosses represent stars that get scattered.
Both are coloured according to the time of tidal disruption/scattering. We
find that ∼50 per cent of the stars survived tidal disruption and scattering.
The final distribution of the star has a deficiency at high inclination relative
to the orbital plane of IMBH.

Figure 10. The initial distribution and the final distribution of the stars after
100Myr in our illustrative example for the IMBH, as shown in Fig. 9.

(colour coded) is around 105 yr. As shown in Fig. 10, we predict
that the surviving stars form a torus-like configuration (similarly
to the result achieved by Naoz & Silk (2014) for dark matter par-
ticles). The predicted distribution may be resolved if the angular
resolution of the instrument is better than that corresponding to the
Hill sphere around the IMBH, in this case 0.07 arcsec. This can
be achieved in near-infrared by the Gemini, Very Large Telescope
(VLT) and Keck telescopes. In addition, the EKL mechanism also
produces scattering events which may be responsible for the ob-
served hyper-velocity stars. The TDE rate may reach ∼10−4 yr−1

for a short ∼105 yr duration episode after the globular cluster first
approaches the galactic nucleus at a distance of 0.1 pc, assuming
there are ∼200 stars in a globular cluster around an 104 M⊙-IMBH
in the EKL-dominated region according to the density distribution
in equation (13).

5 C O N C L U S I O N S

SMBHBs are natural outcomes of galaxy mergers. An SMBHB
may show an enhanced TDE rates due to the EKL mechanism
and chaotic three-body interactions (Ivanov et al. 2005; Chen et al.
2009, 2011; Wegg & Bode 2011). The higher tidal disruption rates
may in turn serve as a flag to identify closely separated black hole
binaries on subparsec scale, which are difficult to detect otherwise.
We focused on the effect of the EKL mechanism (see Naoz et al.
2011, 2013a) on the surrounding stars in SMBHB. This mechanism
can excite the stars’ eccentricity to values very close to unity (e.g.
Naoz et al. 2013a,b; Li et al. 2014a,b). We identified the range of
physical parameters where EKL is important.

We first compared the Kozai time-scale with the secular time-
scales of other mechanisms that may suppress EKL in galactic
nuclei. These include NT precession, GR precession, resonant re-
laxation, two-body relaxation, Lense–Thirring precession and or-
bital decay due to gravitational wave emission. We have found that
for the SMBHB cases we considered, NT precession and GR pre-
cession may suppress EKL, especially when the inner SMBH is
more massive than the outer SMBH (as shown in Fig. 4). This is
consistent with the results by Naoz & Silk (2014) for dark matter
particles around SMBHBs, as well as the three-body scattering ex-
periments done by Chen et al. (2009), Wegg & Bode (2011) and
Chen et al. (2011), who observed that the TDEs were dominated
by the three-body chaotic interactions rather than EKL mechanism
for stars surrounding the more massive black hole. However, we
found that a massive outer binary allows a non-negligible region
of parameter space where the EKL mechanism may operate and
lead to TDEs. We also demonstrated that tidal effects are typically
negligible for the stellar orbital evolution (see Fig. 5).

To illustrate the EKL effects on stars surrounding the less massive
black hole, we ran 1000 numerical experiments with different initial
conditions for a star cluster surrounding a 107 M⊙ black hole, which
is being perturbed by a 108 M⊙ outer black hole. We have found
over ∼50 out of the 1000 runs stars are disrupted in ∼0.5 Myr.
Scaled with the total number of stars according to equation (13),
this corresponds to a TDE rate of 10−2 yr−1 for the first ∼0.5 Myr.
In contrast, Chen et al. (2011) considered tidal disruption rates for
stars surrounding the more massive SMBH, using numerical three-
body scattering experiments. They estimated the tidal disruption
rate to be as high as 0.2 yr−1 mainly due to three-body scattering
effects,2 in the first 3 × 105 yr for stars surrounding a 107 M⊙
SMBH perturbed by an 81 times less massive outer SMBH. For
the same SMBHB configuration, EKL only affects at most ∼103

stars surrounding the less massive SMBH as shown in Fig. 4, and
affects at most ∼103 stars surrounding the more massive SMBH.
Thus, EKL contributes negligibly to the total tidal disruption rate in
this case, but EKL contributes significantly to the TDE rate of stars
around the secondary SMBH.

The EKL mechanism also affects the stellar distribution for stars
surrounding the less massive SMBH. As shown in Fig. 7, the sur-
vived stars within a particular range of radii are distributed in the
shape of a torus (Naoz & Silk 2014). In addition, a large number
of stars orbiting the less massive black hole will be scattered by the
outer black hole following the EKL-induced eccentricity increase.
In our illustrative example, ∼670 out of 1000 stars are eventually
transferred to an orbit around the outer, more massive SMBH. This
may produce hyper-velocity stars (Guillochon & Loeb 2014).

Finally, we studied the tidal disruption of stars by an IMBH dur-
ing mergers of globular clusters with galactic nuclei. For an IMBH
of mass 104 M⊙ at a distance of 0.1 pc from Sgr A∗, 4 per cent
of stars get disrupted within the relevant distance range around the
IMBH, and ∼50 per cent get scattered within 105 yr. This yields
a temporary tidal disruption rate of ∼10−4 yr−1. Some of the
scattering events may produce hyper-velocity stars or additional
TDEs. The EKL mechanism produces a torus-like stellar distribu-
tion for the surviving stars, which may be resolved by the Gemini,
VLT and Keck telescopes in near-infrared. Further investigations
of this process using numerical scattering experiments would be a
worthwhile in the future.

2 Since, as we showed, the EKL is suppressed in this case.
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